I
nte
rna
t
io
na
l J
o
urna
l o
f
Appl
ied P
o
wer
E
ng
i
neer
ing
(
I
J
AP
E
)
Vo
l.
1
4
,
No
.
2
,
J
u
n
e
20
2
5
,
p
p
.
328
~
3
3
7
I
SS
N:
2252
-
8
7
9
2
,
DOI
:
1
0
.
1
1
5
9
1
/ijap
e
.
v
1
4
.
i
2
.
pp
328
-
337
328
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
a
p
e
.
ia
esco
r
e.
co
m
O
ptimi
zing
vehicl
e
-
to
-
g
rid s
cheduli
ng
and stra
tegic
p
la
cement
for dy
na
mic wir
el
ess
charg
ing
of el
ectr
ic
vehicles
Deba
ni P
ra
s
a
d M
i
s
hra
1
,
Sa
n
chit
a
Sa
ha
y
1
,
Ay
us
h K
um
a
r
1
,
Su
re
nd
er
Red
dy
Sa
lk
uti
2
1
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
i
c
a
l
a
n
d
El
e
c
t
r
o
n
i
c
s E
n
g
i
n
e
e
r
i
n
g
,
I
I
I
T
B
h
u
b
a
n
e
sw
a
r
,
B
h
u
b
a
n
e
sw
a
r
,
I
n
d
i
a
2
D
e
p
a
r
t
me
n
t
o
f
R
a
i
l
r
o
a
d
a
n
d
El
e
c
t
r
i
c
a
l
E
n
g
i
n
e
e
r
i
n
g
,
W
o
o
s
o
n
g
U
n
i
v
e
r
s
i
t
y
,
D
a
e
j
e
o
n
,
R
e
p
u
b
l
i
c
o
f
K
o
r
e
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
4
,
2
0
2
3
R
ev
is
ed
No
v
6
,
2
0
2
4
Acc
ep
ted
No
v
2
8
,
2
0
2
4
Dy
n
a
m
ic
wire
les
s
c
h
a
rg
in
g
o
f
e
lec
tri
c
v
e
h
icle
s
(EVs)
h
a
s
b
e
c
o
m
e
p
o
p
u
lar
i
n
in
telli
g
e
n
t
tran
s
p
o
rtati
o
n
s
y
ste
m
s
(IT
S
).
Ho
we
v
e
r,
b
o
t
h
e
c
o
n
o
m
ic
a
n
d
sm
a
rt
c
it
y
p
e
rsp
e
c
ti
v
e
s
s
h
o
u
ld
b
e
tak
e
n
in
to
a
c
c
o
u
n
t
i
n
th
e
in
teg
ra
ti
o
n
o
f
wire
les
s
c
h
a
rg
in
g
i
n
fra
stru
c
tu
re
f
o
r
e
lec
tri
c
v
e
h
icle
s.
Cu
rre
n
t
re
se
a
rc
h
m
a
in
ly
f
o
c
u
se
s
o
n
p
o
we
r
tran
sfe
r
(P
T)
o
r
a
u
to
n
o
m
o
u
s
v
e
h
icle
-
to
-
g
r
id
(V2
G
)
tran
sfe
r.
Th
is
p
a
p
e
r
p
re
se
n
ts
a
m
u
l
ti
lay
e
re
d
a
p
p
ro
a
c
h
th
a
t
c
o
m
b
i
n
e
s
o
p
ti
m
a
l
P
T
p
la
n
n
i
n
g
b
a
se
d
o
n
u
r
b
a
n
traffic
a
n
d
e
n
e
rg
y
e
fficie
n
c
y
d
a
ta
with
d
y
n
a
m
ic
V2
G
p
lan
n
in
g
.
S
imu
lati
o
n
re
su
l
ts
sh
o
w
th
a
t
th
e
e
fficie
n
c
y
o
f
P
T
p
lac
e
m
e
n
t
a
n
d
V2
G
sc
h
e
d
u
li
n
g
i
n
c
re
a
se
s
a
n
d
p
ro
v
i
d
e
s
g
o
o
d
re
su
lt
s
f
o
r
s
m
a
rt
c
it
y
e
n
terp
rise
s.
T
h
is
m
u
l
ti
lay
e
re
d
a
p
p
ro
a
c
h
n
o
t
o
n
l
y
o
p
ti
m
ize
s
th
e
e
ff
icie
n
c
y
o
f
p
o
we
r
tra
n
sfe
r
p
lac
e
m
e
n
t
a
n
d
V
2
G
sc
h
e
d
u
li
n
g
b
u
t
a
ls
o
p
o
siti
o
n
s
it
se
lf
a
s
a
p
iv
o
tal
d
riv
e
r
fo
r
th
e
s
u
sta
in
a
b
le
e
v
o
l
u
ti
o
n
o
f
u
r
b
a
n
m
o
b
il
i
ty
.
As
d
y
n
a
m
ic
wire
les
s
c
h
a
rg
in
g
c
o
n
ti
n
u
e
s
t
o
s
h
a
p
e
t
h
e
fu
tu
re
o
f
in
tell
ig
e
n
t
tra
n
sp
o
rtat
io
n
sy
ste
m
s,
th
is
re
se
a
rc
h
sta
n
d
s
a
t
t
h
e
in
ters
e
c
ti
o
n
o
f
tec
h
n
o
l
o
g
ica
l
i
n
n
o
v
a
ti
o
n
,
e
c
o
n
o
m
ic
p
r
u
d
e
n
c
e
,
a
n
d
u
r
b
a
n
p
lan
n
in
g
,
o
ffe
ri
n
g
a
b
l
u
e
p
ri
n
t
fo
r
th
e
se
a
m
les
s in
teg
ra
ti
o
n
o
f
EVs
in
to
t
h
e
fa
b
ric o
f
sm
a
rt
c
it
ies
.
K
ey
w
o
r
d
s
:
Dy
n
am
ic
wir
eless
ch
ar
g
in
g
E
lectr
ic
v
eh
icle
I
n
tellig
en
t tr
an
s
p
o
r
tatio
n
Po
wer
tr
an
s
f
er
Veh
icle
-
to
-
g
r
id
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Su
r
en
d
er
R
ed
d
y
Salk
u
ti
Dep
ar
tm
en
t o
f
R
ailr
o
ad
an
d
E
lectr
ical
E
n
g
in
ee
r
in
g
,
W
o
o
s
o
n
g
Un
iv
er
s
ity
J
ay
an
g
-
d
o
n
g
,
D
o
n
g
-
g
u
,
Dae
jeo
n
3
4
6
0
6
,
R
ep
u
b
lic
o
f
Ko
r
ea
E
m
ail:
s
u
r
en
d
er
@
wsu
.
ac
.
k
r
1.
I
NT
RO
D
UCT
I
O
N
W
ir
eles
s
ch
ar
g
in
g
s
y
s
tem
s
o
f
e
lectr
ic
v
eh
icle
(
E
V)
h
a
v
e
b
ec
o
m
e
im
p
o
r
tan
t
in
s
m
ar
t
cities
b
ec
au
s
e
th
ey
in
teg
r
ate
with
in
ter
n
et
o
f
th
in
g
s
(
I
o
T
)
d
ev
ices
an
d
en
ab
le
en
er
g
y
m
an
ag
em
e
n
t.
T
h
ese
s
y
s
tem
s
ar
e
d
esig
n
ed
to
p
r
o
v
id
e
u
r
b
an
E
V
u
s
er
s
with
co
n
v
e
n
ien
t
an
d
f
lex
ib
le
elec
tr
ic
s
er
v
ices
b
e
y
o
n
d
th
e
lim
its
o
f
tr
ad
itio
n
al
p
ay
m
en
t
m
eth
o
d
s
.
W
ir
eles
s
p
o
wer
tr
an
s
f
er
(
W
PT)
tech
n
o
lo
g
y
en
a
b
les
wir
eless
ch
ar
g
in
g
o
f
th
e
elec
tr
ic
v
eh
icle
f
r
o
m
a
r
em
o
t
e
lo
ca
tio
n
,
wh
ich
ca
n
b
e
d
iv
i
d
ed
in
t
o
a
f
ix
ed
s
y
s
tem
o
r
p
o
wer
[
1
]
.
W
ir
eless
ch
ar
g
in
g
in
v
o
lv
es
u
s
in
g
p
er
m
an
en
t
co
n
n
ec
tio
n
s
to
tr
an
s
m
it
p
o
wer
to
th
e
E
V’
s
ch
ar
g
in
g
s
t
atio
n
.
Ho
wev
er
,
th
e
d
o
wn
s
id
e
is
th
at
E
Vs
n
ee
d
to
b
e
p
ar
k
e
d
f
o
r
a
lo
n
g
tim
e
to
c
o
m
p
lete
th
e
ch
a
r
g
in
g
p
r
o
ce
s
s
.
Dy
n
am
ic
wir
eless
ch
ar
g
in
g
s
y
s
tem
s
o
f
f
e
r
g
r
ea
t
o
p
p
o
r
tu
n
ities
b
y
allo
win
g
ele
ctr
ic
v
eh
icles
to
b
e
ch
ar
g
e
d
wh
ile
d
r
iv
in
g
.
T
h
ese
s
y
s
tem
s
u
tili
ze
ch
ar
g
in
g
tr
ac
k
s
em
b
ed
d
ed
in
tr
af
f
ic
h
i
g
h
way
s
to
f
ac
ilit
ate
p
o
wer
tr
an
s
f
er
w
h
ile
E
Vs ar
e
o
n
th
e
m
o
v
e.
Var
i
o
u
s
s
tu
d
ies
[2
]
,
[
3
]
h
a
v
e
p
r
o
p
o
s
ed
m
o
d
els
f
o
r
d
y
n
am
ic
wir
eless
ch
ar
g
in
g
,
an
aly
zin
g
h
ar
d
war
e
ef
f
icien
cy
an
d
o
p
tim
izin
g
ch
a
r
g
in
g
p
r
o
to
c
o
ls
d
u
r
in
g
s
lo
w
-
m
o
v
in
g
tr
a
f
f
ic.
T
h
e
p
lace
m
en
t
o
f
p
o
wer
tr
a
n
s
f
er
(
PT)
d
ev
ices
in
a
s
m
ar
t
city
'
s
tr
af
f
ic
n
etwo
r
k
is
a
cr
u
cial
asp
ec
t
th
at
r
eq
u
ir
es
tech
n
ical
an
d
ec
o
n
o
m
i
c
co
n
s
id
er
atio
n
s
.
R
esear
ch
er
s
h
av
e
e
x
p
lo
r
e
d
o
p
tim
al
l
o
ca
tio
n
s
f
o
r
d
y
n
am
ic
ch
ar
g
in
g
ce
n
ter
s
,
ad
d
r
ess
in
g
d
ep
lo
y
m
e
n
t
co
s
ts
an
d
ch
a
r
g
in
g
d
elay
s
.
Ad
d
itio
n
ally
,
th
e
i
n
ter
ac
tio
n
b
etwe
en
E
Vs
an
d
th
e
s
m
ar
t
g
r
id
(
SG)
s
y
s
tem
p
lay
s
a
v
ital
r
o
le
in
m
an
ag
in
g
th
e
city
'
s
en
er
g
y
n
ee
d
s
.
E
Vs,
with
v
eh
icle
-
to
-
g
r
i
d
(
V2
G)
tech
n
o
l
o
g
y
,
ca
n
co
n
tr
ib
u
te
au
x
iliar
y
s
er
v
ic
es
to
th
e
SG
,
in
clu
d
in
g
r
etu
r
n
i
n
g
e
n
er
g
y
an
d
p
r
o
v
id
in
g
s
u
p
p
l
em
en
tar
y
s
er
v
ices.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ap
p
l Po
wer
E
n
g
I
SS
N:
2252
-
8
7
9
2
Op
timiz
in
g
ve
h
icle
-
to
-
g
r
id
s
ch
ed
u
lin
g
a
n
d
s
tr
a
teg
ic
p
la
ce
me
n
t fo
r
d
yn
a
mic
… (
De
b
a
n
i P
r
a
s
a
d
Mis
h
r
a
)
329
T
h
is
s
tu
d
y
aim
s
to
b
r
id
g
e
r
es
ea
r
ch
g
ap
s
b
y
p
r
o
p
o
s
in
g
a
n
i
n
teg
r
ated
d
y
n
am
ic
wir
eless
c
h
ar
g
in
g
s
y
s
tem
o
f
E
Vs,
co
n
s
id
er
in
g
f
ac
ilit
y
lo
ca
tio
n
s
an
d
o
p
er
atio
n
s
.
T
h
e
m
u
lti
-
lay
er
s
y
s
tem
co
n
tr
ib
u
tes
to
th
e
d
ev
elo
p
m
e
n
t
o
f
th
e
elec
tr
icity
p
ay
m
e
n
t
s
y
s
tem
in
s
m
ar
t
cities
b
y
s
o
lv
in
g
t
h
e
en
er
g
y
tr
an
s
m
is
s
io
n
[
4
]
an
d
V2
G
p
r
o
b
lem
s
o
f
d
if
f
er
en
t e
lectr
icity
g
r
o
u
p
s
in
t
h
e
city
[
5
]
.
T
h
e
f
lo
wch
a
r
t
o
f
a
p
r
o
p
o
s
ed
s
y
s
tem
o
f
a
n
etwo
r
k
i
s
d
ep
ict
ed
in
Fig
u
r
e
1
.
T
h
e
s
tr
ee
t
n
et
wo
r
k
o
f
a
clev
er
m
etr
o
p
o
lis
[
6
]
,
E
Vs
[
7
]
,
PTs
[
8
]
,
an
d
d
e
v
ice
ev
alu
ate
[
9
]
ar
e
th
e
f
o
u
r
k
ey
co
m
p
o
n
en
ts
o
f
th
e
m
u
ltis
tag
e
f
r
am
ewo
r
k
,
wh
ich
ar
e
p
r
o
v
id
e
d
o
n
th
is
s
eg
m
en
t.
T
h
e
s
u
b
s
e
q
u
en
t
illu
s
tr
atio
n
s
s
h
o
w
ev
er
y
elem
en
t'
s
s
p
ec
if
ic
.
A
city
s
tr
ee
t
is
m
o
d
eled
as
a
g
r
ap
h
G
(
V,
E
)
,
wh
er
e
n
o
d
es
(
V)
r
ep
r
esen
t
in
ter
s
ec
tio
n
s
an
d
ed
g
es
(
E
)
r
ep
r
esen
t
r
o
ad
s
[
1
0
]
.
T
h
e
tr
a
v
el
d
is
tan
ce
(
d
ij
)
b
etwe
en
n
o
d
es is
d
eter
m
in
ed
u
s
in
g
th
e
Dijk
s
tr
a
m
eth
o
d
f
o
r
tr
af
f
ic
r
o
u
tin
g
.
T
h
er
e
a
r
e
wir
ed
an
d
wir
eless
ch
ar
g
in
g
s
tatio
n
s
th
r
o
u
g
h
o
u
t
th
e
city
[
1
1
]
.
W
h
ile
th
er
e
a
r
e
wir
ed
ch
ar
g
in
g
s
tatio
n
s
with
p
h
y
s
ical
ch
ar
g
er
s
in
th
e
p
ar
k
in
g
lo
t,
th
e
wir
eless
s
y
s
tem
in
clu
d
es
d
y
n
am
ic
ch
ar
g
in
g
p
ad
s
in
th
e
p
ar
k
in
g
lo
t
a
n
d
p
er
m
a
n
en
t
ele
ctr
ical
eq
u
ip
m
e
n
t
alo
n
g
t
h
e
r
o
ad
.
T
h
is
wo
r
k
f
o
cu
s
es
o
n
th
e
d
esig
n
o
f
a
wir
eless
ch
ar
g
in
g
s
y
s
tem
f
o
r
EV
s
,
co
n
s
id
er
in
g
th
e
d
ep
lo
y
m
en
t o
f
PTs in
u
r
b
a
n
n
etwo
r
k
s
.
E
Vs
ar
e
m
o
b
ile
b
atter
ies
,
a
n
d
th
ey
f
u
n
ctio
n
as
m
o
v
ab
le
en
er
g
y
s
to
r
ag
e
u
n
its
in
u
r
b
a
n
s
ettin
g
s
.
T
h
ese
v
eh
icles,
eq
u
ip
p
ed
with
q
u
ick
s
tar
t a
n
d
r
ap
id
r
esp
o
n
s
e
ca
p
ab
ilit
ies,
ac
t
as d
y
n
am
ic
p
o
wer
s
to
r
ag
e
d
ev
ices.
E
V
b
atter
ies
ca
n
r
ec
eiv
e
p
o
wer
m
an
ag
em
en
t
s
ig
n
als,
allo
win
g
th
em
to
p
r
o
v
id
e
v
ar
io
u
s
a
u
x
iliar
y
s
er
v
ices
in
cities,
in
clu
d
in
g
f
r
eq
u
en
cy
r
eg
u
latio
n
[
1
2
]
.
T
h
e
s
y
s
tem
o
p
er
ato
r
is
s
u
es
p
o
wer
m
a
n
a
g
em
en
t
s
ig
n
als
to
co
o
r
d
in
ate
s
u
b
o
r
d
in
ate
E
Vs,
o
p
tim
izin
g
th
eir
ch
ar
g
in
g
an
d
d
is
ch
ar
g
in
g
s
ch
ed
u
les
th
r
o
u
g
h
r
eg
u
lar
co
n
tr
o
l
s
ig
n
als.
T
h
is
co
n
tr
ib
u
tio
n
o
f
E
Vs
aid
s
in
m
ain
tain
in
g
SG
s
tab
ilit
y
,
p
ar
ticu
lar
ly
in
f
r
eq
u
e
n
cy
co
n
tr
o
l,
wh
er
e
a
g
r
o
u
p
o
f
E
Vs
s
ig
n
if
ican
tly
en
h
an
ce
s
th
e
g
r
id
'
s
ca
p
ac
ity
[
1
3
]
.
Fig
u
r
e
2
p
r
esen
ts
a
v
iab
le
tr
ac
k
o
p
tio
n
in
th
e
city
o
f
B
h
u
b
an
eswar
,
Od
is
h
a,
I
n
d
ia.
T
h
is
tr
ac
k
h
as
a
v
er
y
h
ig
h
v
o
lu
m
e
o
f
tr
af
f
ic
an
d
is
o
n
e
o
f
th
e
m
o
s
t
co
m
m
o
n
r
o
ad
way
s
o
f
co
m
m
u
n
icatio
n
in
th
e
city
.
Po
wer
tr
an
s
f
er
d
ev
ices
(
PTs)
ar
e
th
e
p
o
wer
s
u
p
p
ly
u
n
its
f
o
r
r
o
ad
way
p
o
wer
in
g
s
y
s
tem
s
.
PTs
o
p
er
ate
o
n
W
PT
tech
n
o
lo
g
y
,
s
p
ec
if
ically
n
ea
r
-
f
i
eld
elec
tr
o
m
ag
n
etic
in
d
u
ctio
n
[
1
4
]
.
T
h
e
y
f
all
in
t
o
two
m
ain
ca
teg
o
r
ies
:
m
ag
n
etic
in
d
u
ctio
n
an
d
elec
tr
o
s
tatic
in
d
u
ctio
n
,
ea
c
h
tailo
r
ed
to
d
if
f
er
e
n
t
p
o
wer
le
v
els
an
d
g
ap
s
ep
ar
atio
n
s
.
Dep
lo
y
ed
o
n
city
r
o
ad
s
eg
m
en
ts
,
PTs
en
ab
le
E
Vs
to
wir
eless
ly
ch
ar
g
e
an
d
d
is
ch
ar
g
e
u
s
in
g
W
PT
tech
n
o
lo
g
y
[
1
5
]
.
T
h
e
co
llectio
n
o
f
PTs
in
a
city
is
d
en
o
ted
as
s
et
K,
with
ea
ch
r
o
ad
s
eg
m
e
n
t
(
i,
j)
co
n
tain
in
g
a
n
em
b
e
d
d
ed
PT.
Fig
u
r
e
1
.
Flo
wch
ar
t
o
f
p
r
o
p
o
s
ed
s
y
s
tem
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
9
2
I
n
t J Ap
p
l Po
wer
E
n
g
,
Vo
l.
1
4
,
No
.
2
,
J
u
n
e
20
2
5
:
3
28
-
3
37
330
I
n
a
s
m
ar
t
city
,
th
e
in
teg
r
atio
n
o
f
in
tellig
en
t
tr
an
s
p
o
r
tatio
n
s
y
s
tem
s
(
I
T
S)
an
d
th
e
SG
f
o
r
m
s
a
co
h
esiv
e
s
y
s
tem
.
T
h
e
SG
m
a
n
ag
es
E
V
ch
a
r
g
in
g
,
wh
ile
I
T
S
f
o
cu
s
es
o
n
u
r
b
an
v
eh
icle
m
o
b
ilit
y
[
1
6
]
.
B
o
th
s
y
s
tem
s
co
o
r
d
in
ate
E
Vs,
co
m
b
in
in
g
m
o
b
ilit
y
an
d
ch
ar
g
i
n
g
o
p
er
atio
n
s
th
r
o
u
g
h
s
h
ar
e
d
in
f
o
r
m
atio
n
.
C
o
n
s
id
er
a
s
im
p
lifie
d
,
wh
er
e
a
n
E
V'
s
itin
er
ar
y
in
v
o
lv
es
s
tr
ateg
ic
u
s
e
o
f
p
o
wer
t
r
a
n
s
f
er
d
ev
ices
f
o
r
jo
in
t
m
o
v
em
e
n
t
an
d
ch
ar
g
in
g
,
o
p
tim
izin
g
b
atter
y
u
s
ag
e.
C
r
ea
tin
g
a
s
tr
ateg
ic
p
lan
f
o
r
PT
d
ep
lo
y
m
e
n
t
b
ased
o
n
tr
an
s
p
o
r
tatio
n
an
d
E
V
co
n
d
itio
n
s
is
cr
itical
f
o
r
d
ep
lo
y
m
en
t
[
1
7
]
.
T
h
e
m
u
lti
-
s
ta
g
e
s
tr
ateg
y
in
clu
d
es
ev
alu
atio
n
o
f
e
n
er
g
y
d
e
m
an
d
an
d
tr
af
f
ic
d
ata,
f
o
llo
wed
b
y
o
p
tim
al
PT
p
lace
m
en
t
(
f
ir
s
t
s
tag
e)
an
d
d
y
n
am
ic
V2
G
h
an
d
o
v
er
(
s
ec
o
n
d
s
tag
e)
.
E
V
u
s
er
s
ca
n
c
h
o
o
s
e
b
etwe
en
d
y
n
a
m
ic
V2
G
t
r
an
s
m
is
s
io
n
a
n
d
n
o
r
m
al
tr
av
el,
en
ab
lin
g
r
el
iab
le
city
p
la
n
n
in
g
.
PT
f
ac
ilit
ates tr
av
el
an
d
p
ay
m
en
t p
lan
n
in
g
in
a
m
u
lti
-
lay
er
e
d
p
r
o
ce
s
s
as sh
o
wn
in
Fig
u
r
e
1
.
Fig
u
r
e
2
.
A
3
.
6
8
k
m
tr
ac
k
f
o
r
v
iab
le
p
lace
m
en
t
o
f
tr
ac
k
2.
M
E
T
H
O
D
First,
th
e
co
m
p
lex
s
y
n
ch
r
o
n
iz
atio
n
o
f
a
p
o
wer
tr
ac
k
(
PT)
p
l
ac
em
en
t
s
ch
em
atic
is
h
ig
h
lig
h
ted
,
wh
er
e
s
o
p
h
is
ticated
tr
af
f
ic
d
ata
an
a
ly
tics
ar
e
co
m
b
in
ed
with
cu
t
tin
g
-
ed
g
e
g
eo
g
r
a
p
h
ic
in
f
o
r
m
a
tio
n
s
y
s
tem
(
GI
S)
tech
n
o
lo
g
ical
ca
p
ab
ilit
ies
[
1
8
]
.
W
ith
th
e
u
s
e
o
f
GI
S
te
ch
n
o
lo
g
ies
to
h
an
d
le
s
p
atial
d
ata,
th
is
co
m
p
lex
co
m
b
in
atio
n
r
esu
lts
in
a
ca
r
ef
u
l
ex
am
i
n
atio
n
o
f
m
u
n
icip
al
tr
af
f
ic
p
atter
n
s
.
Fin
d
in
g
t
h
e
b
est
p
lace
s
to
s
tr
ateg
ically
p
o
s
itio
n
PTs
-
ess
e
n
tial
p
ar
ts
o
f
a
d
y
n
am
ic
wir
ele
s
s
ch
ar
g
in
g
in
f
r
astru
ctu
r
e
is
th
e
r
esu
lt
[
1
9
]
.
W
ith
th
e
ad
d
itio
n
o
f
r
ea
l
-
tim
e
an
d
h
is
to
r
ical
tr
af
f
ic
d
ata
a
n
aly
tics
,
th
e
GI
S
to
o
ls
allo
w
f
o
r
a
m
o
r
e
s
o
p
h
is
ticated
k
n
o
wled
g
e
o
f
h
ig
h
-
tr
af
f
ic
r
e
g
i
o
n
s
an
d
th
e
b
est
r
o
u
tes
f
o
r
E
Vs.
As
s
u
ch
,
a
s
tr
ateg
ic
p
lace
m
en
t
p
lan
th
at
aim
s
to
o
p
tim
ize
ac
ce
s
s
ib
ilit
y
an
d
c
o
v
er
ag
e
f
o
r
d
y
n
am
ic
wir
eless
ch
ar
g
in
g
in
f
r
astru
ctu
r
e
in
u
r
b
an
en
v
ir
o
n
m
en
ts
is
in
f
o
r
m
e
d
b
y
th
is
s
cien
tific
m
eth
o
d
o
l
o
g
y
[
2
0
]
.
T
h
e
E
V
wir
eless
ch
ar
g
in
g
p
r
o
ce
d
u
r
e
is
b
r
ief
ly
s
h
o
wn
in
Fig
u
r
e
3
,
wh
ich
also
p
r
o
v
i
d
es
a
clea
r
v
is
u
al
r
e
p
r
esen
t
atio
n
o
f
co
n
s
u
m
p
tio
n
a
n
d
r
elate
d
o
p
er
atio
n
s
.
T
h
e
p
ictu
r
e
p
r
o
v
id
es a
clea
r
s
y
n
o
p
s
is
o
f
th
e
co
m
p
lex
wo
r
k
i
n
g
s
o
f
th
e
E
V
wir
eless
ch
ar
g
in
g
s
y
s
tem
b
y
u
s
in
g
a
v
ar
iety
o
f
s
ce
n
ar
io
s
to
illu
s
tr
ate
th
e
s
u
g
g
ested
s
y
s
tem
m
o
d
el
in
f
o
r
m
atics.
T
h
e
s
ec
o
n
d
p
o
in
t
ex
p
lo
r
es
th
e
co
m
p
le
x
ities
o
f
th
e
d
y
n
a
m
ic
V2
G
s
ch
ed
u
lin
g
s
ch
em
atic,
an
ad
v
a
n
ce
d
f
r
am
ewo
r
k
th
at
u
tili
ze
s
s
tate
-
of
-
th
e
-
ar
t
co
m
m
u
n
icatio
n
p
r
o
to
co
ls
an
d
SG
tech
n
o
l
o
g
y
.
T
h
e
ef
f
ec
tiv
e
b
id
ir
ec
tio
n
al
co
n
n
ec
tio
n
b
etw
ee
n
E
Vs
an
d
th
e
p
o
wer
g
r
id
is
k
ey
to
th
is
s
ch
em
atic's
o
p
er
atio
n
.
T
h
e
s
p
in
e
o
f
th
e
SG
is
its
in
f
r
astru
ctu
r
e,
wh
ich
allo
ws
s
ch
ed
u
lin
g
d
y
n
am
ics
to
b
e
ad
ju
s
ted
i
n
r
ea
l
-
tim
e
in
r
esp
o
n
s
e
to
ch
an
g
es
in
en
e
r
g
y
d
em
a
n
d
,
t
h
e
av
ailab
ilit
y
o
f
r
en
ewa
b
le
en
er
g
y
s
o
u
r
ce
s
,
an
d
th
e
s
tab
ilit
y
o
f
t
h
e
p
o
wer
s
y
s
tem
[
2
1
]
.
M
o
s
t
i
m
p
o
r
t
a
n
t
l
y
,
c
o
m
m
u
n
i
c
a
t
i
o
n
p
r
o
t
o
c
o
ls
li
k
e
M
Q
T
T
a
n
d
C
o
AP
a
r
e
u
s
e
d
to
s
e
t
u
p
d
e
p
e
n
d
a
b
le
d
a
t
a
e
x
c
h
a
n
g
e
s
y
s
t
e
m
s
t
h
a
t
m
a
k
e
i
t
e
a
s
i
e
r
f
o
r
E
V
s
a
n
d
t
h
e
p
o
w
e
r
g
r
i
d
t
o
i
n
t
e
g
r
a
t
e
a
n
d
c
o
o
r
d
i
n
a
t
e
[
2
2
]
.
T
h
is
p
o
in
t
ac
ce
n
t
u
ates
th
e
s
cien
tific
p
r
o
wess
in
h
er
en
t
in
th
e
o
r
c
h
estra
tio
n
o
f
SG
tech
n
o
lo
g
ies
an
d
co
m
m
u
n
icatio
n
p
r
o
to
co
ls
,
cr
ea
tin
g
a
r
esp
o
n
s
iv
e
an
d
ad
a
p
tab
le
f
r
am
ewo
r
k
th
at
o
p
ti
m
ally
m
an
ag
es
th
e
b
id
ir
ec
tio
n
al
en
e
r
g
y
f
lo
w
b
et
wee
n
E
Vs an
d
th
e
p
o
wer
g
r
id
in
d
y
n
a
m
ic
wir
eless
ch
ar
g
in
g
s
y
s
tem
s
.
A
Simu
lin
k
m
o
d
el
b
lo
c
k
d
ia
g
r
am
illu
s
tr
atin
g
th
e
W
PT
p
r
o
ce
s
s
is
s
h
o
wn
in
Fig
u
r
e
4
.
I
n
o
r
d
er
t
o
ass
es
s
th
e
m
o
d
el'
s
p
er
f
o
r
m
an
c
e,
it
is
p
u
t
th
r
o
u
g
h
a
r
ig
o
r
o
u
s
i
n
v
esti
g
atio
n
an
d
test
in
g
p
r
o
ce
s
s
.
T
h
is
r
esu
lts
in
a
d
etailed
v
is
u
aliza
tio
n
o
f
all
t
h
e
v
ar
i
o
u
s
p
ar
ts
th
at
ar
e
i
n
v
o
lv
ed
in
th
e
wir
eless
p
o
wer
tr
an
s
f
er
p
r
o
ce
s
s
.
T
h
e
g
r
ap
h
ical
r
ep
r
esen
tatio
n
in
Fig
u
r
e
5
illu
s
tr
ates
th
e
d
y
n
am
ic
tr
en
d
s
in
v
o
ltag
e,
c
u
r
r
e
n
t,
an
d
b
atter
y
p
er
ce
n
ta
g
e
o
v
er
tim
e,
o
f
f
er
in
g
a
co
m
p
r
e
h
en
s
iv
e
v
is
u
al
i
n
s
ig
h
t
in
to
th
e
tem
p
o
r
al
v
ar
iatio
n
s
o
f
th
ese
cr
u
cial
p
ar
am
eter
s
.
T
h
e
b
atter
y
p
er
ce
n
tag
e
d
ip
s
o
v
er
tim
e
as
th
e
p
o
wer
is
b
e
in
g
u
s
ed
b
y
th
e
b
r
u
s
h
less
DC
(
B
L
D
C
)
m
o
to
r
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ap
p
l Po
wer
E
n
g
I
SS
N:
2252
-
8
7
9
2
Op
timiz
in
g
ve
h
icle
-
to
-
g
r
id
s
ch
ed
u
lin
g
a
n
d
s
tr
a
teg
ic
p
la
ce
me
n
t fo
r
d
yn
a
mic
… (
De
b
a
n
i P
r
a
s
a
d
Mis
h
r
a
)
331
th
e
E
V.
T
h
e
c
u
r
r
en
t a
n
d
v
o
ltag
e
s
tay
co
n
s
tan
t o
v
e
r
th
e
s
am
e
p
er
io
d
o
f
tim
e
s
h
o
win
g
th
e
s
tab
ilit
y
f
ac
to
r
o
f
th
is
Simu
lin
k
m
o
d
el.
T
h
e
tim
e
-
d
e
p
en
d
en
t
r
ep
r
esen
tatio
n
in
Fig
u
r
e
6
v
is
u
ally
d
is
p
lay
s
th
e
v
ar
iatio
n
s
in
s
p
ee
d
an
d
t
o
r
q
u
e
o
f
th
e
b
lad
eless
DC
m
o
to
r
i
n
th
e
E
V
p
r
o
v
id
in
g
a
clea
r
a
n
d
d
etailed
o
v
er
v
iew
o
f
th
eir
d
y
n
a
m
ic
b
eh
av
io
r
.
T
h
e
s
p
ee
d
s
tar
tin
g
at
ze
r
o
h
as
a
n
eg
ativ
e
r
esp
o
n
s
e
in
in
itial
s
tag
es,
attain
s
a
p
ea
k
co
n
s
tan
t
af
ter
s
o
m
e
tim
e.
T
h
e
t
o
r
q
u
e
s
tar
ts
a
t
ze
r
o
attain
a
s
p
ec
if
ic
o
p
er
ati
o
n
al
to
r
q
u
e
a
n
d
at
h
alf
o
p
er
ati
o
n
to
u
ch
a
s
u
d
d
e
n
p
ea
k
f
o
r
a
m
o
m
en
t a
n
d
r
etu
r
n
s
to
its
o
p
er
atio
n
al
v
alu
e.
T
h
e
th
ir
d
p
o
i
n
t
d
escr
ib
es
th
e
co
m
p
lex
f
ield
o
f
wir
eless
ch
ar
g
in
g
tech
n
o
lo
g
y
,
wh
ich
is
a
k
e
y
elem
en
t
o
f
th
e
ar
ch
itectu
r
al
f
r
a
m
ewo
r
k
th
at
m
ax
im
izes
th
e
s
ch
ed
u
lin
g
o
f
V2
G
tr
af
f
ic
an
d
th
e
p
l
ac
em
en
t
o
f
p
o
wer
tr
ac
k
s
(
PTs).
T
h
is
tech
n
o
lo
g
y
,
wh
ich
m
ay
b
e
im
p
lem
en
t
ed
v
ia
r
eso
n
an
t
o
r
i
n
d
u
ctiv
e
ap
p
r
o
ac
h
es,
is
th
e
p
r
im
ar
y
m
ea
n
s
o
f
f
ac
ilit
atin
g
th
e
co
n
tactless
tr
an
s
m
is
s
io
n
o
f
elec
tr
ical
en
e
r
g
y
t
o
E
Vs.
R
eso
n
an
t
wir
eless
ch
ar
g
in
g
r
ed
u
ce
s
en
er
g
y
lo
s
s
es
d
u
r
in
g
t
h
is
tr
an
s
m
is
s
io
n
p
r
o
ce
s
s
b
y
r
eso
n
atin
g
at
p
a
r
ticu
lar
f
r
eq
u
e
n
cies,
wh
er
ea
s
in
d
u
ctiv
e
wir
eless
ch
ar
g
in
g
u
s
es
elec
tr
o
m
a
g
n
et
ic
f
ield
s
to
tr
a
n
s
m
it
en
er
g
y
with
o
u
t
p
h
y
s
ical
to
u
ch
[
2
3
]
,
[
2
4
]
.
T
h
e
g
o
al
o
f
d
ev
elo
p
in
g
ef
f
ec
tiv
e
,
co
n
t
ac
tles
s
E
V
ch
ar
g
in
g
s
y
s
tem
s
is
ce
n
tr
al
to
th
i
s
s
cien
tific
d
is
cu
s
s
io
n
,
s
in
ce
it g
u
ar
an
tees th
e
ea
s
e
an
d
a
d
ap
tab
ilit
y
th
at
co
m
e
with
wir
eless
ch
ar
g
in
g
.
Fig
u
r
e
3
.
Flo
wch
ar
t
f
o
r
E
V
ch
ar
g
in
g
Fig
u
r
e
4
.
B
lo
ck
d
iag
r
am
o
f
s
i
m
u
latio
n
o
f
W
PT
p
o
wer
ch
ar
g
in
g
b
y
Simu
li
n
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
9
2
I
n
t J Ap
p
l Po
wer
E
n
g
,
Vo
l.
1
4
,
No
.
2
,
J
u
n
e
20
2
5
:
3
28
-
3
37
332
(
a)
(
b
)
(
c)
Fig
u
r
e
5
.
Li
-
i
o
n
b
atter
y
:
(
a)
c
h
an
g
e
in
SOC
,
(
b
)
c
h
an
g
e
in
cu
r
r
en
t
,
an
d
(
c)
ch
an
g
e
in
v
o
ltag
e
(
a)
(
b
)
Fig
u
r
e
6
.
I
n
B
L
DC
m
o
to
r
:
(
a)
c
h
an
g
e
in
s
p
ee
d
an
d
(
b
)
ch
an
g
e
in
t
o
r
q
u
e
T
h
e
r
ea
lm
o
f
o
p
tim
izatio
n
a
lg
o
r
ith
m
s
is
ex
p
lo
r
ed
in
th
is
p
o
in
t,
wh
ich
is
an
ad
v
a
n
ce
d
asp
ec
t
o
f
th
e
co
n
tr
o
l
o
f
a
d
y
n
am
ic
wir
eless
ch
ar
g
in
g
s
y
s
tem
[
2
5
]
.
T
h
is
s
cien
tific
en
d
ea
v
o
r
co
n
s
ta
n
tly
im
p
r
o
v
es
th
e
s
y
s
tem
'
s
p
er
f
o
r
m
an
ce
b
y
u
tili
z
in
g
cu
ttin
g
-
e
d
g
e
m
ac
h
in
e
lear
n
in
g
alg
o
r
ith
m
s
an
d
o
p
tim
izatio
n
m
eth
o
d
o
lo
g
ies.
T
h
ese
alg
o
r
ith
m
s
r
esp
o
n
d
d
y
n
am
ically
to
ch
an
g
es
in
tr
af
f
ic
p
atter
n
s
,
en
er
g
y
co
n
s
u
m
p
tio
n
,
an
d
en
v
ir
o
n
m
e
n
tal
cir
cu
m
s
tan
ce
s
b
y
o
p
e
r
atin
g
with
in
th
e
f
r
am
ewo
r
k
o
f
a
d
a
p
tab
ilit
y
[
2
6
]
,
[
2
7
]
.
T
h
e
i
n
te
g
r
atio
n
o
f
m
ac
h
in
e
lear
n
in
g
allo
ws
th
e
s
y
s
tem
to
lear
n
f
r
o
m
d
ata
a
n
d
e
x
p
er
ien
c
es,
en
ab
lin
g
it
to
au
to
n
o
m
o
u
s
ly
o
p
tim
ize
p
o
wer
tr
ac
k
(
PT)
p
lace
m
en
t
an
d
V2
G
s
ch
ed
u
lin
g
[
2
8
]
,
[
2
9
]
.
T
h
i
s
s
c
i
e
n
ti
f
i
c
m
e
t
h
o
d
g
u
a
r
a
n
t
e
es
a
s
y
s
te
m
t
h
a
t a
d
a
p
ts
to
t
h
e
c
o
m
p
l
e
x
d
y
n
a
m
i
c
s
o
f
u
r
b
an
s
u
r
r
o
u
n
d
i
n
g
s
o
n
i
t
s
o
w
n
,
w
h
ic
h
a
d
d
s
t
o
s
u
s
t
a
i
n
a
b
i
l
it
y
a
n
d
c
o
s
t
-
e
f
f
e
c
ti
v
e
n
e
s
s
.
T
h
e
u
s
e
o
f
o
p
tim
izatio
n
al
g
o
r
ith
m
s
is
ev
id
en
ce
o
f
th
e
s
cien
tific
r
ig
o
r
t
h
at
wen
t
in
to
b
u
ild
in
g
a
f
lex
ib
le
an
d
r
esp
o
n
s
iv
e
in
f
r
a
s
tr
u
ctu
r
e
[
3
0
]
,
[
3
1
]
.
B
y
m
ea
n
s
o
f
o
n
g
o
in
g
lear
n
in
g
an
d
i
m
p
r
o
v
e
m
en
t,
th
ese
alg
o
r
ith
m
s
s
u
r
p
ass
tr
ad
itio
n
al
p
r
o
g
r
am
m
in
g
m
o
d
els,
e
n
ab
li
n
g
a
s
elf
-
ad
ju
s
tin
g
s
y
s
tem
th
a
t
co
r
r
esp
o
n
d
s
with
th
e
d
y
n
am
ic
s
u
b
tleties
p
r
esen
t
in
u
r
b
an
en
v
ir
o
n
m
en
ts
[
3
2
]
,
[
3
3
]
.
T
h
u
s
,
th
is
p
o
in
t
s
u
m
m
ar
izes
a
h
ig
h
-
lev
el
s
cien
tific
en
d
ea
v
o
r
b
y
h
ig
h
lig
h
tin
g
th
e
r
ev
o
lu
tio
n
ar
y
p
o
ten
t
ial
o
f
o
p
tim
izatio
n
a
n
d
m
ac
h
i
n
e
lear
n
in
g
in
th
e
o
r
ch
estra
tio
n
o
f
d
y
n
am
ic
wir
e
less
ch
ar
g
in
g
s
y
s
tem
s
.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
I
n
th
is
s
ec
tio
n
,
it
is
ex
p
lain
ed
th
e
r
esu
lts
o
f
th
e
r
esear
ch
an
d
at
th
e
s
am
e
tim
e
is
g
iv
e
n
th
e
co
m
p
r
e
h
en
s
iv
e
d
is
cu
s
s
io
n
.
R
esu
lt
s
ca
n
b
e
p
r
esen
ted
in
f
i
g
u
r
es,
g
r
ap
h
s
,
tab
les
,
an
d
o
th
e
r
f
o
r
m
s
th
at
m
ak
e
th
e
r
ea
d
er
u
n
d
er
s
tan
d
s
ea
s
i
ly
.
T
h
e
d
is
cu
s
s
io
n
ca
n
b
e
m
ad
e
in
s
ev
er
al
s
u
b
-
s
ec
tio
n
s
.
A
s
im
p
le
b
u
t
r
ep
r
esen
tativ
e
m
o
d
el
is
o
f
f
er
ed
b
y
th
e
s
im
u
latio
n
co
d
e
f
o
r
V2
G
s
ch
ed
u
lin
g
an
d
id
ea
l
p
lace
m
en
t
f
o
r
E
V
d
y
n
am
ic
wir
eless
ch
ar
g
in
g
.
T
h
is
s
im
u
latio
n
s
im
u
lates
a
city
s
ettin
g
b
y
r
an
d
o
m
ly
g
en
e
r
atin
g
E
V
an
d
c
h
ar
g
in
g
s
tatio
n
s
ites
with
in
a
1
0
0
×
1
0
0
g
r
i
d
as
s
h
o
wn
in
Fig
u
r
e
7
.
E
Vs
h
av
e
b
e
g
in
n
in
g
b
atter
y
l
ev
els
r
an
g
in
g
f
r
o
m
3
0
%
to
7
0
%,
an
d
ch
ar
g
in
g
is
eith
er
p
lan
n
ed
o
r
n
o
t.
T
h
e
c
h
ar
g
in
g
s
tate
an
d
r
ates
ar
e
u
s
ed
to
d
y
n
am
ically
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ap
p
l Po
wer
E
n
g
I
SS
N:
2252
-
8
7
9
2
Op
timiz
in
g
ve
h
icle
-
to
-
g
r
id
s
ch
ed
u
lin
g
a
n
d
s
tr
a
teg
ic
p
la
ce
me
n
t fo
r
d
yn
a
mic
… (
De
b
a
n
i P
r
a
s
a
d
Mis
h
r
a
)
333
u
p
d
ate
th
e
b
atter
y
lev
els.
T
h
e
co
s
ts
p
er
k
W
h
r
elate
d
with
ch
ar
g
in
g
d
em
an
d
ar
e
c
o
m
p
u
ted
u
s
in
g
E
V
s
tates
an
d
r
ates.
T
h
e
s
im
u
latio
n
r
esu
lts
a
r
e
tab
u
lated
in
T
ab
le
1
.
T
o
s
i
m
u
late
th
e
s
p
r
ea
d
o
f
in
f
r
astru
c
tu
r
e,
a
n
ew
ch
ar
g
in
g
s
tatio
n
is
in
tr
o
d
u
ce
d
at
r
an
d
o
m
in
th
e
s
im
u
latio
n
.
T
h
e
co
d
e
d
o
es
n
o
t
s
p
ec
if
ically
o
p
tim
ize
th
e
lo
ca
tio
n
o
f
th
e
wir
eless
ch
ar
g
in
g
s
tatio
n
,
b
u
t
it
d
o
es
m
ak
e
it
ea
s
ier
to
v
is
u
alize
th
e
s
im
u
lated
s
ce
n
ar
io
with
lin
e
p
lo
ts
s
h
o
win
g
th
e
E
V
s
tates
o
v
er
ti
m
e,
b
atter
y
le
v
el
tr
ajec
to
r
ies
f
o
r
in
d
iv
id
u
al
E
Vs,
an
d
s
ca
tter
p
lo
ts
f
o
r
E
V
an
d
s
tatio
n
lo
ca
tio
n
s
.
T
h
e
r
esu
lts
o
f
th
e
Py
t
h
o
n
s
im
u
latio
n
co
d
e
f
o
r
c
h
ar
g
in
g
a
n
d
d
is
ch
ar
g
in
g
E
Vs
wer
e
in
f
o
r
m
ativ
e
an
d
p
r
o
v
id
e
d
in
s
ig
h
t
i
n
to
th
e
d
y
n
am
ic
en
er
g
y
in
ter
ac
tio
n
s
th
at
o
cc
u
r
in
s
id
e
th
e
s
y
s
tem
.
T
h
e
cy
clica
l
n
atu
r
e
o
f
ch
ar
g
in
g
an
d
d
is
ch
ar
g
in
g
p
r
o
ce
s
s
es
i
s
ef
f
ec
tiv
ely
illu
s
tr
a
ted
b
y
th
e
g
r
ap
h
ical
r
ep
r
esen
tatio
n
in
Fig
u
r
e
8
,
wh
ich
also
h
ig
h
lig
h
ts
th
e
s
u
b
t
le
en
er
g
y
tr
an
s
f
er
o
v
er
tim
e.
T
h
e
s
im
u
latio
n
ac
c
u
r
ately
d
e
p
icts
h
o
w
r
esp
o
n
s
iv
e
th
e
E
Vs
ar
e
to
t
h
e
in
f
r
astru
ct
u
r
e
f
o
r
ch
a
r
g
in
g
,
with
d
is
tin
c
t
p
ea
k
s
s
ig
n
if
y
in
g
s
p
ik
es
in
d
em
an
d
a
n
d
v
alle
y
s
s
ig
n
if
y
in
g
p
e
r
io
d
s
o
f
d
is
ch
ar
g
e
o
r
r
ed
u
ce
d
en
e
r
g
y
u
s
e.
I
n
f
o
r
m
ed
d
ec
is
io
n
-
m
ak
in
g
a
b
o
u
t
t
h
e
m
an
ag
em
e
n
t
o
f
en
er
g
y
r
eso
u
r
ce
s
is
aid
ed
b
y
th
is
v
is
u
al
r
ep
r
esen
tatio
n
,
wh
ich
o
f
f
er
s
a
th
o
r
o
u
g
h
u
n
d
er
s
tan
d
in
g
o
f
th
e
in
ter
ac
tio
n
s
b
etwe
en
th
e
s
im
u
lated
E
Vs
an
d
th
e
ch
a
r
g
in
g
s
tatio
n
s
.
T
h
e
s
im
u
latio
n
also
p
r
o
v
i
d
es
a
way
to
ass
es
s
th
e
ef
f
icac
y
an
d
ef
f
ici
en
cy
o
f
th
e
in
f
r
astru
ctu
r
e
f
o
r
ch
ar
g
in
g
b
y
illu
s
tr
atin
g
in
s
tan
ce
s
o
f
p
o
s
s
ib
le
o
v
er
lo
ad
o
r
u
n
d
er
u
tili
za
tio
n
.
T
o
s
u
m
u
p
,
th
e
s
im
u
latio
n
is
an
in
v
alu
ab
le
r
eso
u
r
ce
f
o
r
r
ese
ar
ch
in
g
th
e
n
u
an
ce
s
o
f
E
V
ch
ar
g
i
n
g
an
d
d
is
ch
ar
g
i
n
g
d
y
n
am
ics,
en
ab
lin
g
t
h
e
d
e
v
elo
p
m
en
t
o
f
r
o
b
u
s
t
an
d
s
u
s
tain
ab
le
elec
tr
ic
ca
r
en
er
g
y
s
y
s
tem
s
o
p
tim
izatio
n
s
o
lu
tio
n
s
.
Fig
u
r
e
7
.
A
city
m
o
d
eled
g
r
a
p
h
f
o
r
p
lace
m
en
t
o
f
c
h
a
r
g
in
g
l
o
ca
tio
n
T
ab
le
1
.
Simu
latio
n
r
esu
lts
EV
l
o
c
a
t
i
o
n
s
EV
s
t
a
t
i
o
n
l
o
c
a
t
i
o
n
s
EV
s
t
a
t
e
s
B
a
t
t
e
r
y
l
e
v
e
l
s
C
h
a
r
g
i
n
g
c
o
s
t
s
1
0
.
8
0
1
7
4
9
.
5
0
6
7
9
0
.
4
3
5
5
3
3
.
6
5
3
3
1
3
4
.
4
6
6
7
0
5
1
.
6
9
9
7
7
0
.
6
4
0
7
3
.
3
1
7
9
1
8
.
7
7
1
3
0
5
4
.
7
5
1
.
5
1
4
.
3
1
5
6
2
4
.
3
5
7
3
5
3
.
2
4
2
6
3
2
.
1
9
2
7
0
4
4
.
4
6
6
7
1
.
6
5
5
.
9
3
7
1
7
8
.
5
0
7
0
7
1
.
6
4
9
7
4
0
.
3
8
5
7
1
4
0
.
3
3
3
3
0
0
.
4
5
8
0
7
.
4
0
9
0
1
7
.
9
3
0
2
5
4
.
8
5
6
6
1
4
2
.
2
6
6
7
0
7
6
.
6
6
8
2
3
9
.
3
8
8
3
7
2
.
5
1
8
2
2
2
.
9
8
8
6
0
3
7
.
3
0
.
6
8
4
.
8
7
0
9
0
.
3
3
9
4
9
0
.
8
1
0
2
5
5
.
2
1
7
5
0
70
0
9
1
.
6
8
2
1
2
2
.
0
6
7
7
2
3
.
1
7
9
2
3
9
.
6
2
9
0
0
7
1
.
3
3
3
3
2
9
8
.
6
9
6
8
0
.
1
3
0
1
9
5
.
4
1
0
3
5
4
.
2
8
1
3
0
6
5
.
1
0
5
0
.
5
1
3
3
1
8
.
9
1
8
0
1
2
.
7
0
3
7
2
3
.
2
2
4
0
0
6
2
.
2
6
6
7
0
2
7
.
1
4
2
2
1
4
.
2
4
8
4
7
4
.
6
1
4
8
1
5
.
4
8
2
9
0
4
0
.
3
3
3
3
2
1
0
.
0
7
5
1
2
6
.
8
0
7
6
7
4
.
8
5
0
9
5
4
.
3
2
9
9
1
4
5
.
6
3
3
3
0
.
7
5
0
.
7
8
4
9
1
7
.
4
8
9
2
8
2
.
6
4
5
0
5
7
.
3
4
6
4
0
3
8
.
8
6
6
7
0
.
8
5
8
.
5
6
0
9
1
3
.
8
6
4
9
1
9
.
6
2
0
5
3
0
.
3
8
5
2
0
3
2
.
5
1
7
6
.
2
8
8
7
5
9
.
8
8
8
6
6
5
.
1
9
9
7
6
.
6
1
6
0
1
4
4
.
5
3
3
3
0
8
.
2
9
6
3
9
0
.
1
0
5
8
7
2
.
6
6
3
0
9
.
4
4
8
9
1
6
0
.
3
8
3
3
1
.
1
6
6
.
1
5
9
6
9
3
.
9
3
8
0
2
7
.
9
0
3
9
6
7
.
5
3
7
5
0
5
6
.
5
0
.
9
5
1
.
6
9
7
9
2
2
.
1
1
8
4
6
1
.
7
8
5
1
7
.
0
2
1
4
0
5
3
.
4
0
.
7
1
7
.
1
0
4
8
4
8
.
2
6
7
1
5
1
.
5
7
6
6
8
3
.
7
8
4
1
1
5
0
.
2
1
.
1
9
3
.
8
5
5
8
3
7
.
6
0
1
1
3
6
.
6
8
3
3
7
3
.
9
4
8
0
0
4
2
.
6
6
6
7
0
5
9
.
0
4
8
3
5
2
.
3
7
8
0
8
5
.
0
6
7
9
5
5
.
8
5
6
5
1
5
1
.
1
6
6
7
0
.
7
4
4
.
0
6
3
5
2
6
.
4
8
7
3
8
5
.
5
7
7
2
6
7
.
0
7
9
7
1
6
3
.
2
1
.
1
9
4
.
1
9
1
9
6
.
8
3
5
7
8
6
.
1
5
9
6
7
1
.
1
7
3
5
1
6
2
.
1
0
.
6
6
5
.
5
9
1
4
4
3
.
6
3
2
7
8
0
.
6
4
6
7
6
0
.
1
3
9
9
0
5
6
.
0
3
3
3
0
4
5
.
1
9
4
6
1
7
.
3
8
5
3
1
9
.
3
2
0
2
6
1
.
6
4
2
1
0
6
0
.
8
3
3
3
0
8
3
.
9
6
9
7
2
.
6
1
0
7
9
8
.
5
2
4
6
6
0
.
8
7
5
9
1
5
9
.
2
6
6
7
1
.
4
5
3
.
2
6
2
4
9
5
.
4
6
7
8
8
2
.
8
0
9
6
5
0
.
7
4
3
5
1
3
9
.
2
5
0
5
5
.
3
8
8
7
4
3
.
0
5
9
7
4
0
.
2
9
5
2
5
1
.
0
0
4
0
0
52
0
6
8
.
0
0
6
6
9
6
.
1
5
5
9
5
.
2
2
2
4
6
8
.
3
3
0
8
1
4
6
.
2
1
.
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
9
2
I
n
t J Ap
p
l Po
wer
E
n
g
,
Vo
l.
1
4
,
No
.
2
,
J
u
n
e
20
2
5
:
3
28
-
3
37
334
Fig
u
r
e
8
illu
s
tr
ates
th
e
elec
t
r
ic
v
eh
icle
(
E
V)
ch
ar
g
i
n
g
a
n
d
d
is
ch
ar
g
in
g
s
tatu
s
in
th
e
c
o
n
tex
t
o
f
v
eh
icle
-
to
-
g
r
id
(
V
2
G)
s
ch
ed
u
lin
g
.
T
h
e
p
ie
c
h
ar
ts
r
ep
r
esen
t
th
r
ee
d
if
f
er
e
n
t
s
ce
n
ar
io
s
:
Fig
u
r
e
8
(
a)
r
e
p
r
esen
ts
E
Vs
th
at
ar
e
e
x
clu
s
iv
ely
i
n
d
r
iv
in
g
m
o
d
e
(
1
0
0
%
d
r
iv
in
g
,
0
%
ch
ar
g
i
n
g
)
;
Fig
u
r
e
8
(
b
)
r
e
p
r
esen
ts
a
b
ala
n
ce
d
s
tate
wh
er
e
6
4
%
ar
e
ch
ar
g
in
g
an
d
3
6
%
ar
e
d
r
iv
in
g
;
an
d
Fig
u
r
e
8
(
c
)
r
ep
r
esen
ts
th
e
m
ajo
r
ity
o
f
E
Vs
th
at
ar
e
ch
ar
g
in
g
(
9
7
%)
wh
ile
a
s
m
all
p
er
ce
n
tag
e
(
3
%)
ar
e
d
r
iv
i
n
g
.
T
h
ese
d
is
tr
ib
u
tio
n
s
ar
e
cr
u
cial
f
o
r
ef
f
icien
t
V2
G
s
ch
ed
u
lin
g
,
en
s
u
r
in
g
o
p
tim
al
u
tili
za
tio
n
o
f
E
V
b
atter
ies
f
o
r
g
r
id
s
tab
ilizatio
n
wh
il
e
co
n
s
id
er
in
g
u
s
er
m
o
b
ilit
y
d
em
a
n
d
s
.
An
aly
tical
f
in
d
in
g
s
wer
e
o
b
tain
ed
b
y
s
im
u
latin
g
th
e
h
o
u
r
l
y
ch
ar
g
in
g
p
r
o
f
ile
o
f
E
Vs
in
a
g
r
id
.
T
h
e
v
is
u
al
d
ep
ictio
n
in
Fig
u
r
e
9
d
em
o
n
s
tr
ates
h
o
w
t
h
e
r
e
q
u
ir
em
en
t
f
o
r
ch
a
r
g
in
g
v
a
r
ies
th
r
o
u
g
h
o
u
t
t
h
e
d
a
y
.
Peak
tim
es
an
d
lu
lls
in
E
V
ch
a
r
g
in
g
ac
tiv
ity
wer
e
clea
r
l
y
v
is
ib
le
th
an
k
s
to
th
e
ex
ce
llen
t
v
is
u
ali
za
tio
n
o
f
t
h
e
wh
o
le
h
o
u
r
ly
ch
a
r
g
in
g
d
e
m
an
d
th
e
ca
p
ac
ity
o
f
th
e
g
r
id
o
r
th
e
ch
ar
g
in
g
s
tatio
n
was
ex
ce
e
d
ed
,
war
n
in
g
s
we
r
e
p
r
o
d
u
ce
d
p
r
o
p
er
l
y
,
p
r
o
v
id
in
g
a
p
r
o
ac
tiv
e
way
to
s
p
o
t
an
y
o
p
er
atio
n
al
is
s
u
es.
Ov
er
all,
th
e
s
im
u
latio
n
h
elp
s
with
in
f
o
r
m
ed
d
ec
is
io
n
-
m
ak
i
n
g
in
t
h
e
d
esig
n
an
d
o
p
tim
izatio
n
o
f
elec
tr
ic
ca
r
c
h
ar
g
in
g
s
y
s
tem
s
b
y
ca
p
tu
r
in
g
th
e
co
m
p
lex
d
y
n
am
ics
o
f
E
V
ch
ar
g
in
g
a
n
d
ac
tin
g
as
a
u
s
ef
u
l
t
o
o
l
f
o
r
ev
alu
atin
g
th
e
r
eliab
ilit
y
a
n
d
ef
f
ec
tiv
en
ess
o
f
th
e
g
r
id
in
f
r
astru
ctu
r
e.
(
a)
(
b
)
(
c)
Fig
u
r
e
8
.
Picto
g
r
ap
h
:
(
a
)
d
r
i
v
in
g
m
o
d
e,
(
b
)
b
ala
n
ce
d
s
tate,
a
n
d
(
c)
E
V
ch
ar
g
i
n
g
d
is
ch
a
r
g
in
g
m
ajo
r
ity
Fig
u
r
e
9
.
Ho
u
r
ly
c
h
ar
g
in
g
p
r
o
f
ile
o
f
E
V
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ap
p
l Po
wer
E
n
g
I
SS
N:
2252
-
8
7
9
2
Op
timiz
in
g
ve
h
icle
-
to
-
g
r
id
s
ch
ed
u
lin
g
a
n
d
s
tr
a
teg
ic
p
la
ce
me
n
t fo
r
d
yn
a
mic
… (
De
b
a
n
i P
r
a
s
a
d
Mis
h
r
a
)
335
4.
CO
NCLU
SI
O
N
T
h
is
s
tu
d
y
ad
d
s
to
th
e
b
o
d
y
o
f
k
n
o
wled
g
e
b
y
p
r
o
v
id
i
n
g
a
th
o
r
o
u
g
h
an
d
m
u
lti
-
lay
e
r
ed
f
r
a
m
ewo
r
k
f
o
r
o
p
tim
izin
g
v
e
h
icle
-
to
-
g
r
id
(
V2
G)
s
ch
ed
u
lin
g
an
d
p
lacin
g
p
o
wer
t
r
ac
k
s
(
PTs)
s
tr
ateg
ically
in
r
elatio
n
to
d
y
n
am
ic
wir
eless
ch
ar
g
in
g
o
f
E
Vs.
Pro
p
o
s
ed
m
eth
o
d
in
teg
r
ates
ec
o
n
o
m
ic
co
n
ce
r
n
s
an
d
s
m
ar
t
city
v
iewp
o
in
ts
,
ac
k
n
o
wled
g
i
n
g
t
h
e
g
r
o
win
g
p
o
p
u
lar
ity
o
f
d
y
n
a
m
ic
wir
eless
ch
ar
g
in
g
in
in
tell
ig
en
t
tr
an
s
p
o
r
tatio
n
s
y
s
tem
s
(
I
T
S)
b
ey
o
n
d
tr
ad
iti
o
n
al
r
esear
c
h
b
o
u
n
d
s
.
T
h
e
s
tu
d
y
d
ev
iates
f
r
o
m
th
e
p
r
ev
ailin
g
em
p
h
asis
o
n
d
is
cr
ete
elem
en
ts
o
f
au
to
n
o
m
o
u
s
V2
G
tr
an
s
f
er
o
r
p
o
wer
tr
an
s
f
er
(
PT)
.
R
ath
er
,
it
tak
es
a
co
m
p
r
eh
en
s
iv
e
s
tr
ateg
y
,
f
u
s
in
g
d
y
n
am
ic
V2
G
p
lan
n
in
g
with
o
p
tim
u
m
P
T
p
lan
n
in
g
b
ased
o
n
u
r
b
a
n
tr
af
f
ic
an
d
en
er
g
y
ef
f
icien
cy
d
ata.
T
h
e
s
im
u
latio
n
f
in
d
in
g
s
p
r
o
v
id
e
s
ig
n
if
ica
n
t
g
ain
s
in
V2
G
s
ch
ed
u
lin
g
an
d
PT
p
lace
m
en
t
ef
f
icien
cy
,
d
em
o
n
s
tr
atin
g
th
e
ef
f
icac
y
o
f
th
is
m
u
ltil
ay
er
e
d
tech
n
i
q
u
e.
T
h
ese
r
esu
lts
v
alid
ate
th
e
p
o
s
s
ib
le
ad
v
an
tag
es
o
f
o
u
r
m
eth
o
d
o
l
o
g
y
f
o
r
s
m
ar
t
city
f
ir
m
s
'
u
n
d
er
tak
in
g
s
,
in
lin
e
with
th
e
o
v
er
all
o
b
jectiv
e
o
f
au
g
m
en
tin
g
th
e
s
u
s
tain
ab
ilit
y
an
d
in
tellig
en
ce
o
f
u
r
b
an
t
r
an
s
p
o
r
t sy
s
tem
s
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
T
h
is
r
esear
ch
wo
r
k
was f
u
n
d
e
d
b
y
“Wo
o
s
o
n
g
Un
iv
e
r
s
ity
’
s
Aca
d
em
ic
R
esear
ch
Fu
n
d
in
g
–
202
5
”.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
t
r
ib
u
to
r
R
o
les
T
a
x
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
i
d
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Deb
an
i Pr
asad
Mish
r
a
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
San
ch
ita
Sah
ay
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Ay
u
s
h
Ku
m
ar
✓
✓
✓
✓
✓
✓
✓
✓
✓
Su
r
en
d
er
R
ed
d
y
Salk
u
ti
✓
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
T
h
e
au
th
o
r
s
d
ec
lar
e
n
o
co
m
p
e
tin
g
in
ter
ests
.
E
T
H
I
CAL AP
P
RO
V
AL
T
h
is
ar
ticle
d
o
es
n
o
t
c
o
n
tain
an
y
s
tu
d
ies
with
h
u
m
a
n
p
a
r
ticip
an
ts
o
r
a
n
im
al
s
tu
d
ies
p
e
r
f
o
r
m
ed
b
y
an
y
o
f
th
e
au
th
o
r
s
.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
atasets
u
s
ed
an
d
/
o
r
an
al
y
ze
d
d
u
r
in
g
t
h
e
c
u
r
r
en
t
s
tu
d
y
av
ailab
le
f
r
o
m
th
e
c
o
r
r
esp
o
n
d
in
g
au
t
h
o
r
[
SR
S],
o
n
r
ea
s
o
n
ab
le
r
e
q
u
ests
.
RE
F
E
R
E
NC
E
S
[
1
]
T.
F
r
a
n
k
e
,
I
.
N
e
u
ma
n
n
,
F
.
B
ü
h
l
e
r
,
P
.
C
o
c
r
o
n
,
a
n
d
J.
F
.
K
r
e
ms,
“
E
x
p
e
r
i
e
n
c
i
n
g
r
a
n
g
e
i
n
a
n
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
:
u
n
d
e
r
st
a
n
d
i
n
g
p
sy
c
h
o
l
o
g
i
c
a
l
b
a
r
r
i
e
r
s,”
Ap
p
l
i
e
d
Psy
c
h
o
l
o
g
y
,
v
o
l
.
6
1
,
n
o
.
3
,
p
p
.
3
6
8
–
3
9
1
,
J
u
l
.
2
0
1
2
,
d
o
i
:
1
0
.
1
1
1
1
/
j
.
1
4
6
4
-
0
5
9
7
.
2
0
1
1
.
0
0
4
7
4
.
x
.
[
2
]
Z.
Li
,
S
.
J
i
a
n
g
,
J.
D
o
n
g
,
S
.
W
a
n
g
,
Z.
M
i
n
g
,
a
n
d
L
.
Li
,
“
B
a
t
t
e
r
y
c
a
p
a
c
i
t
y
d
e
si
g
n
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
c
o
n
s
i
d
e
r
i
n
g
t
h
e
d
i
v
e
r
si
t
y
o
f
d
a
i
l
y
v
e
h
i
c
l
e
s
m
i
l
e
s
t
r
a
v
e
l
e
d
,
”
T
r
a
n
s
p
o
r
t
a
t
i
o
n
R
e
se
a
rc
h
P
a
rt
C
:
Em
e
r
g
i
n
g
T
e
c
h
n
o
l
o
g
i
e
s
,
v
o
l
.
7
2
,
p
p
.
2
7
2
–
2
8
2
,
N
o
v
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
t
r
c
.
2
0
1
6
.
1
0
.
0
0
1
.
[
3
]
J.
D
o
n
g
a
n
d
Z.
Li
n
,
“
S
t
o
c
h
a
s
t
i
c
m
o
d
e
l
i
n
g
o
f
b
a
t
t
e
r
y
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
d
r
i
v
e
r
b
e
h
a
v
i
o
r
,
”
T
ra
n
s
p
o
r
t
a
t
i
o
n
R
e
se
a
rc
h
Re
c
o
r
d
:
J
o
u
r
n
a
l
o
f
t
h
e
T
r
a
n
sp
o
r
t
a
t
i
o
n
R
e
se
a
rc
h
B
o
a
rd
,
v
o
l
.
2
4
5
4
,
n
o
.
1
,
p
p
.
6
1
–
6
7
,
Ja
n
.
2
0
1
4
,
d
o
i
:
1
0
.
3
1
4
1
/
2
4
5
4
-
0
8
.
[
4
]
J.
B
r
a
d
y
a
n
d
M
.
O
’
M
a
h
o
n
y
,
“
M
o
d
e
l
l
i
n
g
c
h
a
r
g
i
n
g
p
r
o
f
i
l
e
s o
f
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
b
a
s
e
d
o
n
r
e
a
l
-
w
o
r
l
d
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
c
h
a
r
g
i
n
g
d
a
t
a
,
”
S
u
s
t
a
i
n
a
b
l
e
C
i
t
i
e
s
a
n
d
S
o
c
i
e
t
y
,
v
o
l
.
2
6
,
p
p
.
2
0
3
–
2
1
6
,
O
c
t
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
scs.
2
0
1
6
.
0
6
.
0
1
4
.
[
5
]
Y
.
H
u
a
n
g
,
H
.
W
a
n
g
,
A
.
K
h
a
j
e
p
o
u
r
,
H
.
H
e
,
a
n
d
J.
Ji
,
“
M
o
d
e
l
p
r
e
d
i
c
t
i
v
e
c
o
n
t
r
o
l
p
o
w
e
r
m
a
n
a
g
e
me
n
t
s
t
r
a
t
e
g
i
e
s
f
o
r
H
EV
s:
A
r
e
v
i
e
w
,
”
J
o
u
r
n
a
l
o
f
P
o
w
e
r
S
o
u
r
c
e
s
,
v
o
l
.
3
4
1
,
p
p
.
9
1
–
1
0
6
,
F
e
b
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
p
o
w
so
u
r
.
2
0
1
6
.
1
1
.
1
0
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
9
2
I
n
t J Ap
p
l Po
wer
E
n
g
,
Vo
l.
1
4
,
No
.
2
,
J
u
n
e
20
2
5
:
3
28
-
3
37
336
[
6
]
J.
H
o
n
g
,
S
.
P
a
r
k
,
a
n
d
N
.
C
h
a
n
g
,
“
A
c
c
u
r
a
t
e
r
e
m
a
i
n
i
n
g
r
a
n
g
e
e
s
t
i
m
a
t
i
o
n
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s,
”
i
n
2
0
1
6
2
1
st
As
i
a
a
n
d
S
o
u
t
h
Pa
c
i
f
i
c
D
e
si
g
n
Au
t
o
m
a
t
i
o
n
C
o
n
f
e
r
e
n
c
e
(
AS
P
-
D
AC
)
,
J
a
n
.
2
0
1
6
,
p
p
.
7
8
1
–
7
8
6
,
d
o
i
:
1
0
.
1
1
0
9
/
A
S
P
D
A
C
.
2
0
1
6
.
7
4
2
8
1
0
6
.
[
7
]
R
.
O
.
D
u
d
a
,
P
.
E.
H
a
r
t
,
a
n
d
D
.
G
.
S
t
o
r
k
,
Pa
t
t
e
rn
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
H
o
b
o
k
e
n
,
N
e
w
Jerse
y
,
U
S
A
:
J
o
h
n
W
i
l
e
y
& S
o
n
s,
2
0
1
2
.
[
8
]
S
.
G
r
u
b
w
i
n
k
l
e
r
,
T.
B
r
u
n
n
e
r
,
a
n
d
M
.
L
i
e
n
k
a
mp
,
“
R
a
n
g
e
p
r
e
d
i
c
t
i
o
n
f
o
r
EV
s
v
i
a
c
r
o
w
d
-
so
u
r
c
i
n
g
,
”
i
n
2
0
1
4
I
EE
E
V
e
h
i
c
l
e
P
o
w
e
r a
n
d
Pro
p
u
l
si
o
n
C
o
n
f
e
re
n
c
e
(
VP
PC
)
,
O
c
t
.
2
0
1
4
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
V
P
P
C
.
2
0
1
4
.
7
0
0
7
1
2
1
.
[
9
]
C.
-
M
.
Tse
n
g
a
n
d
C
.
-
K
.
C
h
a
u
,
“
P
e
r
so
n
a
l
i
z
e
d
p
r
e
d
i
c
t
i
o
n
o
f
v
e
h
i
c
l
e
e
n
e
r
g
y
c
o
n
s
u
m
p
t
i
o
n
b
a
se
d
o
n
p
a
r
t
i
c
i
p
a
t
o
r
y
s
e
n
s
i
n
g
,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
I
n
t
e
l
l
i
g
e
n
t
T
r
a
n
s
p
o
rt
a
t
i
o
n
S
y
s
t
e
m
s
,
v
o
l
.
1
8
,
n
o
.
1
1
,
p
p
.
3
1
0
3
–
3
1
1
3
,
N
o
v
.
2
0
1
7
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
T
S
.
2
0
1
7
.
2
6
7
2
8
8
0
.
[
1
0
]
T.
S
t
r
a
u
b
,
M
.
N
a
g
y
,
M
.
S
i
d
o
r
o
v
,
L.
To
n
e
t
t
o
,
M
.
F
r
e
y
,
a
n
d
F
.
G
a
u
t
e
r
i
n
,
“
E
n
e
r
g
e
t
i
c
m
a
p
d
a
t
a
i
mp
u
t
a
t
i
o
n
:
A
mac
h
i
n
e
l
e
a
r
n
i
n
g
a
p
p
r
o
a
c
h
,
”
E
n
e
r
g
i
e
s
,
v
o
l
.
1
3
,
n
o
.
4
,
p
.
9
8
2
,
F
e
b
.
2
0
2
0
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
3
0
4
0
9
8
2
.
[
1
1
]
B
.
Zh
e
n
g
,
P
.
H
e
,
L
.
Z
h
a
o
,
a
n
d
H
.
L
i
,
“
A
h
y
b
r
i
d
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
m
o
d
e
l
f
o
r
r
a
n
g
e
e
s
t
i
m
a
t
i
o
n
o
f
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
,
”
i
n
2
0
1
6
I
E
EE
G
l
o
b
a
l
C
o
m
m
u
n
i
c
a
t
i
o
n
s
C
o
n
f
e
r
e
n
c
e
(
G
L
O
BEC
O
M)
,
D
e
c
.
2
0
1
6
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
G
LO
C
O
M
.
2
0
1
6
.
7
8
4
1
5
0
6
.
[
1
2
]
L.
Z
h
a
o
,
W
.
Y
a
o
,
Y
.
W
a
n
g
,
a
n
d
J.
H
u
,
“
M
a
c
h
i
n
e
l
e
a
r
n
i
n
g
-
b
a
s
e
d
me
t
h
o
d
f
o
r
r
e
m
a
i
n
i
n
g
r
a
n
g
e
p
r
e
d
i
c
t
i
o
n
o
f
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
,
”
I
EEE
A
c
c
e
ss
,
v
o
l
.
8
,
p
p
.
2
1
2
4
2
3
–
2
1
2
4
4
1
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
0
.
3
0
3
9
8
1
5
.
[
1
3
]
S
.
B
e
h
e
s
h
t
a
e
i
n
,
R
.
C
u
z
n
e
r
,
M
.
S
a
v
a
g
h
e
b
i
,
a
n
d
J.
M
.
G
u
e
r
r
e
r
o
,
“
R
e
v
i
e
w
o
n
mi
c
r
o
g
r
i
d
s p
r
o
t
e
c
t
i
o
n
,
”
I
ET
G
e
n
e
r
a
t
i
o
n
,
T
ra
n
sm
i
ss
i
o
n
& D
i
st
r
i
b
u
t
i
o
n
,
v
o
l
.
1
3
,
n
o
.
6
,
p
p
.
7
4
3
–
7
5
9
,
M
a
r
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
4
9
/
i
e
t
-
g
t
d
.
2
0
1
8
.
5
2
1
2
.
[
1
4
]
S
.
Z
h
a
n
g
a
n
d
J
.
J
.
Q
.
Y
u
,
“
E
l
e
c
t
r
i
c
v
e
h
i
c
l
e
d
y
n
a
mi
c
w
i
r
e
l
e
s
s
c
h
a
r
g
i
n
g
s
y
s
t
e
m:
o
p
t
i
mal
p
l
a
c
e
me
n
t
a
n
d
v
e
h
i
c
l
e
-
to
-
g
r
i
d
s
c
h
e
d
u
l
i
n
g
,”
I
EEE
I
n
t
e
r
n
e
t
o
f
T
h
i
n
g
s
J
o
u
r
n
a
l
,
v
o
l
.
9
,
n
o
.
8
,
p
p
.
6
0
4
7
–
6
0
5
7
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
JI
O
T.
2
0
2
1
.
3
1
0
9
9
5
6
.
[
1
5
]
A
.
Za
n
e
l
l
a
,
N
.
B
u
i
,
A
.
C
a
s
t
e
l
l
a
n
i
,
L.
V
a
n
g
e
l
i
st
a
,
a
n
d
M
.
Zo
r
z
i
,
“
I
n
t
e
r
n
e
t
o
f
t
h
i
n
g
s
f
o
r
sm
a
r
t
c
i
t
i
e
s
,
”
I
E
EE
I
n
t
e
r
n
e
t
o
f
T
h
i
n
g
s
J
o
u
rn
a
l
,
v
o
l
.
1
,
n
o
.
1
,
p
p
.
2
2
–
3
2
,
F
e
b
.
2
0
1
4
,
d
o
i
:
1
0
.
1
1
0
9
/
JI
O
T.
2
0
1
4
.
2
3
0
6
3
2
8
.
[
1
6
]
Y
.
H
u
e
b
n
e
r
,
P
.
T.
B
l
y
t
h
e
,
G
.
H
i
l
l
,
M
.
N
e
a
i
me
h
,
a
n
d
C
.
H
i
g
g
i
n
s,
“
U
s
e
o
f
I
TS
t
o
o
v
e
r
c
o
me
b
a
r
r
i
e
r
s
t
o
t
h
e
i
n
t
r
o
d
u
c
t
i
o
n
o
f
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s i
n
t
h
e
N
o
r
t
h
E
a
st
o
f
En
g
l
a
n
d
,
”
i
n
1
8
t
h
W
o
r
l
d
C
o
n
g
r
e
ss
o
n
I
n
t
e
l
l
i
g
e
n
t
T
r
a
n
sp
o
r
t
S
y
s
t
e
m
s
,
2
0
1
2
.
[
1
7
]
M
.
N
e
a
i
me
h
,
G
.
A
.
H
i
l
l
,
Y
.
H
ü
b
n
e
r
,
a
n
d
P
.
T.
B
l
y
t
h
e
,
“
R
o
u
t
i
n
g
sy
s
t
e
ms
t
o
e
x
t
e
n
d
t
h
e
d
r
i
v
i
n
g
r
a
n
g
e
o
f
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
,
”
I
ET
I
n
t
e
l
l
i
g
e
n
t
T
r
a
n
sp
o
r
t
S
y
st
e
m
s
,
v
o
l
.
7
,
n
o
.
3
,
p
p
.
3
2
7
–
3
3
6
,
S
e
p
.
2
0
1
3
,
d
o
i
:
1
0
.
1
0
4
9
/
i
e
t
-
i
t
s.
2
0
1
3
.
0
1
2
2
.
[
1
8
]
C
.
B
u
c
k
l
e
t
a
l
.
,
“
T
h
e
s
o
f
t
w
a
r
e
c
a
r
:
B
u
i
l
d
i
n
g
I
C
T
a
r
c
h
i
t
e
c
t
u
r
e
s
f
o
r
f
u
t
u
r
e
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s,
”
i
n
2
0
1
2
I
EEE
I
n
t
e
r
n
a
t
i
o
n
a
l
El
e
c
t
ri
c
Ve
h
i
c
l
e
C
o
n
f
e
r
e
n
c
e
,
M
a
r
.
2
0
1
2
,
p
p
.
1
–
8
,
d
o
i
:
1
0
.
1
1
0
9
/
I
EV
C
.
2
0
1
2
.
6
1
8
3
1
9
8
.
[
1
9
]
S
.
G
r
u
b
w
i
n
k
l
e
r
a
n
d
M
.
L
i
e
n
k
a
m
p
,
“
A
mo
d
u
l
a
r
a
n
d
d
y
n
a
mi
c
a
p
p
r
o
a
c
h
t
o
p
r
e
d
i
c
t
t
h
e
e
n
e
r
g
y
c
o
n
su
mp
t
i
o
n
o
f
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s,
”
i
n
C
o
n
f
e
re
n
c
e
o
f
Fu
t
u
re
Au
t
o
m
o
t
i
v
e
T
e
c
h
n
o
l
o
g
y
(
C
o
FAT)
,
2
0
1
3
.
[
2
0
]
S
.
G
r
u
b
w
i
n
k
l
e
r
,
M
.
K
u
g
l
e
r
,
a
n
d
M
.
L
i
e
n
k
a
mp
,
“
A
s
y
st
e
m
f
o
r
c
l
o
u
d
-
b
a
se
d
d
e
v
i
a
t
i
o
n
p
r
e
d
i
c
t
i
o
n
o
f
p
r
o
p
u
l
si
o
n
e
n
e
r
g
y
c
o
n
s
u
m
p
t
i
o
n
f
o
r
EV
s
,
”
i
n
Pr
o
c
e
e
d
i
n
g
s
o
f
2
0
1
3
I
E
E
E
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Ve
h
i
c
u
l
a
r
E
l
e
c
t
r
o
n
i
c
s
a
n
d
S
a
f
e
t
y
,
J
u
l
.
2
0
1
3
,
p
p
.
9
9
–
1
0
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
V
ES.2
0
1
3
.
6
6
1
9
6
1
1
.
[
2
1
]
S
.
G
r
u
b
w
i
n
k
l
e
r
,
M
.
H
i
r
sc
h
v
o
g
e
l
,
a
n
d
M
.
L
i
e
n
k
a
m
p
,
“
D
r
i
v
e
r
-
a
n
d
si
t
u
a
t
i
o
n
-
sp
e
c
i
f
i
c
i
mp
a
c
t
f
a
c
t
o
r
s
f
o
r
t
h
e
e
n
e
r
g
y
p
r
e
d
i
c
t
i
o
n
o
f
EV
s
b
a
se
d
o
n
c
r
o
w
d
-
s
o
u
r
c
e
d
s
p
e
e
d
p
r
o
f
i
l
e
s
,
”
i
n
2
0
1
4
I
E
EE
I
n
t
e
l
l
i
g
e
n
t
V
e
h
i
c
l
e
s
S
y
m
p
o
si
u
m
Pr
o
c
e
e
d
i
n
g
s
,
Ju
n
.
2
0
1
4
,
p
p
.
1
0
6
9
–
1
0
7
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
V
S
.
2
0
1
4
.
6
8
5
6
5
0
1
.
[
2
2
]
J.
A
.
O
l
i
v
a
,
C
.
W
e
i
h
r
a
u
c
h
,
a
n
d
T
.
B
e
r
t
r
a
m,
“
A
mo
d
e
l
-
b
a
se
d
a
p
p
r
o
a
c
h
f
o
r
p
r
e
d
i
c
t
i
n
g
t
h
e
r
e
m
a
i
n
i
n
g
d
r
i
v
i
n
g
r
a
n
g
e
i
n
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
,
”
A
n
n
u
a
l
C
o
n
f
e
r
e
n
c
e
o
f
t
h
e
P
H
M
S
o
c
i
e
t
y
,
v
o
l
.
5
,
n
o
.
1
,
O
c
t
.
2
0
1
3
,
d
o
i
:
1
0
.
3
6
0
0
1
/
p
h
mc
o
n
f
.
2
0
1
3
.
v
5
i
1
.
2
2
8
2
.
[
2
3
]
D
.
K
a
r
b
o
w
s
k
i
,
V
.
S
mi
s
-
M
i
c
h
e
l
,
a
n
d
V
.
V
e
r
me
u
l
e
n
,
“
U
si
n
g
t
r
i
p
i
n
f
o
r
mat
i
o
n
f
o
r
P
H
EV
f
u
e
l
c
o
n
s
u
m
p
t
i
o
n
mi
n
i
m
i
z
a
t
i
o
n
,
”
i
n
2
0
1
3
Wo
r
l
d
El
e
c
t
ri
c
V
e
h
i
c
l
e
S
y
m
p
o
si
u
m
a
n
d
E
x
h
i
b
i
t
i
o
n
(
EV
S
2
7
)
,
N
o
v
.
2
0
1
3
,
p
p
.
1
–
1
2
,
d
o
i
:
1
0
.
1
1
0
9
/
EV
S
.
2
0
1
3
.
6
9
1
4
7
1
0
.
[
2
4
]
H
.
Y
u
,
F
.
Ts
e
n
g
,
a
n
d
R
.
M
c
G
e
e
,
“
D
r
i
v
i
n
g
p
a
t
t
e
r
n
i
d
e
n
t
i
f
i
c
a
t
i
o
n
f
o
r
EV
r
a
n
g
e
e
st
i
ma
t
i
o
n
,
”
i
n
2
0
1
2
I
EE
E
I
n
t
e
r
n
a
t
i
o
n
a
l
E
l
e
c
t
r
i
c
Ve
h
i
c
l
e
C
o
n
f
e
r
e
n
c
e
,
M
a
r
.
2
0
1
2
,
p
p
.
1
–
7
,
d
o
i
:
1
0
.
1
1
0
9
/
I
EV
C
.
2
0
1
2
.
6
1
8
3
2
0
7
.
[
2
5
]
K
.
B
o
r
i
b
o
o
n
s
o
msi
n
,
M
.
J.
B
a
r
t
h
,
W
.
Zh
u
,
a
n
d
A
.
V
u
,
“
E
c
o
-
r
o
u
t
i
n
g
n
a
v
i
g
a
t
i
o
n
s
y
st
e
m
b
a
se
d
o
n
mu
l
t
i
so
u
r
c
e
h
i
s
t
o
r
i
c
a
l
a
n
d
r
e
a
l
-
t
i
m
e
t
r
a
f
f
i
c
i
n
f
o
r
m
a
t
i
o
n
,
”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
I
n
t
e
l
l
i
g
e
n
t
T
ra
n
s
p
o
r
t
a
t
i
o
n
S
y
st
e
m
s
,
v
o
l
.
1
3
,
n
o
.
4
,
p
p
.
1
6
9
4
–
1
7
0
4
,
D
e
c
.
2
0
1
2
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
TS.2
0
1
2
.
2
2
0
4
0
5
1
.
[
2
6
]
J.
C
.
F
e
r
r
e
i
r
a
,
V
.
M
o
n
t
e
i
r
o
,
a
n
d
J.
L.
A
f
o
n
s
o
,
“
D
y
n
a
mi
c
r
a
n
g
e
p
r
e
d
i
c
t
i
o
n
f
o
r
a
n
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
,
”
i
n
2
0
1
3
W
o
rl
d
E
l
e
c
t
ri
c
Ve
h
i
c
l
e
S
y
m
p
o
s
i
u
m
a
n
d
E
x
h
i
b
i
t
i
o
n
(
EV
S
2
7
)
,
N
o
v
.
2
0
1
3
,
p
p
.
1
–
1
1
,
d
o
i
:
1
0
.
1
1
0
9
/
E
V
S
.
2
0
1
3
.
6
9
1
4
8
3
2
.
[
2
7
]
S
.
G
r
u
b
w
i
n
k
l
e
r
a
n
d
M
.
L
i
e
n
k
a
m
p
,
“
En
e
r
g
y
p
r
e
d
i
c
t
i
o
n
f
o
r
EV
s
u
s
i
n
g
s
u
p
p
o
r
t
v
e
c
t
o
r
r
e
g
r
e
ss
i
o
n
m
e
t
h
o
d
s,
”
i
n
A
d
v
a
n
c
e
s
i
n
I
n
t
e
l
l
i
g
e
n
t
S
y
st
e
m
s
a
n
d
C
o
m
p
u
t
i
n
g
,
D
.
F
i
l
e
v
,
J
.
J
a
b
ł
k
o
w
s
k
i
,
J.
K
a
c
p
r
z
y
k
,
M
.
K
r
a
w
c
z
a
k
,
I
.
P
o
p
c
h
e
v
,
L
.
R
u
t
k
o
w
sk
i
,
V
.
S
g
u
r
e
v
,
E.
S
o
t
i
r
o
v
a
,
P
.
S
z
y
n
k
a
r
c
z
y
k
,
a
n
d
S
.
Za
d
r
o
z
n
y
,
E
d
s.
2
0
1
5
,
p
p
.
7
6
9
–
780
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
3
-
319
-
1
1
3
1
0
-
4
_
6
7
.
[
2
8
]
J.
F
e
r
r
e
i
r
a
,
“
G
r
e
e
n
r
o
u
t
e
p
l
a
n
n
e
r
,
”
i
n
N
o
n
l
i
n
e
a
r
Ma
p
s
a
n
d
t
h
e
i
r
A
p
p
l
i
c
a
t
i
o
n
s
,
C
.
G
r
á
c
i
o
,
D
.
F
o
u
r
n
i
e
r
-
P
r
u
n
a
r
e
t
,
T.
U
e
t
a
,
a
n
d
Y
.
N
i
sh
i
o
,
E
d
s.
2
0
1
4
,
p
p
.
5
9
–
68
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
1
-
4
6
1
4
-
9
1
6
1
-
3
_
7
.
[
2
9
]
P
.
C
o
n
r
a
d
i
,
P
.
B
o
u
t
e
i
l
l
e
r
,
a
n
d
S
.
H
a
n
ß
e
n
,
“
D
y
n
a
mi
c
c
r
u
i
s
i
n
g
r
a
n
g
e
p
r
e
d
i
c
t
i
o
n
f
o
r
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
,
”
i
n
A
d
v
a
n
c
e
d
Mi
c
r
o
sys
t
e
m
s
f
o
r
A
u
t
o
m
o
t
i
v
e
Ap
p
l
i
c
a
t
i
o
n
s
2
0
1
1
,
B
e
r
l
i
n
,
H
e
i
d
e
l
b
e
r
g
:
S
p
r
i
n
g
e
r
B
e
r
l
i
n
H
e
i
d
e
l
b
e
r
g
,
2
0
1
1
,
p
p
.
2
6
9
–
2
7
7
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
3
-
6
4
2
-
2
1
3
8
1
-
6
_
2
6
.
[
3
0
]
K
.
K
r
a
s
c
h
l
-
H
i
r
sc
h
m
a
n
n
a
n
d
M
.
F
e
l
l
e
n
d
o
r
f
,
“
Es
t
i
m
a
t
i
n
g
e
n
e
r
g
y
c
o
n
su
m
p
t
i
o
n
f
o
r
r
o
u
t
i
n
g
a
l
g
o
r
i
t
h
ms
,
”
i
n
2
0
1
2
I
EEE
I
n
t
e
l
l
i
g
e
n
t
Ve
h
i
c
l
e
s
S
y
m
p
o
si
u
m
,
Ju
n
.
2
0
1
2
,
p
p
.
2
5
8
–
2
6
3
,
d
o
i
:
1
0
.
1
1
0
9
/
I
V
S
.
2
0
1
2
.
6
2
3
2
1
2
7
.
[
3
1
]
S
.
P
a
g
i
d
i
p
a
l
a
a
n
d
S
.
V
u
d
d
a
n
t
i
,
“
S
o
l
v
i
n
g
r
e
a
l
i
st
i
c
r
e
a
c
t
i
v
e
p
o
w
e
r
mark
e
t
c
l
e
a
r
i
n
g
p
r
o
b
l
e
m
o
f
w
i
n
d
-
t
h
e
r
m
a
l
p
o
w
e
r
sy
st
e
m
w
i
t
h
sy
st
e
m
sec
u
r
i
t
y
,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
Em
e
r
g
i
n
g
E
l
e
c
t
r
i
c
P
o
w
e
r
S
y
s
t
e
m
s
,
v
o
l
.
2
3
,
n
o
.
2
,
p
p
.
1
2
5
-
1
4
4
,
2
0
2
2
,
doi
:
1
0
.
1
5
1
5
/
i
j
e
e
p
s
-
2
0
2
1
-
0
0
6
0
.
[
3
2
]
S.
R
.
S
a
l
k
u
t
i
,
“
Em
e
r
g
i
n
g
a
n
d
a
d
v
a
n
c
e
d
g
r
e
e
n
e
n
e
r
g
y
t
e
c
h
n
o
l
o
g
i
e
s
f
o
r
s
u
st
a
i
n
a
b
l
e
a
n
d
r
e
s
i
l
i
e
n
t
f
u
t
u
r
e
g
r
i
d
,
”
E
n
e
r
g
i
e
s
,
v
o
l
.
1
5
,
n
o
.
1
8
,
p
.
6
6
6
7
,
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
5
1
8
6
6
6
7
.
[
3
3
]
S.
R
.
S
a
l
k
u
t
i
,
“
A
d
v
a
n
c
e
d
t
e
c
h
n
o
l
o
g
i
e
s
f
o
r
e
n
e
r
g
y
st
o
r
a
g
e
a
n
d
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
s
,
”
En
e
rg
i
e
s
,
v
o
l
.
1
6
,
n
o
.
5
,
p
.
2
3
1
2
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
1
6
0
5
2
3
1
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ap
p
l Po
wer
E
n
g
I
SS
N:
2252
-
8
7
9
2
Op
timiz
in
g
ve
h
icle
-
to
-
g
r
id
s
ch
ed
u
lin
g
a
n
d
s
tr
a
teg
ic
p
la
ce
me
n
t fo
r
d
yn
a
mic
… (
De
b
a
n
i P
r
a
s
a
d
Mis
h
r
a
)
337
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
De
b
a
n
i
Pra
s
a
d
Mi
shra
re
c
e
iv
e
d
t
h
e
B.
Tec
h
.
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
fro
m
t
h
e
Bij
u
P
a
t
n
a
ik
U
n
iv
e
rsit
y
o
f
Tec
h
n
o
l
o
g
y
,
Od
ish
a
,
I
n
d
ia,
in
2
0
0
6
a
n
d
t
h
e
M
.
Tec
h
.
in
P
o
we
r
S
y
ste
m
s
fro
m
IIT
,
De
lh
i,
I
n
d
ia
in
2
0
1
0
.
He
h
a
s
b
e
e
n
a
wa
rd
e
d
t
h
e
P
h
.
D.
d
e
g
re
e
in
P
o
we
r
S
y
ste
m
s
fro
m
Ve
e
r
S
u
re
n
d
ra
S
a
i
Un
iv
e
rsity
o
f
Tec
h
n
o
lo
g
y
,
Od
i
sh
a
,
In
d
ia,
i
n
2
0
1
9
.
He
is
c
u
rre
n
tl
y
se
rv
in
g
a
s
a
ss
istan
t
p
ro
fe
ss
o
r
i
n
th
e
De
p
ar
t
m
e
n
t
o
f
El
e
c
tri
c
a
l
E
n
g
i
n
e
e
rin
g
,
In
tern
a
ti
o
n
a
l
In
stit
u
te
o
f
In
f
o
rm
a
ti
o
n
Tec
h
n
o
l
o
g
y
Bh
u
b
a
n
e
sw
a
r,
Od
ish
a
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
so
ft
c
o
m
p
u
ti
n
g
tec
h
n
iq
u
e
s
a
p
p
li
c
a
ti
o
n
i
n
p
o
we
r
s
y
ste
m
,
si
g
n
a
l
p
r
o
c
e
ss
in
g
,
a
n
d
p
o
we
r
q
u
a
li
t
y
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
d
e
b
a
n
i@ii
it
-
b
h
.
a
c
.
in
.
S
a
n
c
h
it
a
S
a
h
a
y
is
a
n
u
n
d
e
rg
ra
d
u
a
te
stu
d
e
n
t
p
u
rsu
i
n
g
a
d
e
g
re
e
in
e
lec
tri
c
a
l
a
n
d
e
lec
tro
n
ics
e
n
g
in
e
e
rin
g
a
t
th
e
In
t
e
rn
a
ti
o
n
a
l
In
sti
tu
te
o
f
In
f
o
rm
a
ti
o
n
Tec
h
n
o
l
o
g
y
B
h
u
b
a
n
e
sw
a
r.
S
h
e
is
p
a
ss
io
n
a
te
a
b
o
u
t
th
e
in
ters
e
c
ti
o
n
o
f
tec
h
n
o
l
o
g
y
a
n
d
e
lec
tri
c
a
l
sy
ste
m
s,
e
a
g
e
r
to
e
x
p
lo
re
in
n
o
v
a
ti
v
e
so
l
u
ti
o
n
s
in
h
e
r
fiel
d
o
f
st
u
d
y
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
b
3
2
1
0
6
7
@iii
t
-
b
h
.
a
c
.
i
n
.
Ay
u
sh
K
u
m
a
r
is
a
d
y
n
a
m
ic
a
n
d
e
n
t
h
u
sia
stic
st
u
d
e
n
t
c
u
rre
n
tl
y
p
u
rs
u
in
g
a
b
a
c
h
e
lo
r
o
f
tec
h
n
o
l
o
g
y
d
e
g
re
e
in
e
lec
tri
c
a
l
a
n
d
e
lec
tro
n
ics
e
n
g
i
n
e
e
rin
g
a
t
th
e
I
n
tern
a
ti
o
n
a
l
In
stit
u
te
o
f
In
fo
rm
a
ti
o
n
Tec
h
n
o
lo
g
y
in
B
h
u
b
a
n
e
sw
a
r,
Od
ish
a
,
In
d
ia
(Ba
tch
2
0
2
1
-
2
0
2
5
).
S
p
e
c
ializin
g
i
n
c
o
m
p
e
ti
ti
v
e
c
o
d
i
n
g
a
n
d
we
b
d
e
v
e
lo
p
m
e
n
t,
Ay
u
s
h
b
len
d
s
tec
h
n
ica
l
e
x
p
e
rti
se
with
c
re
a
ti
v
e
p
ro
b
lem
-
so
lv
i
n
g
.
His
c
o
m
m
it
m
e
n
t
e
x
ten
d
s
to
su
sta
i
n
a
b
le
tran
sp
o
rtatio
n
,
wit
h
a
k
e
e
n
in
tere
st
in
t
h
e
a
d
v
a
n
c
e
m
e
n
ts
o
f
EVs.
His
p
r
o
a
c
ti
v
e
a
p
p
ro
a
c
h
,
c
o
u
p
led
wi
th
a
c
o
n
t
in
u
o
u
s
lea
rn
in
g
m
in
d
se
t,
p
o
siti
o
n
s
h
im
a
s
a
v
a
lu
a
b
le
a
ss
e
t
in
th
e
f
ield
s
o
f
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
,
a
n
d
we
b
d
e
v
e
lo
p
m
e
n
t.
He
c
a
n
b
e
c
o
n
t
a
c
ted
a
t
e
m
a
il
:
b
3
2
1
0
4
6
@
ii
it
-
b
h
.
a
c
.
in
.
S
u
r
e
n
d
e
r
Re
d
d
y
S
a
l
k
u
ti
re
c
e
iv
e
d
a
P
h
.
D.
d
e
g
re
e
in
El
e
c
tri
c
a
l
En
g
i
n
e
e
rin
g
fr
o
m
th
e
In
d
ia
n
In
stit
u
te
o
f
Tec
h
n
o
l
o
g
y
,
Ne
w
De
lh
i,
In
d
ia,
i
n
2
0
1
3
.
He
wa
s
a
p
o
std
o
c
to
ra
l
re
se
a
rc
h
e
r
a
t
Ho
wa
rd
Un
iv
e
rsity
,
Was
h
in
g
to
n
,
DC,
USA,
fr
o
m
2
0
1
3
t
o
2
0
1
4
.
He
is
c
u
rre
n
tl
y
a
n
a
ss
o
c
iate
p
ro
fe
ss
o
r
a
t
th
e
De
p
a
rtme
n
t
o
f
Ra
il
ro
a
d
a
n
d
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
W
o
o
so
n
g
Un
iv
e
rsity
,
Da
e
jeo
n
,
S
o
u
t
h
K
o
r
e
a
.
His
c
u
rre
n
t
re
se
a
rc
h
i
n
tere
sts
in
c
lu
d
e
m
a
rk
e
t
c
lea
rin
g
,
in
c
lu
d
in
g
re
n
e
wa
b
le
e
n
e
rg
y
s
o
u
r
c
e
s,
d
e
m
a
n
d
re
sp
o
n
se
,
a
n
d
sm
a
rt
g
rid
d
e
v
e
lo
p
m
e
n
t
with
t
h
e
in
teg
ra
ti
o
n
o
f
win
d
,
a
n
d
so
lar
p
h
o
t
o
v
o
lt
a
ic
e
n
e
rg
y
so
u
rc
e
s.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
su
re
n
d
e
r@ws
u
.
a
c
.
k
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.