I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
3
8
,
No
.
2
,
Ma
y
20
2
5
,
p
p
.
1
010
~
1
0
2
3
I
SS
N:
2
502
-
4
7
52
,
DOI
:
1
0
.
1
1
5
9
1
/ijee
cs
.v
3
8
.
i
2
.
pp
1
0
1
0
-
1
0
2
3
1010
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs
.
ia
esco
r
e.
co
m
Da
ta mining
and
ca
rdia
c health:
p
r
edicting h
ea
rt
a
t
t
a
ck risks
I
no
c
Rubi
o
P
a
uca
r
1
,
L
a
beria
no
Andra
de
-
Are
na
s
2
1
F
a
c
u
l
t
a
d
d
e
I
n
g
e
n
i
e
r
í
a
y
N
e
g
o
c
i
o
s,
U
n
i
v
e
r
s
i
d
a
d
P
r
i
v
a
d
a
N
o
r
b
e
r
t
W
i
e
n
e
r
,
L
i
ma,
P
e
r
ú
2
F
a
c
u
l
t
a
d
d
e
C
i
e
n
c
i
a
s e
I
n
g
e
n
i
e
r
í
a
,
U
n
i
v
e
r
s
i
d
a
d
d
e
C
i
e
n
c
i
a
s
y
H
u
m
a
n
i
d
a
d
e
s,
Li
ma,
P
e
r
ú
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Mar
2
,
2
0
2
4
R
ev
is
ed
No
v
3
,
2
0
2
4
Acc
ep
ted
No
v
11
,
2
0
2
4
In
a
c
o
n
tex
t
wh
e
re
h
e
a
rt
a
tt
a
c
k
s
c
o
n
ti
n
u
e
t
o
b
e
a
g
lo
b
a
l
h
e
a
lt
h
c
o
n
c
e
rn
,
t
h
e
lac
k
o
f
p
re
c
isio
n
i
n
p
re
d
ict
in
g
wh
o
is
a
t
h
i
g
h
e
r
risk
p
o
se
s
a
c
rit
ica
l
c
h
a
ll
e
n
g
e
d
u
e
t
o
t
h
e
v
a
riab
il
it
y
o
f
risk
fa
c
to
rs
a
n
d
c
o
m
p
le
x
i
n
tera
c
ti
o
n
s
a
m
o
n
g
t
h
e
m
.
Th
e
re
se
a
rc
h
a
ims
to
d
e
v
e
lo
p
p
r
e
d
ictiv
e
m
o
d
e
ls
fo
r
h
e
a
rt
a
tt
a
c
k
risk
s
u
sin
g
d
a
ta
m
in
in
g
tec
h
n
i
q
u
e
s,
e
m
p
l
o
y
i
n
g
th
e
k
n
o
wle
d
g
e
d
isc
o
v
e
ry
i
n
d
a
tab
a
se
s
m
e
th
o
d
o
lo
g
y
(KD
D)
a
n
d
t
h
e
k
-
m
e
a
n
s
a
lg
o
rit
h
m
with
Ra
p
i
d
M
i
n
e
r
s
tu
d
io
.
Th
e
p
rima
ry
o
b
jec
ti
v
e
is
to
id
e
n
t
ify
p
a
tt
e
rn
s
a
n
d
risk
p
r
o
fil
e
s,
a
ll
o
win
g
f
o
r
e
a
rly
id
e
n
ti
fica
ti
o
n
o
f
a
t
-
risk
in
d
iv
i
d
u
a
ls,
c
o
n
sid
e
rin
g
fa
c
to
rs
li
k
e
o
b
e
sity
,
d
iab
e
tes
,
a
lco
h
o
li
sm
,
a
n
d
stre
ss
,
to
re
d
u
c
e
p
re
v
e
n
tab
le
d
e
a
th
s
a
n
d
imp
ro
v
e
c
a
rd
iac
h
e
a
lt
h
c
a
re
.
Th
is
in
n
o
v
a
ti
v
e
a
p
p
ro
a
c
h
c
o
m
b
i
n
e
s
c
a
rd
iac
h
e
a
lt
h
,
d
a
ta
m
in
in
g
,
a
n
d
KD
D
m
e
th
o
d
o
lo
g
y
t
o
a
d
d
re
ss
th
e
c
h
a
ll
e
n
g
e
o
f
p
re
d
ic
ti
n
g
h
e
a
rt
a
tt
a
c
k
risk
s
a
n
d
h
a
s
t
h
e
p
o
ten
ti
a
l
to
e
n
h
a
n
c
e
m
e
d
ica
l
c
a
re
a
n
d
s
a
v
e
li
v
e
s.
Th
e
p
re
d
o
m
in
a
n
t
re
su
l
ts
o
b
tain
e
d
we
re
th
a
t
c
lu
ste
r
1
with
a
fra
c
ti
o
n
o
f
0
.
3
1
2
a
n
d
a
p
e
rc
e
n
tag
e
o
f
3
1
.
2
%
o
f
t
h
e
a
tt
ri
b
u
te
d
ia
b
e
tes
wa
s
o
n
e
o
f
th
e
m
o
st
p
re
v
a
len
t
c
a
u
se
s
o
f
c
a
rd
iac
risk
.
F
in
a
ll
y
,
t
h
e
re
se
a
rc
h
c
o
n
c
lu
d
e
d
t
h
a
t
p
e
o
p
le
with
d
iab
e
tes
a
re
m
o
re
li
k
e
ly
to
h
a
v
e
c
a
rd
iac
risk
a
ss
o
c
iate
d
wi
th
d
ieta
ry
fa
c
to
rs o
r
c
o
n
su
m
p
ti
o
n
o
f
o
t
h
e
r
su
b
sta
n
c
e
s.
K
ey
w
o
r
d
s
:
C
ar
d
iac
h
ea
lth
Data
m
in
in
g
Hea
r
t a
ttack
s
Pre
d
ictio
n
R
is
k
s
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
L
ab
er
ian
o
A
n
d
r
ad
e
-
Ar
en
as
Facu
ltad
d
e
I
n
g
en
ier
ía
y
Neg
o
cio
s
,
Un
iv
er
s
id
ad
Priv
ad
a
N
o
r
b
er
t Wi
en
er
L
im
a
-
Per
ú
E
m
ail:
lan
d
r
ad
e@
u
ch
.
e
d
u
.
p
e
1.
I
NT
RO
D
UCT
I
O
N
I
n
th
e
g
l
o
b
al
h
ea
lth
c
o
n
tex
t,
ca
r
d
io
v
ascu
lar
d
is
o
r
d
e
r
s
h
av
e
em
er
g
e
d
as
an
u
r
g
en
t
c
o
n
ce
r
n
.
Hea
r
t
attac
k
s
r
em
ain
o
n
e
o
f
th
e
lea
d
in
g
ca
u
s
es
o
f
m
o
r
b
id
ity
a
n
d
m
o
r
tality
wo
r
ld
wid
e
[
1
]
,
[
2
]
.
T
h
e
W
o
r
ld
Hea
lth
Or
g
an
izatio
n
(
W
HO)
co
n
s
is
ten
tly
r
ep
o
r
ts
th
at
th
ese
ca
r
d
io
v
a
s
cu
lar
ev
en
ts
im
p
o
s
e
a
s
ig
n
if
ic
an
t
b
u
r
d
en
o
n
b
o
th
p
u
b
lic
h
ea
lth
an
d
h
ea
lth
ca
r
e
s
y
s
tem
s
wo
r
ld
wid
e
[
3
]
.
Ho
wev
er
,
it
is
cr
u
cial
to
r
ec
o
g
n
ize
th
at
t
h
e
r
is
k
o
f
s
u
f
f
e
r
in
g
a
h
ea
r
t a
ttack
is
s
ig
n
if
ican
tly
i
n
f
lu
en
ce
d
b
y
f
ac
to
r
s
s
u
ch
as d
iab
etes,
o
b
esit
y
,
alco
h
o
lis
m
,
a
n
d
s
tr
ess
.
T
h
e
is
s
u
e
at
h
an
d
lies
in
th
e
c
o
m
p
lex
ity
o
f
ac
cu
r
ately
p
r
ed
icti
n
g
wh
o
is
at
th
e
h
ig
h
est
r
is
k
o
f
s
u
f
f
er
in
g
a
h
ea
r
t
attac
k
d
u
e
to
t
h
e
in
tr
ic
ate
in
ter
p
lay
o
f
m
u
ltip
le
r
is
k
f
ac
to
r
s
.
Diab
etes,
a
wid
esp
r
ea
d
m
etab
o
lic
d
is
ea
s
e,
co
n
tr
ib
u
tes
to
th
e
r
is
k
b
y
a
f
f
e
ctin
g
ca
r
d
io
v
ascu
lar
h
e
alth
[
4
]
,
[
5
]
.
Ob
esit
y
,
a
n
o
th
er
s
ig
n
if
ican
t
g
lo
b
al
h
ea
lth
co
n
ce
r
n
,
is
clo
s
ely
r
elate
d
to
h
ea
r
t a
ttack
r
is
k
s
.
E
x
ce
s
s
iv
e
alc
o
h
o
l c
o
n
s
u
m
p
tio
n
ca
n
s
u
b
s
tan
tially
elev
ate
th
ese
r
is
k
s
.
Fu
r
th
er
m
o
r
e
,
th
e
d
etr
im
en
tal
im
p
ac
t
o
f
ch
r
o
n
ic
s
tr
ess
o
n
h
ea
r
t
h
ea
lt
h
is
well
-
d
o
cu
m
en
ted
.
T
h
ese
r
is
k
f
ac
to
r
s
,
wh
ich
o
f
ten
co
e
x
is
t
in
in
d
iv
id
u
als,
m
ak
e
p
r
ed
ic
tio
n
a
m
u
ltifa
ce
ted
c
h
allen
g
e
[
6
]
,
[
7
]
.
C
u
r
r
en
t
ap
p
r
o
ac
h
es
o
f
ten
f
all
s
h
o
r
t
o
f
p
r
o
v
id
i
n
g
p
r
ec
is
e
p
r
e
d
ictio
n
s
,
r
esu
ltin
g
in
d
elay
ed
d
iag
n
o
s
es
an
d
less
ef
f
ec
tiv
e
h
ea
lth
ca
r
e
r
esp
o
n
s
es,
le
ad
in
g
t
o
a
s
ig
n
if
ican
t n
u
m
b
er
o
f
p
r
ev
en
tab
le
d
ea
th
s
.
T
h
e
ju
s
tific
atio
n
f
o
r
th
is
r
esear
ch
is
r
o
b
u
s
t.
I
m
p
r
o
v
in
g
th
e
p
r
e
d
ictio
n
o
f
h
ea
r
t
attac
k
r
is
k
s
in
th
e
co
n
tex
t
o
f
d
iab
etes,
o
b
esit
y
,
alco
h
o
lis
m
,
an
d
s
tr
ess
is
o
f
p
a
r
am
o
u
n
t
im
p
o
r
tan
ce
f
o
r
p
u
b
lic
h
ea
lth
a
n
d
in
d
iv
id
u
al
well
-
b
ein
g
[
8
]
.
T
h
e
ap
p
licatio
n
o
f
d
ata
m
in
in
g
tech
n
iq
u
es
p
r
es
en
ts
a
p
r
o
m
is
in
g
a
v
en
u
e
to
ad
d
r
ess
th
is
is
s
u
e,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
Da
ta
min
in
g
a
n
d
c
a
r
d
ia
c
h
e
a
lth
:
p
r
ed
ictin
g
h
ea
r
t a
tta
ck
r
is
ks
(
I
n
o
c
R
u
b
io
P
a
u
ca
r
)
1011
as
it
ca
n
u
n
v
eil
h
id
d
en
p
atte
r
n
s
in
ex
ten
s
iv
e
clin
ical
a
n
d
b
io
m
ed
ical
d
atasets
,
en
ab
lin
g
ea
r
ly
an
d
p
r
ec
is
e
id
en
tific
atio
n
o
f
at
-
r
is
k
in
d
iv
id
u
als.
T
h
is
r
esear
ch
s
tan
d
s
to
b
en
ef
it
n
o
t
o
n
ly
p
atien
ts
b
u
t
also
h
ea
lth
ca
r
e
p
r
o
f
ess
io
n
als
an
d
p
o
licy
m
ak
er
s
b
y
p
r
o
v
i
d
in
g
m
o
r
e
ef
f
e
ctiv
e
h
ea
lth
ca
r
e,
r
ed
u
cin
g
m
o
r
tality
r
ates,
an
d
allev
iatin
g
th
e
f
in
a
n
cial
b
u
r
d
e
n
o
n
h
ea
lth
ca
r
e
s
y
s
tem
s
.
I
n
th
e
r
ea
lm
o
f
p
u
b
lic
h
ea
lth
,
a
cr
itical
c
h
allen
g
e
is
p
o
s
ed
b
y
th
e
h
ig
h
m
o
r
tality
r
ate
ass
o
c
iated
with
ca
r
d
io
v
ascu
lar
d
is
ea
s
es
(
C
VD
)
,
s
p
ec
if
ically
h
ea
r
t
attac
k
s
[
9
]
,
[
1
0
]
.
T
h
is
h
ea
lth
is
s
u
e
is
c
o
m
p
o
u
n
d
ed
b
y
th
e
g
r
o
win
g
p
r
e
v
alen
ce
o
f
well
-
estab
lis
h
ed
r
is
k
f
ac
to
r
s
,
in
cl
u
d
in
g
o
b
esit
y
,
d
iab
etes,
alco
h
o
lis
m
,
an
d
s
tr
ess
.
Pre
v
en
tin
g
p
r
em
atu
r
e
d
ea
th
s
r
elate
d
to
th
ese
d
is
ea
s
es
h
as
b
e
co
m
e
a
p
u
b
lic
h
ea
lth
p
r
io
r
ity
.
Ob
esit
y
h
as
b
ec
o
m
e
a
g
lo
b
al
ep
i
d
em
ic,
a
f
f
ec
tin
g
in
d
iv
id
u
als o
f
all
ag
es a
n
d
d
em
o
g
r
ap
h
ics.
T
h
is
co
n
d
itio
n
s
ig
n
if
ican
tly
co
n
tr
ib
u
tes
to
th
e
r
is
k
o
f
C
VD
,
in
clu
d
in
g
h
ea
r
t
attac
k
s
.
Similar
ly
,
d
iab
etes,
a
ch
r
o
n
ic
m
etab
o
lic
d
is
ea
s
e,
is
clo
s
ely
lin
k
ed
to
h
ea
r
t
d
is
ea
s
e
an
d
ca
n
d
r
am
a
tically
in
cr
ea
s
e
m
o
r
tality
r
ates
[
1
1
]
.
Alco
h
o
lis
m
,
wh
en
it
ev
o
lv
es
in
to
ex
ce
s
s
iv
e
an
d
ch
r
o
n
ic
co
n
s
u
m
p
tio
n
,
ca
n
s
u
b
s
tan
tially
elev
ate
th
e
r
is
k
o
f
h
ea
r
t
attac
k
s
an
d
o
th
er
ca
r
d
iac
co
n
d
itio
n
s
.
L
astl
y
,
ch
r
o
n
ic
s
tr
ess
,
s
tem
m
in
g
f
r
o
m
th
e
p
r
ess
u
r
es
o
f
d
aily
life
,
h
as
b
ee
n
id
en
tifie
d
as
a
s
ig
n
if
ican
t
r
is
k
f
ac
to
r
f
o
r
C
VD
.
T
o
ad
d
r
ess
th
i
s
ch
allen
g
e
an
d
p
r
ev
e
n
t
th
e
n
u
m
b
e
r
o
f
p
r
em
atu
r
e
d
ea
th
s
r
elate
d
to
th
ese
r
is
k
f
ac
to
r
s
,
a
r
esear
ch
p
r
o
p
o
s
al
is
p
u
t
f
o
r
th
b
ased
o
n
th
e
ap
p
licatio
n
o
f
d
at
a
m
in
in
g
tech
n
iq
u
es.
T
h
e
k
n
o
wled
g
e
d
is
co
v
er
y
in
d
atab
ases
(
KDD
)
m
eth
o
d
o
lo
g
y
will
s
er
v
e
as
th
e
f
r
am
ewo
r
k
to
u
n
ea
r
th
v
alu
ab
le
p
atter
n
s
an
d
in
s
ig
h
ts
f
r
o
m
clin
ical
an
d
b
io
m
ed
ical
d
ata.
T
h
e
K
-
m
ea
n
s
alg
o
r
ith
m
wil
l
b
e
ap
p
lied
u
s
in
g
R
ap
id
Min
er
s
tu
d
io
to
clu
s
ter
an
d
class
if
y
in
d
iv
id
u
als,
id
en
tify
in
g
p
r
o
f
iles
o
f
p
atien
ts
with
a
h
i
g
h
er
lik
elih
o
o
d
o
f
ex
p
er
ien
cin
g
h
ea
r
t a
ttack
s
.
T
h
is
s
tu
d
y
aim
s
to
d
ev
elo
p
p
r
e
d
ictiv
e
m
o
d
els
o
f
h
ea
r
t
attac
k
r
is
k
u
s
in
g
d
ata
m
in
in
g
tech
n
iq
u
e
s
,
tak
in
g
in
to
ac
co
u
n
t
t
h
e
u
n
d
er
ly
i
n
g
ca
u
s
es
lead
in
g
to
d
ea
t
h
in
ca
r
d
ia
c
h
ea
lth
.
W
e
aim
to
ac
cu
r
ately
p
r
ed
ict
wh
o
is
m
o
s
t
at
r
is
k
in
th
is
co
m
p
lex
n
etwo
r
k
o
f
r
is
k
f
ac
to
r
s
,
in
cl
u
d
in
g
d
iab
e
tes,
o
b
esit
y
,
alco
h
o
lis
m
,
an
d
s
t
r
ess
,
an
d
to
p
r
o
v
id
e
a
b
asis
f
o
r
p
r
o
ac
tiv
e
m
e
d
ica
l
d
ec
is
io
n
-
m
ak
in
g
.
B
y
ac
h
iev
in
g
th
is
g
o
al,
we
will
co
n
t
r
ib
u
te
to
r
ed
u
cin
g
h
ea
r
t a
ttack
-
r
elate
d
d
ea
th
s
an
d
im
p
r
o
v
i
n
g
th
e
q
u
ality
o
f
life
o
f
th
o
s
e
at
r
is
k
.
T
h
is
s
cien
tific
ar
ticle
will e
x
p
lo
r
e
th
e
co
n
s
tr
u
ctio
n
a
n
d
ev
alu
ati
o
n
o
f
t
h
ese
m
o
d
els,
en
r
i
c
h
in
g
th
e
b
o
d
y
o
f
k
n
o
wled
g
e
in
ca
r
d
iac
h
ea
lth
an
d
d
ata
m
in
in
g
.
2.
L
I
T
E
R
AT
U
RE
R
E
VI
E
W
T
h
e
p
r
esen
t
liter
atu
r
e
r
ev
iew
f
o
cu
s
es
o
n
th
e
e
x
citin
g
f
ield
o
f
d
ata
m
in
i
n
g
ap
p
lied
to
ca
r
d
iac
h
ea
lth
,
s
p
ec
if
ically
in
th
e
p
r
ed
ictio
n
o
f
h
ea
r
t
attac
k
r
is
k
s
.
T
h
is
s
ec
tio
n
aim
s
to
an
aly
ze
r
esear
ch
c
o
n
d
u
cte
d
b
y
v
ar
io
u
s
ex
p
er
ts
an
d
s
cien
tis
ts
in
th
is
f
ield
,
h
ig
h
lig
h
tin
g
t
h
eir
s
ig
n
if
ic
an
t
co
n
tr
ib
u
tio
n
s
wh
ile
id
en
tif
y
in
g
lim
itatio
n
s
an
d
o
p
p
o
r
tu
n
ities
f
o
r
a
d
v
an
cin
g
t
h
is
cr
u
cial
asp
ec
t
o
f
h
ea
lth
ca
r
e.
T
h
e
co
m
b
in
atio
n
o
f
d
ata
m
in
i
n
g
tech
n
o
lo
g
y
an
d
ca
r
d
iac
h
ea
lth
h
as
p
r
o
v
en
to
b
e
a
p
r
o
m
is
in
g
ap
p
r
o
ac
h
f
o
r
th
e
ea
r
ly
a
n
d
ac
c
u
r
ate
id
e
n
tific
atio
n
o
f
r
is
k
f
ac
to
r
s
,
en
ab
lin
g
m
o
r
e
p
e
r
s
o
n
alize
d
an
d
ef
f
ec
tiv
e
ca
r
e
f
o
r
p
atien
ts
at
r
is
k
o
f
C
VD
.
T
h
e
p
r
im
a
r
y
ai
m
o
f
th
is
r
esea
r
ch
was
to
ass
ess
th
e
r
elatio
n
s
h
ip
b
etwe
en
ch
an
g
es
in
t
h
e
b
eh
av
io
r
o
f
s
m
o
k
in
g
p
atien
ts
an
d
th
e
r
is
k
o
f
f
atal
in
cid
en
ce
o
f
C
VD
in
in
d
iv
id
u
als
with
ty
p
e
2
d
iab
ete
s
m
ellitu
s
(
T
2
DM
)
.
T
h
e
s
tu
d
y
en
co
m
p
ass
ed
a
s
ig
n
i
f
ican
t
co
h
o
r
t
o
f
3
4
9
,
1
3
7
s
m
o
k
er
s
wh
o
wer
e
ca
teg
o
r
ized
in
to
f
iv
e
d
is
tin
ct
g
r
o
u
p
s
:
th
o
s
e
wh
o
q
u
it
s
m
o
k
in
g
,
r
ed
u
c
er
s
I
with
a
r
ed
u
ctio
n
o
f
less
th
an
5
0
%,
r
ed
u
ce
r
s
I
I
with
a
m
o
d
er
ate
r
ed
u
ctio
n
o
f
20
-
5
0
%,
th
o
s
e
wh
o
m
ain
tain
e
d
th
eir
h
ab
it
with
in
a
v
ar
iab
ili
ty
r
an
g
e
o
f
±
2
0
%,
an
d
th
o
s
e
wh
o
in
cr
ea
s
ed
t
h
eir
cig
ar
ette
co
n
s
u
m
p
tio
n
b
y
a
m
i
n
im
u
m
o
f
2
0
%.
I
m
p
o
r
tan
tly
,
it
was
r
ev
ea
led
th
at
am
o
n
g
T
2
D
M
p
atien
ts
,
q
u
itti
n
g
s
m
o
k
in
g
w
as
s
ig
n
i
f
ican
tly
ass
o
ciate
d
with
a
d
ec
r
ea
s
e
i
n
b
o
t
h
th
e
in
cid
en
ce
o
f
C
VD
an
d
th
e
o
v
er
all
m
o
r
tality
r
ate
f
r
o
m
all
ca
u
s
es
[
1
2
]
.
T
h
e
s
e
f
in
d
in
g
s
u
n
d
er
s
co
r
e
t
h
e
s
ig
n
if
ican
ce
o
f
s
m
o
k
in
g
ce
s
s
atio
n
as
a
f
u
n
d
am
en
tal
p
r
ev
en
tiv
e
m
ea
s
u
r
e
in
m
a
n
ag
i
n
g
ca
r
d
i
o
v
ascu
lar
h
ea
lth
in
in
d
iv
id
u
als with
ty
p
e
2
d
iab
etes.
T
h
e
s
tu
d
y
e
x
am
in
ed
1
5
1
p
at
ien
ts
wh
o
wer
e
at
r
is
k
o
f
ex
p
er
ien
cin
g
ac
u
te
m
y
o
ca
r
d
ial
in
f
ar
ctio
n
ac
co
r
d
in
g
to
th
e
ev
alu
ati
o
n
o
f
th
e
ST
-
s
eg
m
en
t
elev
atio
n
m
y
o
ca
r
d
ial
in
f
ar
ctio
n
(
STE
MI
)
af
ter
p
r
im
ar
y
p
er
cu
tan
eo
u
s
co
r
o
n
ar
y
in
ter
v
e
n
tio
n
(
PC
I
)
.
T
h
e
s
tu
d
y
was
co
n
d
u
cted
in
a
s
in
g
le
-
ce
n
ter
f
ash
io
n
.
Am
o
n
g
th
e
1
5
1
STE
MI
p
atien
ts
wh
o
u
n
d
er
we
n
t
p
r
im
ar
y
PC
I
,
7
1
wer
e
s
u
b
je
cted
to
an
a
n
aly
s
is
o
f
m
ajo
r
ad
v
er
s
e
ca
r
d
io
v
ascu
lar
ev
en
ts
(
MA
C
E
)
th
at
o
cc
u
r
r
ed
d
u
r
in
g
th
eir
h
o
s
p
italizatio
n
.
T
h
e
p
r
ed
ict
iv
e
m
o
d
el
y
ield
ed
an
a
r
ea
u
n
d
er
th
e
cu
r
v
e
o
f
0
.
7
7
8
(
9
5
%
C
I
:
0
.
6
9
0
-
0
.
8
6
5
)
.
No
tab
ly
,
th
is
m
o
d
el
d
em
o
n
s
t
r
ated
g
o
o
d
ca
lib
r
atio
n
a
n
d
clin
ical
u
tili
ty
th
r
o
u
g
h
d
ec
is
io
n
an
d
ca
lib
r
ati
o
n
c
u
r
v
e
s
[
1
3
]
.
T
h
ese
r
esu
lts
em
p
h
asize
th
e
e
f
f
ec
tiv
en
ess
an
d
clin
ic
al
r
elev
an
ce
o
f
th
e
p
r
ed
ictiv
e
m
o
d
el
in
ass
ess
in
g
an
d
m
a
n
ag
in
g
ca
r
d
io
v
ascu
lar
ev
en
ts
in
STE
MI
p
atien
ts
u
n
d
e
r
g
o
in
g
p
r
im
a
r
y
PC
I
.
On
a
g
lo
b
al
s
ca
le,
ca
r
d
io
v
ascu
lar
in
cid
en
ts
r
an
k
am
o
n
g
th
e
le
ad
in
g
ca
u
s
es
o
f
m
o
r
b
id
ity
an
d
m
o
r
tality
.
Hen
ce
,
th
e
s
tu
d
y
aim
e
d
to
ex
am
in
e
5
2
0
in
d
iv
id
u
als
w
h
o
h
ad
ex
p
e
r
ien
ce
d
at
least
o
n
e
c
ar
d
io
v
ascu
lar
ev
en
t,
ass
es
s
in
g
th
e
ass
o
ciate
d
r
i
s
k
f
ac
to
r
s
r
elate
d
to
th
e
f
r
eq
u
en
cy
an
d
b
eh
av
io
r
o
f
th
e
an
k
le
-
b
r
a
ch
ial
in
d
ex
(
AB
I
)
.
T
h
e
s
tu
d
y
led
to
th
e
co
n
clu
s
io
n
th
at
o
n
e
ca
r
d
iac
ev
en
t
o
f
t
en
p
av
es
th
e
way
f
o
r
s
u
b
s
eq
u
en
t
ca
r
d
io
v
ascu
la
r
in
cid
en
ts
.
Ho
wev
er
,
it
is
n
o
te
wo
r
th
y
th
at
af
te
r
a
s
tr
o
k
e,
t
h
e
lik
elih
o
o
d
o
f
ex
p
er
ien
cin
g
an
o
th
er
s
tr
o
k
e
o
r
a
ca
r
d
iac
ev
e
n
t
is
c
o
m
p
ar
a
b
le
[
1
4
]
.
T
h
ese
f
in
d
in
g
s
u
n
d
er
s
co
r
e
th
e
s
ig
n
if
ican
ce
o
f
co
n
tin
u
o
u
s
m
o
n
ito
r
in
g
an
d
ef
f
ec
tiv
e
m
an
ag
e
m
en
t
o
f
r
is
k
f
ac
to
r
s
in
in
d
iv
id
u
als
wh
o
h
av
e
u
n
d
er
g
o
n
e
ca
r
d
io
v
ascu
lar
e
v
e
n
ts
to
p
r
ev
en
t
f
u
tu
r
e
co
m
p
licatio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
8
,
No
.
2
,
May
20
2
5
:
1
0
1
0
-
1
0
2
3
1012
T
h
is
in
v
esti
g
atio
n
d
el
v
es
in
to
th
e
ass
ess
m
en
t
o
f
p
h
y
s
ical
a
ctiv
ity
o
v
er
th
e
p
ast
1
2
m
o
n
t
h
s
an
d
its
r
elatio
n
to
h
ea
r
t
d
is
ea
s
e
in
b
r
e
ast
ca
n
ce
r
s
u
r
v
iv
o
r
s
.
Fo
r
th
is
s
tu
d
y
,
ass
ess
m
en
ts
wer
e
co
n
d
u
cted
o
n
co
h
o
r
ts
o
f
in
d
iv
id
u
als
wh
o
h
ad
s
u
cc
ess
f
u
ll
y
b
attled
b
r
ea
s
t
ca
n
ce
r
,
with
an
av
er
ag
e
ag
e
r
a
n
g
in
g
f
r
o
m
f
o
r
ty
to
f
if
ty
y
ea
r
s
.
T
h
e
s
tu
d
y
en
c
o
m
p
ass
ed
5
9
9
p
ar
ticip
an
ts
wh
o
h
ad
tr
i
u
m
p
h
ed
o
v
er
th
eir
ca
n
ce
r
tr
ea
tm
e
n
t,
w
ith
a
m
ed
ian
ag
e
o
f
5
5
.
5
y
ea
r
s
a
n
d
a
m
ed
ian
tim
e
s
in
ce
tr
ea
tm
en
t
o
f
1
0
.
2
y
ea
r
s
.
Sig
n
if
ica
n
tly
,
an
in
cr
ea
s
e
in
p
h
y
s
ical
ac
tiv
ity
was
f
o
u
n
d
to
co
r
r
elate
with
an
im
p
r
o
v
em
en
t
in
t
h
e
s
y
n
d
r
o
m
e
o
f
s
u
p
er
io
r
v
en
a
ca
v
a
(
SVC
)
in
in
d
iv
id
u
als
g
r
ap
p
lin
g
with
lo
n
g
-
te
r
m
c
o
n
d
itio
n
s
.
T
h
i
s
d
is
co
v
er
y
h
ig
h
lig
h
ts
th
at
b
o
o
s
tin
g
p
h
y
s
ical
ac
tiv
ity
ca
n
en
h
an
ce
ca
r
d
io
v
a
s
cu
lar
h
ea
lth
,
p
ar
ticu
lar
l
y
f
o
r
less
ac
tiv
e
s
u
r
v
iv
o
r
s
[
1
5
]
.
T
h
ese
f
in
d
in
g
s
u
n
d
e
r
s
co
r
e
th
e
p
o
ten
tial
b
en
ef
its
o
f
p
h
y
s
ical
ac
tiv
ity
in
im
p
r
o
v
in
g
ca
r
d
io
v
a
s
cu
lar
h
ea
lth
am
o
n
g
b
r
ea
s
t c
an
ce
r
s
u
r
v
iv
o
r
s
.
Natto
k
in
ase
h
as
s
h
o
wn
p
r
o
m
is
in
g
ef
f
ec
ts
o
n
h
ea
r
t
h
ea
lth
,
as
in
d
icate
d
b
y
th
e
r
esear
ch
f
in
d
in
g
s
.
T
h
e
s
tu
d
y
,
in
v
o
l
v
in
g
5
4
6
p
ar
ti
cip
an
ts
,
r
ev
ea
led
t
h
at
a
r
elativ
ely
lo
w
d
o
s
e
o
f
n
atto
k
in
ase
h
u
r
t
b
lo
o
d
ch
o
lest
er
o
l,
in
clu
d
in
g
b
o
th
h
ig
h
-
d
e
n
s
ity
lip
o
p
r
o
tein
(
HDL
)
ch
o
lest
er
o
l
an
d
to
tal
c
h
o
lest
er
o
l
lev
els.
T
h
e
r
es
u
lts
f
r
o
m
th
is
s
tu
d
y
af
f
ir
m
th
at
n
atto
k
in
ase
c
an
b
e
u
s
ed
as
an
ef
f
ec
tiv
e
co
m
p
lem
en
tar
y
tr
ea
tm
en
t
f
o
r
h
y
p
e
r
ten
s
io
n
.
Ho
wev
e
r
,
it
is
wo
r
th
n
o
tin
g
th
at
n
att
o
k
in
ase
s
u
p
p
lem
e
n
ts
in
r
ela
tiv
ely
lo
w
d
o
s
es
m
ay
n
o
t
h
av
e
a
s
ig
n
if
ica
n
t
h
y
p
o
c
h
o
lest
er
o
lem
ic
ef
f
ec
t
[
1
6
]
.
T
h
ese
f
in
d
in
g
s
u
n
d
e
r
s
co
r
e
th
e
p
o
te
n
tial
o
f
n
atto
k
i
n
ase
in
m
a
n
ag
in
g
h
y
p
er
ten
s
io
n
,
th
o
u
g
h
h
ig
h
e
r
d
o
s
es m
ay
b
e
n
ec
ess
ar
y
f
o
r
a
s
u
b
s
tan
tial im
p
ac
t o
n
lip
id
le
v
els.
T
h
e
cu
r
r
e
n
t
s
tu
d
y
em
p
lo
y
ed
a
m
ac
h
in
e
lear
n
in
g
(
ML
)
b
ased
ap
p
r
o
ac
h
to
p
r
e
d
ict
ca
r
d
io
v
ascu
lar
h
ea
lth
r
is
k
in
in
d
iv
id
u
als
with
co
r
o
n
ar
y
h
ea
r
t
d
is
ea
s
e.
Fo
r
th
is
r
es
ea
r
ch
,
th
e
r
an
d
o
m
f
o
r
est
(
R
F)
mode
l
alg
o
r
ith
m
,
en
co
m
p
ass
in
g
f
o
u
r
g
en
etic
lo
c
i
an
d
f
o
u
r
ep
i
g
en
etic
lo
ci,
was
u
tili
ze
d
,
an
d
d
ata
f
r
o
m
a
to
tal
o
f
1
,
1
8
0
in
d
iv
id
u
als
an
d
5
2
4
s
u
b
jects we
r
e
co
n
s
id
er
ed
.
As a
r
esu
lt,
th
e
a
n
aly
s
is
d
em
o
n
s
tr
ated
a
s
en
s
itiv
ity
o
f
0
.
7
0
an
d
a
s
p
ec
if
icity
o
f
0
.
7
4
,
in
d
icat
in
g
t
h
e
m
o
d
el
’
s
ab
ilit
y
to
ac
cu
r
ately
id
en
tif
y
r
is
k
s
.
Ho
wev
er
,
it
is
im
p
o
r
tan
t
to
n
o
te
th
at
th
e
s
en
s
itiv
ity
o
f
th
e
ca
r
d
io
v
ascu
l
ar
ath
er
o
s
cler
o
tic
r
is
k
esti
m
ato
r
(
ASC
VD)
test
wa
s
0
.
2
0
,
wh
ile
th
e
Fra
m
in
g
h
am
r
is
k
esti
m
ato
r
y
ield
e
d
a
s
en
s
itiv
ity
o
f
0
.
3
8
[
1
7
]
.
T
h
ese
f
i
n
d
in
g
s
h
ig
h
lig
h
t
th
e
u
tili
ty
o
f
th
e
RF
m
o
d
el
i
n
ass
ess
in
g
ca
r
d
io
v
ascu
lar
r
is
k
in
co
r
o
n
ar
y
h
ea
r
t d
is
ea
s
e
p
atien
ts
,
d
esp
it
e
v
ar
iatio
n
s
in
s
en
s
itiv
ity
am
o
n
g
r
is
k
esti
m
ato
r
s.
T
h
e
o
b
jectiv
e
o
f
th
is
r
esear
ch
i
s
to
estab
lis
h
a
lo
n
g
-
ter
m
p
atte
r
n
m
o
d
el
o
f
ca
r
d
io
v
ascu
lar
h
ea
lth
(
C
VH)
f
r
o
m
ch
ild
h
o
o
d
an
d
ass
ess
it
s
ass
o
ciatio
n
with
s
u
b
clin
ical
ath
er
o
s
cler
o
s
is
in
m
id
d
le
ag
e.
T
h
e
co
h
o
r
t
s
tu
d
y
u
tili
ze
d
d
ata
f
r
o
m
f
iv
e
ca
r
d
io
v
ascu
lar
co
h
o
r
t
s
tu
d
ies
an
d
in
cl
u
d
ed
a
to
tal
o
f
9
,
3
8
8
in
d
iv
id
u
a
ls
ag
ed
8
to
5
5
y
ea
r
s
wh
o
u
n
d
er
wen
t
a
m
in
im
u
m
o
f
th
r
ee
ex
a
m
in
atio
n
s
.
W
ith
in
th
is
s
am
p
le,
f
iv
e
tr
ajec
to
r
y
g
r
o
u
p
s
wer
e
id
en
tifie
d
,
am
o
n
g
wh
ich
5
,
1
4
6
[
5
5
%]
wer
e
f
em
ale,
6
,
2
2
8
[
6
6
%]
wer
e
o
f
C
au
ca
s
ian
eth
n
icity
,
an
d
th
e
b
aselin
e
m
ea
n
ag
e
was
1
7
.
5
[
7
.
5
]
y
ea
r
s
.
T
h
ese
g
r
o
u
p
s
en
co
m
p
ass
ed
h
ig
h
-
late
d
ec
lin
e
(
1
,
5
1
8
p
ar
ticip
a
n
ts
[
1
6
%])
,
h
ig
h
-
m
o
d
er
ate
d
ec
lin
e
(
2
,
4
0
3
[
2
6
%])
,
h
ig
h
-
ea
r
ly
d
ec
lin
e
(
3
,
0
6
6
[
3
2
%])
,
an
d
in
ter
m
ed
iate
-
late
d
ec
li
n
e
(
1
,
4
7
5
[
1
6
%])
.
Acc
o
r
d
in
g
to
th
e
s
t
u
d
y
,
C
VH
s
h
o
wed
a
d
ec
lin
e
f
r
o
m
ch
ild
h
o
o
d
to
ad
u
lth
o
o
d
.
T
h
e
p
r
o
m
o
ti
o
n
an
d
p
r
eser
v
atio
n
o
f
id
ea
l
C
VH
in
ea
r
ly
life
m
ay
b
e
lin
k
ed
to
a
r
ed
u
ce
d
r
is
k
o
f
f
u
tu
r
e
ca
r
d
io
v
ascu
lar
ev
en
ts
[
1
8
]
.
T
h
is
in
v
esti
g
atio
n
s
h
ed
s
li
g
h
t
o
n
th
e
im
p
o
r
tan
ce
o
f
m
ain
tain
in
g
c
ar
d
io
v
ascu
lar
h
ea
lth
f
r
o
m
c
h
ild
h
o
o
d
to
m
itig
ate
th
e
r
is
k
o
f
C
VD
in
later
y
ea
r
s
.
T
h
e
p
r
im
ar
y
aim
o
f
th
is
r
esear
ch
is
to
d
eter
m
in
e
wh
eth
er
liv
in
g
with
a
h
ig
h
er
ch
r
o
n
ic
v
alv
u
lar
h
ea
r
t
d
is
ea
s
e
C
V
H
s
co
r
e
in
m
id
life
is
co
r
r
elate
d
with
a
r
ed
u
ce
d
r
is
k
o
f
h
y
p
er
ten
s
io
n
,
d
iab
e
tes,
ch
r
o
n
ic
k
id
n
ey
di
s
ea
s
e,
ca
r
d
io
v
ascu
lar
ev
en
ts
,
an
d
its
s
u
b
ty
p
es
(
s
u
ch
as
co
r
o
n
ar
y
h
ea
r
t
d
is
ea
s
e,
s
tr
o
k
e,
co
n
g
esti
v
e
h
ea
r
t
f
ailu
r
e,
an
d
p
er
ip
h
er
al
ar
ter
y
d
is
ea
s
e)
,
as we
ll a
s
a
ll
-
ca
u
s
e
m
o
r
tality
in
later
s
tag
es o
f
life
.
T
o
co
n
d
u
ct
th
is
p
r
o
s
p
ec
tiv
e
co
h
o
r
t
s
tu
d
y
,
d
ata
f
r
o
m
1
,
4
4
5
p
ar
ticip
an
ts
in
th
e
f
r
am
in
g
h
a
m
h
ea
r
t
s
tu
d
y
o
f
f
s
p
r
in
g
,
c
o
llected
f
r
o
m
1
9
9
1
to
2
0
1
5
,
wer
e
an
al
y
ze
d
.
A
c
o
m
p
o
s
ite
s
co
r
e
was
cr
ea
ted
u
s
in
g
v
ar
io
u
s
v
ar
iab
les,
in
clu
d
in
g
b
o
d
y
m
ass
in
d
ex
,
f
asti
n
g
b
lo
o
d
g
lu
c
o
s
e
lev
els,
to
tal
s
er
u
m
ch
o
lest
er
o
l
lev
els
,
d
ietar
y
h
a
b
its
,
p
h
y
s
ical
ac
ti
v
ity
,
r
esti
n
g
b
l
o
o
d
p
r
ess
u
r
e,
an
d
s
m
o
k
in
g
s
tatu
s
.
T
h
e
f
in
d
i
n
g
s
f
r
o
m
th
is
in
v
esti
g
atio
n
s
u
g
g
est
th
at
s
p
e
n
d
in
g
a
lo
n
g
er
d
u
r
atio
n
o
f
tim
e
with
im
p
r
o
v
ed
C
VH
in
m
id
life
m
ay
y
ield
h
ea
lth
y
ca
r
d
io
m
etab
o
lic
b
en
e
f
its
an
d
co
u
ld
b
e
ass
o
ciate
d
with
r
ed
u
ce
d
m
o
r
tality
in
later
life
[
1
9
]
.
I
n
th
e
r
e
v
iew
o
f
th
e
eig
h
t
ar
t
icles
,
s
ev
er
al
lim
itatio
n
s
h
av
e
b
ee
n
id
e
n
tifie
d
,
in
clu
d
in
g
t
h
e
lack
o
f
p
r
ec
is
io
n
in
p
r
ed
ictin
g
ca
r
d
iac
r
is
k
s
an
d
th
e
u
n
d
e
r
u
tili
za
tio
n
o
f
d
ata
m
i
n
in
g
tec
h
n
iq
u
es
f
o
r
clin
ical
d
ata
an
aly
s
is
.
An
im
p
o
r
tan
t
im
p
r
o
v
e
m
en
t
p
r
o
p
o
s
al
wo
u
ld
b
e
t
o
ef
f
ec
tiv
e
ly
in
co
r
p
o
r
ate
d
ata
m
in
in
g
a
n
d
ML
in
to
f
u
tu
r
e
s
tu
d
ies,
en
ab
lin
g
b
etter
p
r
ed
i
ctio
n
o
f
ca
r
d
iac
r
is
k
s
f
r
o
m
lar
g
er
an
d
m
o
r
e
d
etailed
d
atasets
.
T
h
is
co
u
ld
h
elp
id
en
tify
m
o
r
e
s
u
b
tle
p
atter
n
s
a
n
d
r
is
k
f
ac
to
r
s
,
lead
i
n
g
to
m
o
r
e
p
er
s
o
n
alize
d
an
d
ef
f
ec
tiv
e
in
te
r
v
en
tio
n
s
to
r
e
d
u
ce
ca
r
d
i
ac
r
is
k
s
in
p
atien
ts
with
ty
p
e
2
d
iab
etes a
n
d
o
th
er
ca
r
d
i
o
v
ascu
lar
co
n
d
itio
n
s
.
3.
M
E
T
H
OD
3
.
1
.
Def
ini
t
io
n o
f
t
he
K
DD
m
et
ho
do
lo
g
y
T
h
e
KDD
m
eth
o
d
o
lo
g
y
is
a
p
r
o
ce
s
s
th
at
allo
ws
p
r
ed
ictio
n
s
t
o
b
e
m
ad
e
in
d
ata
m
in
in
g
th
r
o
u
g
h
a
s
er
ies
o
f
s
tag
es.
T
h
ese
p
r
o
ce
s
s
es
i
n
clu
d
e
s
elec
tio
n
,
p
r
o
ce
s
s
in
g
,
tr
a
n
s
f
o
r
m
atio
n
,
an
d
in
ter
p
r
etatio
n
[
2
0
]
as
m
en
tio
n
ed
in
Fig
u
r
e
1
.
T
h
e
m
a
n
ag
em
e
n
t
o
f
th
is
p
r
o
ce
s
s
is
iter
ativ
e
an
d
i
n
ter
ac
tiv
e,
wh
ich
m
ea
n
s
th
at
it
is
p
o
s
s
ib
le
to
r
etu
r
n
to
p
r
ev
io
u
s
s
tag
es
with
o
u
t
af
f
e
ctin
g
th
e
alr
ea
d
y
estab
lis
h
ed
p
r
o
ce
s
s
es.
T
h
is
tech
n
iq
u
e
allo
ws
th
e
id
en
tific
atio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
Da
ta
min
in
g
a
n
d
c
a
r
d
ia
c
h
e
a
lth
:
p
r
ed
ictin
g
h
ea
r
t a
tta
ck
r
is
ks
(
I
n
o
c
R
u
b
io
P
a
u
ca
r
)
1013
o
f
s
ig
n
if
ican
t
p
atter
n
s
in
th
e
l
ar
g
e
v
o
l
u
m
es
o
f
d
ata
h
an
d
led
b
y
th
e
d
atab
ase
o
n
t
h
e
to
p
ic
o
f
h
ea
r
t
attac
k
r
is
k
s
.
I
n
th
is
d
atab
ase,
im
p
o
r
tan
t
cr
it
er
ia
ar
e
tak
en
in
t
o
ac
co
u
n
t
th
at
tr
ig
g
er
th
e
m
o
s
t
f
r
eq
u
en
t
ca
u
s
es
th
at
lead
p
atien
ts
to
d
ev
elo
p
h
ea
r
t a
ttack
s
an
d
e
v
en
to
d
ie.
Fig
u
r
e
1
.
KDD
m
eth
o
d
o
lo
g
y
p
r
o
ce
s
s
3.
2
.
K
DD
m
et
ho
do
lo
g
y
s
t
a
g
es
T
h
is
s
ec
tio
n
will
ex
p
lain
th
e
s
tag
es
o
f
th
e
m
et
h
o
d
o
lo
g
y
s
elec
ted
in
th
e
r
esear
ch
.
E
ac
h
s
ta
g
e
will
b
e
ex
p
lain
ed
b
y
d
ev
el
o
p
in
g
t
h
e
co
n
ce
p
ts
ac
co
r
d
i
n
g
to
th
e
p
r
o
p
o
s
ed
to
p
ic
an
d
clar
if
y
in
g
ce
r
tain
cr
iter
ia
in
th
e
d
ev
elo
p
m
e
n
t o
f
t
h
e
d
ata
m
i
n
in
g
m
o
d
el.
3.
2
.
1.
Da
t
a
s
elec
t
io
n
T
h
e
in
f
o
r
m
atio
n
is
co
n
tain
ed
in
a
d
atab
ase
with
8
7
6
3
r
ec
o
r
d
s
th
at
d
ea
l
with
th
e
ca
u
s
es
th
at
lead
p
atien
ts
to
g
et
h
ea
r
t
p
r
o
b
lem
s
an
d
t
h
e
class
if
icatio
n
o
f
th
ei
r
life
s
ty
le.
T
h
e
d
ata
th
at
ar
e
s
elec
ted
d
u
r
i
n
g
th
e
in
f
o
r
m
atio
n
s
ea
r
ch
p
r
o
ce
s
s
will
b
e
u
s
ed
f
o
r
th
e
k
n
o
wled
g
e
d
is
co
v
er
y
p
r
o
ce
s
s
wh
ich
in
v
o
lv
es
d
ef
in
i
n
g
t
h
e
r
elev
an
t
d
ata
f
o
r
th
e
im
p
lem
en
tatio
n
o
f
th
e
m
o
d
el
[
2
1
]
.
T
h
e
f
o
llo
win
g
p
r
o
ce
s
s
es
will
f
o
cu
s
o
n
co
m
m
o
n
p
r
o
b
lem
s
with
d
ata
b
ases
,
as a
s
p
ec
if
ic
d
atab
ase
is
ex
p
ec
ted
t
o
co
n
tain
s
o
m
e
n
o
is
y
in
f
o
r
m
at
io
n
.
a.
Data
p
r
o
ce
s
s
in
g
tech
n
iq
u
es
I
n
th
is
s
ec
tio
n
,
we
will sp
ec
if
y
s
o
m
e
cr
iter
ia
an
d
d
ata
m
in
in
g
tech
n
iq
u
es f
o
r
th
e
s
elec
tio
n
p
r
o
ce
s
s
s
p
ec
if
ied
b
elo
w.
b.
Fil
ter
in
g
cr
iter
ia
b
y
a
b
s
o
lu
te
v
alu
e
|
X
|
>
T
,
wh
er
e
|
X|
s
i
s
th
e
ab
s
o
lu
te
v
alu
e
o
f
th
e
v
ar
ia
b
le
an
d
T
is
th
e
th
r
esh
o
ld
.
T
h
is
cr
iter
i
o
n
is
u
s
ed
to
s
elec
t
d
ata
b
ased
o
n
th
e
ab
s
o
lu
te
v
alu
e
o
f
a
v
ar
iab
le.
Data
is
s
elec
ted
if
th
e
ab
s
o
lu
te
v
al
u
e
o
f
v
ar
ia
b
le
X
is
g
r
ea
ter
th
an
a
th
r
esh
o
l
d
T.
c.
Fil
ter
cr
iter
ia
b
y
r
an
g
e
T
h
e
f
o
r
m
u
la
s
tates th
at
Min
<
X
<
Ma
x
,
wh
e
r
e
Min
and
Ma
x
ar
e
th
e
m
in
im
u
m
an
d
m
ax
i
m
u
m
v
al
u
es
s
et.
I
t
is
u
s
ed
to
s
elec
t
d
ata
t
h
a
t
f
alls
with
in
a
g
iv
e
n
r
a
n
g
e.
A
v
ar
iab
le
X
is
s
elec
ted
if
it
is
with
in
th
e
Min
y
Ma
x
lim
its
.
d.
Fre
q
u
en
cy
f
ilter
in
g
cr
iter
ia
T
h
e
f
o
r
m
u
la
is
as
f
o
llo
ws
C
o
u
n
t(
X)
>
N,
w
h
ere
C
o
u
n
t(
X)
is
th
e
f
r
eq
u
en
c
y
o
f
a
v
a
r
iab
le
X
and
N
is
th
e
m
in
im
u
m
n
u
m
b
er
o
f
o
cc
u
r
r
en
ce
s
n
ee
d
e
d
.
T
h
is
cr
iter
io
n
is
u
s
ed
to
s
elec
t
d
ata
b
ased
o
n
th
e
f
r
eq
u
en
cy
o
f
a
v
ar
iab
le.
Var
iab
le
X
is
s
elec
ted
if
it o
cc
u
r
s
at
least
N
tim
es.
e.
Fil
ter
in
g
cr
iter
ia
b
y
p
er
ce
n
tag
e
T
h
e
f
o
r
m
u
la
s
ay
s
th
at
th
e
%
o
f
X
is
g
r
ea
ter
th
an
P,
wh
er
e
%
o
f
X
is
th
e
p
er
ce
n
tag
e
o
f
o
cc
u
r
r
en
ce
o
f
a
v
ar
iab
le
X
an
d
P
is
th
e
m
in
im
u
m
p
er
ce
n
tag
e
n
ee
d
e
d
.
I
t
i
s
u
s
ed
to
s
elec
t
d
ata
b
ased
o
n
th
e
p
er
ce
n
tag
e
o
f
o
cc
u
r
r
e
n
ce
o
f
a
v
ar
iab
le.
I
t is ch
o
s
en
if
th
e
p
er
c
en
tag
e
o
f
o
c
cu
r
r
en
ce
o
f
X
is
g
r
ea
ter
th
an
P
.
f.
C
o
r
r
elatio
n
f
ilter
in
g
c
r
iter
ia
T
h
e
f
o
r
m
u
la
s
tates
th
at
C
o
r
r
(
X,
Y)
is
th
e
co
r
r
elatio
n
b
etwe
en
v
ar
iab
les
X
an
d
Y,
an
d
C
is
th
e
m
in
im
u
m
co
r
r
elatio
n
v
alu
e
r
e
q
u
ir
ed
.
T
h
is
cr
iter
io
n
is
u
s
ed
to
ch
o
o
s
e
d
ata
b
ased
o
n
th
e
r
e
latio
n
s
h
ip
b
etwe
en
two
v
ar
iab
les.
I
t is ch
o
s
en
if
th
e
co
r
r
elatio
n
b
etwe
en
X
an
d
Y
is
h
ig
h
er
th
an
C
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
8
,
No
.
2
,
May
20
2
5
:
1
0
1
0
-
1
0
2
3
1014
g.
Fil
ter
in
g
cr
iter
ia
b
y
v
ar
iab
ilit
y
T
h
e
f
o
r
m
u
la
s
ay
s
th
at
V
a
r
(
X
)
is
th
e
v
ar
ian
ce
o
f
a
v
ar
iab
le
X
an
d
V
is
th
e
m
in
im
u
m
v
ar
i
an
ce
v
alu
e
r
eq
u
ir
ed
.
I
t
is
u
s
ed
to
ch
o
o
s
e
d
ata
ac
co
r
d
in
g
t
o
th
e
v
ar
iab
ilit
y
o
f
a
v
ar
iab
le.
X
is
ch
o
s
en
if
th
e
v
ar
ian
ce
o
f
X
is
g
r
ea
ter
th
an
V
.
h.
Fo
r
m
u
late
th
e
co
r
r
elatio
n
cr
ite
r
io
n
Data
ar
e
s
elec
ted
if
th
e
co
r
r
ela
tio
n
b
etwe
en
v
a
r
iab
les
ex
ce
ed
s
a
s
p
ec
if
ic
th
r
esh
o
ld
as
m
en
ti
o
n
ed
in
(
1
)
.
T
h
e
f
u
n
d
am
en
tal
f
o
r
m
u
la
f
o
r
th
is
cr
iter
io
n
is
as
(
1
)
,
|
(
,
)
>
|
(
1
)
w
h
er
e:
-
|
C
o
r
r
(
X
,
Y)
|
is
th
e
ab
s
o
lu
te
v
alu
e
o
f
t
h
e
co
r
r
elatio
n
b
etwe
en
v
ar
iab
les
X
an
d
Y
.
-
C
is
a
r
eq
u
ir
ed
m
in
im
u
m
co
r
r
elatio
n
v
alu
e.
I
f
|Co
r
r
(
X
,
Y)
|
is
g
r
ea
ter
th
an
C
,
it is
s
elec
ted
.
Pear
s
o
n
’
s
co
r
r
elatio
n
c
o
ef
f
ici
en
t,
a
m
ea
s
u
r
e
r
a
n
g
in
g
f
r
o
m
-
1
to
1
,
is
o
f
ten
u
s
ed
to
d
ete
r
m
in
e
th
e
co
r
r
elatio
n
b
etwe
en
two
v
a
r
ia
b
les.
A
v
alu
e
o
f
o
n
e
in
d
icate
s
a
p
er
f
ec
tly
p
o
s
itiv
e
co
r
r
elatio
n
,
a
n
e
g
ativ
e
v
alu
e
in
d
icate
s
a
p
e
r
f
ec
tly
n
eg
ativ
e
co
r
r
elatio
n
an
d
a
v
alu
e
o
f
ze
r
o
in
d
icate
s
n
o
c
o
r
r
elatio
n
.
T
h
e
g
en
er
al
f
o
r
m
u
la
f
o
r
ca
lcu
latin
g
th
e
p
ea
r
s
o
n
co
r
r
ela
tio
n
co
ef
f
icien
t a
s
s
p
ec
if
ied
in
(
2
)
b
etwe
e
n
X
an
d
Y
v
ar
iab
les
i
s
as f
o
llo
ws:
(
,
)
=
Σ
[
(
−
Ȳ
)
]
/
[
√
Σ
(
−
X
̄
)
2
∗
Σ
(
−
Ȳ
)
2
]
(
2
)
w
h
er
e:
-
T
h
e
o
b
s
er
v
atio
n
v
alu
es
o
f
Xi
a
n
d
Yi
ar
e
X
a
n
d
Y
,
r
esp
ec
tiv
ely
.
-
X
̄
an
d
Ȳ
ar
e
t
h
e
av
er
a
g
es o
f
X
an
d
Y
.
I
n
Fig
u
r
e
2
,
y
o
u
ca
n
s
ee
th
e
d
if
f
er
en
t
s
tep
s
o
f
th
e
wo
r
k
f
lo
w
th
at
h
a
v
e
b
ee
n
d
esig
n
ed
t
o
a
cc
o
m
p
lis
h
th
is
task
.
E
ac
h
s
tep
o
f
th
e
p
r
o
c
ess
is
ca
r
ef
u
lly
s
et
u
p
to
e
n
s
u
r
e
th
at
th
e
s
p
ec
if
ic
r
e
q
u
ir
em
e
n
ts
o
f
th
e
d
ata
an
aly
s
is
ar
e
m
et.
T
h
e
o
p
er
ato
r
s
ar
e
co
n
n
ec
ted
in
a
lo
g
ical
m
an
n
er
,
en
s
u
r
in
g
th
at
th
e
d
ata
is
h
an
d
led
an
d
p
r
o
ce
s
s
ed
ap
p
r
o
p
r
iately
at
ea
ch
s
tep
o
f
t
h
e
p
r
o
ce
s
s
.
Fig
u
r
e
2
.
Data
s
elec
tio
n
s
tag
e
3.
2
.
2.
Da
t
a
prepro
ce
s
s
ing
At
th
is
s
tag
e,
m
o
s
t
o
f
th
e
in
f
o
r
m
atio
n
in
a
d
atab
ase
p
r
ese
n
ts
n
o
is
e,
wh
ich
r
eq
u
ir
es
clea
n
in
g
to
b
e
p
r
ep
ar
e
d
f
o
r
t
h
e
n
e
x
t
s
tag
e
[
2
2
]
.
I
n
th
e
ca
s
e
o
f
th
e
d
atab
ase
f
o
u
n
d
,
ac
co
r
d
in
g
to
t
h
e
to
p
ic
r
ais
ed
,
th
e
in
f
o
r
m
atio
n
was
an
aly
ze
d
an
d
em
p
ty
f
ield
s
an
d
o
u
tlier
s
wer
e
f
o
u
n
d
,
wh
i
c
h
allo
ws
u
s
to
p
er
f
o
r
m
a
n
o
r
m
aliza
tio
n
th
at
allo
ws
u
s
to
s
o
lv
e
ce
r
tain
p
r
o
b
lem
s
w
ith
th
e
in
f
o
r
m
atio
n
.
a.
T
ec
h
n
iq
u
es f
o
r
d
ata
p
r
ep
r
o
ce
s
s
in
g
I
n
th
is
p
h
ase
,
a
s
er
ies
o
f
s
tep
s
ar
e
f
o
llo
wed
to
c
o
n
s
o
lid
ate
th
e
in
f
o
r
m
atio
n
in
th
is
p
r
o
ce
s
s
.
Fo
r
th
is
p
u
r
p
o
s
e,
th
e
s
el
ec
tio
n
o
f
o
p
er
ato
r
s
with
in
th
e
R
ap
id
Min
er
s
tu
d
io
to
o
l
is
tak
en
in
to
ac
co
u
n
t
to
ca
r
r
y
o
u
t
th
e
estab
lis
h
ed
p
r
o
ce
s
s
.
b.
Miss
in
g
v
alu
e
clea
n
in
g
Fo
r
m
u
las
s
u
ch
as
m
ea
n
,
m
ed
ian
o
r
a
v
alu
e
p
r
ed
ete
r
m
in
ed
b
y
a
ML
m
o
d
el
ca
n
b
e
u
s
ed
to
im
p
u
te
m
is
s
in
g
v
alu
es.
-
Ou
tlier
elim
in
atio
n
:
T
h
is
m
a
y
in
clu
d
e
id
en
tify
in
g
v
alu
es
th
at
ar
e
ab
o
v
e
o
r
b
elo
w
a
s
p
ec
if
ic
s
tati
s
tical
th
r
esh
o
ld
,
b
u
t
ar
e
g
en
er
ally
n
o
t e
x
p
r
ess
ed
in
a
s
in
g
le
f
o
r
m
u
la.
-
Data
tr
an
s
f
o
r
m
atio
n
:
T
o
n
o
r
m
alize
th
e,
u
s
e
a
f
o
r
m
u
la
s
u
ch
a
s
(
X
-
X_
m
in
)
/(
X_
m
ax
-
X
_
m
in
)
,
wh
er
e
X
is
th
e
o
r
ig
in
al
v
alu
e
an
d
X_
m
in
an
d
X_
m
ax
ar
e
th
e
m
in
im
u
m
an
d
m
ax
im
u
m
v
alu
es
o
f
a
r
an
g
e.
T
h
is
in
v
o
lv
es
co
n
v
er
tin
g
ca
teg
o
r
ical
v
ar
iab
l
es in
to
n
u
m
er
ical
v
ar
iab
les u
s
in
g
tech
n
i
q
u
es su
ch
as o
n
e
-
h
o
t
co
d
in
g
.
Fig
u
r
e
3
s
h
o
ws
h
o
w
o
p
er
at
o
r
s
p
er
f
o
r
m
d
ata
p
r
ep
r
o
ce
s
s
in
g
u
s
in
g
estab
lis
h
ed
m
eth
o
d
s
.
T
h
i
s
r
em
o
v
es
n
o
is
e
f
r
o
m
th
e
s
elec
ted
r
esear
c
h
d
atab
ase.
On
th
e
o
th
e
r
h
a
n
d
,
to
av
o
id
er
r
o
r
s
in
th
e
s
u
b
s
eq
u
e
n
t
m
o
d
el
p
r
o
ce
s
s
es,
th
e
clea
n
d
ata
is
p
r
e
p
ar
ed
f
o
r
t
h
e
f
o
llo
win
g
p
r
o
ce
s
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
Da
ta
min
in
g
a
n
d
c
a
r
d
ia
c
h
e
a
lth
:
p
r
ed
ictin
g
h
ea
r
t a
tta
ck
r
is
ks
(
I
n
o
c
R
u
b
io
P
a
u
ca
r
)
1015
Fig
u
r
e
3
.
Data
p
r
ep
r
o
ce
s
s
in
g
s
tag
e
3
.
2
.
3
.
Da
t
a
t
ra
ns
f
o
r
m
a
t
io
n
I
n
th
is
s
tag
e,
th
e
d
ata
p
r
ep
r
o
ce
s
s
ed
in
p
r
ev
io
u
s
p
h
ases
is
co
n
v
er
ted
in
to
a
m
o
r
e
ac
cu
r
ate
r
ep
r
esen
tatio
n
f
o
r
th
e
d
esire
d
an
aly
s
is
ac
co
r
d
in
g
to
th
e
o
b
jectiv
es
o
u
tlin
e
d
with
in
th
e
r
esear
ch
[
2
3
]
.
T
h
is
in
clu
d
es
r
ed
u
cin
g
th
e
d
im
en
s
io
n
ality
o
f
th
e
d
ata
b
y
cr
ea
tin
g
n
ew
f
ea
t
u
r
es f
o
r
th
e
estab
lis
h
ed
m
o
d
el.
I
n
th
is
co
n
tex
t,
th
e
c
o
n
ce
p
ts
o
f
th
e
d
ata
tr
a
n
s
f
o
r
m
atio
n
s
tag
e
will
b
e
ap
p
lied
an
d
ex
p
lain
ed
in
d
etail
u
s
in
g
m
ath
e
m
atica
l
f
o
r
m
u
las
in
ea
c
h
p
r
o
ce
s
s
.
a.
MI
N
-
MA
X
n
o
r
m
ali
za
tio
n
No
r
m
aliza
tio
n
-
Ma
x
is
a
m
et
h
o
d
to
m
o
d
if
y
t
h
e
v
alu
es
o
f
a
v
ar
i
ab
le
to
b
e
with
in
a
g
iv
e
n
r
a
n
g
e,
g
en
er
ally
b
etwe
en
0
an
d
1
.
T
h
is
f
ac
ilit
at
es
th
e
co
m
p
ar
is
o
n
b
etwe
en
d
if
f
er
en
t
v
ar
iab
les
b
y
allo
win
g
t
h
e
v
alu
es
t
o
h
a
v
e
a
u
n
if
o
r
m
s
ca
le,
as sp
ec
if
ied
in
(
3
)
:
=
−
−
(
3
)
b.
Z
-
s
co
r
e
(
s
tan
d
ar
d
izatio
n
)
T
h
e
p
r
o
ce
s
s
o
f
,
also
k
n
o
wn
as
th
e
Z
-
s
co
r
e,
co
n
s
is
ts
o
f
ad
ju
s
tin
g
th
e
v
alu
es
o
f
a
v
ar
iab
le
s
o
th
at
th
ey
h
av
e
a
m
ea
n
o
f
0
an
d
a
s
tan
d
a
r
d
d
ev
iatio
n
o
f
1
.
T
h
is
f
ac
ilit
at
es
th
e
co
m
p
ar
is
o
n
an
d
an
aly
s
is
o
f
v
ar
iab
les
in
th
e
s
am
e
co
n
tex
t b
y
elim
in
atin
g
d
if
f
er
en
ce
s
in
th
e
s
ca
le
o
f
th
e
v
ar
iab
les,
as c
o
n
f
o
r
m
ed
to
f
o
r
m
(
4
)
.
:
=
−
(
4
)
c.
L
o
g
ar
ith
m
ic
tr
a
n
s
f
o
r
m
atio
n
T
h
e
n
atu
r
al
lo
g
ar
ith
m
is
ap
p
li
ed
to
th
e
v
alu
es
o
f
a
v
ar
iab
le
d
u
r
in
g
t
h
e
lo
g
ar
ith
m
ic
tr
an
s
f
o
r
m
atio
n
.
I
t
is
co
m
m
o
n
ly
u
s
ed
to
s
tab
ilize
v
ar
ian
ce
a
n
d
r
ed
u
ce
s
k
ewn
ess
in
d
ata
th
at
s
h
o
w
a
r
ig
h
t
-
s
k
ewe
d
d
is
tr
ib
u
tio
n
,
s
u
ch
as f
in
an
cial
d
ata
o
r
e
x
p
o
n
en
tia
l g
r
o
wth
d
ata,
as sp
ec
if
ied
in
f
o
r
m
(
5
)
.
:
=
l
og
(
)
(
5
)
I
n
R
ap
id
Min
er
,
th
er
e
is
n
o
s
p
ec
if
ic
o
p
e
r
ato
r
f
o
r
t
h
is
,
b
u
t
y
o
u
ca
n
u
s
e
th
e
“
Gen
er
ate
Attr
ib
u
tes
”
o
p
er
ato
r
to
ap
p
ly
th
e
lo
g
ar
ith
m
ic
tr
an
s
f
o
r
m
atio
n
.
d.
On
e
-
h
o
t c
o
d
in
g
Fo
r
ca
teg
o
r
ical
v
ar
iab
les,
th
e
f
o
r
m
u
la
cr
ea
tes
a
b
in
ar
y
co
l
u
m
n
f
o
r
ea
ch
ca
teg
o
r
y
,
with
a
v
al
u
e
o
f
1
if
th
e
ca
teg
o
r
y
is
p
r
esen
t
an
d
a
v
alu
e
o
f
0
if
it
is
n
o
t
p
r
esen
t.
O
p
er
ato
r
in
R
ap
id
Min
er
:
“
No
m
i
n
al
to
Nu
m
er
ical
”
to
co
n
v
e
r
t c
ateg
o
r
ical
v
ar
iab
le
s
to
n
u
m
er
ic
al
with
m
u
ltip
le
b
in
ar
y
co
lu
m
n
s
.
e.
Dim
en
s
io
n
ality
r
ed
u
ctio
n
(
PC
A)
T
h
e
PC
A
f
o
r
m
u
la
in
v
o
lv
es
m
a
tr
ix
ca
lcu
latio
n
s
an
d
s
p
ec
t
r
al
d
ec
o
m
p
o
s
itio
n
;
th
er
e
is
a
u
n
iq
u
e
f
o
r
m
u
la.
T
h
e
o
p
e
r
ato
r
u
s
es
“
PC
A
”
to
p
er
f
o
r
m
p
r
in
cip
al
c
o
m
p
o
n
en
t a
n
aly
s
is
in
R
ap
id
Min
er
.
f.
I
m
p
u
tatio
n
o
f
m
is
s
in
g
v
al
u
es (
av
er
ag
e)
Miss
in
g
-
v
alu
e
im
p
u
tatio
n
r
ep
l
ac
es
th
e
m
is
s
in
g
v
alu
es
o
f
a
v
ar
iab
le
with
th
e
av
er
ag
e
o
f
th
at
v
ar
iab
le
in
th
e
d
ata
s
et.
T
h
is
is
a
co
m
m
o
n
way
to
d
ea
l w
ith
m
is
s
in
g
v
alu
es a
n
d
av
o
i
d
d
ata
lo
s
s
.
-
Fo
r
m
=
(
6
)
,
wh
er
e
is
th
e
m
ea
n
o
f
th
e
v
a
r
iab
le.
-
I
n
R
ap
id
Min
er
,
th
e
o
p
er
ato
r
m
u
s
t
“
r
ep
lace
u
n
n
ec
ess
ar
y
v
alu
es
”
u
s
in
g
th
e
im
p
u
tatio
n
s
tr
ateg
y
s
et
to
“
m
ea
n
.
”
.
Fig
u
r
e
4
s
h
o
ws
th
e
o
p
er
ato
r
s
u
s
ed
in
th
e
d
ata
tr
an
s
f
o
r
m
atio
n
p
r
o
ce
s
s
.
T
h
ese
o
p
er
ato
r
s
p
lay
a
cr
u
cial
r
o
le
in
allo
win
g
th
e
d
ata
to
b
e
p
r
o
p
e
r
ly
p
r
ep
ar
e
d
f
o
r
th
e
n
ex
t
p
r
o
ce
s
s
in
th
e
wo
r
k
f
lo
w.
Dat
a
tr
an
s
f
o
r
m
atio
n
is
a
f
u
n
d
am
en
tal
s
tep
i
n
d
ata
an
a
ly
s
is
,
as
it
en
s
u
r
es
th
at
th
e
d
ata
ar
e
in
th
e
c
o
r
r
ec
t
f
o
r
m
at
a
n
d
c
o
n
tain
th
e
r
elev
an
t
in
f
o
r
m
atio
n
n
ee
d
e
d
to
c
o
n
s
o
lid
ate
th
e
m
o
d
el
p
r
o
p
o
s
ed
in
th
e
p
r
o
ject
o
b
jectiv
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
8
,
No
.
2
,
May
20
2
5
:
1
0
1
0
-
1
0
2
3
1016
Fig
u
r
e
4
.
Data
tr
a
n
s
f
o
r
m
atio
n
s
tag
e
3
.
2
.
4
.
Da
t
a
m
ini
ng
T
h
e
p
r
o
ce
s
s
o
f
d
ata
m
in
in
g
is
th
e
ap
p
licatio
n
o
f
tech
n
iq
u
es
th
at
allo
w
th
e
d
etec
tio
n
o
f
p
atter
n
s
r
elate
d
to
th
e
r
aised
to
p
ic
[
2
4
]
.
T
h
is
in
clu
d
es
th
e
ap
p
licatio
n
o
f
a
u
to
m
atic
lear
n
in
g
al
g
o
r
ith
m
s
th
at
h
av
e
th
e
f
u
n
ctio
n
o
f
p
r
e
d
ictin
g
th
ese
p
atter
n
s
wi
th
in
th
e
m
o
d
el
in
th
e
d
ata
an
al
y
s
is
.
W
ith
in
th
e
r
esear
ch
f
r
am
ewo
r
k
,
th
e
K
-
m
ea
n
s
alg
o
r
ith
m
b
el
o
n
g
in
g
to
th
e
g
r
o
u
p
o
f
class
if
icatio
n
alg
o
r
it
h
m
s
will
b
e
ap
p
lied
,
tak
in
g
in
to
ac
co
u
n
t
th
e
p
r
o
p
o
s
ed
o
b
jectiv
e
.
−
K
-
m
ea
n
s
alg
o
r
ith
m
s
T
h
e
m
ea
n
o
r
th
e
m
ea
n
b
etwe
e
n
its
p
o
in
ts
,
wh
ich
r
ef
er
s
to
t
h
e
ce
n
tr
o
id
s
o
f
t
h
e
en
v
ir
o
n
m
e
n
t,
r
ep
r
esen
ts
th
is
alg
o
r
ith
m
as
a
g
r
o
u
p
.
T
h
e
ad
v
an
tag
e
o
f
t
h
is
r
ep
r
esen
tatio
n
lies
in
th
e
f
ac
t
th
at
it
h
as
an
im
m
ed
iate
g
r
a
p
h
ical
an
d
s
tatis
tical
m
ea
n
in
g
th
r
o
u
g
h
its
ce
n
tr
o
i
d
s
[
2
5
]
,
[
2
6
]
.
T
h
e
g
r
o
u
p
tech
n
iq
u
e
in
d
ata
m
i
n
in
g
is
a
ML
alg
o
r
ith
m
th
at
aim
s
to
d
iv
id
e
d
ata
s
ets in
to
g
r
o
u
p
s
s
u
ch
th
at
th
e
p
o
in
ts
i
n
ea
ch
g
r
o
u
p
ar
e
s
im
ila
r.
W
h
en
d
ata
h
av
e
n
o
p
r
io
r
lab
el,
clu
s
ter
in
g
(
as
o
p
p
o
s
ed
to
class
if
icatio
n
)
d
i
v
id
es
d
ata
in
to
g
r
o
u
p
s
b
ase
d
o
n
th
eir
s
im
ilar
attr
ib
u
tes.
Par
titi
o
n
in
g
m
eth
o
d
s
,
s
u
ch
as
k
-
m
e
an
s
,
h
ier
ar
ch
ical
(
n
etwo
r
k
an
al
y
s
is
m
ap
)
,
d
en
s
ity
-
b
ased
(
DB
SC
AN)
[
2
7
]
,
[
2
8
]
,
an
d
g
r
i
d
-
b
ased
,
a
r
e
am
o
n
g
th
e
clu
s
ter
in
g
tech
n
iq
u
es.
T
o
a
ch
iev
e
th
e
r
esear
ch
o
b
jectiv
es,
th
e
p
ar
titi
o
n
i
n
g
alg
o
r
ith
m
,
also
k
n
o
wn
as
k
-
m
ea
n
s
,
was
u
s
ed
.
T
h
e
m
o
s
t
ef
f
ec
tiv
e
p
ar
tial
clu
s
ter
in
g
alg
o
r
ith
m
is
K
-
m
ea
n
s
clu
s
ter
i
n
g
.
T
h
is
m
eth
o
d
u
s
es
a
p
ar
titi
o
n
in
g
s
tr
ateg
y
d
u
r
in
g
th
e
clu
s
ter
in
g
p
r
o
ce
s
s
to
g
r
ad
u
ally
r
e
d
u
ce
th
e
d
ata
g
a
p
b
etwe
en
ea
ch
clu
s
ter
in
g
k
er
n
el
[
2
9
]
,
[
3
0
]
.
Fo
r
th
e
a
p
p
licatio
n
o
f
th
e
K
-
m
ea
n
s
alg
o
r
ith
m
,
ce
r
tain
p
r
o
ce
s
s
es
a
r
e
ap
p
lied
th
at
h
av
e
th
e
f
u
n
ctio
n
o
f
g
r
o
u
p
i
n
g
th
e
d
ata
in
clu
s
ter
s
to
co
n
s
o
lid
ate
th
e
r
es
u
lts
o
f
th
e
p
r
ed
ictio
n
,
as
s
h
o
wn
in
Fig
u
r
e
5
.
On
th
e
o
th
e
r
h
a
n
d
,
Fig
u
r
e
6
s
h
o
ws
th
e
s
tr
u
ctu
r
e
an
d
o
p
er
atio
n
o
f
th
e
K,
with
c
o
n
ce
p
ts
estab
lis
h
ed
f
o
r
its
ap
p
licatio
n
with
in
th
e
K
-
m
ea
n
s
p
r
o
ce
s
s
lo
g
ic
t
o
r
ea
ch
a
r
esu
lt
th
at
p
r
o
p
o
s
es th
e
o
b
jectiv
e
to
b
e
a
ch
iev
e
d
in
t
h
e
r
esear
ch
.
Fig
u
r
e
5
.
K
-
m
ea
n
s
alg
o
r
ith
m
p
r
o
ce
s
s
Fig
u
r
e
6
.
Stru
ctu
r
e
o
f
th
e
K
-
m
ea
n
s
alg
o
r
ith
m
−
E
u
clid
ea
n
d
is
tan
ce
T
h
e
t
e
r
m
E
u
c
l
i
d
e
a
n
“
d
is
t
a
n
c
e
”
i
s
g
i
v
e
n
b
e
tw
e
e
n
t
h
e
d
is
t
a
n
c
es
o
f
t
w
o
p
o
i
n
ts
i
n
a
t
r
ia
n
g
l
e
o
f
E
u
c
l
i
d
e
a
n
s
h
a
p
e
.
A
E
u
c
l
i
d
e
a
n
t
h
a
t
p
r
o
v
i
d
e
s
c
o
n
c
e
p
t
s
(
tw
o
-
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
o
r
o
f
h
i
g
h
e
r
d
i
m
e
n
s
i
o
n
s
)
i
s
u
s
e
d
t
o
d
i
m
e
n
s
i
o
n
a
s
p
e
c
i
f
i
c
[
3
1
]
.
A
l
s
o
,
it
r
e
f
e
r
s
to
a
m
e
t
r
i
c
r
e
l
a
t
e
d
t
o
t
h
e
K
-
m
e
an
s
a
l
g
o
r
i
t
h
m
a
n
d
i
n
o
t
h
e
r
c
o
n
t
e
x
t
s
.
T
h
e
f
o
r
m
u
l
a
f
o
r
t
h
e
E
u
c
l
i
d
e
a
n
d
is
t
a
n
c
e
b
et
w
e
e
n
two
n
-
d
im
e
n
s
io
n
al
s
p
ac
e
p
o
i
n
ts
is
s
ta
ted
as f
o
llo
ws,
as sh
o
wn
in
(
7
)
:
(
,
)
=
√
(
(
1
−
1
)
2
+
⋯
+
(
−
)
2
)
(
7
)
w
h
er
e:
D
(
p
,
q)
es la
d
is
tan
cia
eu
clid
i
an
a
en
tr
e
lo
s
p
u
n
to
s
p
y
q
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
Da
ta
min
in
g
a
n
d
c
a
r
d
ia
c
h
e
a
lth
:
p
r
ed
ictin
g
h
ea
r
t a
tta
ck
r
is
ks
(
I
n
o
c
R
u
b
io
P
a
u
ca
r
)
1017
p
₁,
p
₂,
.
.
.
,
p
n
ar
e
t
h
e
co
o
r
d
in
ate
s
o
f
p
o
in
t
p
in
n
-
d
im
en
s
io
n
al
s
p
ac
e.
q
₁,
q
₂,
.
.
.
,
q
n
ar
e
t
h
e
co
o
r
d
in
ate
s
o
f
p
o
in
t
q
in
n
-
d
im
en
s
io
n
al
s
p
ac
e
.
−
C
o
n
ce
p
ts
ab
o
u
t c
en
tr
o
id
s
T
h
e
ce
n
tr
o
id
s
ar
e
r
ep
r
esen
tativ
e
p
o
in
ts
o
f
ce
r
tain
g
r
o
u
p
s
o
r
cl
u
s
ter
in
g
r
ep
r
esen
te
d
with
in
an
alg
o
r
ith
m
s
u
ch
as K
-
m
ea
n
s
,
wh
er
e
th
e
f
o
r
m
u
la
f
o
r
th
is
co
n
ce
p
t is th
e
f
o
llo
win
g
:
−
C
en
tr
o
id
o
f
a
cl
u
s
ter
(
K
-
m
ea
n
s
)
As in
d
icate
d
in
th
e
f
o
r
m
u
la,
th
e
ce
n
tr
o
id
r
e
p
r
esen
ts
a
p
o
in
t i
n
th
at
cl
u
s
ter
th
at
r
e
p
r
esen
ts
al
l in
s
tan
ce
s
o
f
th
at
clu
s
ter
as in
d
icate
d
i
n
(
8
)
.
=
1
∑
=
1
(
8
)
W
h
er
e:
is
th
e
clu
s
ter
ce
n
tr
o
id
j
.
is
th
e
n
u
m
b
er
o
f
in
s
tan
ce
s
in
t
h
e
clu
s
ter
j.
ar
e
th
e
co
o
r
d
in
ates o
f
th
e
in
s
t
an
ce
in
th
e
clu
s
ter
j.
−
C
en
tr
o
id
u
p
d
ate
T
o
p
er
f
o
r
m
t
h
e
ce
n
tr
o
i
d
u
p
d
at
e,
th
e
ce
n
tr
o
i
d
s
ar
e
u
p
d
ated
in
ea
ch
iter
atio
n
as sh
o
wn
in
(
9
)
.
(
+
1
)
=
1
∑
=
1
(
9
)
W
h
er
e:
(
+
1
)
is
th
e
ce
n
tr
o
id
n
u
m
b
e
r
o
f
th
e
clu
s
ter
j
in
th
e
iter
atio
n
+
1
.
is
an
in
s
tan
ce
n
u
m
b
er
in
th
e
c
lu
s
ter
J
.
ar
e
th
e
co
o
r
d
in
ates o
f
th
e
in
s
t
an
ce
i in
th
e
clu
s
ter
j.
−
E
u
clid
ea
n
d
is
tan
ce
b
etwe
en
a
p
o
in
t a
n
d
a
ce
n
tr
o
id
T
h
e
ap
p
licatio
n
o
f
th
e
E
u
clid
e
an
d
is
tan
ce
is
u
s
ed
to
ter
m
in
at
e
th
e
clo
s
en
ess
o
f
a
p
o
in
t
to
a
ce
n
tr
o
id
as
s
h
o
wn
in
(
1
0
)
.
(
,
)
=
√
∑
(
−
)
2
=
1
(
1
0
)
W
h
er
e:
(
,
)
is
th
e
d
is
tan
ce
b
etwe
en
th
e
p
o
in
t
an
d
th
e
ce
n
tr
o
id
.
is
th
e
n
u
m
b
e
r
o
f
d
im
en
s
io
n
s
(
f
ea
tu
r
es)
in
th
e
d
ata.
r
ep
r
esen
ts
th
e
co
o
r
d
in
ates o
f
.
ar
e
th
e
co
o
r
d
in
ates o
f
th
e
ce
n
t
r
o
id
.
−
Ap
p
licatio
n
o
f
c
o
n
ce
p
ts
in
t
h
e
K
-
m
ea
n
s
alg
o
r
ith
m
T
h
e
r
ep
r
esen
tatio
n
o
f
th
e
o
b
je
cts
is
ca
lled
r
ea
l
v
ec
to
r
s
o
f
d
d
im
en
s
io
n
(
1
,
2
,
…
,
)
.
T
h
e
K
-
m
ea
n
s
alg
o
r
ith
m
p
r
o
v
id
es k
g
r
o
u
p
s
wh
er
e
th
e
s
u
m
o
f
d
is
tan
ce
s
o
f
th
e
o
b
jects with
in
ea
ch
g
r
o
u
p
=
{
1
,
2
…
,
}
to
its
ce
n
tr
o
id
is
m
in
im
ized
wh
ic
h
is
m
en
tio
n
ed
i
n
(
1
1
)
an
d
s
h
o
wn
b
elo
w:
(
)
=
∑
∑
|
|
−
|
|
2
=
1
(
1
1
)
S
b
elo
n
g
s
to
a
d
ata
s
et
wh
ich
ar
e
elem
en
ts
o
b
jects
r
ep
r
esen
ted
b
y
v
ec
to
r
s
.
E
ac
h
elem
en
t
r
e
p
r
esen
ts
a
ce
r
tain
ch
ar
ac
ter
is
tic
o
r
attr
i
b
u
te.
K
g
r
o
u
p
s
r
e
p
r
esen
t th
e
cl
u
s
ter
s
with
th
eir
ce
n
tr
o
id
as seen
in
(
1
2
)
.
=
0
=
>
(
+
1
)
=
1
(
)
∑
(
)
(
1
2
)
T
h
is
s
p
ac
e
v
is
u
alize
s
th
e
ap
p
licatio
n
o
f
th
e
K
-
m
ea
n
s
alg
o
r
ith
m
f
o
r
d
if
f
er
e
n
t
ty
p
es
o
f
clu
s
ter
in
g
,
wh
er
e
th
e
n
ec
ess
ar
y
o
p
er
ato
r
s
ar
e
p
l
ac
ed
to
p
e
r
f
o
r
m
clu
s
ter
in
g
o
f
d
is
ea
s
es
r
elate
d
to
ca
r
d
iac
d
is
ea
s
es,
as
m
en
tio
n
ed
in
Fig
u
r
e
7
.
T
h
e
u
s
e
o
f
th
e
K
-
m
ea
n
s
alg
o
r
ith
m
is
f
u
n
d
am
e
n
tal
in
d
ata
an
aly
s
is
an
d
s
eg
m
en
tatio
n
o
f
u
n
lab
eled
d
ata
in
to
m
ea
n
in
g
f
u
l
g
r
o
u
p
s
.
B
y
ca
r
ef
u
lly
s
elec
tin
g
r
elev
an
t
attr
ib
u
tes
an
d
ad
ju
s
tin
g
th
e
al
g
o
r
ith
m
p
a
r
am
eter
s
,
ef
f
ec
tiv
e
clu
s
ter
in
g
o
f
h
ea
r
t
d
is
ea
s
e
-
r
elate
d
co
n
d
itio
n
s
ca
n
b
e
ac
h
iev
e
d
,
p
r
o
v
i
d
in
g
v
alu
a
b
le
in
f
o
r
m
atio
n
f
o
r
m
ed
ical
r
esear
ch
a
n
d
clin
ical
d
ec
is
io
n
m
ak
in
g
.
T
h
e
lay
o
u
t
o
f
th
e
o
p
er
at
o
r
s
in
R
ap
id
Min
e
r
s
tu
d
io
r
ef
lects
th
e
wo
r
k
f
lo
w
d
esig
n
p
r
o
ce
s
s
to
p
er
f
o
r
m
th
is
s
p
ec
if
ic
task
,
allo
win
g
f
o
r
ef
f
icien
t
im
p
lem
e
n
tatio
n
an
d
in
ter
ac
tiv
e
ex
p
lo
r
atio
n
o
f
t
h
e
clu
s
ter
in
g
r
esu
lts
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
52
In
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
8
,
No
.
2
,
May
20
2
5
:
1
0
1
0
-
1
0
2
3
1018
Fig
u
r
e
7
.
Data
m
in
i
n
g
s
tag
e
4.
RE
SU
L
T
4
.
1
.
E
v
a
lua
t
i
o
n o
f
re
s
ult
Fig
u
r
e
8
s
h
o
ws
a
g
r
ap
h
s
h
o
wi
n
g
th
e
r
esu
lts
o
f
th
e
m
o
d
el
est
ab
lis
h
ed
ac
co
r
d
in
g
to
th
e
o
b
je
ctiv
es
s
et.
I
n
th
is
s
en
s
e,
th
e
is
two
ax
es.
Fo
r
th
is
p
u
r
p
o
s
e,
t
h
e
Y
-
ax
is
r
e
p
r
esen
ts
th
e
m
ea
s
u
r
em
en
t
o
f
th
e
p
er
ce
n
tag
e
o
f
ea
c
h
clu
s
ter
.
On
th
e
o
th
er
h
an
d
,
th
e
X
r
ep
r
ese
n
ts
th
e
clas
s
if
icatio
n
o
f
th
e
d
ata
b
y
clu
s
ter
s
th
at
wer
e
g
r
o
u
p
e
d
in
to
4
clu
s
ter
s
,
tak
in
g
in
to
ac
co
u
n
t th
e
cr
iter
ia
o
f
th
e
R
ap
id
s
tu
d
io
t
o
o
l.
Fig
u
r
e
8
.
Statis
tical
r
esu
lts
o
n
th
e
m
o
d
el
T
h
ese
v
alu
es
s
h
o
w
h
o
w
m
an
y
r
ec
o
r
d
s
h
av
e
b
ee
n
d
iv
id
e
d
in
t
o
ea
ch
cl
u
s
ter
.
T
h
e
r
esu
lt
o
f
t
h
e
clu
s
ter
in
g
r
ev
ea
ls
th
at,
ac
co
r
d
i
n
g
to
t
h
e
ir
class
if
icatio
n
in
to
clu
s
ter
s
,
th
e
in
ten
d
e
d
p
r
o
ce
s
s
h
as
wo
r
k
ed
as
s
h
o
w
n
in
T
ab
le
1
.
T
a
b
le
2
p
r
esen
ts
th
e
c
lu
s
ter
in
g
r
esu
lt
s
ac
co
r
d
in
g
to
t
h
e
s
elec
ted
attr
ib
u
tes.
T
h
e
ce
n
t
r
al
p
o
s
itio
n
o
f
a
s
et
o
f
p
o
in
ts
in
a
s
p
ac
e,
wh
ich
is
u
s
ed
to
r
ep
r
esen
t
th
e
d
is
tan
ce
b
etwe
en
g
r
o
u
p
s
o
f
d
ata
with
in
a
C
ar
tesi
an
p
la
n
e.
Fin
ally
,
a
g
r
o
u
p
i
n
g
o
f
la
b
eled
elem
en
ts
in
ea
ch
clu
s
ter
,
n
u
m
b
er
ed
f
r
o
m
0
to
4
,
was
ac
h
iev
ed
,
wh
ich
estab
lis
h
e
d
ce
r
tain
q
u
an
titi
es o
f
elem
en
ts
in
ea
ch
clu
s
ter
an
d
th
e
to
tal
n
u
m
b
er
o
f
elem
en
ts
estab
lis
h
ed
i
n
th
e
d
atab
ase
was
o
b
tain
ed
,
as sh
o
wn
in
T
ab
le
3
.
T
ab
le
1
.
R
esu
lts
b
y
clu
s
ter
s
C
l
a
s
si
f
i
c
a
t
i
o
n
o
f
c
l
u
s
t
e
r
s
I
n
d
e
x
N
o
mi
n
a
l
V
a
l
u
e
F
r
a
c
t
i
o
n
P
e
r
c
e
n
t
a
g
e
1
C
l
u
st
e
r
_
0
0
.
2
1
1
2
1
,
1
%
2
C
l
u
st
e
r
_
1
0
.
3
1
2
3
1
,
2
%
3
C
l
u
st
e
r
_
2
0
.
1
0
3
1
0
,
3
%
4
C
l
u
st
e
r
_
3
0
.
1
9
0
1
9
,
1
%
5
C
l
u
st
e
r
_
4
0
.
1
8
3
1
8
,
3
%
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2
5
0
2
-
4
7
52
Da
ta
min
in
g
a
n
d
c
a
r
d
ia
c
h
e
a
lth
:
p
r
ed
ictin
g
h
ea
r
t a
tta
ck
r
is
ks
(
I
n
o
c
R
u
b
io
P
a
u
ca
r
)
1019
T
ab
le
2
.
C
lass
if
icatio
n
ac
co
r
d
i
n
g
to
th
eir
ce
n
tr
o
i
d
s
A
t
t
r
i
b
u
t
e
s
C
l
u
st
e
r
0
C
l
u
st
e
r
1
C
l
u
st
e
r
2
C
l
u
st
e
r
3
C
l
u
st
e
r
4
P
a
t
i
e
n
t
I
D
4
3
7
9
.
6
0
3
4
4
4
0
4
2
7
2
.
1
7
5
4
4
0
7
.
0
1
6
4
3
2
1
.
9
2
1
A
g
e
0
.
1
2
1
0
.
1
5
6
1
.
1
6
4
0
.
1
2
2
0
.
1
2
4
C
h
o
l
e
st
e
r
o
l
0
.
0
2
2
0
.
0
2
5
0
.
0
4
8
0
.
0
1
0
0
.
0
3
1
S
e
x
1
.
2
1
8
1
.
2
2
5
2
1
.
2
2
5
1
.
2
2
2
D
i
a
b
e
t
e
s
0
.
7
3
0
1
.
3
7
0
0
.
0
0
2
0
.
7
3
0
0
.
7
3
0
F
a
mi
l
y
h
i
st
o
r
y
0
.
0
0
6
0
.
0
2
2
0
.
0
3
5
0
.
9
8
6
1
.
0
1
4
S
mo
k
i
n
g
0
.
3
3
9
0
.
3
3
9
2
.
9
4
8
0
.
3
3
9
0
.
3
3
9
O
b
e
si
t
y
0
.
0
0
0
0
.
0
2
5
0
.
0
1
2
0
.
0
3
5
0
.
0
1
2
A
l
c
o
h
o
l
c
o
n
s
u
m
p
t
i
o
n
0
.
0
0
4
0
.
0
0
2
0
.
0
3
8
0
.
0
2
2
0
.
0
4
4
Ex
e
r
c
i
se
h
o
u
r
s
p
e
r
w
e
e
k
0
.
0
2
9
0
.
0
1
6
0
.
0
0
0
0
.
0
2
3
0
.
0
3
6
D
i
e
t
2
.
0
1
2
2
.
0
0
3
2
.
0
2
2
1
.
9
8
6
2
.
0
1
4
S
t
r
e
e
s
l
e
v
e
l
0
.
0
1
3
0
.
0
1
1
0
.
0
0
5
0
.
0
3
4
0
.
0
3
5
Tr
i
g
l
y
c
e
r
i
d
e
s
0
.
0
2
2
0
.
0
1
2
0
.
0
1
4
0
.
0
2
4
0
.
0
2
9
T
ab
le
3
.
I
tem
class
if
icatio
n
b
y
clu
s
ter
in
g
C
l
u
st
e
r
g
r
o
u
p
i
n
g
N
u
mb
e
r
o
f
i
t
e
ms
C
l
u
st
e
r
0
1
8
5
2
i
t
e
m
s
C
l
u
st
e
r
1
2
7
3
2
i
t
e
m
s
C
l
u
st
e
r
2
9
0
4
i
t
e
ms
C
l
u
st
e
r
3
1
6
6
9
i
t
e
m
s
C
l
u
st
e
r
4
1
6
0
6
i
t
e
m
s
To
t
a
l
n
u
m
b
e
r
o
f
í
t
e
ms
8
7
6
3
T
h
e
n
u
m
b
e
r
o
f
r
ec
o
r
d
s
r
ep
r
esen
ted
b
y
item
s
m
ak
es
a
to
tal
o
f
8
7
6
3
,
wh
ich
was
d
iv
id
ed
in
to
g
r
o
u
p
s
ca
lled
clu
s
ter
s
.
C
lu
s
ter
0
h
as
1
8
5
2
item
s
with
a
f
r
ac
tio
n
o
f
0
.
2
1
1
,
wh
ich
is
eq
u
iv
alen
t
to
2
1
.
1
%.
C
lu
s
ter
1
h
as
2
7
3
2
item
s
with
a
f
r
ac
tio
n
o
f
0
.
3
1
2
,
wh
ich
is
eq
u
iv
alen
t
to
3
1
.
2
%.
Fo
r
clu
s
ter
2
,
th
er
e
ar
e
9
0
4
item
s
with
a
f
r
ac
tio
n
o
f
0
.
1
0
3
,
wh
ich
is
eq
u
iv
alen
t
to
1
0
.
3
%.
C
lu
s
ter
3
h
as
1
6
6
9
item
s
with
a
f
r
ac
tio
n
o
f
0
.
1
9
0
,
eq
u
iv
alen
t
to
a
p
er
ce
n
tag
e
o
f
1
9
.
1
%.
Fin
a
lly
,
clu
s
ter
4
h
as
1
6
0
6
item
s
with
a
f
r
ac
tio
n
o
f
0
.
1
8
3
,
eq
u
iv
al
en
t
to
a
p
er
ce
n
tag
e
o
f
1
8
.
3
%.
T
h
e
attr
ib
u
te
o
f
d
iab
etes
in
c
lu
s
ter
s
0
an
d
4
o
u
tp
er
f
o
r
m
ed
all
o
th
er
r
is
k
f
ac
to
r
s
m
e
n
tio
n
ed
in
th
e
d
atab
ase;
th
is
in
d
icate
s
th
at,
ac
co
r
d
in
g
to
th
e
r
esear
c
h
co
n
d
u
c
ted
,
th
e
attr
ib
u
te
o
f
d
iab
etes
is
th
e
m
o
s
t
p
r
ev
alen
t
r
is
k
f
ac
to
r
f
o
r
co
n
tr
ac
tin
g
a
h
e
ar
t
attac
k
.
Ob
esit
y
,
o
n
th
e
o
th
e
r
h
an
d
,
is
a
less
lik
ely
r
is
k
f
ac
to
r
f
o
r
d
ev
el
o
p
in
g
a
h
ea
r
t
attac
k
,
as
it
is
th
e
r
esu
lt
o
f
o
b
esit
y
in
clu
s
ter
s
3
an
d
4
.
Fig
u
r
e
9
s
h
o
ws
a
r
ep
r
esen
tatio
n
in
R
ap
id
Min
er
s
tu
d
io
o
f
th
e
ap
p
licatio
n
o
f
t
h
e
co
r
r
elatio
n
m
atr
ix
.
I
n
th
is
s
ec
tio
n
,
th
e
im
p
o
r
tan
t
attr
ib
u
t
es
wer
e
s
elec
ted
to
cr
ea
te
a
h
ea
t m
ap
with
t
h
ese
c
o
n
ce
p
ts
.
I
n
th
at
s
en
s
e,
th
e
ap
p
licatio
n
o
f
t
h
is
th
eo
r
y
m
ea
n
s
i
m
p
lem
en
tin
g
a
h
ea
t
m
ap
th
at
allo
ws f
o
r
t
h
e
co
m
p
a
r
is
o
n
o
f
th
e
ap
p
lied
v
ar
iab
les.
Fig
u
r
e
9
.
C
o
r
r
elatio
n
m
o
d
el
T
ab
le
4
s
h
o
ws
th
e
co
r
r
elatio
n
m
atr
ix
in
wh
ich
th
e
v
alu
es
o
f
ea
ch
v
a
r
iab
le
s
elec
ted
in
th
e
p
r
ed
ictio
n
ar
e
ca
lcu
lated
.
T
h
is
m
atr
ix
p
r
o
v
id
es c
r
u
cial
in
f
o
r
m
atio
n
o
n
t
h
e
r
elatio
n
s
h
ip
b
etwe
en
t
h
e
v
a
r
iab
les an
d
h
elp
s
to
id
en
tify
p
o
s
s
ib
le
p
atter
n
s
o
r
d
e
p
en
d
en
cies
b
etwe
en
th
em
.
On
t
h
e
o
th
er
h
an
d
,
Fig
u
r
e
1
0
s
h
o
ws
th
e
co
r
r
esp
o
n
d
i
n
g
h
ea
t
m
ap
,
wh
ich
g
r
ap
h
ically
v
is
u
alize
s
th
e
in
f
o
r
m
atio
n
co
n
tain
ed
in
th
e
c
o
r
r
elatio
n
m
atr
ix
.
T
h
is
h
ea
t
m
ap
is
g
en
er
ated
ac
c
o
r
d
in
g
to
th
e
p
r
o
ce
s
s
es e
s
tab
lis
h
ed
in
p
r
ev
io
u
s
s
tag
es with
th
e
R
ap
id
Min
er
s
tu
d
io
to
o
l.
B
y
u
s
in
g
co
lo
r
s
to
r
e
p
r
esen
t
d
i
f
f
er
en
t
lev
els
o
f
co
r
r
elatio
n
,
th
e
h
ea
t
m
ap
f
ac
ilit
ates
th
e
id
en
tific
atio
n
o
f
s
tr
o
n
g
o
r
wea
k
Evaluation Warning : The document was created with Spire.PDF for Python.