I
AE
S
I
nte
rna
t
io
na
l J
o
urna
l o
f
Art
if
icia
l In
t
ellig
ence
(
I
J
-
AI
)
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
,
p
p
.
166
~
176
I
SS
N:
2252
-
8938
166
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AI
An
O
pti
m
i
zed Ta
k
a
g
i
-
Sug
eno
Fu
zzy
-
Ba
sed Sa
tellit
e
Att
i
tude
Co
ntroller by
Tw
o
St
a
te
A
ctuato
r
So
bu
t
y
eh
Rez
a
nezha
d
De
p
a
rte
m
e
n
t
o
f
Co
n
tro
l
En
g
i
n
e
e
rin
g
,
S
c
ien
c
e
a
n
d
Re
se
a
rc
h
b
r
a
n
c
h
,
I
s
l
a
m
i
c
A
z
a
d
Un
iv
e
rsity
,
Bo
ro
u
jer
d
,
Ira
n
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l
5
,
2
0
1
4
R
ev
i
s
ed
No
v
1
1
,
2
0
1
4
A
cc
ep
ted
No
v
2
2
,
2
0
1
4
In
t
h
is
p
a
p
e
r,
a
n
a
lg
o
rit
h
m
wa
s
p
re
se
n
ted
t
o
c
o
n
tr
o
l
t
h
e
sa
telli
te
a
tt
it
u
d
e
in
o
rb
it
i
n
o
r
d
e
r
to
re
d
u
c
e
th
e
f
u
e
l
c
o
n
su
m
p
ti
o
n
a
n
d
in
c
re
a
se
lo
n
g
e
v
it
y
o
f
sa
telli
te.
Be
c
a
u
se
o
f
p
ro
p
e
r
o
p
e
r
a
ti
o
n
a
n
d
sim
p
li
c
it
y
,
f
u
z
z
y
c
o
n
tro
ll
e
r
w
a
s
u
se
d
to
sa
v
e
f
u
e
l
a
n
d
a
n
a
ly
z
e
th
e
u
n
c
e
rtain
ty
a
n
d
n
o
n
li
n
e
a
rit
ies
o
f
sa
telli
te
c
o
n
tro
l
sy
ste
m
.
T
h
e
p
re
se
n
ted
c
o
n
tro
l
a
lg
o
rit
h
m
h
a
s
a
h
ig
h
lev
e
l
o
f
re
li
a
b
il
it
y
f
a
c
in
g
u
n
w
a
n
ted
d
istu
r
b
a
n
c
e
s
c
o
n
sid
e
ri
n
g
th
e
sa
telli
te
li
m
it
a
ti
o
n
s.
T
h
e
c
o
n
tro
ll
e
r
w
a
s
d
e
sig
n
e
d
b
a
se
d
o
n
T
a
k
a
g
i
-
S
u
g
e
n
o
sa
telli
te
d
y
n
a
m
ic
m
o
d
e
l,
a
p
o
w
e
rf
u
l
to
o
l
f
o
r
m
o
d
e
li
n
g
n
o
n
li
n
e
a
r
sy
ste
m
s.
In
h
e
re
n
t
c
h
a
tt
e
rin
g
re
late
d
to
on
-
o
f
f
c
o
n
tro
ll
e
r
p
ro
d
u
c
e
s
li
m
it
c
y
c
les
w
it
h
lo
w
f
r
e
q
u
e
n
c
y
a
m
p
li
tu
d
e
.
T
h
is
in
c
re
a
se
s
th
e
s
y
ste
m
e
rro
r
a
n
d
m
a
x
i
m
iz
e
s
th
e
sa
telli
te
f
u
e
l
c
o
n
su
m
p
ti
o
n
.
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
(
P
S
O)
a
lg
o
rit
h
m
wa
s
u
se
d
to
m
i
n
im
ize
th
e
s
y
ste
m
e
rro
r.
T
h
e
sa
t
e
ll
it
e
si
m
u
latio
n
re
su
lt
s
sh
o
w
th
e
h
ig
h
p
e
rf
o
rm
a
n
c
e
o
f
f
u
z
z
y
o
n
-
o
ff
c
o
n
tro
ll
e
r
w
it
h
t
h
e
p
re
se
n
ted
a
lg
o
rit
h
m
.
K
ey
w
o
r
d
:
Fu
zz
y
On
-
O
f
f
C
o
n
tr
o
l
L
i
m
it
C
y
cle
P
SO
Satellite
A
tt
itu
d
e
C
o
n
tr
o
l
T
ak
ag
i
-
S
u
g
en
o
Mo
d
el
Co
p
y
rig
h
t
©
2
0
1
4
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
So
b
u
t
y
e
h
R
ez
a
n
ez
h
ad
,
Dep
ar
te
m
en
t o
f
C
o
n
tr
o
l E
n
g
i
n
ee
r
in
g
,
Scien
ce
a
n
d
R
esear
c
h
b
r
a
n
c
h
,
I
s
l
a
m
i
c
A
z
a
d
Un
iv
er
s
it
y
,
B
o
r
o
u
jer
d
,
I
r
an
,
E
m
ail: so
b
u
t.e
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
f
u
el
s
a
v
i
n
g
is
h
i
g
h
l
y
d
esira
b
le
in
th
e
s
atelli
te
attit
u
d
e
co
n
tr
o
l
s
y
s
te
m
.
T
w
o
-
le
v
el
o
n
-
o
f
f
co
n
tr
o
ller
s
ar
e
g
en
er
all
y
u
s
ed
w
it
h
t
h
e
th
r
u
s
t
r
ea
ctio
n
ac
t
u
at
o
r
f
o
r
s
atellite
attitu
d
e
co
n
tr
o
l
.
T
h
ese
co
n
tr
o
ller
s
ac
t
v
er
y
f
as
t
an
d
ar
e
ti
m
e
i
n
d
ep
en
d
en
t.
T
h
e
y
c
o
n
tr
o
l
t
h
e
s
atellite
at
titu
d
e
w
i
th
o
r
w
it
h
o
u
t
th
r
u
s
t
p
o
w
er
i
n
m
i
n
i
m
u
m
ti
m
e.
I
n
o
n
-
o
f
f
co
n
t
r
o
l
s
y
s
te
m
s
,
th
e
v
alv
e
s
o
p
er
ate
r
eliab
ly
to
s
ta
y
o
p
en
f
o
r
a
s
h
o
r
t
ti
m
e
as
a
f
e
w
m
illi
s
ec
o
n
d
s
.
T
h
e
f
u
ll
o
p
en
i
n
g
o
f
v
al
v
es
f
o
r
a
f
in
i
te
ti
m
e
ch
a
n
g
e
s
th
e
d
is
cr
ete
a
n
g
u
lar
v
elo
cit
y
w
it
h
t
h
e
ac
tu
atio
n
s
.
A
s
a
r
es
u
lt,
it
’
s
i
m
p
o
s
s
ib
le
to
o
b
tain
ze
r
o
r
esid
u
al
an
g
u
lar
q
u
ic
k
n
es
s
.
T
o
p
r
ev
en
t
t
h
e
in
ter
ac
tio
n
o
f
th
r
u
s
ter
s
,
a
d
ea
d
b
an
d
i
s
i
n
tr
o
d
u
ce
d
b
et
w
ee
n
t
h
e
o
n
-
o
f
f
co
n
tr
o
l,
an
d
th
e
co
n
tr
o
ller
is
s
h
u
t
d
o
w
n
i
n
t
h
is
d
ea
d
b
an
d
r
eg
io
n
.
T
h
u
s
,
th
e
co
n
tr
o
lled
s
y
s
te
m
r
ea
c
h
es
t
h
e
eq
u
ilib
r
iu
m
p
o
in
t
(
o
r
ig
i
n
)
w
it
h
r
ed
u
ce
d
v
elo
cit
y
o
r
in
cr
ea
s
ed
d
a
m
p
n
es
s
.
T
h
is
g
e
n
er
ates
lo
w
f
r
eq
u
e
n
c
y
(
an
d
a
m
p
litu
d
e)
li
m
it
-
c
y
c
les,
a
n
d
d
is
s
ip
ates
t
h
e
t
h
r
u
s
ter
f
o
r
ce
.
Sin
ce
t
h
e
s
atelli
te
b
eh
av
io
r
is
in
h
er
e
n
tl
y
n
o
n
li
n
e
ar
an
d
u
n
ce
r
tain
,
it’s
r
ec
o
m
m
en
d
ed
to
u
s
e
n
o
n
li
n
ea
r
co
n
tr
o
l
alg
o
r
ith
m
s
li
k
e
f
u
zz
y
lo
g
ic.
T
h
is
al
g
o
r
ith
m
is
in
d
ep
en
d
en
t
o
f
t
h
e
ac
cu
r
ate
m
o
d
el
o
f
m
icr
o
s
atellite.
Stein
ap
p
lied
th
r
ee
m
u
l
ti
-
in
p
u
t
s
i
n
g
le
-
o
u
tp
u
t
(
MI
SO)
f
u
zz
y
co
n
tr
o
ller
s
to
s
tab
ilize
a
s
m
all
(
m
i
cr
o
)
s
atellite
in
lo
w
ea
r
t
h
o
r
b
it.
He
p
r
o
v
ed
t
h
at
f
u
zz
y
co
n
tr
o
ller
s
ca
n
er
a
s
e
th
e
co
n
tr
o
l
li
m
ita
tio
n
s
b
y
ch
o
o
s
in
g
th
e
b
e
s
t
m
ag
n
etic
m
o
m
en
t,
p
o
lar
it
y
a
n
d
s
w
itc
h
i
n
g
ti
m
es
[
1
]
.
Satell
ite
co
n
tr
o
l
s
y
s
te
m
ca
n
s
a
v
e
f
u
el
an
d
en
h
a
n
ce
th
e
s
atellite
p
er
f
o
r
m
a
n
ce
.
o
n
-
o
f
f
attitu
d
e
co
n
tr
o
l
b
y
o
n
-
o
f
f
a
n
d
s
lid
in
g
m
o
d
e
w
as
i
n
v
e
s
ti
g
ate
d
in
r
ef
er
en
ce
[
2
]
.
On
e
o
f
t
h
e
p
r
o
b
le
m
s
o
f
u
s
in
g
s
lid
i
n
g
m
o
d
e
co
n
tr
o
ller
is
t
h
at
it
g
en
er
ate
s
a
g
r
ea
t
co
n
tr
o
l
s
ig
n
al
d
u
e
to
t
h
e
s
y
s
te
m
u
n
ce
r
tai
n
t
y
.
F
u
zz
y
co
n
tr
o
ller
w
as
u
s
ed
to
s
o
lv
e
th
i
s
p
r
o
b
le
m
[
3
]
.
Fu
zz
y
co
n
tr
o
ll
er
is
a
n
ap
p
r
o
p
r
iate
ch
o
ice
to
co
n
tr
o
l
n
o
n
l
in
ea
r
s
y
s
te
m
s
.
Mi
n
i
m
izin
g
t
h
e
ti
m
e
r
e
q
u
ir
ed
f
o
r
th
e
s
y
s
te
m
to
r
ea
ch
th
e
s
tead
y
s
tate
i
s
an
i
m
p
o
r
tan
t
p
o
in
t
in
f
u
zz
y
co
n
tr
o
ller
d
esig
n
.
T
h
is
i
s
a
ch
iev
ed
b
y
o
p
ti
m
al
ad
j
u
s
t
m
en
t
o
f
m
e
m
b
er
s
h
ip
f
u
n
c
tio
n
s
[
4
]
.
T
h
e
co
n
tr
o
ller
in
v
e
s
ti
g
ated
in
r
e
f
er
en
ce
[
5
]
n
e
ed
s
d
if
f
er
e
n
t
i
n
itia
l
v
al
u
es
to
i
m
p
r
o
v
e
th
e
s
y
s
te
m
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
o
p
timiz
ed
Ta
ka
g
i
-
S
u
g
e
n
o
F
r
u
z
z
y
-
B
a
s
ed
S
a
tellite A
ttit
u
d
e
C
o
n
tr
o
ller
b
y…
(
S
o
b
u
tyeh
R
eza
n
ezh
a
d
)
167
o
p
er
atio
n
an
d
m
i
n
i
m
ize
t
h
e
r
esp
o
n
s
e
ti
m
e.
B
u
t
th
e
s
e
ap
p
licatio
n
s
ar
e
n
o
t
p
r
o
p
er
t
o
d
esi
g
n
s
tan
d
ar
d
lin
ea
r
co
n
tr
o
ller
.
I
n
th
is
ca
s
e,
o
n
-
o
f
f
co
n
tr
o
ll
er
is
an
ap
p
r
o
p
r
iat
e
o
p
tio
n
[
6
,
7
]
.
R
ef
er
en
ce
[
8
]
co
m
p
ar
ed
v
ar
io
u
s
co
n
tr
o
ller
s
an
d
co
n
clu
d
ed
th
at
th
e
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
is
th
e
b
est
o
n
e
b
ased
o
n
th
e
ef
f
icie
n
c
y
.
Fu
zz
y
co
n
tr
o
ller
is
a
m
u
lti
-
le
v
el
r
ela
y
.
I
t
u
s
e
s
av
er
a
g
e
least
s
q
u
ar
e
s
m
et
h
o
d
f
o
r
d
ef
u
zz
if
ica
tio
n
.
I
n
th
e
p
r
ese
n
t
p
ap
er
,
a
s
p
ec
ial
h
ar
d
w
ar
e
w
as
u
s
ed
to
co
n
v
er
t
co
n
tr
o
l
s
ig
n
al
s
f
r
o
m
d
ef
u
zz
i
f
icato
r
.
T
h
e
m
i
n
i
m
u
m
co
n
tr
o
l
ti
m
e
o
f
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
u
s
i
n
g
a
r
ela
y
w
as
p
r
esen
ted
i
n
r
e
f
er
en
ce
[
9
]
.
P
ar
ticle
s
w
ar
m
o
p
tim
izatio
n
is
a
n
o
p
tim
izatio
n
tech
n
iq
u
e
b
ased
o
n
a
p
o
p
u
latio
n
o
f
in
it
ial
r
esp
o
n
s
es.
T
h
is
tec
h
n
iq
u
e
w
a
s
d
e
s
ig
n
ed
co
n
s
id
er
in
g
th
e
s
o
cial
b
eh
a
v
io
r
o
f
b
ir
d
s
an
d
f
is
h
e
s
in
b
u
n
c
h
[
1
0
,
1
1
]
.
I
t
w
a
s
w
id
el
y
u
s
ed
b
y
th
e
r
es
ea
r
ch
er
s
an
d
m
a
n
y
ef
f
o
r
t
s
w
er
e
p
er
f
o
r
m
ed
to
i
m
p
r
o
v
e
its
e
f
f
icien
c
y
i
n
I
n
er
tia
f
o
r
m
u
la
f
r
o
m
d
i
f
f
er
en
t
p
o
in
t
s
o
f
v
ie
w
.
C
alc
u
lat
in
g
th
e
v
elo
cit
y
o
f
t
h
e
s
e
ch
a
n
g
es
is
a
s
tatic
a
g
e
n
t
[
1
2
]
.
T
h
is
p
ar
am
eter
m
a
k
es
eq
u
ilib
r
iu
m
b
et
w
ee
n
lo
ca
l
a
n
d
o
v
er
all
s
ea
r
c
h
es
i
n
th
e
p
r
o
b
l
e
m
s
p
ac
e.
I
t
m
ea
n
s
t
h
at
h
i
g
h
er
v
al
u
es
o
f
t
h
is
p
ar
a
m
eter
a
r
e
s
u
itab
le
f
o
r
t
h
e
o
v
er
all
s
ea
r
ch
a
n
d
it
s
lo
w
er
v
alu
es
ar
e
ap
p
r
o
p
r
iate
f
o
r
th
e
l
o
ca
l
s
ea
r
ch
.
Gr
ad
u
al
r
ed
u
c
tio
n
o
f
th
i
s
p
ar
a
m
ete
r
w
a
s
also
in
v
es
tig
a
ted
in
[
1
3
]
.
I
ts
ef
f
ec
ts
o
n
t
h
e
p
ar
ticle
o
p
ti
m
izatio
n
p
ar
a
m
eter
s
w
er
e
d
is
cu
s
s
ed
in
[
1
4
]
.
No
n
li
n
ea
r
r
ed
u
ctio
n
o
f
t
h
i
s
p
ar
am
eter
d
u
e
to
f
u
zz
if
icatio
n
w
a
s
d
escr
ib
ed
in
[
1
4
]
.
T
h
is
v
alu
e
w
as
a
ls
o
co
n
s
id
er
ed
in
[
1
5
]
ex
ce
p
t
r
esettin
g
ti
m
es.
Gr
ad
u
a
l
r
ed
u
cti
o
n
o
f
m
a
x
i
m
u
m
v
elo
cit
y
w
a
s
also
in
tr
o
d
u
ce
d
in
[
1
6
]
.
A
n
o
t
h
er
in
ter
est
in
g
r
ese
ar
ch
ar
ea
is
m
ak
i
n
g
i
m
p
r
o
v
e
m
en
t
in
p
ar
ticle
o
p
ti
m
izat
io
n
th
r
o
u
g
h
d
esig
n
i
n
g
d
if
f
er
e
n
t
v
ici
n
it
y
m
o
d
els.
T
h
u
s
,
it
w
a
s
as
s
u
m
ed
th
at
n
o
n
li
n
e
ar
eq
u
atio
n
s
o
f
s
atelli
te
s
y
s
te
m
ar
e
k
n
o
w
n
,
a
n
d
it
s
ac
tu
ato
r
is
o
n
-
o
f
f
th
r
u
s
ter
.
T
h
e
alg
o
r
ith
m
t
h
at
tr
a
n
s
f
er
s
co
m
m
an
d
o
f
ax
is
co
n
tr
o
llin
g
m
o
m
en
ts
to
th
e
t
h
r
u
s
ter
s
is
co
m
p
lica
ted
f
o
r
t
w
o
r
ea
s
o
n
s
:
[1
]
T
h
r
u
s
ter
s
ar
e
n
o
t
lin
ea
r
co
n
tr
o
ller
s
b
ec
au
s
e
t
h
eir
o
u
tp
u
t
i
s
f
i
x
ed
.
T
h
er
ef
o
r
e
th
e
m
o
m
e
n
t
g
e
n
er
ated
b
y
th
r
u
s
ter
s
d
ep
en
d
s
o
n
it
s
s
tar
ti
n
g
p
er
io
d
.
[2
]
T
h
r
u
s
ter
s
ca
n
o
n
l
y
g
e
n
er
ate
m
o
m
e
n
t
in
o
n
e
d
ir
ec
tio
n
.
T
h
u
s
,
an
o
t
h
er
th
r
u
s
ter
is
n
ee
d
ed
t
o
g
e
n
er
ate
m
o
m
e
n
t i
n
th
e
o
p
p
o
s
ite
d
ir
ec
tio
n
.
I
n
t
h
is
p
ap
er
,
a
t
h
r
ee
-
a
x
is
f
u
z
z
y
o
n
-
o
f
f
co
n
tr
o
ller
w
as
p
r
esen
ted
f
o
r
s
atellite
attit
u
d
e
co
n
tr
o
l
s
y
s
te
m
.
I
t
g
en
er
ate
s
t
w
o
le
v
el
s
o
f
o
n
-
o
f
f
s
w
itc
h
i
n
g
o
n
t
h
e
o
u
tp
u
t.
S
m
o
o
t
h
o
p
er
atio
n
o
f
t
h
e
co
n
tr
o
l
la
w
w
a
s
ac
h
iev
ed
by
f
u
zz
y
la
w
s
an
d
Ma
m
d
a
n
i
f
u
zz
y
i
n
f
er
e
n
ce
.
T
h
er
e
is
n
o
n
ee
d
to
h
ar
d
w
ar
e
li
m
ita
to
r
in
th
e
o
n
-
o
f
f
co
n
tr
o
ller
d
u
e
to
u
s
in
g
t
w
o
s
w
itc
h
i
n
g
p
lates
o
n
th
e
o
u
tp
u
t.
T
w
o
lin
g
u
is
t
ic
v
ar
iab
les
w
er
e
u
s
ed
in
th
e
s
y
s
te
m
.
T
h
ese
v
ar
iab
les
p
r
o
v
id
e
t
h
e
th
r
u
s
ter
s
u
s
ed
to
o
r
ie
n
t
t
h
e
s
atell
ite.
I
n
o
r
d
er
to
co
n
tr
o
l
t
h
e
at
titu
d
e,
o
n
e
t
h
r
u
s
ter
w
a
s
u
s
ed
f
o
r
clo
ck
w
i
s
e
r
o
tatio
n
(
p
o
s
itiv
e
an
g
le)
an
d
th
e
o
th
er
o
n
e
w
as
u
s
ed
f
o
r
co
u
n
ter
clo
ck
w
is
e
r
o
tatio
n
(
n
eg
ati
v
e
an
g
le)
.
W
h
en
t
h
r
u
s
t
er
ac
tiv
ates,
th
e
f
u
el
is
b
u
r
n
e
d
at
h
ig
h
p
r
ess
u
r
e
an
d
th
e
attitu
d
e
ch
an
g
e
s
.
T
h
is
p
ap
er
in
clu
d
es
7
s
ec
tio
n
s
.
Af
t
er
in
tr
o
d
u
ctio
n
,
s
tate
s
p
ac
e
m
o
d
el
o
f
s
ate
llit
e
is
p
r
esen
ted
i
n
s
ec
tio
n
2
.
T
ak
ag
i
-
Su
g
en
o
m
o
d
el
w
as
d
escr
ib
ed
in
s
ec
tio
n
3
.
Sectio
n
4
i
s
a
n
i
n
tr
o
d
u
ctio
n
to
f
u
zz
y
o
n
-
o
f
f
a
l
g
o
r
ith
m
.
Sect
io
n
5
d
escr
ib
es
th
e
p
ar
ticle
s
w
ar
m
alg
o
r
ith
m
a
n
d
u
s
i
n
g
ab
s
o
lu
te
er
r
o
r
in
teg
r
atio
n
to
r
ed
u
ce
li
m
it
c
y
cle
o
n
f
u
zz
y
s
y
s
te
m
.
T
h
e
s
i
m
u
latio
n
r
es
u
lt
s
ar
e
g
iv
e
n
in
s
ec
tio
n
6
.
Fin
a
ll
y
,
th
e
co
n
clu
s
io
n
s
ar
e
d
o
w
n
i
n
s
ec
tio
n
7
.
2.
T
H
RE
E
DE
G
R
E
E
O
F
F
RE
E
DO
M
SAT
E
L
L
I
T
E
ST
AT
E
SPAC
E
M
O
DE
L
T
h
e
r
ig
id
s
atel
lite
m
o
d
el
w
it
h
t
h
r
ee
d
eg
r
ee
s
o
f
f
r
ee
d
o
m
i
s
p
r
esen
ted
in
th
is
s
ec
tio
n
.
T
h
e
s
a
tellite
m
o
d
el
i
s
s
h
o
w
n
in
Fig
.
1
.
Ax
es
X
B
,
Y
B
,
an
d
Z
B
d
ef
in
e
th
e
s
atelli
te
b
o
d
y
ax
i
s
f
r
a
m
e
,
an
d
th
e
o
r
ig
in
o
f
co
o
r
d
in
ates
is
co
n
s
id
er
ed
at
th
e
ce
n
tr
e
o
f
g
r
a
v
it
y
as
s
h
o
w
n
in
t
h
is
f
i
g
.
.
T
h
e
r
o
ll
(
)
,
p
itch
(
)
,
an
d
y
a
w
(
)
an
g
le
s
ar
e
th
e
s
atell
ite
r
o
tatio
n
al
s
p
ee
d
s
ab
o
u
t
a
x
es
X
B
,
Y
B,
an
d
Z
B
i
n
th
e
b
o
d
y
f
i
x
ed
f
r
a
m
e.
T
h
e
n
o
n
-
li
n
ea
r
s
tate
m
o
d
el
o
f
t
h
e
s
atellite
ca
n
b
e
d
er
iv
ed
b
y
p
ar
tial
d
er
iv
ati
v
es
o
f
t
h
e
m
o
d
el
s
tate
s
x
=
[
p
b
,
q
b
,
r
b
,
I
,
I
,
I
]
T
.
Fig
u
r
e
1
.
Satellite r
ef
er
e
n
ce
an
d
b
o
d
y
co
o
r
d
in
ates [
1
7
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
1
6
6
–
1
7
6
168
)
c
o
s
(
)
c
o
s
(
.
r
)
s
i
n
(
.
q
)
s
i
n
(
.
r
)
c
o
s
(
.
q
)
c
o
s
(
)
s
i
n
(
))
c
o
s
(
.
r
)
s
i
n
(
.
q
(
p
I
p
.
I
.
q
r
.
I
.
p
M
I
r
.
I
.
p
p
.
I
.
r
M
I
q
.
I
.
r
r
.
I
.
q
M
)
u
,
x
(
f
r
q
p
zz
yy
xx
z
yy
yy
xx
y
xx
yy
xx
x
I
I
I
b
b
b
(
1
7
)
T
ab
le
1
.
Satellite P
ar
am
eter
s
[
1
7
]
V
a
l
u
e
D
e
scri
p
t
i
o
n
P
a
r
a
me
t
e
r
1
.
9
2
8
2
k
g
m
M
o
me
n
t
o
f
i
n
e
r
t
i
a
a
l
o
n
g
x
-
a
x
i
s
xx
I
1
.
9
2
8
2
k
g
m
M
o
me
n
t
o
f
i
n
e
r
t
i
a
a
l
o
n
g
y
-
a
x
i
s
yy
I
4
.
9
5
3
2
k
g
m
M
o
me
n
t
o
f
i
n
e
r
t
i
a
a
l
o
n
g
z
-
a
x
i
s
yy
I
1
2
k
g
m
S
a
t
e
l
l
i
t
e
i
n
l
e
t
mo
me
n
t
s
(
,
,
)
x
y
Z
M
M
M
T
h
r
u
st
e
r
0
.
3
6
2
r
a
d
(
2
0
d
e
g
)
I
n
i
t
i
a
l
v
a
l
u
e
o
f
r
o
l
l
Eu
l
e
r
a
n
g
e
l
0
0
.
5
2
4
r
a
d
(
3
0
d
e
g
)
I
n
i
t
i
a
l
v
a
l
u
e
o
f
p
i
t
c
h
E
u
l
e
r
a
n
g
e
l
0
-
0
.
2
6
2
r
a
d
(
-
1
5
d
e
g
)
I
n
i
t
i
a
l
v
a
l
u
e
o
f
y
a
w
Eu
l
e
r
a
n
g
e
l
0
0
r
a
d
s
B
o
d
y
p
i
t
c
h
r
o
l
l
r
a
t
e
p
0
r
a
d
s
B
o
d
y
y
a
w
r
a
t
e
q
0
r
a
d
s
B
o
d
y
r
o
l
l
r
a
t
e
r
0
.
0
1
r
a
d
(
0
.
5
8
d
e
g
)
D
e
a
d
b
a
n
d
3.
T
-
S F
U
Z
Z
Y
M
O
DE
L
I
D
E
N
T
I
F
I
CAT
I
O
N
F
RO
M
NO
N
L
I
N
E
AR
M
O
DE
L
S [
1
8
]
W
ith
a
k
n
o
w
n
n
o
n
li
n
ea
r
m
o
d
el,
its
ap
p
r
o
x
i
m
ate
T
–
S
f
u
zz
y
m
o
d
el
ca
n
b
e
o
b
tain
ed
b
y
l
in
ea
r
izatio
n
ab
o
u
t
an
in
ter
es
ted
o
p
er
atin
g
p
o
in
t.
T
h
u
s
,
th
e
lo
ca
l
lin
ea
r
m
o
d
els
o
f
T
–
S
f
u
zz
y
s
y
s
te
m
s
h
o
u
ld
b
e
d
eter
m
i
n
ed
.
I
n
th
i
s
ca
s
e,
th
e
lo
ca
l
m
o
d
el
o
f
T
–
S
f
u
zz
y
m
o
d
el
th
at
a
p
p
r
o
x
im
a
tes
t
h
e
n
o
n
l
in
ea
r
s
y
s
te
m
m
o
d
el
at
th
e
eq
u
ilib
r
iu
m
ca
n
b
e
ex
p
r
es
s
ed
as:
(
2
)
(
3
)
T
h
e
n
ex
t
s
tep
i
s
to
d
eter
m
in
e
th
e
f
u
zz
y
m
e
m
b
er
s
h
ip
f
u
n
cti
o
n
s
f
o
r
f
u
zz
y
s
et
s
ab
o
u
t
th
o
s
e
o
p
er
atin
g
p
o
in
ts
o
r
lo
ca
l
r
e
g
io
n
s
.
T
h
e
id
ea
l
ca
s
e
i
s
to
s
elec
t
t
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
m
l
u
x
l
,
.
.
.
.
.
2
,
1
),
,
(
th
at
m
i
n
i
m
ize
th
e
f
o
llo
w
i
n
g
m
o
d
elin
g
er
r
o
r
:
(
4
)
T
h
is
is
a
d
if
f
ic
u
lt
n
o
n
li
n
ea
r
o
p
tim
izatio
n
p
r
o
b
le
m
.
Ho
w
e
v
er
,
in
m
a
n
y
ap
p
licatio
n
s
,
s
i
m
p
le
an
d
t
y
p
ical
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
ca
n
b
e
u
til
ized
s
u
c
h
as
tr
ian
g
u
lar
,
tr
ap
ez
o
id
,
an
d
Gau
s
s
ia
n
f
u
n
ctio
n
s
.
On
e
o
f
,
)
1
(
u
B
x
A
k
x
l
l
|
|
0
,
1
0
,
1
u
o
x
u
o
x
u
f
B
x
f
A
m
l
l
l
l
l
u
x
f
a
u
B
x
A
u
x
E
1
)
,
(
)
)(
,
(
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
o
p
timiz
ed
Ta
ka
g
i
-
S
u
g
e
n
o
F
r
u
z
z
y
-
B
a
s
ed
S
a
tellite A
ttit
u
d
e
C
o
n
tr
o
ller
b
y…
(
S
o
b
u
tyeh
R
eza
n
ezh
a
d
)
169
th
e
k
e
y
p
ar
a
m
eter
s
i
s
th
at
t
h
e
ce
n
ter
s
o
f
th
e
s
e
m
e
m
b
er
s
h
i
p
f
u
n
ctio
n
s
ca
n
b
e
d
eter
m
in
e
d
b
y
th
e
o
p
er
atin
g
p
o
in
ts
m
l
u
x
,
.
.
.
.
.
,
3
,
2
),
,
(
1
1
,
an
d
th
e
o
th
er
p
ar
am
ete
r
s
s
u
c
h
as
th
e
w
id
t
h
an
d
d
ec
ay
r
ate
m
a
y
b
e
s
elec
ted
b
y
th
e
d
esi
g
n
er
.
3
.
1
.
T
a
k
a
g
i
-
Su
g
eno
P
a
ra
m
e
t
er
s
,
At
t
it
ud
e
Co
ntr
o
l D
escript
o
r
C
o
n
s
id
er
in
g
n
o
n
li
n
ea
r
ex
p
r
ess
io
n
s
a
n
d
th
e
ir
r
elatin
g
m
e
m
b
e
r
s
h
ip
f
u
n
ctio
n
s
,
t
h
er
e
ar
e
a
lar
g
e
n
u
m
b
er
o
f
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
,
f
u
z
z
y
la
w
s
a
n
d
r
eq
u
ir
ed
s
u
b
s
y
s
t
e
m
s
to
s
h
o
w
t
h
e
s
y
s
te
m
b
eh
a
v
io
r
.
T
h
er
ef
o
r
e,
th
e
p
r
o
ce
d
u
r
e
is
as
f
o
llo
w
s
.
Satell
ite
d
y
n
a
m
ic
p
ar
a
m
eter
s
ar
e
d
ef
i
n
ed
ac
co
r
d
in
g
to
th
e
s
p
ec
i
f
ic
r
u
les
b
ased
o
n
th
e
s
elec
ted
o
p
er
atin
g
p
o
in
t
s
u
s
i
n
g
t
h
e
s
tate
f
ee
d
b
ac
k
t
h
at
s
tab
ilizes
t
h
e
r
esp
o
n
s
e
to
i
n
itial
co
n
d
itio
n
s
.
Gau
s
s
ia
n
-
t
y
p
e
f
u
n
c
tio
n
s
w
er
e
s
elec
ted
as:
(
5
)
W
h
er
e
4
3
2
1
,
,
,
ar
e
th
e
w
id
t
h
s
o
f
t
h
e
co
r
r
esp
o
n
d
in
g
f
u
n
c
tio
n
s
,
r
esp
ec
tiv
el
y
T
h
en
,
th
e
n
o
r
m
alize
d
m
e
m
b
er
s
h
ip
f
u
n
cti
o
n
s
f
o
r
lo
ca
l
m
o
d
els ar
e
o
b
tain
ed
as:
(
6
)
T
ab
le
2
.
P
ar
am
eter
s
o
f
ta
k
a
g
i
-
s
u
g
en
o
m
o
d
el
0
0
0
0
0
0
0
0
0
2018
.
0
0
0
0
5186
.
0
0
0
0
5186
.
0
1
B
S
u
b
sy
st
e
m
1
T
x
]
0
,
0
,
0
,
0
,
0
,
0
[
)
1
(
S
u
b
sy
st
e
m
2
T
x
]
2600
.
0
,
5240
.
0
,
3620
.
0
,
0
,
0
,
0
[
)
2
(
S
u
b
sy
st
e
m
3
T
x
]
0388
.
0
,
0429
.
0
,
0220
.
0
,
1645
.
0
,
0908
.
0
,
0613
.
0
[
)
3
(
0
4
4
1
5
.
0
0
0
6
3
.
0
0
0
0
0
.
1
0
0
0
0
0
0
7
5
.
0
0
1
0
0
0
0
7
5
.
0
0
0
6
3
.
0
0
1
0
0
.
0
0
1
0
0
0
0
0
0
0
0
0
0
1
3
8
.
0
0
0
1
1
7
.
0
0
0
0
0
0
9
9
.
0
0
1
1
7
.
0
0
4
A
S
u
b
sy
st
e
m
4
T
x
]
0
0
8
4
.
0
,
0
1
0
0
.
0
,
0
,
0
0
7
5
.
0
,
0
0
6
3
.
0
,
0
0
8
8
.
0
[
)
4
(
0
0
0
5
1
.
0
0
9
4
5
.
0
0
0
0
7
.
1
0
2
2
0
.
0
0
0
0
1
6
2
5
.
0
0
2
2
0
.
0
9
9
9
8
.
0
0
0
1
6
2
8
.
0
0
9
1
0
.
0
0
4
2
9
.
0
4
4
2
0
.
0
1
0
0
0
0
0
0
0
0
0
0
9
6
2
.
0
0
2
5
8
1
.
0
0
0
0
1
4
2
5
.
0
2
5
8
1
.
0
0
3
A
222222
1
2
3
4
5
6
2
1
1
222222
1
2
3
4
5
6
2
2
2
222222
1
2
3
4
5
6
2
3
3
222222
1
2
3
4
5
6
2
4
4
e
x
p
e
x
p
e
x
p
e
x
p
xxxxxx
h
xxxxxx
h
xxxxxx
h
xxxxxx
h
1
1
1
2
3
4
2
2
1
2
3
4
3
3
1
2
3
4
4
4
1
2
3
4
()
()
()
()
x
x
x
x
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
000000
000000
000000
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
A
0
0
0
0
8
0
1
.
1
4
0
9
0
.
0
0
0
0
0
3
5
4
1
.
0
9
3
5
2
.
0
0
0
0
0
5
4
0
4
.
0
2
0
4
7
.
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
1
6
6
–
1
7
6
170
I
n
s
atelli
te
n
o
n
li
n
ea
r
d
y
n
a
m
ic
m
o
d
elin
g
,
th
e
s
y
s
te
m
m
atr
ic
es
ar
e
ex
tr
ac
ted
co
n
s
id
er
i
n
g
t
h
e
s
atell
ite
d
y
n
a
m
ic
eq
u
atio
n
s
o
n
m
ai
n
c
o
o
r
d
in
ates
s
y
s
te
m
a
n
d
(
6
)
.
T
h
ese
m
atr
ices
ar
e
p
r
esen
ted
in
T
ab
le
2
.
Op
er
atin
g
p
o
in
t
(
task
p
o
in
t)
o
f
lo
ca
l
li
n
e
ar
izatio
n
o
f
d
y
n
a
m
ic
s
atellite
w
a
s
s
elec
ted
s
o
th
at
t
h
e
s
atel
li
te
o
p
er
atin
g
r
eg
io
n
w
a
s
co
v
er
e
d
.
T
h
e
ab
o
v
e
s
y
s
t
e
m
w
as
lin
ea
r
ized
b
ased
o
n
T
ak
g
i
-
S
u
g
en
o
m
o
d
el
at
f
o
u
r
p
o
in
ts
ar
o
u
n
d
th
e
eq
u
ilib
r
iu
m
p
o
in
t.
Fo
u
r
li
n
ea
r
s
u
b
s
y
s
te
m
s
w
er
e
d
er
iv
ed
f
r
o
m
th
e
s
ate
llit
e
n
o
n
lin
ea
r
m
o
d
el.
I
t
s
h
o
u
ld
b
e
m
en
tio
n
ed
th
a
t th
e
s
y
s
te
m
B
m
atr
i
x
w
as t
h
e
s
a
m
e
in
al
l f
o
u
r
s
ta
tes.
4.
F
U
Z
Z
Y
O
N
-
O
F
F
CO
NT
RO
L
L
E
R
T
h
e
d
etailed
ex
p
lan
atio
n
o
f
t
h
e
alg
o
r
ith
m
ca
n
b
e
f
o
u
n
d
in
r
ef
er
en
ce
[
1
7
]
.
A
b
r
ief
d
es
cr
ip
tio
n
is
p
r
esen
ted
h
er
e.
T
h
e
d
i
f
f
er
en
ce
is
th
at
t
h
e
r
an
g
e
o
f
m
e
m
b
er
s
h
ip
f
u
n
ct
io
n
c
h
a
n
g
e
s
w
a
s
m
o
d
i
f
ied
i
n
t
h
i
s
w
o
r
k
to
an
al
y
ze
th
e
li
m
it c
y
cle.
A
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
w
as d
ev
e
lo
p
ed
in
th
is
s
ec
tio
n
.
T
h
e
co
n
tr
o
ller
w
a
s
d
ev
elo
p
ed
f
o
r
o
n
l
y
r
o
ll
-
a
x
is
.
I
t’
s
id
en
t
ica
l
f
o
r
t
h
e
o
th
er
t
w
o
a
x
es.
T
h
e
co
n
tr
o
ller
tak
es
th
e
ad
v
a
n
tag
e
o
f
L
ar
g
es
t
Ma
x
i
m
a
Def
u
zz
if
icatio
n
(
L
OM
)
tech
n
iq
u
e
to
o
b
tain
o
n
-
o
f
f
o
u
tp
u
t
d
ir
ec
tl
y
.
T
h
e
f
o
llo
w
i
n
g
r
an
g
e
s
w
er
e
s
elec
ted
f
o
r
s
i
m
u
lat
io
n
p
u
r
p
o
s
es:
Φ
(
t
)
= [
-
1
,
1
]
r
ad
,
)
t
(
=
[
-
1
,
1
]
r
a
d
/s
ec
an
d
co
n
tr
o
l sig
n
al
u
r
=
[
-
M
x
,
+M
x
]
.
4
.
1
.
L
ing
uis
t
ic
Descript
io
n
T
h
e
in
p
u
t
an
d
o
u
tp
u
t
v
ar
iab
le
s
o
f
th
e
f
u
zz
y
co
n
tr
o
ller
s
w
er
e
ex
p
lain
ed
in
t
h
is
s
ec
tio
n
.
T
h
e
in
p
u
t
s
x
i
є
i,
w
h
er
e
i
,
i
=1
,
2
is
th
e
u
n
i
v
er
s
e
o
f
d
is
co
u
r
s
e
o
f
t
h
e
t
w
o
in
p
u
t
s
.
Fo
r
lin
g
u
is
tic
i
n
p
u
t
v
ar
iab
le,
1
x
~
=
“
er
r
o
r
an
g
le,
”
t
h
e
u
n
i
v
er
s
e
o
f
d
i
s
co
u
r
s
e,
1
=
[
-
1
,
1
]
r
ad
,
r
ep
r
esen
ts
t
h
e
r
a
n
g
e
o
f
p
er
t
u
r
b
atio
n
a
n
g
le
f
r
o
m
t
h
e
ze
r
o
r
ef
er
en
ce
.
Fo
r
lin
g
u
is
tic
in
p
u
t
v
ar
iab
le
2
x
~
=
“
er
r
o
r
an
g
le
r
ate,
”
th
e
u
n
i
v
er
s
e
o
f
d
is
co
u
r
s
e
i
s
2
=
[
-
1
,
1
]
r
ad
/s
ec
.
T
h
e
o
u
tp
u
t
u
n
iv
er
s
e
o
f
d
is
co
u
r
s
e
=
[
-
M
z
,
+M
z
]
r
ep
r
esen
t
s
t
h
e
o
n
-
o
f
f
o
u
tp
u
t
ỹ
є
.
T
h
e
s
et
j
i
A
~
d
ef
i
n
es
th
e
j
th
lin
g
u
is
tic
v
alu
e
o
f
li
n
g
u
is
tic
v
ar
iab
le
i
x
~
,
d
ef
i
n
ed
o
v
er
t
h
e
u
n
iv
er
s
e
o
f
d
i
s
co
u
r
s
e
i
.
T
h
e
co
n
tr
o
l
lev
el
o
f
th
e
s
y
s
te
m
o
p
er
atio
n
ca
n
b
e
d
ef
i
n
ed
f
o
r
in
p
u
t
1
x
~
b
y
t
h
e
f
o
llo
w
i
n
g
lin
g
u
is
tic
v
al
u
es
:
LP
A
SP
A
Z
A
SN
A
LN
A
A
j
i
5
1
4
1
3
1
2
1
1
1
1
~
,
~
,
~
,
~
,
~
~
(
7
)
Si
m
i
lar
lin
g
u
is
t
ic
v
al
u
e
s
ar
e
s
elec
ted
f
o
r
in
p
u
t
2
x
~
;
i.e
.
,
j
2
A
~
j
1
A
~
.
T
h
e
s
et
j
1
B
~
d
en
o
tes
t
h
e
lin
g
u
i
s
tic
v
al
u
es
f
o
r
o
u
tp
u
t li
n
g
u
i
s
tic
v
ar
iab
le
ỹ
1
an
d
is
d
ef
i
n
ed
as
]
1
2
1
~
,
2
1
1
~
[
~
J
B
J
B
j
i
B
(
8
)
w
h
er
e
J1
an
d
J2
ar
e
o
n
/o
f
f
co
m
m
an
d
s
f
o
r
th
r
u
s
ter
s
.
4
.
2
.
F
uzzy
Rules
T
h
e
r
u
les ar
e
b
ased
o
n
t
w
o
in
p
u
t v
ar
iab
les.
T
h
ese
v
ar
iab
les h
av
e
f
i
v
e
li
n
g
u
i
s
tic
v
alu
e
s
.
T
h
u
s
,
th
er
e
ar
e
2
5
p
o
s
s
ib
le
r
u
les.
T
h
e
r
u
les
w
er
e
d
escr
ib
ed
in
m
atr
ix
f
o
r
m
in
T
ab
le
3
.
T
h
e
r
u
les
p
ar
titi
o
n
s
ar
e
h
eu
r
i
s
ticall
y
ch
o
s
en
to
r
eset t
h
e
an
g
le
s
m
o
o
t
h
l
y
o
v
er
th
e
u
n
i
v
er
s
e
o
f
d
is
co
u
r
s
e.
T
ab
le
3
.
Fu
zz
y
R
u
le
s
.
LP
SP
Z
SN
LN
_
_
_
_
X
M
X
M
X
M
X
M
LN
X
M
_
_
_
_
X
M
X
M
X
M
SN
X
M
X
M
_
_
_
_
X
M
X
M
Z
X
M
X
M
X
M
_
_
_
_
X
M
SP
X
M
X
M
X
M
X
M
_
_
_
_
LP
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
o
p
timiz
ed
Ta
ka
g
i
-
S
u
g
e
n
o
F
r
u
z
z
y
-
B
a
s
ed
S
a
tellite A
ttit
u
d
e
C
o
n
tr
o
ller
b
y…
(
S
o
b
u
tyeh
R
eza
n
ezh
a
d
)
171
Fig
u
r
e
2
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
s
o
f
i
n
p
u
t “
er
r
o
r
an
g
le”
Fig
u
r
e
3
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
s
o
f
i
n
p
u
t
“
er
r
o
r
an
g
le
r
ate”
Fig
u
r
e
4
.
Ou
tp
u
t
Me
m
b
er
s
h
ip
f
u
n
ctio
n
s
5.
P
A
R
T
ICL
E
SWA
R
M
O
PT
IM
IZ
A
T
IO
N
(
P
S
O
)
A
L
G
O
R
ITM
P
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
m
et
h
o
d
in
clu
d
es
a
d
ef
in
i
te
n
u
m
b
er
o
f
p
ar
ticles
w
it
h
r
an
d
o
m
i
n
it
ial
v
alu
e
s
.
Val
u
es
o
f
att
itu
d
e
a
n
d
v
elo
cit
y
ar
e
d
ef
i
n
ed
f
o
r
th
e
p
ar
ticles.
T
h
ese
v
alu
e
s
ar
e
m
o
d
eled
b
y
a
p
o
s
it
io
n
v
ec
to
r
an
d
v
elo
cit
y
v
ec
to
r
,
r
esp
ec
tiv
el
y
.
T
h
ese
p
ar
ticles
m
o
v
e
in
n
-
d
i
m
e
n
s
io
n
al
s
p
ac
e
o
f
t
h
e
p
r
o
b
lem
to
f
i
n
d
n
e
w
o
p
tio
n
s
b
ased
o
n
t
h
e
o
p
ti
m
alit
y
v
al
u
e
a
s
t
h
e
a
s
s
e
s
s
m
e
n
t
cr
iter
io
n
.
T
h
e
p
r
o
b
le
m
s
p
ac
e
d
i
m
e
n
s
io
n
i
s
eq
u
al
to
th
e
n
u
m
b
er
o
f
e
f
f
ec
tiv
e
p
ar
a
m
eter
s
i
n
t
h
e
o
p
ti
m
izatio
n
f
u
n
ctio
n
.
T
h
e
b
est
lo
ca
tio
n
o
f
p
ar
ticles
i
n
th
e
p
a
s
t
an
d
th
e
p
ar
ticle
w
it
h
th
e
b
est
co
n
d
itio
n
s
ar
e
s
av
ed
in
s
ep
a
r
ate
m
e
m
o
r
y
s
p
ac
es.
B
ased
o
n
th
e
s
e
m
e
m
o
r
ie
s
,
p
ar
ticles
d
ec
id
e
h
o
w
to
m
o
v
e
in
f
u
t
u
r
e.
I
n
th
e
r
ep
etitio
n
s
,
all
p
ar
ticles
m
o
v
e
i
n
n
-
d
i
m
en
s
io
n
al
p
r
o
b
lem
s
p
ac
e
.
Fin
all
y
,
t
h
e
p
u
b
lic
o
p
ti
m
u
m
p
o
in
t is
f
o
u
n
d
.
P
ar
ticles
m
o
d
i
f
y
th
eir
v
e
lo
cit
y
a
n
d
lo
ca
tio
n
b
a
s
ed
o
n
th
e
lo
ca
l a
n
d
p
u
b
lic
b
est s
o
lu
tio
n
s
.
)
(
)
(
,
,
2
2
.
,
1
1
,
,
p
p
r
p
p
r
v
v
o
l
d
n
m
g
l
o
b
a
l
b
es
t
n
m
o
l
d
n
m
l
o
ca
l
b
es
t
n
m
o
l
d
n
m
n
ew
n
m
v
p
p
n
e
w
n
m
o
l
d
n
m
n
e
w
n
m
,
,
,
(
9
)
w
h
er
e
v
n
e
w
n
m
,
is
p
ar
ticle
v
elo
cit
y
,
p
n
m
,
is
p
ar
ticle
v
ar
iab
le,
r
r
2
1
,
ar
e
in
d
ep
e
n
d
en
t
r
an
d
o
m
n
u
m
b
er
s
w
it
h
u
n
i
f
o
r
m
d
is
tr
ib
u
t
io
n
,
2
1
,
ar
e
lear
n
in
g
f
ac
to
r
s
,
p
l
o
c
a
l
b
e
st
n
m
,
is
th
e
b
est
lo
c
al
r
esp
o
n
s
e,
an
d
p
gl
oba
l
b
e
s
t
n
m
,
is
th
e
b
est
ab
s
o
lu
te
s
o
lu
t
io
n
.
P
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
alg
o
r
it
h
m
u
p
d
ates
t
h
e
p
ar
ticles
v
elo
ci
t
y
v
ec
to
r
an
d
th
e
n
ad
d
s
th
e
n
e
w
v
elo
cit
y
v
alu
e
t
o
attitu
d
e
o
r
p
ar
ticle
v
alu
e.
T
h
e
v
elo
cit
y
u
p
d
ate
i
s
a
f
f
ec
ted
b
y
b
o
th
lo
ca
l
a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
1
6
6
–
1
7
6
172
ab
s
o
lu
te
b
est
s
o
lu
tio
n
s
.
T
h
e
lo
ca
l
an
d
ab
s
o
lu
te
b
e
s
t
s
o
l
u
tio
n
s
ar
e
t
h
e
e
v
er
b
est
s
o
l
u
ti
o
n
s
o
b
tain
ed
b
y
a
pa
r
ticle
an
d
in
t
h
e
p
o
p
u
latio
n
,
r
esp
ec
tiv
el
y
.
C
o
n
s
ta
n
t
s
2
1
,
ar
e
co
g
n
iti
v
e
(
p
er
ce
p
tu
al)
p
ar
a
m
eter
an
d
s
o
cial
p
ar
a
m
eter
.
T
h
e
m
ain
a
d
v
an
ta
g
es
o
f
p
ar
ticle
s
w
ar
m
o
p
tim
izatio
n
ar
e
s
i
m
p
licit
y
a
n
d
lo
w
n
u
m
b
er
o
f
ef
f
ec
tiv
e
p
ar
a
m
eter
s
.
Als
o
,
th
i
s
alg
o
r
ith
m
ca
n
o
p
ti
m
ize
co
m
p
lex
co
s
t
f
u
n
ctio
n
s
w
it
h
a
lar
g
e
n
u
m
b
er
o
f
lo
ca
l
m
i
n
i
m
u
m
s
.
Fig
u
r
e
5
.
Gen
er
al
s
tr
u
ct
u
r
e
o
f
p
ar
ticle
s
w
ar
m
al
g
o
r
ith
m
Fig
u
r
e
6
.
R
o
ll a
n
g
le
o
p
er
atio
n
o
f
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
w
i
th
d
ea
d
b
an
d
(
n
o
n
lin
ea
r
m
o
d
el)
5
.
1
.
Appl
y
ing
pa
rt
icle
s
w
a
r
m
a
lg
o
rit
m
in f
uzzy
o
n
-
o
f
f
s
y
s
t
e
m
t
o
re
du
ce
li
m
it
cy
cle
P
ar
ticle
s
w
ar
m
al
g
o
r
ith
m
w
a
s
u
s
ed
to
d
eter
m
i
n
e
t
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
p
ar
a
m
eter
s
o
f
th
e
f
u
zz
y
s
y
s
te
m
i
n
p
u
t
s
.
T
h
e
i
n
ter
v
a
ls
o
f
t
h
ese
p
ar
a
m
eter
s
s
h
o
u
ld
b
e
d
eter
m
i
n
ed
f
ir
s
t.
T
h
u
s
,
it
’
s
n
ec
ess
ar
y
to
o
b
tain
t
h
e
in
ter
v
a
l
ch
a
n
g
e
s
o
f
t
h
e
in
tr
o
d
u
ce
d
ch
ar
ac
ter
s
.
T
h
e
in
ter
v
al
ch
an
g
e
is
(
-
1
،
1
)
.
T
h
en
,
th
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
p
ar
am
eter
s
o
f
all
p
r
in
cip
les
c
an
b
e
d
ef
in
ed
b
y
an
al
y
zi
n
g
t
h
e
in
ter
v
al
s
.
T
h
e
o
p
tim
izatio
n
v
ar
iab
les
ar
e
f
u
zz
y
p
ar
am
eter
s
s
ele
cted
ac
co
r
d
in
g
to
th
e
m
e
m
b
er
s
h
ip
f
u
n
ct
io
n
s
.
T
h
e
n
u
m
b
er
o
f
t
h
ese
v
ar
iab
le
s
is
3
0
;
th
er
e
f
o
r
e,
a
30
-
d
i
m
en
s
io
n
al
s
p
ac
e
w
a
s
c
o
n
s
id
er
ed
to
f
i
n
d
t
h
e
o
p
ti
m
u
m
s
tate.
T
h
en
,
t
h
e
f
ac
to
r
s
wer
e
s
u
p
p
o
s
ed
.
T
h
e
m
i
n
i
m
u
m
n
u
m
b
er
o
f
f
ac
to
r
s
i
s
t
w
ice
t
h
e
n
u
m
b
er
o
f
v
ar
iab
les.
9
0
f
ac
to
r
s
w
er
e
co
n
s
id
er
ed
in
th
i
s
r
esear
c
h
.
T
h
ese
f
ac
to
r
s
s
p
r
ea
d
in
t
h
e
s
p
ac
e.
T
h
e
p
ar
ticles
m
o
v
e
to
th
e
lo
ca
tio
n
w
i
th
lo
w
er
v
a
lu
e
o
f
co
s
t
f
u
n
c
tio
n
.
Fin
all
y
,
a
f
ter
a
f
e
w
tr
ial
s
,
t
h
e
o
p
ti
m
u
m
p
o
in
t
w
as
f
o
u
n
d
with
th
e
m
in
i
m
u
m
v
al
u
e
o
f
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
.
T
h
en
,
th
e
o
u
tp
u
t
w
as
co
m
p
u
te
d
u
s
i
n
g
ab
s
o
lu
te
er
r
o
r
in
te
g
r
al
tech
n
iq
u
e
f
o
r
ti
m
e
r
a
n
g
e
o
f
1
0
0
0
to
2
5
0
0
th
at
is
eq
u
al
to
1
0
to
2
5
s
ec
o
n
d
s
,
i.e
.
th
e
ti
m
e
w
h
e
n
s
ta
te
v
ar
iab
les
r
ea
ch
th
e
s
tead
y
s
tate;
i
n
f
ac
t
,
th
e
ti
m
e
w
h
e
n
t
h
e
s
tate
o
s
cillate
s
ar
o
u
n
d
ze
r
o
a
n
d
r
ea
ch
th
e
s
tead
y
-
s
tate.
T
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
h
o
u
l
d
b
e
in
teg
r
ated
to
r
ed
u
ce
th
e
a
m
p
lit
u
d
e.
Fi
n
all
y
,
th
e
s
y
s
te
m
o
u
tp
u
ts
,
E
u
ler
an
g
l
es,
w
er
e
co
m
p
u
ted
.
6.
SI
M
UL
AT
I
O
N
I
n
t
h
is
s
ec
tio
n
t
h
e
s
y
s
te
m
r
esp
o
n
s
e
to
in
i
tial
co
n
d
itio
n
s
(
ze
r
o
in
p
u
t
r
esp
o
n
s
e)
w
as
an
al
y
ze
d
.
In
f
ig
.
6
,
Fo
r
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
,
t
h
e
r
o
ll
an
g
le
o
s
cilla
tes
a
f
ter
1
8
s
ec
o
n
d
s
w
ith
t
h
e
a
m
p
l
itu
d
e
o
f
0
.
0
2
r
ad
ian
s
(
1
.
1
d
eg
r
ee
s
)
w
ith
f
r
eq
u
e
n
c
y
o
f
0
.
0
2
8
h
er
tz.
Sin
ce
r
ate
f
ee
d
b
ac
k
in
tr
o
d
u
ce
s
d
a
m
p
i
n
g
to
t
h
e
s
y
s
te
m
,
t
h
e
p
h
a
s
e
p
lan
e
tr
aj
ec
to
r
y
s
h
o
w
s
t
h
at
th
e
ti
m
e
r
esp
o
n
s
e
d
ec
a
y
s
to
w
ar
d
th
e
o
r
ig
in
w
h
er
e
b
o
t
h
r
ate
a
n
d
p
o
s
itio
n
ar
e
ze
r
o
.
Vie
w
ed
in
ter
m
s
o
f
t
h
e
p
h
a
s
e
p
lan
e
tr
aj
ec
to
r
y
,
a
li
m
it
c
y
cle
is
a
clo
s
ed
p
ath
w
h
ich
i
s
ap
p
r
o
ac
h
ed
f
r
o
m
a
0
10
20
30
40
50
-
1
0
0
10
20
30
r
o
l
l
a
n
g
l
e
(
d
e
g
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-
1
5
-
1
0
-5
0
5
r
o
l
l
r
a
t
e
a
n
g
l
e
(
d
p
s
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-1
-
0
.
5
0
0
.
5
1
M
x
(
n
.
m
)
T
i
m
e
(
s
e
c
)
-
1
0
0
10
20
30
-
1
5
-
1
0
-5
0
5
a
n
g
l
e
(
d
e
g
)
a
n
g
l
e
r
a
t
e
(
d
p
s
)
r
o
l
l
p
h
a
s
e
p
l
a
n
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
o
p
timiz
ed
Ta
ka
g
i
-
S
u
g
e
n
o
F
r
u
z
z
y
-
B
a
s
ed
S
a
tellite A
ttit
u
d
e
C
o
n
tr
o
ller
b
y…
(
S
o
b
u
tyeh
R
eza
n
ezh
a
d
)
173
s
tar
tin
g
co
n
d
itio
n
eit
h
er
f
r
o
m
in
s
id
e
t
h
e
clo
s
ed
p
ath
(
u
s
u
al
l
y
w
it
h
t
h
e
e
x
ce
p
tio
n
o
f
th
e
o
r
ig
in
)
,
o
r
f
r
o
m
t
h
e
o
u
ts
id
e.
in
th
e
f
o
llo
w
i
n
g
,
w
e
u
s
ed
a
d
ea
d
b
an
d
f
o
r
d
esig
n
in
g
co
n
tr
o
ller
,
.
W
h
en
t
h
e
an
g
le
s
a
p
p
r
o
ac
h
to
0
.
0
1
r
ad
ian
s
(
0
.
5
8
d
eg
r
ee
s
)
,
th
e
f
u
zz
y
co
n
tr
o
l
lea
v
es
th
e
o
r
b
it
b
y
a
s
w
itc
h
an
d
co
m
es
to
ze
r
o
.
T
h
e
co
n
tr
o
l
s
ig
n
al
r
e
m
ain
s
ze
r
o
u
n
ti
l
t
h
e
a
n
g
le
v
al
u
e
i
s
i
n
t
h
is
r
an
g
e.
T
h
is
r
ed
u
ce
s
t
h
e
o
s
ci
llatio
n
s
o
f
co
n
tr
o
l
s
y
s
te
m
a
n
d
en
h
a
n
ce
s
th
e
attit
u
d
e
co
n
tr
o
l.
L
i
m
it
c
y
c
le
p
er
f
o
r
m
a
n
ce
i
s
d
eter
m
in
ed
b
y
s
i
m
u
latio
n
o
f
r
esp
o
n
s
e
to
s
m
al
l
v
alu
e
s
o
f
in
i
tial
co
n
d
itio
n
s
f
o
r
th
e
co
n
tr
o
ller
s
.
T
h
e
s
a
m
e
v
al
u
e
o
f
li
m
i
t
c
y
cle
in
th
e
s
a
m
e
f
u
zz
y
p
late
is
eq
u
a
l
to
f
r
eq
u
en
c
y
o
f
t
h
e
li
m
it c
y
c
le
.
Fig
.
7
a
s
h
o
w
s
t
h
e
s
i
m
u
latio
n
b
ased
o
n
T
ak
ag
i
-
S
u
g
e
n
o
m
o
d
e
l.
As
s
h
o
w
n
i
n
t
h
e
s
i
m
u
lat
io
n
,
th
e
r
u
le
s
r
ep
r
esen
t th
e
lo
c
u
s
o
f
th
e
m
o
v
in
g
lin
e.
I
t
m
ea
n
s
t
h
at
t
h
e
o
u
tp
u
ts
ca
n
m
o
v
e
i
n
o
u
tp
u
t sp
ac
e
l
in
ea
r
l
y
.
T
h
e
ex
ten
t
an
d
d
is
p
lace
m
e
n
t
v
al
u
es
ar
e
d
eter
m
i
n
ed
b
ased
o
n
th
e
i
n
p
u
t
s
.
Si
m
u
lat
io
n
r
es
u
lts
s
h
o
w
th
a
t
o
s
c
illatio
n
a
m
p
lit
u
d
e
f
o
r
t
h
e
r
o
lli
n
g
an
g
l
e
in
f
i
g
.
7
a.
it
i
s
v
er
y
s
m
all
a
f
t
er
9
s
ec
o
n
d
s
a
n
d
th
e
f
r
eq
u
en
c
y
i
s
0
.
1
4
h
er
tz.
T
h
en
w
e
u
s
ed
p
ar
ticle
s
w
ar
m
o
p
t
i
m
izatio
n
alg
o
r
it
h
m
to
r
ed
u
ce
th
e
o
s
cillatio
n
a
m
p
lit
u
d
e.
T
h
e
id
ea
w
a
s
to
ap
p
r
o
x
im
a
te
th
e
i
n
teg
r
al
s
v
al
u
e
b
y
d
is
cr
ete
p
lu
r
als
o
n
s
m
all
in
ter
v
a
ls
.
B
ec
au
s
e
o
f
u
s
i
n
g
d
is
cr
ete
ti
m
e
to
co
m
p
u
te
th
e
in
teg
r
al,
its
m
a
x
i
m
u
m
li
m
it
is
u
s
u
al
l
y
co
n
s
id
er
ed
u
p
to
t
h
r
ee
ti
m
e
s
o
f
t
h
e
s
u
m
m
it
ti
m
e.
So
,
a
n
ac
ce
p
tab
le
r
esu
lt
i
s
o
b
tain
ed
f
o
r
th
e
in
teg
r
al.
T
h
e
co
s
t
f
u
n
ct
io
n
s
h
o
u
ld
b
e
i
n
te
g
r
ated
u
n
d
er
th
e
o
p
ti
m
u
m
s
tate
to
r
ed
u
ce
th
e
o
s
cillatio
n
a
m
p
l
itu
d
e
w
h
ile
t
h
e
s
y
s
te
m
s
ta
te
i
s
o
s
cillati
n
g
ar
o
u
n
d
ze
r
o
.
T
h
u
s
,
th
e
r
o
lli
n
g
a
n
g
le
w
a
s
co
m
p
u
ted
f
r
o
m
1
0
s
ec
o
n
d
s
to
2
5
s
ec
o
n
d
s
an
d
th
e
o
p
ti
m
u
m
s
tate
w
as
s
h
o
w
n
.
Fig
u
r
e
7
a.
R
o
ll a
n
g
le
o
p
er
atio
n
o
f
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
(
T
-
S
m
o
d
el)
Fig
u
r
e
7
b
.
R
o
ll a
n
g
le
o
p
er
atio
n
o
f
o
p
ti
m
ized
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
(
T
-
S
m
o
d
el)
0
10
20
30
40
50
0
10
20
30
r
o
l
l
a
n
g
l
e
(
d
e
g
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-
1
5
-
1
0
-5
0
5
r
o
l
l
r
a
t
e
a
n
g
l
e
(
d
p
s
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-1
-
0
.
5
0
0
.
5
1
M
x
(
n
.
m
)
T
i
m
e
(
s
e
c
)
0
10
20
30
-
1
5
-
1
0
-5
0
5
a
n
g
l
e
(
d
e
g
)
a
n
g
l
e
r
a
t
e
(
d
p
s
)
r
o
l
l
p
h
a
s
e
p
l
a
n
e
0
10
20
30
40
50
-
1
0
0
10
20
30
r
o
l
l
a
n
g
l
e
(
d
e
g
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-
3
0
-
2
0
-
1
0
0
10
roll rate angle (dps)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-1
-
0
.
5
0
0
.
5
1
M
x
(
n
.
m
)
T
i
m
e
(
s
e
c
)
-
1
0
0
10
20
30
-
3
0
-
2
0
-
1
0
0
10
a
n
g
l
e
(
d
e
g
)
a
n
g
l
e
r
a
t
e
(
d
p
s
)
r
o
l
l
p
h
a
s
e
p
l
a
n
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
3
,
No
.
4
,
Dec
em
b
er
201
4
:
1
6
6
–
1
7
6
174
As
s
h
o
w
n
i
n
F
ig
u
r
e
.
7
b
,
th
e
o
s
cillatio
n
s
o
f
co
n
tr
o
l
s
y
s
te
m
wer
e
r
ed
u
ce
d
.
T
h
is
af
f
ec
ts
t
h
e
o
u
tp
u
t.
T
h
e
r
eq
u
ir
ed
co
n
tr
o
l
to
r
q
u
es
w
a
s
r
ed
u
ce
d
an
d
th
e
s
atellite
p
o
w
e
r
d
ec
r
ea
s
ed
at
th
e
s
a
m
e
ti
m
e.
I
t’
s
clea
r
f
r
o
m
t
h
e
s
i
m
u
lat
io
n
o
f
o
p
ti
m
ized
f
u
zz
y
in
f
i
g
7
b
th
at
th
e
o
s
cillat
io
n
a
m
p
l
it
u
d
e
is
n
ea
r
0
.
0
0
1
r
ad
ian
s
(
0
.
0
5
d
eg
r
ee
s
)
f
o
r
th
e
r
o
llin
g
an
g
le
af
ter
2
5
s
ec
o
n
d
s
.
Desira
b
le
f
ac
to
r
s
in
t
h
e
f
u
zz
y
p
late
ar
e
s
m
aller
li
m
it
c
y
cle
an
d
n
o
b
ias
(
i.e
.
an
g
le
s
ce
n
ter
s
h
o
u
ld
b
e
clo
s
e
t
o
ze
r
o
)
.
I
n
f
u
zz
y
s
tr
u
ct
u
r
e,
th
e
s
y
s
te
m
is
o
b
s
er
v
ed
as
n
o
d
e
o
r
o
s
cillatio
n
ar
o
u
n
d
ze
r
o
.
A
cc
o
r
d
in
g
to
t
h
e
f
i
g
u
r
e
o
f
f
u
zz
y
p
late,
s
atel
lite
p
o
w
er
r
ed
u
ce
s
a
n
d
r
e
m
ai
n
s
n
ea
r
ze
r
o
in
a
li
m
it
c
y
c
le.
T
h
e
d
if
f
er
en
ce
b
et
w
ee
n
t
h
e
o
p
ti
m
u
m
s
tate
a
n
d
th
e
p
r
ev
io
u
s
o
n
e
is
t
h
at
t
h
e
cir
cles
i
n
t
h
e
o
p
ti
m
u
m
s
tate
r
ea
c
h
to
ze
r
o
f
aster
.
I
n
f
ac
t,
t
h
e
co
n
v
er
g
e
n
ce
w
as
o
b
tain
ed
f
a
s
ter
.
A
b
s
o
l
u
te
ze
r
o
o
f
er
r
o
r
v
al
u
e
i
n
t
h
e
s
tead
y
-
s
tate
i
s
an
o
th
er
b
en
e
f
it o
f
t
h
e
al
g
o
r
ith
m
.
Fig
u
r
e
8
co
m
p
ar
es
th
e
s
o
l
u
tio
n
s
o
f
ze
r
o
i
n
p
u
t
r
esp
o
n
s
e
a
t
v
a
r
io
u
s
r
o
ll
a
n
g
les.
I
t
is
t
h
e
r
e
s
u
l
t
o
f
f
u
zz
y
on
-
o
f
f
w
i
th
d
ea
d
b
an
d
(
f
b
b
d
c)
,
f
u
zz
y
o
n
-
o
f
f
T
ak
ag
i
-
S
u
g
e
n
o
m
o
d
el
(
ts
)
an
d
o
p
ti
m
ized
f
u
zz
y
o
n
-
o
f
f
(
ts
-
p
s
o
)
.
R
es
u
lts
s
h
o
w
t
h
at
o
s
cil
latio
n
a
m
p
lit
u
d
e
o
f
r
o
llin
g
an
g
le
w
a
s
r
ed
u
ce
d
f
r
o
m
.
1
.
1
d
eg
r
ee
s
to
0
.
0
5
d
eg
r
ee
s
u
s
i
n
g
p
ar
ticle
s
w
ar
m
al
g
o
r
ith
m
.
Stea
d
y
-
s
tate
er
r
o
r
an
d
s
y
s
te
m
d
a
m
p
in
g
ti
m
e
w
er
e
r
ed
u
ce
d
u
s
in
g
th
is
al
g
o
r
ith
m
.
Fig
u
r
e
8
.
r
o
ll a
n
g
le
co
m
p
ar
is
o
n
o
f
co
n
tr
o
ller
s
T
ab
le
4
s
h
o
w
s
t
h
r
u
s
ter
p
o
w
er
b
ef
o
r
e
an
d
af
ter
ap
p
ly
i
n
g
t
h
e
p
ar
ticle
s
w
ar
m
al
g
o
r
ith
m
.
T
h
e
r
esu
lts
d
en
o
te
th
at
th
e
p
o
w
er
w
a
s
r
ed
u
ce
d
af
ter
u
s
i
n
g
t
h
e
al
g
o
r
ith
m
a
n
d
th
e
g
a
s
co
n
s
u
m
p
tio
n
w
a
s
also
r
ed
u
ce
d
i
n
th
r
u
s
ter
s
.
T
h
is
is
f
a
v
o
r
ab
le.
T
ab
le
4
.
P
o
w
er
co
n
s
u
m
p
t
io
n
Y
a
w
a
n
g
l
e
(
N
M
.
S
)
P
i
t
c
h
a
n
g
l
e
(
N
M
.
S
)
R
o
l
l
a
n
g
l
e
(
N
M
.
S
)
c
o
n
t
r
o
l
l
e
r
4
4
3
4
6
5
4
2
2
2
4
4
4
6
4
f
u
z
z
y
o
n
-
o
f
f
w
i
t
h
d
e
a
d
b
a
n
d
4
4
4
4
1
5
4
3
7
3
4
4
4
4
2
f
u
z
z
y
o
n
-
o
f
f
b
a
se
d
o
n
T
-
S
mo
d
e
l
4
4
2
4
4
3
4
1
7
2
4
7
4
1
O
p
t
i
mi
z
e
d
f
u
z
z
y
o
n
-
o
f
f
6
.
1
.
T
he
ef
f
ec
t
s
o
f
dis
t
urba
n
ce
o
n t
he
co
ntr
o
llers per
f
o
r
m
a
nce
A
tt
itu
d
e
co
n
tr
o
l
s
y
s
te
m
w
a
s
ch
ec
k
ed
u
n
d
er
d
is
t
u
r
b
an
ce
a
n
d
co
n
tr
o
ller
s
r
esi
s
ta
n
ce
w
a
s
c
h
ec
k
ed
b
y
s
tep
d
is
tu
r
b
an
ce
o
p
er
atio
n
)
20
(
5
.
0
)
(
k
u
k
d
i
s
.
T
h
e
o
p
er
atio
n
w
a
s
p
er
f
o
r
m
ed
b
y
s
tep
in
p
u
t
o
f
1
0
d
eg
r
ee
s
.
C
o
m
b
i
n
atio
n
o
f
t
h
e
d
is
t
u
r
b
an
c
e
an
d
th
e
co
n
tr
o
l si
g
n
a
l
af
f
ec
t
s
th
e
s
y
s
te
m
s
ta
te
.
0
10
20
30
40
50
-5
0
5
10
15
20
25
(
d
e
g
)
T
i
m
e
(
s
e
c
)
f
b
b
d
c
ts
t
s
-
p
s
o
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
o
p
timiz
ed
Ta
ka
g
i
-
S
u
g
e
n
o
F
r
u
z
z
y
-
B
a
s
ed
S
a
tellite A
ttit
u
d
e
C
o
n
tr
o
ller
b
y…
(
S
o
b
u
tyeh
R
eza
n
ezh
a
d
)
175
Fig
u
r
e
9
.
R
o
ll a
n
g
le
Op
er
atio
n
o
f
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
W
ith
d
ea
d
b
an
d
u
n
d
er
)
20
(
5
.
0
)
(
k
u
k
d
i
s
(
n
o
n
li
n
ea
r
m
o
d
el)
Fig
u
r
e
1
0
a.
R
o
ll a
n
g
le
Op
er
ati
o
n
o
f
f
u
zz
y
o
n
-
o
f
f
co
n
tr
o
ller
)
20
(
5
.
0
)
(
k
u
k
d
i
s
(T
-
S
m
o
d
el)
Fig
u
r
e
1
0
b
.
R
o
ll a
n
g
le
Op
er
ati
o
n
o
f
o
p
ti
m
ized
f
u
zz
y
o
n
-
o
f
f
c
o
n
tr
o
ller
)
20
(
5
.
0
)
(
k
u
k
d
i
s
(T
-
S m
o
d
el)
As
s
h
o
w
n
,
in
t
h
e
p
r
esen
ce
o
f
d
is
tu
r
b
an
ce
,
th
e
o
u
tp
u
ts
r
ea
ch
to
th
e
f
i
n
al
v
al
u
e
w
it
h
o
u
t
t
h
e
s
tead
y
-
s
tate
er
r
o
r
.
C
o
n
tr
o
ller
is
also
ca
p
ab
le
to
r
em
o
v
e
d
is
t
u
r
b
an
ce
.
0
10
20
30
40
50
0
20
40
r
o
l
l
a
n
g
l
e
(
d
e
g
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-
2
0
0
20
roll rate angle (dps)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-1
0
1
M
x
(
n
.
m
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
10
20
30
r
o
l
l
a
n
g
l
e
(
d
e
g
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-
2
0
0
0
0
2000
roll rate angle (dps)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-1
0
1
M
x
(
n
.
m
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
0
20
40
r
o
l
l
a
n
g
l
e
(
d
e
g
)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-
2
0
0
0
0
2000
roll rate angle (dps)
T
i
m
e
(
s
e
c
)
0
10
20
30
40
50
-1
0
1
M
x
(
n
.
m
)
T
i
m
e
(
s
e
c
)
Evaluation Warning : The document was created with Spire.PDF for Python.