I
AE
S
I
nte
rna
t
io
na
l J
o
urna
l o
f
Art
if
icia
l In
t
ellig
ence
(
I
J
-
AI
)
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
2
0
1
7
,
p
p
.
12
4
~
1
3
8
I
SS
N:
2252
-
8938
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
ai.
v
6
.
i3
.
p
p
1
2
4
-
1
3
8
124
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AI
An App
ro
ch bas
e
d on G
eneti
c Algo
rith
m
for
M
ulti
-
t
ena
nt
Reso
urce Alloca
ti
o
n in Saa
S Appli
c
a
tion
s
E
la
heh
kh
eiri
1
,
M
o
s
t
a
f
a
G
ho
ba
ei
Ara
ni
2
,
Alirez
a
T
a
g
hiza
deh
3
1
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter E
n
g
in
e
e
rin
g
,
Isla
m
ic
Az
a
d
Un
iv
e
rsit
y
M
a
h
a
ll
a
t,
M
a
h
a
ll
a
t
Bra
n
c
h
,
Ira
n
2,
3
D
e
p
a
r
t
m
e
n
t
o
f
Co
m
p
u
ter E
n
g
i
n
e
e
rin
g
,
Isla
m
ic
A
z
a
d
Un
iv
e
rsit
y
T
e
h
ra
n
,
P
a
ra
n
d
Bra
n
c
h
,
Ira
n
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
10
,
2
0
1
7
R
ev
i
s
ed
A
u
g
12
,
2
0
1
7
A
cc
ep
ted
A
u
g
2
6
,
2
0
1
7
In
re
c
e
n
t
y
e
a
rs,
th
e
u
se
o
f
c
lo
u
d
se
rv
i
c
e
s
h
a
s
b
e
e
n
si
g
n
if
ica
n
tl
y
e
x
p
a
n
d
e
d
.
T
h
e
p
ro
v
id
e
rs
o
f
so
f
t
w
a
r
e
a
s
a
s
e
rv
ice
e
m
p
lo
y
m
u
lt
i
-
ten
a
n
t
a
rc
h
it
e
c
tu
re
s
to
d
e
li
v
e
r
se
rv
i
c
e
s
to
th
e
ir
u
se
rs.
In
th
e
se
m
u
lt
i
-
ten
a
n
t
a
p
p
li
c
a
ti
o
n
s
th
e
re
so
u
rc
e
a
ll
o
c
a
ti
o
n
w
o
u
ld
su
f
f
e
r
f
ro
m
o
v
e
r
-
u
ti
li
z
a
ti
o
n
o
r
u
n
d
e
r
-
u
t
il
iza
ti
o
n
issu
e
s.
Co
n
sid
e
ri
n
g
th
e
sig
n
if
ica
n
t
e
ff
e
c
ts
o
f
re
so
u
rc
e
a
ll
o
c
a
ti
o
n
o
n
t
h
e
se
rv
ice
p
e
rf
o
r
m
a
n
c
e
a
n
d
c
o
st,
in
th
is
p
a
p
e
r
we
h
a
v
e
p
ro
p
o
se
d
a
n
a
p
p
ro
a
c
h
b
a
se
d
o
n
g
e
n
e
ti
c
a
lg
o
rit
h
m
f
o
r
re
so
u
rc
e
a
ll
o
c
a
ti
o
n
w
h
ich
g
u
a
ra
n
tee
s
se
rv
ice
q
u
a
li
ty
th
ro
u
g
h
p
ro
v
id
in
g
a
d
e
q
u
a
te
re
so
u
rc
e
s.
T
h
e
p
ro
p
o
se
d
a
p
p
r
o
a
c
h
a
lso
i
m
p
ro
v
e
s
s
y
ste
m
p
e
r
f
o
r
m
a
n
c
e
,
m
e
e
ts
th
e
re
q
u
irem
e
n
ts
o
f
u
se
rs
a
n
d
p
ro
v
id
e
s
m
a
x
i
m
u
m
re
so
u
rc
e
e
ff
icie
n
c
y
.
S
i
m
u
latio
n
r
e
su
lt
s
sh
o
w
th
a
t
t
h
e
p
ro
p
o
se
d
a
p
p
ro
a
c
h
h
a
s
b
e
tt
e
r
re
sp
o
n
se
ra
te
a
n
d
a
v
a
il
a
b
il
it
y
c
o
m
p
a
rin
g
to
o
th
e
r
a
p
p
r
o
a
c
h
e
s,
w
h
i
le
p
ro
v
id
e
s an
e
f
f
icie
n
t
re
so
u
rc
e
u
sa
g
e
.
K
ey
w
o
r
d
:
C
lo
u
d
co
m
p
u
tin
g
G
en
etic
al
g
o
r
ith
m
M
u
lti te
n
a
n
t
R
eso
u
r
ce
allo
ca
tio
n
Utilizatio
n
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
E
lah
eh
k
h
ei
ri
,
Dep
ar
t
m
en
t o
f
C
o
m
p
u
ter
E
n
g
i
n
ee
r
in
g
,
I
s
la
m
ic
A
za
d
U
n
iv
er
s
it
y
Ma
h
allat,
Ma
h
allat
B
r
an
c
h
,
I
r
an
.
E
m
ail:
ela
h
eh
_
k
h
e
ir
i2
0
0
2
@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
C
lo
u
d
co
m
p
u
ti
n
g
as
a
n
e
w
m
o
d
el
f
o
r
h
o
s
t
in
g
a
n
d
d
eliv
er
y
s
e
r
v
ices i
s
attr
ac
ti
v
e
f
o
r
co
m
p
a
n
y
o
w
n
er
s
.
I
t
eli
m
i
n
ates
th
e
n
ee
d
f
o
r
u
s
er
s
to
d
esig
n
lo
g
i
s
tic
s
an
d
al
lo
w
s
co
m
p
an
ie
s
to
s
tar
t
w
it
h
s
m
al
l
a
m
o
u
n
t
o
f
r
eso
u
r
ce
s
an
d
in
cr
ea
s
e
t
h
e
r
eso
u
r
ce
s
ac
co
r
d
in
g
to
th
e
d
e
m
a
n
d
[
1
]
.
P
r
ice
m
o
d
el
in
c
lo
u
d
co
m
p
u
ti
n
g
is
b
ased
o
n
co
n
s
u
m
p
tio
n
r
ate.
A
clo
u
d
p
r
o
v
id
es
its
o
n
li
n
e
b
u
s
i
n
e
s
s
a
p
p
licatio
n
s
th
r
o
u
g
h
a
w
eb
b
r
o
w
s
er
o
r
an
o
th
er
s
o
f
t
w
ar
e.
A
p
p
licatio
n
s
a
n
d
d
ata
ar
e
s
to
r
ed
o
n
th
e
s
er
v
er
s
a
n
d
ar
e
av
ailab
le
to
u
s
er
s
o
n
d
e
m
an
d
.
Deta
ils
ar
e
k
ep
t
h
id
d
en
f
r
o
m
th
e
u
s
er
s
wh
o
d
o
n
o
t
n
ee
d
p
r
o
f
icie
n
c
y
o
r
co
n
tr
o
l
o
v
er
th
e
clo
u
d
in
f
r
a
s
tr
u
ct
u
r
e
th
a
t
t
h
e
y
u
s
e
[
2
].
C
lo
u
d
ap
p
licatio
n
s
ar
e
p
r
o
v
id
ed
to
u
s
er
s
as
a
s
er
v
ice
i
n
th
e
f
o
r
m
o
f
s
o
f
t
w
ar
e
or
SaaS
.
T
h
is
e
n
ab
le
s
o
r
g
an
izatio
n
s
to
r
ec
eiv
e
s
o
f
t
war
e
s
er
v
ices
t
h
r
o
u
g
h
t
h
e
I
n
ter
n
et,
w
it
h
o
u
t
h
a
v
i
n
g
to
p
a
y
t
h
e
h
ig
h
co
s
t
o
f
s
er
v
er
,
licen
s
e,
i
n
s
tal
latio
n
a
n
d
co
m
m
is
s
io
n
i
n
g
o
f
h
ar
d
w
ar
e
an
d
s
o
f
t
w
ar
e.
I
n
th
is
m
o
d
el,
clo
u
d
p
r
o
v
id
er
s
in
s
tall
an
d
r
u
n
ap
p
licatio
n
s
o
f
t
w
ar
e
in
th
e
clo
u
d
,
an
d
c
lo
u
d
u
s
er
s
ac
ce
s
s
to
t
h
e
s
o
f
t
w
ar
e
b
y
clo
u
d
clie
n
ts
.
T
h
i
s
eli
m
i
n
ate
s
th
e
n
ee
d
to
in
s
tall
a
n
d
r
u
n
t
h
e
ap
p
licatio
n
s
o
n
th
e
u
s
er
'
s
co
m
p
u
ter
,
an
d
s
i
m
p
li
f
ies
it
s
m
ai
n
ten
a
n
ce
a
n
d
s
u
p
p
o
r
t
[
3
].
C
lo
u
d
co
m
p
u
tin
g
ar
ch
i
tectu
r
e
is
p
r
i
m
ar
il
y
a
m
u
lti
-
ten
a
n
t
s
er
v
ice
-
o
r
ien
ted
ar
ch
itect
u
r
e.
Mu
lti
-
ten
an
c
y
i
n
clo
u
d
co
m
p
u
ti
n
g
r
ef
er
s
to
t
h
e
m
a
n
n
er
in
ar
c
h
ite
ctu
r
al
d
esi
g
n
o
f
s
y
s
te
m
t
h
at
o
f
f
er
s
o
f
t
w
ar
e
as
a
s
er
v
ice.
T
h
is
i
m
p
lie
s
th
e
f
ac
t
th
at
co
m
p
a
n
ie
s
m
u
s
t
n
o
t
p
u
r
ch
ase
a
n
d
m
ai
n
tai
n
I
T
in
f
r
a
s
tr
u
ct
u
r
e
an
d
t
h
eir
co
m
m
u
n
icatio
n
s
.
A
m
u
lt
i
-
ten
an
t
s
y
s
te
m
s
h
ar
es
a
r
u
n
n
i
n
g
ap
p
licatio
n
b
et
w
ee
n
a
g
r
o
u
p
o
f
p
ar
ticip
an
ts
o
r
ten
an
ts
(
s
er
v
ice
c
u
s
to
m
er
)
.
Mu
lti
-
te
n
an
c
y
is
an
o
r
g
a
n
iza
tio
n
al
ap
p
r
o
ac
h
f
o
r
SaaS
ap
p
licatio
n
s
th
a
t
w
a
s
in
tr
o
d
u
ce
d
ar
o
u
n
d
2
0
0
5
[
4
]
.
I
n
m
u
lti
-
te
n
an
cy
t
h
e
p
r
o
g
r
a
m
d
is
tr
ib
u
tio
n
a
m
o
n
g
s
er
v
er
s
i
s
ea
s
ier
as
o
n
l
y
a
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
A
p
p
r
o
c
h
b
a
s
ed
o
n
Gen
etic
A
lg
o
r
ith
m
fo
r
mu
lti
-
ten
a
n
t R
e
s
o
u
r
ce
A
llo
ca
tio
n
in
…
(
E
la
h
e
h
kh
eiri
)
125
s
a
m
p
le
o
f
th
e
p
r
o
g
r
a
m
s
h
o
u
ld
b
e
d
is
tr
ib
u
ted
.
On
t
h
e
o
th
er
h
a
n
d
,
h
ar
d
w
ar
e
u
til
izatio
n
r
ate
wo
u
ld
b
e
i
m
p
r
o
v
ed
.
T
h
ese
t
w
o
f
ac
to
r
s
r
ed
u
ce
th
e
c
o
s
ts
o
f
all
p
r
o
g
r
a
m
s
[
5
].
Sin
ce
t
h
e
m
u
lti
-
te
n
an
c
y
i
s
a
s
o
f
t
w
ar
e
ar
ch
itect
u
r
e
in
t
h
e
b
u
s
i
n
ess
m
o
d
el
o
f
SaaS
,
t
h
e
p
r
ice
an
d
q
u
alit
y
o
f
s
er
v
ice
ar
e
i
m
p
o
r
tan
t i
s
s
u
es i
n
t
h
i
s
ar
ea
.
Mu
l
ti
-
te
n
an
t
SaaS
ap
p
licatio
n
s
r
u
n
o
n
m
u
ltip
le
s
er
v
er
s
i
n
a
d
is
tr
ib
u
ted
m
eth
o
d
.
E
ac
h
s
er
v
er
h
a
s
a
p
o
r
tio
n
o
f
s
y
s
te
m
r
eso
u
r
ce
s
s
u
c
h
a
s
p
r
o
ce
s
s
i
n
g
ca
p
ab
ilit
y
o
f
C
P
U,
n
et
w
o
r
k
b
an
d
w
id
t
h
,
s
to
r
ag
e
ca
p
ac
it
y
,
etc.
I
n
m
u
lt
i
-
te
n
a
n
t
S
aa
S
ap
p
licatio
n
s
,
ea
ch
ten
a
n
t
is
u
s
ed
f
o
r
a
g
r
o
u
p
o
f
u
s
er
s
w
it
h
s
i
m
ilar
n
ee
d
s
.
As
a
r
esu
l
t,
th
e
u
s
er
s
o
f
v
ar
i
o
u
s
te
n
an
t
m
a
y
n
ee
d
to
h
a
v
e
d
if
f
er
e
n
t
k
in
d
an
d
a
m
o
u
n
t
o
f
r
eso
u
r
ce
s
to
r
u
n
t
h
e
ap
p
licatio
n
.
T
h
er
ef
o
r
e,
each
r
eq
u
est
t
h
at
is
s
en
t
b
y
th
e
u
s
er
s
,
o
b
tain
a
p
ar
t
o
f
p
r
o
v
id
er
s
’
r
eso
u
r
ce
s
.
T
h
e
p
r
o
v
id
er
s
h
o
u
ld
en
s
u
r
e
t
h
at
th
e
cu
s
to
m
er
s
’
r
eq
u
e
s
ts
w
il
l
b
e
m
et
co
m
p
letel
y
.
T
h
e
is
s
u
e
o
f
r
eso
u
r
ce
al
lo
ca
ti
o
n
f
o
r
m
u
lti
-
te
n
an
t
ap
p
licatio
n
s
h
a
s
s
p
ec
ial
s
i
g
n
if
ican
ce
d
u
e
to
its
i
m
p
ac
t
o
n
t
h
e
p
er
f
o
r
m
a
n
ce
.
T
h
er
e
ar
e
v
ar
io
u
s
m
o
d
el
f
o
r
t
h
e
allo
ca
tio
n
o
f
r
eso
u
r
ce
s
in
t
h
e
f
ield
o
f
clo
u
d
co
m
p
u
ti
n
g
,
ea
c
h
o
n
e
u
s
e
s
s
p
ec
i
f
ic
tech
n
iq
u
e
s
a
n
d
alg
o
r
ith
m
s
[
6
].
Desp
ite
th
at
i
n
t
h
e
clo
u
d
,
o
n
e
ca
n
au
to
m
atica
ll
y
r
ec
ei
v
e
th
e
r
eso
u
r
ce
s
on
-
d
e
m
a
n
d
,
th
e
o
th
er
ca
n
s
til
l
b
e
f
ac
ed
w
ith
t
h
e
p
r
o
b
lem
s
r
elate
d
to
in
s
u
f
f
icie
n
t
r
eso
u
r
ce
s
.
T
h
ese
cr
ea
tes
u
n
d
er
-
u
tili
za
t
io
n
o
r
o
v
e
r
-
u
tili
za
t
io
n
s
itu
a
tio
n
d
u
e
to
th
e
u
s
e
o
f
p
a
y
-
p
er
-
u
s
e
m
o
d
el.
U
n
d
er
-
u
tili
za
tio
n
o
r
o
v
er
-
u
tili
za
tio
n
ar
e
cr
itical
an
d
u
n
r
e
s
o
lv
ed
ch
alle
n
g
es i
n
t
h
e
f
i
eld
o
f
r
eso
u
r
ce
allo
ca
tio
n
[
7
].
O
v
er
-
u
til
izatio
n
h
ap
p
en
s
o
n
c
e
p
r
o
v
id
er
ca
n
n
o
t
m
ee
t
t
h
e
r
eq
u
ested
s
er
v
ice
le
v
el
.
T
h
e
p
r
o
f
it
f
r
o
m
cu
s
to
m
er
s
i
s
lo
s
t
d
u
e
to
p
o
o
r
p
er
f
o
r
m
an
ce
an
d
c
u
s
to
m
er
s
s
to
p
u
s
i
n
g
p
r
o
g
r
a
m
s
a
f
ter
e
x
p
er
ien
ci
n
g
w
ea
k
s
er
v
ice
t
h
at
lead
s
to
p
er
m
an
e
n
t d
am
a
g
e
a
n
d
lo
s
s
o
f
c
u
s
to
m
er
s
[
8
].
Un
d
er
-
u
tili
za
t
io
n
h
ap
p
en
s
o
n
ce
th
e
ad
d
itio
n
al
r
eso
u
r
ce
s
ar
e
k
ep
t
ev
en
i
f
th
e
y
ar
e
n
o
t
r
eq
u
ir
ed
(
r
eso
u
r
ce
s
at
n
o
n
-
p
ea
k
ti
m
e
r
e
m
ai
n
u
n
u
s
ed
)
.
As
a
r
esu
lt
w
i
t
h
o
u
t
a
n
ef
f
ec
ti
v
e
m
o
d
el,
co
s
tl
y
re
s
o
u
r
ce
s
ar
e
lo
s
t
w
h
e
n
th
e
lo
ad
is
n
o
t
m
ax
i
m
u
m
[
9
].
Fro
m
a
n
ec
o
n
o
m
ic
v
ie
w
p
o
in
t
u
s
in
g
less
t
h
a
n
ca
p
ac
it
y
is
a
w
aste
o
f
m
o
n
e
y
.
T
h
is
m
ea
n
s
t
h
a
t
w
e
p
a
y
m
o
n
e
y
f
o
r
s
o
m
eth
in
g
th
a
t
w
e
d
o
n
o
t
n
ee
d
o
r
w
i
ll
n
o
t
u
s
e.
Usi
n
g
to
o
litt
le,
d
escr
ib
es
th
e
s
it
u
atio
n
t
h
at
s
o
m
e
clo
u
d
r
eso
u
r
ce
s
ar
e
n
o
t
u
s
ed
b
y
t
h
e
Vir
t
u
al
Ma
ch
i
n
e
(
VM
)
an
d
a
p
r
o
g
r
a
m
i
s
r
u
n
[
8
].
A
cc
o
r
d
in
g
to
t
h
e
d
escr
ip
tio
n
m
en
tio
n
ed
ab
o
v
e,
te
n
a
n
t
ba
s
ed
r
eso
u
r
ce
allo
ca
tio
n
i
s
o
n
e
o
f
th
e
w
a
y
s
to
d
ea
l
w
it
h
n
o
n
-
o
p
ti
m
u
m
u
s
e
o
f
r
eso
u
r
ce
s
an
d
h
a
s
a
co
n
s
i
d
er
ab
le
im
p
ac
t
o
n
co
s
t
-
ef
f
ec
t
iv
en
e
s
s
o
f
th
e
Saa
S
s
y
s
te
m
.
So
in
o
r
d
er
to
u
s
e
o
f
r
eso
u
r
ce
s
o
p
ti
m
all
y
,
th
e
ap
p
licatio
n
o
f
g
en
e
tic
alg
o
r
it
h
m
s
in
th
is
f
ield
w
er
e
in
v
e
s
ti
g
ated
.
T
h
e
r
est
o
f
th
is
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
:
Sectio
n
I
I
is
d
ev
o
ted
to
th
e
r
elate
d
w
o
r
k
an
d
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
is
p
r
esen
te
d
in
s
ec
tio
n
I
I
I
.
E
v
al
u
atio
n
an
d
s
i
m
u
lat
io
n
r
e
s
u
l
ts
o
f
t
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
ar
e
p
r
esen
ted
in
t
h
e
s
ec
tio
n
I
V
an
d
f
in
all
y
i
n
s
ec
tio
n
V
,
co
n
clu
s
i
o
n
s
an
d
r
ec
o
m
m
en
d
atio
n
s
ar
e
p
r
o
v
id
ed
.
2.
RE
L
AT
E
D
WO
RK
S
I
n
th
i
s
s
ec
tio
n
v
ar
io
u
s
s
t
u
d
i
es
h
a
v
e
b
ee
n
i
n
tr
o
d
u
ce
d
ab
o
u
t
t
h
e
m
u
lti
-
te
n
a
n
t
r
eso
u
r
ce
allo
ca
tio
n
.
T
h
e
s
ec
tio
n
also
p
r
esen
ts
d
i
f
f
er
en
t
ca
teg
o
r
ies
a
n
d
co
m
p
ar
es
th
e
p
r
esen
ted
ap
p
r
o
ac
h
es
in
ter
m
o
f
i
m
p
o
r
ta
n
t
p
ar
am
eter
s
2
.
1
.
T
ena
nt
B
a
s
ed
Reso
urce
Allo
ca
t
io
n Appro
a
ches
1.
H.
C
ai
et
al.
[
1
0
]
s
u
g
g
e
s
t
a
T
o
o
lk
it
b
ased
o
n
J
av
a
m
e
ch
an
i
s
m
th
a
t
s
u
p
p
o
r
ts
m
u
lt
i
-
te
n
an
t
g
r
an
u
lar
m
ec
h
a
n
i
s
m
.
T
h
e
au
th
o
r
s
u
s
ed
C
o
n
te
x
t
o
f
T
en
an
ts
,
C
o
n
tex
t
r
u
n
-
ti
m
e
e
le
m
e
n
t
s
t
h
at
co
n
tai
n
i
n
f
o
r
m
atio
n
o
f
ten
an
ts
.
2.
J
.
Hu
a
et
al.
[
1
1
]
,
p
r
o
v
id
e
I
VI
C
th
at
is
a
p
lat
f
o
r
m
f
o
r
ac
ad
em
ic
r
esear
ch
er
s
to
cr
ea
t
e
cu
s
to
m
v
ir
tu
a
l
co
m
p
u
ti
n
g
e
n
v
ir
o
n
m
e
n
t
s
,
d
y
n
a
m
icall
y
f
o
r
d
i
f
f
er
e
n
t
s
cie
n
ti
f
i
c
ca
lcu
la
tio
n
,
s
i
m
u
latio
n
an
d
a
n
al
y
s
i
s
t
h
r
o
u
g
h
tech
n
o
lo
g
y
V
M.
T
h
e
y
u
s
ed
E
u
ca
l
y
p
t
u
s
clo
u
d
co
m
p
u
ti
n
g
p
latf
o
r
m
,
w
h
ich
o
f
f
er
s
SO
AP
in
ter
f
ac
es
a
n
d
p
r
o
v
id
es th
e
ab
ilit
y
to
u
s
e
ac
c
o
r
d
in
g
to
VM
in
s
tan
ce
s
r
eq
u
es
t.
3.
Y.
J
ie
et
al.
[
1
2
]
co
n
clu
d
ed
th
at
w
it
h
c
u
r
r
en
t
r
e
s
o
u
r
ce
allo
ca
tio
n
m
o
d
el
s
,
SaaS
p
r
o
v
id
er
s
w
il
l
p
a
y
co
n
s
ec
u
tiv
e
co
s
ts
to
u
s
e
t
h
e
w
o
r
ld
'
s
r
eso
u
r
ce
s
w
i
th
o
u
t
r
eg
ar
d
to
r
eso
u
r
ce
s
u
s
ed
b
y
ea
ch
ten
a
n
t.
As
a
r
esu
lt,
t
h
er
e
i
s
a
n
ee
d
to
cr
ea
te
a
f
lex
ib
le
a
n
d
co
r
r
ec
t
ar
ch
itect
u
r
e
o
n
t
h
e
p
ar
t
t
h
at
Saa
S
p
r
o
v
id
er
s
p
a
y
f
o
r
ac
tu
al
u
s
e
o
f
r
eso
u
r
ce
s
.
4.
J
av
ier
E
s
p
ad
as
et
al.
[
8
]
,
to
ac
h
iev
e
co
s
t
-
e
f
f
ec
ti
v
e
s
ca
lab
i
lit
y
o
f
SaaS
a
n
d
s
o
lv
i
n
g
o
v
e
r
-
u
ti
lizatio
n
a
n
d
u
n
d
er
-
u
ti
lizatio
n
p
r
o
b
le
m
s
,
i
n
tr
o
d
u
ce
a
te
n
a
n
t
b
ased
r
e
s
o
u
r
ce
allo
ca
tio
n
m
o
d
el
(
T
B
R
A
M)
f
o
r
Saa
S
ap
p
licatio
n
s
o
n
clo
u
d
co
m
p
u
ti
n
g
i
n
f
r
as
tr
u
ct
u
r
e.
T
h
is
m
o
d
el
is
co
m
p
r
is
ed
o
f
th
r
ee
co
m
p
le
m
en
tar
y
ap
p
r
o
ac
h
es.
T
h
e
f
ir
s
t
i
s
s
ep
ar
atio
n
b
ased
o
n
t
h
e
te
n
a
n
t
th
at
s
ep
ar
ates
co
n
te
x
t
f
o
r
d
if
f
er
en
t
te
n
a
n
ts
.
T
h
e
s
ec
o
n
d
m
et
h
o
d
is
te
n
a
n
t
b
ased
VM
allo
ca
tio
n
.
W
ith
t
h
is
ap
p
r
o
ac
h
w
e
w
ill
b
e
ab
le
t
o
ca
lcu
late
th
e
ac
tu
al
n
u
m
b
er
o
f
r
eq
u
ir
ed
VM
o
f
ea
ch
te
n
an
t
at
a
n
y
g
i
v
e
n
m
o
m
e
n
t.
B
u
t
t
h
e
last
o
n
e
is
t
en
an
t
b
ased
lo
ad
b
alan
cin
g
.
T
h
is
allo
w
s
lo
ad
b
alan
ci
n
g
o
f
v
ir
t
u
al
m
ac
h
i
n
es to
b
e
d
o
n
e
ab
o
u
t a
ce
r
tain
ten
an
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
2
0
1
7
:
1
2
4
–
1
3
8
126
5.
Ma
r
ek
W
o
d
a
et
al.
[
7
]
,
o
f
f
er
e
d
co
s
t
-
e
f
f
ec
ti
v
en
e
s
s
o
f
m
o
d
el
(
T
B
R
A
M)
f
o
r
a
SaaS
s
y
s
te
m
.
T
en
an
t
b
as
ed
r
eso
u
r
ce
allo
ca
tio
n
m
o
d
el
b
ased
is
o
n
e
o
f
t
h
e
w
a
y
s
to
d
ea
l
w
it
h
n
o
n
-
o
p
ti
m
u
m
u
s
e
o
f
r
eso
u
r
ce
s
.
W
h
en
co
m
p
ar
ed
w
it
h
tr
ad
itio
n
al
s
o
u
r
ce
s
ca
le,
t
h
is
m
et
h
o
d
ca
n
r
ed
u
ce
t
h
e
co
s
t
o
f
i
m
p
le
m
en
ti
n
g
t
h
e
SaaS
s
y
s
te
m
s
i
n
clo
u
d
en
v
ir
o
n
m
en
t
s
.
2
.
2
.
Reso
urce
s
utiliza
t
i
o
n c
o
ntr
o
l in
m
ultit
ena
nt
a
pp
lica
t
io
ns
a
pp
ro
a
ches
1.
W
.
W
an
g
et
al.
[
1
3
]
,
in
t
h
e
f
i
eld
o
f
s
ep
ar
atio
n
a
n
d
co
n
tr
o
l
o
f
r
eso
u
r
ce
s
,
u
s
e
a
Kal
m
a
n
f
i
lter
to
esti
m
ate
C
P
U
u
s
a
g
e
o
f
t
h
e
ten
a
n
t
s
w
h
o
s
en
d
d
if
f
er
en
t
t
y
p
e
s
o
f
r
eq
u
est
s
.
T
h
ese
r
eq
u
est
esti
m
ate
s
ap
p
l
y
o
n
l
y
to
id
en
ti
f
y
t
h
e
m
alicio
u
s
w
o
r
k
lo
a
d
,
n
o
t to
id
en
tify
in
d
i
v
id
u
al
s
u
b
s
cr
ip
tio
n
s
.
2.
P
r
ev
io
u
s
v
alu
a
tio
n
m
et
h
o
d
s
h
av
e
b
ee
n
li
m
ited
to
a
s
m
aller
n
u
m
b
er
o
f
r
eq
u
est
s
to
est
i
m
ate
th
e
r
e
s
o
u
r
c
e
d
em
a
n
d
s
.
T
h
er
e
is
n
o
p
r
ev
io
u
s
w
o
r
k
b
y
ta
k
i
n
g
2
0
o
r
m
o
r
e
r
eq
u
ests
.
I
f
Q.
Z
h
a
n
g
et
al.
[
1
4
]
,
h
ad
s
tu
d
ies
b
y
lin
ea
r
r
eg
r
es
s
io
n
o
r
Kal
m
a
n
f
ilter
s
u
s
in
g
t
h
e
ap
p
licatio
n
b
asis
T
P
C
-
W
th
at
h
a
s
1
4
d
if
f
er
en
t
t
y
p
es
o
f
r
eq
u
ests
.
Kr
af
t
et
al.
[
1
5
]
,
h
av
e
also
ev
alu
a
ted
th
e
i
m
p
ac
t
o
f
th
e
n
u
m
b
er
o
f
r
eq
u
ests
(
b
et
w
ee
n
o
n
e
an
d
f
i
v
e)
o
n
d
if
f
er
en
t li
n
ea
r
r
eg
r
es
s
io
n
an
d
m
ax
i
m
u
m
li
k
eli
h
o
o
d
o
f
r
eso
u
r
ce
esti
m
atio
n
m
et
h
o
d
s
.
3.
Si
m
o
n
Sp
in
n
er
et
al.
[
1
6
]
,
p
r
o
v
id
e
co
n
tr
o
l
o
f
r
eso
u
r
ce
u
t
iliz
atio
n
in
m
u
lti
-
te
n
an
t
ap
p
licati
o
n
s
.
T
h
e
y
ar
g
u
e
a
w
a
y
to
s
u
p
p
o
r
t
m
u
l
ti
-
ten
a
n
t
ap
p
licatio
n
s
in
o
r
d
er
to
g
u
ar
a
n
tee
t
h
e
p
er
f
o
r
m
a
n
ce
f
o
r
ea
ch
ten
a
n
t.
T
h
ey
e
x
p
lain
t
h
eir
w
a
y
to
co
n
tr
o
l
th
e
u
s
e
o
f
r
eso
u
r
ce
s
i
n
MT
A
s
.
T
h
e
g
en
er
al
id
ea
is
t
h
at
t
h
e
r
eso
u
r
ce
d
em
a
n
d
o
f
ev
er
y
te
n
a
n
t
is
ch
e
ck
ed
in
th
e
f
ir
s
t
s
tep
.
I
n
th
e
s
e
co
n
d
s
tep
,
th
ese
r
eso
u
r
ce
d
em
an
d
s
ar
e
u
s
ed
to
co
n
tr
o
l
th
e
ten
a
n
t
s
’
r
eso
u
r
c
e
u
s
e
i
n
d
iv
id
u
all
y
.
T
h
e
y
e
v
al
u
ated
th
r
ee
d
if
f
er
e
n
t
ap
p
r
o
ac
h
es
o
f
r
eso
u
r
ce
d
em
a
n
d
esti
m
at
io
n
b
ased
o
n
Kal
m
a
n
f
ilter
in
g
,
li
n
ea
r
r
eg
r
es
s
io
n
an
d
t
h
e
Ser
v
ice
De
m
a
n
d
L
a
w
(
SD
L
)
.
2
.
3
.
T
ena
nt
ba
s
ed
re
s
o
urce
s
a
llo
ca
t
io
n o
ptim
iza
t
io
n a
pp
ro
a
ches
1.
S
y
s
te
m
r
e
s
o
u
r
ce
s
all
o
ca
tio
n
o
p
ti
m
izatio
n
ap
p
r
o
ac
h
is
an
e
f
f
ec
ti
v
e
w
a
y
to
i
m
p
r
o
v
e
s
y
s
te
m
p
er
f
o
r
m
a
n
ce
,
en
s
u
r
e
Qo
S
an
d
m
ee
t
t
h
e
r
e
q
u
ir
e
m
e
n
ts
o
f
th
e
u
s
er
.
A
s
a
class
ic
t
y
p
e
o
f
o
p
ti
m
izatio
n
is
s
u
e,
s
y
s
te
m
r
eso
u
r
ce
s
allo
ca
tio
n
o
p
ti
m
izat
io
n
is
s
u
e
i
s
a
NP
-
h
ar
d
p
r
o
b
le
m
w
it
h
o
u
t
a
r
e
s
o
u
r
ce
allo
ca
ti
o
n
o
p
ti
m
izatio
n
alg
o
r
ith
m
w
it
h
p
o
l
y
n
o
m
ial
ti
m
e
co
m
p
lex
it
y
.
T
h
er
ef
o
r
e,
an
ef
f
ec
tiv
e
al
g
o
r
ith
m
m
u
s
t
ag
r
ee
o
n
th
e
ac
cu
r
ac
y
o
f
p
er
f
o
r
m
a
n
ce
.
Saa
S
ap
p
lic
atio
n
s
co
n
s
u
m
e
r
eso
u
r
ce
s
i
n
a
m
a
n
n
er
s
i
m
ilar
to
w
eb
-
b
as
ed
ap
p
licatio
n
s
.
I
n
th
e
r
esear
ch
o
p
ti
m
ized
s
y
s
t
e
m
r
eso
u
r
ce
allo
ca
tio
n
in
w
eb
-
b
ased
ap
p
licatio
n
s
y
s
te
m
s
,
th
er
e
is
a
n
u
m
b
er
o
f
w
el
l
-
k
n
o
w
n
al
g
o
r
ith
m
s
s
u
ch
as
L
P
T
,
B
o
u
n
d
Fit
an
d
MU
L
T
I
FIT
.
T
h
ese
alg
o
r
ith
m
s
ar
e
ea
s
il
y
i
m
p
le
m
en
ted
an
d
u
n
d
er
s
o
m
e
co
n
d
itio
n
s
t
h
e
y
ca
n
o
b
tain
s
o
l
u
tio
n
s
clo
s
e
to
th
e
b
est
s
o
lu
t
i
o
n
.
B
u
t
th
e
y
a
ls
o
h
av
e
d
is
ad
v
a
n
ta
g
es
s
u
ch
as
h
ig
h
co
s
t
an
d
q
u
alit
y
o
f
u
n
s
u
s
tain
ab
le
r
es
u
lt
s
.
An
d
s
o
m
e
al
g
o
r
ith
m
s
h
a
v
e
b
ee
n
r
estricte
d
to
s
o
lv
in
g
p
r
o
b
le
m
s
w
it
h
a
s
o
u
r
ce
o
r
to
h
o
m
o
g
e
n
eo
u
s
en
v
ir
o
n
m
en
t
o
f
r
e
s
o
u
r
ce
s
.
So
th
e
y
ar
e
n
o
t
ad
eq
u
ate
an
d
s
u
itab
le
f
o
r
o
p
tim
iza
tio
n
p
r
o
b
le
m
s
w
it
h
s
o
m
e
t
y
p
e
o
f
m
u
lti
-
te
n
an
t
S
aa
S
ap
p
licatio
n
s
w
it
h
h
e
ter
o
g
en
eo
u
s
r
eso
u
r
ce
s
.
R
aj
k
u
m
ar
R
et
al.
[
1
7
]
,
h
a
v
e
s
t
u
d
ied
Qo
S
b
ased
o
n
m
u
lti
-
d
i
m
en
s
io
n
a
l
r
eso
u
r
ce
allo
ca
tio
n
p
r
o
b
le
m
,
b
ased
o
n
th
e
ab
o
v
e
-
m
en
t
io
n
ed
alg
o
r
it
h
m
s
.
B
u
t
r
es
u
lt
s
ar
e
in
f
o
r
m
al
an
d
th
eo
r
etica
l a
n
d
n
o
t a
p
p
lied
.
2.
L
I
U
A
n
f
e
n
g
et
al.
[
1
8
]
,
p
r
o
p
o
s
ed
a
t
w
o
-
p
h
ase
o
p
ti
m
izat
io
n
h
eu
r
i
s
tic
alg
o
r
it
h
m
b
ased
o
n
L
P
T
an
d
MM
KP
alg
o
r
ith
m
s
f
o
r
clu
s
ter
w
eb
.
T
h
ese
t
w
o
al
g
o
r
ith
m
s
h
av
e
b
ee
n
s
u
cc
e
s
s
f
u
l
f
o
r
s
o
l
v
in
g
p
r
o
b
le
m
s
r
elate
d
to
Qo
S
r
eso
u
r
ce
s
.
B
u
t
th
e
p
u
r
p
o
s
e
o
f
th
ese
t
w
o
al
g
o
r
ith
m
s
is
m
a
x
i
m
izi
n
g
t
h
e
u
s
e
o
f
r
eso
u
r
ce
s
t
h
at
i
s
d
if
f
er
e
n
t
w
it
h
t
h
e
p
u
r
p
o
s
e
s
y
s
te
m
o
f
r
eso
u
r
ce
allo
ca
tio
n
o
f
SaaS
ap
p
licatio
n
s
.
I
n
ad
d
itio
n
,
in
t
w
o
ab
o
v
e
alg
o
r
ith
m
s
,
ea
ch
ta
s
k
is
li
m
it
ed
to
b
ein
g
i
n
j
u
s
t
o
n
e
s
er
v
er
b
u
t
in
SaaS
ap
p
licatio
n
,
ea
c
h
te
n
a
n
t
ca
n
b
e
s
p
r
ea
d
to
m
u
ltip
le
s
er
v
er
s
w
it
h
a
li
m
ited
n
u
m
b
er
o
f
u
s
er
s
.
3.
Desh
u
ai
W
an
g
et
a
l.
[
1
9
]
,
co
n
s
id
er
in
g
t
h
e
w
ea
k
n
es
s
o
f
t
h
e
p
r
ev
io
u
s
a
lg
o
r
it
h
m
,
o
f
f
er
ed
a
s
y
s
te
m
r
eso
u
r
c
e
allo
ca
tio
n
m
et
h
o
d
f
o
r
m
u
lti
-
t
en
an
t
Saa
S
ap
p
licatio
n
s
to
en
s
u
r
e
Qo
S,
o
f
SaaS
ap
p
licatio
n
s
w
h
ile
o
v
er
all
p
er
f
o
r
m
a
n
ce
is
o
p
ti
m
ized
.
S
y
s
te
m
r
eso
u
r
ce
allo
ca
tio
n
p
r
o
ce
d
u
r
es
ar
e
i
m
p
o
r
tan
t
f
o
r
m
u
lti
-
te
n
an
t
SaaS
ap
p
licatio
n
to
p
r
o
v
id
e
s
er
v
ices
w
it
h
ac
ce
p
tab
le
p
er
f
o
r
m
an
ce
an
d
q
u
alit
y
.
T
h
e
y
r
ais
ed
o
p
tim
izatio
n
p
r
o
b
lem
o
f
s
y
s
te
m
r
eso
u
r
ce
allo
ca
tio
n
in
m
u
l
ti
-
ten
a
n
t
SaaS
ap
p
licatio
n
s
,
an
d
th
en
t
h
e
y
h
av
e
s
u
b
m
itte
d
t
w
o
te
n
a
n
t
Qo
S
o
r
ie
n
ted
s
y
s
te
m
r
eso
u
r
ce
a
llo
ca
tio
n
al
g
o
r
ith
m
b
ased
o
n
r
e
s
o
u
r
ce
ef
f
ic
ien
c
y
(
T
QOSR
AA
-
R
E
)
an
d
T
en
an
t
Qo
S
o
r
ien
ted
s
y
s
te
m
r
eso
u
r
ce
allo
ca
ti
o
n
alg
o
r
ith
m
b
ased
o
n
g
e
n
etic
alg
o
r
ith
m
(
T
QOSR
AA
-
G
A
)
.
Fin
all
y
T
ab
le
1
s
h
o
w
s
t
h
e
co
m
p
ar
i
s
o
n
o
f
ab
o
v
e
tec
h
n
iq
u
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
A
p
p
r
o
c
h
b
a
s
ed
o
n
Gen
etic
A
lg
o
r
ith
m
fo
r
mu
lti
-
ten
a
n
t R
e
s
o
u
r
ce
A
llo
ca
tio
n
in
…
(
E
la
h
e
h
kh
eiri
)
127
T
ab
le
1
.
C
o
m
p
ar
is
o
n
o
f
th
e
r
el
ated
w
o
r
k
s
C
ontext
R
e
f
e
r
e
n
ce
T
e
c
h
n
i
q
u
e
A
d
v
a
n
t
a
g
e
D
i
sad
v
a
n
t
a
g
e
Te
n
a
n
t
-
b
a
se
d
r
e
s
o
u
r
c
e
a
l
l
o
c
a
t
i
o
n
H
.
C
a
i
e
t
a
l
.
[
1
1
]
P
r
o
v
i
d
i
n
g
a
J
a
v
a
me
c
h
a
n
i
sm
-
b
a
se
d
t
o
o
l
k
i
t
-
C
o
n
si
d
e
r
a
t
i
o
n
o
f
m
u
l
t
i
-
t
e
n
a
n
t
me
c
h
a
n
i
sm
-
se
p
a
r
a
t
i
o
n
o
f
t
e
n
a
n
t
’
s
d
a
t
a
-
L
a
c
k
o
f
c
o
n
s
i
d
e
r
a
t
i
o
n
o
f
a
p
p
l
i
c
a
t
i
o
n
s’
n
a
t
u
r
e
-
L
a
c
k
o
f
c
o
n
s
i
d
e
r
a
t
i
o
n
o
f
p
e
r
f
o
r
man
c
e
J.
H
u
a
i
e
t
a
l
.
[
1
1
]
p
r
o
v
i
d
i
n
g
a
n
I
V
I
C
a
s a
p
l
a
t
f
o
r
m t
o
c
r
e
a
t
e
c
u
st
o
mi
z
e
d
v
i
r
t
u
a
l
c
o
mp
u
t
i
n
g
e
n
v
i
r
o
n
me
n
t
s
-
V
a
r
i
o
u
s s
c
i
e
n
t
i
f
i
c
c
a
l
c
u
l
a
t
i
o
n
,
si
mu
l
a
t
i
o
n
a
n
d
a
n
a
l
y
si
s b
y
V
M
t
e
c
h
n
o
l
o
g
y
-
M
o
n
i
t
o
r
i
n
g
a
n
d
me
a
su
r
i
n
g
v
i
r
t
u
a
l
r
e
so
u
r
c
e
s
-
L
a
c
k
o
f
c
o
n
s
i
d
e
r
a
t
i
o
n
o
f
a
p
p
l
i
c
a
t
i
o
n
s’
n
a
t
u
r
e
-
L
a
c
k
o
f
c
o
n
s
i
d
e
r
a
t
i
o
n
o
f
p
e
r
f
o
r
man
c
e
Y
.
Ji
e
e
t
a
l
.
[
1
2
]
P
r
o
v
i
d
i
n
g
s
c
a
l
a
b
l
e
a
p
p
l
i
c
a
t
i
o
n
s,
v
i
r
t
u
a
l
i
z
a
t
i
o
n
,
c
l
o
u
d
me
c
h
a
n
i
s
ms,
r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
mo
d
e
l
s
-
A
c
h
i
e
v
e
m
e
n
t
o
f
sca
l
a
b
i
l
i
t
y
b
a
se
d
o
n
n
u
m
b
e
r
o
f
u
se
r
s
-
L
a
c
k
o
f
a
c
c
e
ss t
o
a
f
f
o
r
d
a
b
l
e
sca
l
a
b
i
l
i
t
y
o
f
S
a
a
S
-
i
n
e
f
f
i
c
i
e
n
c
y
Jav
i
e
r
Esp
a
d
a
s e
t
a
l
.
[
8
]
A
t
e
n
a
nt
-
b
a
se
d
r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
mo
d
e
l
(
T
B
M
)
-
A
c
c
e
ss t
o
a
f
f
o
r
d
a
b
l
e
sca
l
a
b
i
l
i
t
y
o
f
S
a
a
S
-
I
g
n
o
r
i
n
g
a
l
l
p
a
r
a
me
t
e
r
s
a
f
f
e
c
t
i
n
g
t
h
e
p
e
r
f
o
r
man
c
e
,
g
u
a
r
a
n
t
e
e
q
u
a
l
i
t
y
o
f
se
r
v
i
c
e
a
n
d
i
mp
r
o
v
e
sy
st
e
m
p
e
r
f
o
r
man
c
e
a
n
d
e
t
c
.
si
mu
l
t
a
n
e
o
u
sl
y
M
a
r
e
k
W
o
d
a
e
t
a
l
.
[
7
]
S
u
g
g
e
st
o
f
c
o
st
-
e
f
f
e
c
t
i
v
e
n
e
ss
o
f
t
e
n
a
n
t
-
b
a
se
d
r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
mo
d
e
l
f
o
r
a
S
a
a
S
sy
st
e
m a
n
d
c
o
mp
a
r
i
so
n
o
f
so
u
r
c
e
s sc
a
l
e
-
R
e
d
u
c
e
d
c
o
st
s c
o
m
p
a
r
e
d
t
o
t
r
a
d
i
t
i
o
n
a
l
so
u
r
c
e
sc
a
l
e
-
C
o
st
-
e
f
f
e
c
t
i
v
e
n
e
ss o
f
T
B
R
A
M
-
I
g
n
o
r
i
n
g
a
l
l
p
a
r
a
me
t
e
r
s
a
f
f
e
c
t
i
n
g
t
h
e
p
e
r
f
o
r
man
c
e
,
g
u
a
r
a
n
t
e
e
q
u
a
l
i
t
y
o
f
se
r
v
i
c
e
a
n
d
i
mp
r
o
v
e
sy
st
e
m
p
e
r
f
o
r
man
c
e
a
n
d
e
t
c
.
si
mu
l
t
a
n
e
o
u
sl
y
C
o
n
t
r
o
l
t
h
e
u
s
e
o
f
r
e
s
o
u
r
c
e
s
i
n
m
u
l
t
i
-
t
e
n
a
n
t
a
p
p
l
i
c
a
t
i
o
n
s
W
.
W
a
n
g
e
t
a
l
.
[
1
3
]
C
o
n
t
r
o
l
l
i
n
g
u
se
o
f
r
e
so
u
r
c
e
s
(
K
a
l
man
f
i
l
t
e
r
me
t
h
o
d
)
-
C
P
U
u
s
a
g
e
e
st
i
mat
e
o
f
t
e
n
a
n
t
s
t
h
a
t
se
n
d
d
i
f
f
e
r
e
n
t
t
y
p
e
s o
f
d
e
ma
n
d
s
-
D
e
man
d
e
st
i
ma
t
i
o
n
a
r
e
u
se
d
o
n
l
y
t
o
i
d
e
n
t
i
f
y
mal
i
c
i
o
u
s w
o
r
k
l
o
a
d
-
I
d
e
n
t
i
f
y
i
n
g
t
h
e
t
e
n
a
n
t
a
n
d
t
h
e
t
y
p
e
o
f
d
e
man
d
t
h
a
t
l
e
a
d
s
t
o
t
h
e
max
i
mu
m
u
sag
e
-
I
g
n
o
r
i
n
g
mal
i
c
i
o
u
s
r
e
q
u
e
st
s
-
l
a
c
k
o
f
s
h
a
r
i
n
g
r
e
so
u
r
c
e
s
-
D
e
man
d
e
st
i
ma
t
i
o
n
a
r
e
u
se
d
o
n
l
y
t
o
i
d
e
n
t
i
f
y
mal
i
c
i
o
u
s
w
o
r
k
l
o
a
d
Q
.
Z
h
a
n
g
e
t
a
l
.
a
n
d
K
r
a
f
t
e
t
a
l
.
[
1
4
]
Est
i
m
a
t
i
o
n
o
f
r
e
so
u
r
c
e
d
e
man
d
(
K
a
l
man
f
i
l
t
e
r
me
t
h
o
d
,
l
i
n
e
a
r
r
e
g
r
e
ssi
o
n
)
R
e
so
u
r
c
e
d
e
ma
n
d
e
st
i
m
a
t
i
o
n
R
e
so
u
r
c
e
d
e
ma
n
d
e
st
i
m
a
t
i
o
n
w
i
t
h
a
f
e
w
e
r
v
a
r
i
e
t
y
o
f
so
u
r
c
e
r
e
q
u
e
st
s (l
e
ss t
h
a
n
2
0
r
e
q
u
e
st
s)
S
i
mo
n
S
p
i
n
n
e
r
e
t
a
l
.
[
1
6
]
-
C
o
n
t
r
o
l
l
i
n
g
t
h
e
u
se
o
f
r
e
so
u
r
c
e
s i
n
m
u
l
t
i
-
t
e
n
a
n
t
a
p
p
l
i
c
a
t
i
o
n
s
a
n
d
r
e
q
u
e
st
r
e
so
u
r
c
e
e
st
i
mat
i
o
n
(
K
a
l
man
f
i
l
t
e
r
,
l
i
n
e
a
r
r
e
g
r
e
ssi
o
n
a
n
d
t
h
e
se
r
v
i
c
e
d
e
man
d
l
a
w
)
-
C
o
mb
i
n
i
n
g
a
d
m
i
ssi
o
n
c
o
n
t
r
o
l
me
c
h
a
n
i
sm
b
y
r
e
q
u
e
st
r
e
so
u
r
c
e
e
st
i
mat
i
o
n
t
e
c
h
n
i
q
ue
-
D
i
f
f
e
r
e
n
t
r
e
so
u
r
c
e
s re
q
u
e
st
s
u
p
p
o
r
t
-
A
b
l
e
t
o
sh
a
r
e
r
e
so
u
r
c
e
s
-
M
a
n
a
g
i
n
g
mal
i
c
i
o
u
s re
q
u
e
st
s
-
Est
i
m
a
t
i
o
n
o
f
t
h
e
r
e
so
u
r
c
e
d
e
ma
n
d
s
f
o
r
a
l
a
r
g
e
n
u
m
b
e
r
o
f
r
e
so
u
r
c
e
d
e
man
d
s
-
P
e
r
f
o
r
man
c
e
g
u
a
r
a
n
t
e
e
-
I
g
n
o
r
i
n
g
a
l
l
p
a
r
a
me
t
e
r
s
a
f
f
e
c
t
i
n
g
t
h
e
p
e
r
f
o
r
man
c
e
,
g
u
a
r
a
n
t
e
e
q
u
a
l
i
t
y
o
f
se
r
v
i
c
e
a
n
d
i
mp
r
o
v
e
sy
st
e
m
p
e
r
f
o
r
man
c
e
a
n
d
e
t
c
.
si
mu
l
t
a
n
e
o
u
sl
y
Te
n
a
n
t
-
b
a
se
d
r
e
s
o
u
r
c
e
a
l
l
o
c
a
t
i
o
n
o
p
t
i
mi
z
a
t
i
o
n
R
a
j
u
m
a
r
R
e
t
a
l
.
[
1
7
]
-
Ev
a
l
u
a
t
e
s so
me
w
e
l
l
-
k
n
o
w
n
a
l
g
o
r
i
t
h
ms s
u
c
h
a
s L
P
T
,
M
U
L
TI
F
I
T
a
n
d
B
o
u
n
d
F
i
t
-
Ea
sy
i
mp
l
e
me
n
t
a
t
i
o
n
-
U
n
d
e
r
so
me
c
i
r
c
u
ms
t
a
n
c
e
s,
t
h
e
y
c
a
n
g
e
t
t
h
e
so
l
u
t
i
o
n
s
n
e
a
r
t
h
e
b
e
st
so
l
u
t
i
o
n
-
T
h
e
se
a
l
g
o
r
i
t
h
ms
t
o
r
e
sp
o
n
d
t
o
i
ssu
e
s o
f
o
n
e
t
y
p
e
so
u
r
c
e
o
r
i
n
h
o
mo
g
e
n
e
o
u
s re
so
u
r
c
e
c
i
r
c
u
ms
t
a
n
c
e
-
T
h
e
d
i
sa
d
v
a
n
t
a
g
e
s o
f
h
i
g
h
c
o
st
-
U
n
st
a
b
l
e
q
u
a
l
i
t
y
o
f
r
e
su
l
t
s
-
T
h
e
se
a
l
g
o
r
i
t
h
ms a
r
e
n
o
t
a
p
p
r
o
p
r
i
a
t
e
t
o
r
e
sp
o
n
d
p
r
o
b
l
e
ms f
r
o
m so
me
k
i
n
d
o
f
so
u
r
c
e
s o
r
i
n
a
h
e
t
e
r
o
g
e
n
e
o
u
s
so
u
r
c
e
s e
n
v
i
r
o
n
me
n
t
LI
U
A
n
f
e
n
g
e
t
a
l
.
[
1
8
]
P
r
o
v
i
d
i
n
g
T
w
o
-
p
h
a
se
h
e
u
r
i
st
i
c
o
p
t
i
m
i
z
a
t
i
o
n
a
l
g
o
r
i
t
h
m fo
r
o
f
w
e
b
-
b
a
se
d
c
l
u
st
e
r
o
n
d
e
v
e
l
o
p
me
n
t
o
f
L
P
T
a
l
g
o
r
i
t
h
m
a
n
d
h
e
u
r
i
s
t
i
c
a
l
g
o
r
i
t
h
m
M
M
K
P
-
T
h
e
se
t
w
o
a
l
g
o
r
i
t
h
ms
a
r
e
a
b
l
e
t
o
r
e
sp
o
n
d
t
o
r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
p
r
o
b
l
e
ms r
e
l
a
t
e
d
t
o
q
u
a
l
i
t
y
o
f
se
r
v
i
c
e
-
M
a
x
i
m
i
z
i
n
g
t
h
e
u
se
o
f
r
e
so
u
r
c
e
s fo
r
t
h
e
p
u
r
p
o
se
o
f
a
l
l
o
c
a
t
i
n
g
sy
st
e
m
r
e
so
u
r
c
e
s t
o
d
i
f
f
e
r
e
n
t
S
a
a
S
a
p
p
l
i
c
a
t
i
o
n
s
-
T
h
e
u
se
o
f
me
n
t
i
o
n
e
d
a
l
g
o
r
i
t
h
ms
t
o
r
e
sp
o
n
d
t
o
t
h
e
i
ssu
e
o
f
sy
st
e
m re
so
u
r
c
e
s
a
l
l
o
c
a
t
i
o
n
o
f
S
a
a
S
a
p
p
l
i
c
a
t
i
o
n
t
h
a
t
w
i
l
l
n
o
t
g
e
t
o
p
t
i
m
i
z
e
d
a
n
sw
e
r
a
n
d
p
e
r
f
o
r
man
c
e
-
I
n
e
f
f
i
c
i
e
n
c
i
e
s a
n
d
o
p
t
i
mi
z
e
d
p
e
r
f
o
r
man
c
e
D
e
sh
u
a
i
W
a
n
g
e
t
a
l
.
[
1
9
]
sy
st
e
m r
e
so
u
r
c
e
a
l
l
o
c
a
t
i
o
n
me
t
h
o
d
s fo
r
m
u
l
t
i
-
t
e
n
a
n
t
S
a
a
S
a
p
p
l
i
c
a
t
i
o
n
(
a
l
g
o
r
i
t
h
ms o
f
T
Q
O
S
R
A
A
-
R
E
a
n
d
T
Q
O
S
R
A
A
-
R
A
)
-
O
b
t
a
i
n
i
n
g
n
e
a
r
b
e
st
r
e
su
l
t
s w
i
t
h
p
o
l
y
n
o
mi
a
l
t
i
me
c
o
mp
l
e
x
i
t
y
-
O
p
t
i
m
i
z
e
d
P
e
r
f
o
r
man
c
e
-
R
e
sp
o
n
d
i
n
g
t
o
i
ssu
e
s
t
h
a
t
c
a
l
l
a
n
d
r
e
c
e
i
v
e
o
p
t
i
mi
z
e
d
p
e
r
f
o
r
man
c
e
-
I
g
n
o
r
i
n
g
a
l
l
p
a
r
a
me
t
e
r
s
a
f
f
e
c
t
i
n
g
t
h
e
p
e
r
f
o
r
man
c
e
,
g
u
a
r
a
n
t
e
e
q
u
a
l
i
t
y
o
f
se
r
v
i
c
e
a
n
d
i
mp
r
o
v
e
sy
st
e
m
p
e
r
f
o
r
man
c
e
a
n
d
e
t
c
.
si
mu
l
t
a
n
e
o
u
sl
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
2
0
1
7
:
1
2
4
–
1
3
8
12
8
3.
P
RO
P
O
SE
D
SO
L
UT
I
O
N
I
n
t
h
is
s
ec
tio
n
,
to
o
v
er
co
m
e
t
h
e
is
s
u
es
o
f
o
v
er
-
u
ti
lizatio
n
an
d
u
n
d
er
-
u
t
ilizatio
n
i
n
r
eso
u
r
ce
allo
ca
tio
n
f
o
r
SaaS
ap
p
licatio
n
s
,
w
e
p
r
o
p
o
s
e
ten
an
t
b
ased
r
eso
u
r
ce
allo
c
atio
n
m
o
d
el
alg
o
r
ith
m
u
s
i
n
g
g
e
n
etic
alg
o
r
it
h
m
(
T
B
R
A
M
A
-
G
A
)
an
d
te
n
a
n
t
b
ased
r
eso
u
r
ce
allo
ca
tio
n
m
o
d
el
al
g
o
r
ith
m
u
s
in
g
h
eu
r
is
tic
alg
o
r
it
h
m
(
T
B
R
A
M
A
–
HE
)
:
3
.
1
.
T
ena
nt
-
ba
s
ed
VM
a
llo
c
a
t
io
n a
lg
o
ri
t
h
m
ba
s
ed
o
n g
enet
ic
a
lg
o
rit
h
m
o
f
T
B
RAM
A
-
GA
B
ased
o
n
th
e
id
ea
o
f
g
e
n
etic
alg
o
r
it
h
m
,
w
e
h
a
v
e
p
r
o
p
o
s
ed
th
e
T
B
R
A
M
A
-
G
A
alg
o
r
ith
m
,
T
B
R
A
M
A
-
G
A
s
tep
s
h
av
e
b
ee
n
d
escr
ib
ed
b
elo
w
:
Step
1
.
I
n
itial p
o
p
u
latio
n
I
n
T
B
R
A
M
A
-
G
A
th
e
p
o
p
u
lati
o
n
is
m
ad
e
u
p
o
f
c
h
r
o
m
o
s
o
m
e
s
th
a
t,
ea
ch
c
h
r
o
m
o
s
o
m
e
r
ep
r
esen
t
s
t
h
e
w
ei
g
h
t o
f
t
h
e
ten
a
n
t.
An
d
th
e
i
n
iti
al
p
o
p
u
latio
n
is
eq
u
al
to
t
h
e
w
ei
g
h
t v
ec
to
r
.
W
eig
h
t V
ec
to
r
=
{
w
1
,
w
2
,
w
3
,
…}
So
,
th
e
f
ir
s
t g
e
n
er
atio
n
o
f
p
o
p
u
latio
n
i
n
cl
u
d
in
g
n
ch
r
o
m
o
s
o
m
es i
s
g
e
n
er
ated
o
f
th
e
p
o
p
u
la
tio
n
r
an
d
o
m
l
y
.
Step
2
.
Fit
n
es
s
Fu
n
ctio
n
As
w
e
s
aid
,
o
u
r
g
o
al
i
s
to
d
eter
m
i
n
e
th
e
m
i
n
i
m
u
m
n
u
m
b
er
o
f
VM
s
a
m
p
le
s
r
eq
u
ir
ed
to
allo
ca
te
w
ei
g
h
t
v
ec
to
r
w
it
h
r
esp
ec
t
to
VM
ca
p
ac
ity
.
Fit
n
es
s
f
u
n
c
tio
n
m
ea
s
u
r
es
t
h
e
q
u
alit
y
o
f
s
o
lu
tio
n
s
o
f
f
er
ed
.
So
b
ased
o
n
o
u
r
g
o
al,
f
itn
e
s
s
f
u
n
ct
io
n
ca
n
b
e
ex
p
r
es
s
ed
as f
o
llo
w
s
(
E
q
u
atio
n
1
).
F(x
)
=
∑
∑
(
1
)
T
h
en
,
f
o
r
ea
ch
ch
r
o
m
o
s
o
m
e
o
f
th
e
p
o
p
u
latio
n
,
th
e
f
it
n
es
s
f
u
n
ctio
n
i
s
ca
lcu
lated
.
Step
3
.
Selectio
n
T
h
e
r
o
u
lette
w
h
ee
l
s
elec
tio
n
o
p
er
ato
r
is
ch
o
s
en
as
t
h
e
s
elec
tio
n
o
p
er
ato
r
f
o
r
T
B
R
A
M
A
-
G
A
.
I
n
r
o
u
lette
w
h
ee
l,
th
e
w
h
ee
l
ar
ea
is
d
iv
id
ed
in
to
s
ec
tio
n
s
t
h
at
th
eir
n
u
m
b
er
is
eq
u
al
to
th
e
n
u
m
b
er
o
f
m
e
m
b
er
s
an
d
ar
ea
o
f
ea
c
h
s
ec
tio
n
is
p
r
o
p
o
r
tio
n
al
to
th
e
le
v
el
o
f
f
it
n
es
s
o
f
ea
ch
c
h
r
o
m
o
s
o
m
e.
T
h
en
,
th
e
w
h
ee
l
is
t
u
r
n
ed
u
n
t
il
it
s
to
p
s
at
a
p
o
in
t
ac
cid
en
tall
y
.
T
h
is
p
o
in
t
h
i
g
h
lig
h
t
s
th
e
s
elec
ted
ch
r
o
m
o
s
o
m
e.
So
th
e
ch
r
o
m
o
s
o
m
e
s
th
a
t
h
av
e
h
ig
h
f
itn
e
s
s
v
alu
e
m
a
y
b
e
s
elec
ted
s
ev
er
al
ti
m
e
s
in
t
h
e
p
r
o
d
u
ctio
n
p
r
o
ce
s
s
,
w
h
ile
th
e
ch
r
o
m
o
s
o
m
e
s
th
at
h
av
e
lo
w
f
it
n
ess
m
a
y
n
o
t
b
e
ch
o
s
e
n
e
v
er
.
First,
e
li
m
in
ate
s
all
c
h
r
o
m
o
s
o
m
es
w
it
h
n
eg
a
tiv
e
co
m
p
a
tib
ilit
y
.
T
h
en
ca
lcu
la
tes
th
e
co
m
p
ati
b
ilit
y
p
r
o
b
ab
ilit
y
f
o
r
t
h
e
r
e
m
ai
n
in
g
c
h
r
o
m
o
s
o
m
es.
Du
r
i
n
g
ea
ch
s
u
cc
es
s
f
u
l
p
r
o
d
u
ctio
n
,
r
o
u
lette
s
elec
tio
n
o
p
er
ato
r
k
ee
p
s
th
e
q
u
alit
y
a
n
d
d
iv
er
s
it
y
f
o
r
t
h
e
n
e
x
t
g
e
n
er
ati
o
n
b
y
ch
o
o
s
i
n
g
t
h
e
b
est s
o
lu
tio
n
r
an
d
o
m
l
y
.
A
d
d
itio
n
al
w
eig
h
t
s
ar
e
id
en
ti
f
ied
an
d
th
e
n
u
m
b
er
o
f
VM
p
r
o
to
ty
p
e
f
o
r
w
ei
g
h
t
v
ec
to
r
is
ca
lcu
lated
an
d
as f
ar
as p
o
s
s
ib
le
as
s
i
g
n
s
w
ei
g
h
ts
w
i
th
a
p
r
i
m
ar
y
VM
.
Step
4
.
R
ep
r
o
d
u
ctio
n
T
h
e
n
ex
t
s
tep
is
th
e
p
r
o
d
u
ctio
n
o
f
s
ec
o
n
d
-
g
e
n
er
ati
o
n
p
o
p
u
la
tio
n
f
r
o
m
s
o
l
u
tio
n
s
f
r
o
m
t
h
o
s
e
s
elec
ted
,
th
at
g
e
n
etic
o
p
er
ato
r
s
is
o
n
e
o
f
th
e
m
: c
r
o
s
s
o
v
er
an
d
m
u
tat
io
n
.
1.
C
r
o
s
s
o
v
er
W
e
ad
o
p
ted
u
n
if
o
r
m
cr
o
s
s
o
v
er
m
et
h
o
d
an
d
g
en
e
s
w
er
e
ad
ap
ted
as
th
e
m
ai
n
u
n
it
f
o
r
2
p
ar
en
ts
to
p
r
o
d
u
ce
ch
ild
.
E
ac
h
g
e
n
e
i
s
s
e
lecte
d
r
an
d
o
m
l
y
f
r
o
m
o
n
e
p
ar
en
t.
A
t
t
h
i
s
s
tep
,
cr
o
s
s
o
v
er
o
p
er
ato
r
ac
ts
w
it
h
t
h
e
P
c
p
o
s
s
ib
ilit
y
o
n
p
ar
en
t c
h
r
o
m
o
s
o
m
e
an
d
p
r
o
d
u
ce
s
a
n
e
w
ch
r
o
m
o
s
o
m
e
b
y
co
m
b
i
n
i
n
g
t
h
e
m
.
2.
Mu
tatio
n
W
e
ch
an
g
ed
ea
ch
g
e
n
e
to
a
r
a
n
d
o
m
v
alu
e
in
a
co
n
s
tan
t
p
o
s
s
ib
ilit
y
.
P
o
s
s
ib
ilit
y
i
s
u
s
u
all
y
s
e
t
o
n
1
0
%.
A
t
th
i
s
s
tep
,
m
u
tatio
n
ac
tio
n
is
d
o
n
e
w
it
h
P
m
p
r
o
b
ab
ilit
y
o
n
ch
r
o
m
o
s
o
m
e
r
es
u
lted
o
f
m
o
v
e
m
e
n
t,
an
d
n
e
w
in
f
o
r
m
atio
n
i
s
o
b
tain
ed
b
y
ch
a
n
g
i
n
g
th
e
b
it
s
o
f
ch
r
o
m
o
s
o
m
e
s
.
A
t
t
h
is
p
o
in
t
a
n
e
w
p
o
p
u
latio
n
i
s
s
elec
ted
to
e
n
ter
th
e
n
e
x
t
s
ta
g
e
o
f
t
h
e
a
lg
o
r
it
h
m
.
T
h
is
is
d
o
n
e
b
y
co
m
p
ar
i
n
g
t
h
e
f
it
n
ess
o
f
ch
r
o
m
o
s
o
m
e
s
.
A
t
t
h
is
s
tep
,
r
e
m
o
v
in
g
ex
ce
s
s
w
ei
g
h
t
s
f
o
r
w
ei
g
h
t
v
ec
to
r
p
r
o
ce
s
s
in
g
is
d
o
n
e.
T
h
e
r
em
ai
n
i
n
g
w
ei
g
h
ts
th
at
h
a
v
e
n
o
t b
ee
n
allo
ca
ted
in
th
e
f
ir
s
t g
e
n
er
atio
n
,
h
av
e
b
ee
n
elec
ted
f
o
r
th
e
n
ex
t
g
e
n
er
ati
o
n
.
Step
5
.
E
n
d
T
B
R
A
M
A
-
G
A
en
d
co
n
d
itio
n
is
:
I
f
th
e
r
e
m
ai
n
i
n
g
w
e
ig
h
t
v
ec
to
r
h
as
ze
r
o
len
g
t
h
alg
o
r
it
h
m
w
i
ll
b
e
en
d
ed
an
d
n
u
m
b
er
o
f
V
M
s
a
m
p
le
s
th
at
s
h
o
u
ld
b
e
i
m
p
le
m
en
ted
,
s
o
all
ten
a
n
t
w
o
r
k
lo
ad
w
o
u
ld
b
e
allo
ca
ted
,
is
ac
h
ie
v
ed
.
Oth
er
w
i
s
e,
it
r
etu
r
n
s
to
s
tep
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
A
p
p
r
o
c
h
b
a
s
ed
o
n
Gen
etic
A
lg
o
r
ith
m
fo
r
mu
lti
-
ten
a
n
t R
e
s
o
u
r
ce
A
llo
ca
tio
n
in
…
(
E
la
h
e
h
kh
eiri
)
129
3
.
2
.
Te
na
nt
-
ba
s
ed
VM
a
llo
c
a
t
io
n a
lg
o
ri
t
h
m
ba
s
ed
o
n he
uris
t
ic
a
lg
o
rit
h
m
T
B
RAM
A
-
HE
I
n
liter
atu
r
e
o
f
s
y
s
te
m
r
eso
u
r
ce
s
s
tu
d
ie
s
,
g
r
ee
d
y
al
g
o
r
ith
m
-
b
a
s
ed
m
et
h
o
d
is
p
o
p
u
lar
b
ec
au
s
e
o
f
ef
f
icien
c
y
a
n
d
s
i
m
p
lici
t
y
.
B
y
ad
o
p
tin
g
t
h
e
id
ea
o
f
g
r
e
ed
y
alg
o
r
it
h
m
,
w
e
h
av
e
p
r
o
p
o
s
ed
a
lg
o
r
ith
m
,
T
B
R
A
M
A
-
HE
s
tep
s
h
a
v
e
b
ee
n
d
escr
ib
ed
.
I
n
p
u
t:
w
ei
g
h
t v
ec
to
r
s
et
{
w
1
,
w
2
,
w
3
,
.
.
.
}
an
d
VM
ca
p
ac
it
y
Ou
tp
u
t: T
h
e
n
u
m
b
er
o
f
VM
s
a
m
p
les
Go
al:
F(x
)
=
∑
∑
(
2
)
A
cc
o
r
d
in
g
to
th
e
id
ea
o
f
g
r
ee
d
y
al
g
o
r
ith
m
d
u
r
in
g
ea
c
h
s
ta
g
e,
an
ele
m
e
n
t
is
ad
d
ed
to
th
e
s
o
lu
tio
n
s
et,
r
estrictio
n
co
n
d
it
io
n
h
as
b
ee
n
ex
a
m
in
ed
,
a
n
d
if
th
er
e
is
n
o
p
r
o
b
lem
,
ele
m
e
n
t
a
n
d
th
e
n
e
x
t
ele
m
e
n
ts
ar
e
ad
d
ed
to
th
e
s
o
lu
t
io
n
s
et
ac
co
r
d
in
g
l
y
.
Du
r
i
n
g
th
e
s
e
s
tep
s
i
f
y
o
u
r
ea
ch
a
ce
r
tain
f
i
n
al
co
n
d
iti
o
n
,
o
r
th
er
e
is
n
o
p
o
s
s
ib
ilit
y
to
s
elec
t
an
o
t
h
er
ele
m
e
n
t
to
ad
d
to
th
e
s
o
lu
tio
n
s
et,
th
e
alg
o
r
ith
m
h
a
s
b
ee
n
en
d
ed
an
d
ac
h
iev
ed
s
o
lu
tio
n
s
et
is
p
r
o
v
id
ed
as o
p
tim
u
m
s
o
lu
tio
n
.
4.
P
E
RF
O
RM
ANCE E
VA
L
U
AT
I
O
N
I
n
th
i
s
s
ec
tio
n
,
th
e
r
es
u
lt
s
o
f
t
h
e
i
m
p
le
m
e
n
tatio
n
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
ex
a
m
i
n
ed
f
o
r
allo
ca
tin
g
r
eso
u
r
ce
s
in
m
u
lti
-
te
n
a
n
t
clo
u
d
ar
ch
itect
u
r
e
o
f
Saa
S
ap
p
licatio
n
s
.
Si
m
u
latio
n
w
as
p
er
f
o
r
m
ed
i
n
Netb
ea
n
s
en
v
ir
o
n
m
e
n
t
b
y
u
s
in
g
th
e
C
lo
u
d
s
i
m
to
o
ls
.
C
o
n
f
ig
u
r
ati
o
n
o
f
s
i
m
u
lated
p
ar
a
m
eter
s
h
a
s
b
ee
n
s
h
o
w
n
i
n
T
ab
les 2
an
d
3
.
T
ab
le
2
.
C
h
ar
ac
ter
is
tics
o
f
t
h
e
d
ata
ce
n
ter
X
8
6
A
r
c
h
i
t
e
c
t
u
r
e
D
a
t
a
C
e
n
t
e
r
L
i
n
u
x
O
p
e
r
a
t
i
n
g
S
y
st
e
m
X
e
n
V
i
r
t
u
a
l
M
a
c
h
i
n
e
M
a
n
a
g
e
r
T
ab
le
3
.
C
h
ar
ac
ter
is
tics
o
f
h
o
s
t
S
e
r
v
e
r
n
a
me
H
P
P
r
o
L
i
a
n
t
G
5
C
o
r
e
s
F
r
e
q
u
e
n
c
y
(
M
I
P
S
)
R
A
M
(
G
B
)
BW
C
o
st
H
P
P
r
o
L
i
a
n
t
G
4
I
n
t
e
l
X
e
o
n
3
0
4
0
2
5
5
8
0
4
1
G
b
i
t
/
s
1
2
0
0
H
P
P
r
o
L
i
a
n
t
G
5
I
n
t
e
l
X
e
o
n
3
0
7
5
2
7
9
8
0
4
1
G
b
i
t
/
s
1
8
0
0
A
u
s
er
r
ec
o
r
d
s
s
ev
er
al
tas
k
s
w
h
er
e
ea
ch
ta
s
k
i
s
h
e
t
er
o
g
en
eo
u
s
w
it
h
d
if
f
er
en
t
f
ac
ilit
ies
o
f
co
m
p
u
tatio
n
al
p
ar
a
m
eter
s
s
u
c
h
as
d
i
f
f
er
en
t
p
r
o
ce
s
s
o
r
s
p
ee
d
,
d
is
k
m
e
m
o
r
y
,
R
A
M
a
n
d
n
et
w
o
r
k
p
ar
a
m
eter
s
,
in
cl
u
d
in
g
late
n
c
y
a
n
d
d
if
f
er
en
t b
an
d
w
id
t
h
f
o
r
co
m
b
i
n
in
g
co
n
ce
p
ts
.
Fo
r
th
e
tab
le
o
f
w
ei
g
h
t
s
as
s
o
ciate
d
w
it
h
ea
c
h
ten
a
n
t
ea
c
h
,
f
ile
is
u
s
ed
t
h
at,
o
n
ea
c
h
r
o
w
,
w
ei
g
h
t
ass
o
ciate
d
w
it
h
co
n
s
id
er
e
d
ten
an
t
ca
n
b
e
h
ar
v
e
s
ted
.
R
eq
u
e
s
t
r
ate
o
f
th
e
s
er
v
er
s
i
s
co
n
s
i
d
er
ed
1
0
MI
P
S
b
y
d
ef
au
lt.
T
h
e
s
o
u
r
ce
u
s
ed
in
t
h
is
s
i
m
u
lat
io
n
is
C
P
U,
s
o
th
a
t
th
e
d
ata
s
en
t
f
r
o
m
th
e
s
er
v
e
r
is
p
r
o
ce
s
s
ed
f
o
r
a
s
p
ec
if
ic
t
i
m
e
an
d
a
f
ter
p
r
o
ce
s
s
in
g
,
th
e
r
e
s
p
o
n
s
e
i
s
s
e
n
t b
ac
k
t
o
th
e
s
er
v
er
ag
ai
n
.
I
n
th
e
s
i
m
u
latio
n
,
a
q
u
e
u
e
h
as
b
ee
n
co
n
s
id
er
ed
f
o
r
Data
C
en
ter
as
th
e
f
ir
s
t
co
n
tr
o
l
s
tr
u
c
tu
r
e,
th
at
th
e
q
u
e
u
e
s
ize
w
ill
v
ar
y
b
ased
o
n
th
e
r
esu
lti
n
g
VM
o
f
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
.
T
im
e
o
f
s
i
m
u
latio
n
ca
n
v
ar
y
b
ased
o
n
th
e
n
u
m
b
er
o
f
s
er
v
er
s
.
T
h
u
s
,
at
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
2
0
1
7
:
1
2
4
–
1
3
8
130
th
e
b
eg
i
n
n
in
g
o
f
s
i
m
u
latio
n
,
ea
ch
s
er
v
er
s
en
d
s
a
r
eq
u
est
a
n
d
s
i
m
u
latio
n
w
i
ll
co
n
t
in
u
e
t
o
g
et
an
s
w
er
s
to
al
l
s
er
v
er
s
.
Fi
g
u
r
e
1
s
h
o
w
s
a
v
ie
w
o
f
a
s
i
m
u
lated
e
n
v
ir
o
n
m
e
n
t.
Fig
u
r
e
1
.
A
v
ie
w
o
f
s
i
m
u
lated
en
v
ir
o
n
m
e
n
t
4
.
1
.
P
er
f
o
rm
a
nce
M
et
rics
T
o
ev
alu
ate
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
,
th
r
ee
d
if
f
er
en
t
s
ce
n
ar
io
s
h
a
v
e
b
ee
n
d
e
f
in
ed
ac
co
r
d
in
g
to
T
ab
le
8
.
I
n
ea
ch
s
ce
n
ar
io
,
th
e
n
u
m
b
er
o
f
te
n
an
t
s
i
s
co
n
s
ta
n
t
a
n
d
t
h
e
n
u
m
b
er
o
f
s
er
v
er
s
i
s
v
ar
ied
.
I
n
ea
c
h
s
i
m
u
latio
n
th
e
th
r
ee
cr
iter
ia
o
f
r
esp
o
n
s
e
t
i
m
e,
w
aiti
n
g
ti
m
e
o
f
s
er
v
er
s
a
n
d
av
ailab
ilit
y
o
f
Data
C
e
n
ter
in
T
B
R
A
M
A
-
G
A
alg
o
r
ith
m
a
n
d
T
B
R
A
M
A
-
HE
ar
e
ex
a
m
i
n
ed
.
Respo
ns
e
t
i
m
e:
R
esp
o
n
s
e
ti
m
e
is
th
e
e
x
ac
t
ti
m
e
d
if
f
er
en
ce
b
et
w
ee
n
th
e
ti
m
e
o
f
r
eq
u
est
a
n
d
ti
m
e
o
f
d
eliv
er
ed
task
.
Serv
er
w
a
it
ing
t
i
m
e:
T
h
e
d
u
r
atio
n
th
at
ea
c
h
s
er
v
er
is
w
ai
ti
n
g
f
o
r
f
i
n
d
i
n
g
s
o
u
r
ce
o
f
r
eq
u
est
tr
an
s
f
er
.
Av
a
ila
bil
it
y
:
A
s
s
u
m
e
t
h
at
ar
e
clo
u
d
s
o
u
r
ce
s
,
f
o
r
,
h
as
b
ee
n
ad
ap
ted
as
th
e
n
u
m
b
er
o
f
r
ec
o
r
d
ed
task
s
a
n
d
is
ad
ap
ted
n
u
m
b
er
o
f
tas
k
s
f
o
r
th
e
clo
u
d
s
o
u
r
ce
in
th
e
ti
m
e
r
an
g
e
o
f
T
;
So
th
at,
th
e
a
v
ailab
ilit
y
is
o
b
ta
in
ed
ac
co
r
d
in
g
to
th
e
E
q
u
at
io
n
3
.
(
3
)
T
h
er
e
h
as b
ee
n
d
ef
in
ed
t
h
r
ee
s
ce
n
ar
io
f
o
r
ev
al
u
atio
n
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
,
in
T
ab
le
4
:
T
ab
le
4
.
E
v
alu
ated
Scen
ar
io
s
sce
n
a
r
i
o
N
u
mb
e
r
o
f
t
e
n
a
n
t
s
N
u
mb
e
r
o
f
se
r
v
e
r
s
O
b
j
e
c
t
i
v
e
1
st
.
sce
n
a
r
i
o
3
2
0
0
,
5
0
0
,
1
0
0
0
C
a
l
c
u
l
a
t
i
o
n
o
f
t
h
e
r
e
sp
o
n
se
t
i
me
,
se
r
v
e
r
w
a
i
t
i
n
g
t
i
me
a
n
d
a
v
a
i
l
a
b
i
l
i
t
y
o
f
D
a
t
a
C
e
n
t
e
r
i
n
T
B
R
A
M
A
-
G
A
a
n
d
T
B
R
A
M
A
-
H
E
a
l
g
o
r
i
t
h
ms
2
n
d
.
sce
n
a
r
i
o
5
2
0
0
,
5
0
0
,
1
0
0
0
3
r
d
.
sce
n
a
r
i
o
10
2
0
0
,
5
0
0
,
1
0
0
0
4
.
2
.
E
v
a
lua
t
i
o
n o
f
t
he
F
irst
Sena
rio
R
eso
u
r
ce
m
a
n
ag
e
m
e
n
t
f
o
r
m
u
lti
-
te
n
a
n
t s
tr
u
ct
u
r
e
is
t
h
e
m
ai
n
p
r
o
b
lem
i
n
t
h
is
r
esear
c
h
.
T
h
e
n
u
m
b
er
o
f
ten
an
ts
i
n
t
h
is
s
i
m
u
lat
io
n
is
c
o
n
s
id
er
ed
3
.
Nu
m
b
er
o
f
s
er
v
e
r
s
is
v
ar
iab
le
a
n
d
h
av
e
b
ee
n
c
o
n
s
id
er
ed
2
0
0
,
5
0
0
an
d
1
0
0
0
.
W
eig
h
t a
llo
ca
ted
to
ea
ch
ten
a
n
t
h
as
b
ee
n
s
p
ec
i
f
ied
in
T
ab
le
5
.
T
ab
le
5
.
T
h
e
w
e
ig
h
t a
s
s
i
g
n
ed
t
o
ea
ch
ten
an
t
T
e
n
a
n
t
3
T
e
n
a
n
t
2
T
e
n
a
n
t
1
4
3
4
21
2
5
4
T
h
e
s
i
m
u
latio
n
i
s
d
o
n
e
u
s
in
g
th
e
p
r
o
p
o
s
ed
m
eth
o
d
.
C
o
n
s
i
d
er
in
g
t
h
e
u
s
e
o
f
g
e
n
etic
al
g
o
r
ith
m
,
t
h
e
n
u
m
b
er
o
f
VM
s
is
d
eter
m
i
n
ed
.
Nu
m
b
er
o
f
g
en
er
atio
n
s
a
n
d
th
e
in
itial
p
o
p
u
latio
n
h
as
b
ee
n
co
n
s
id
er
ed
5
0
,
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
A
p
p
r
o
c
h
b
a
s
ed
o
n
Gen
etic
A
lg
o
r
ith
m
fo
r
mu
lti
-
ten
a
n
t R
e
s
o
u
r
ce
A
llo
ca
tio
n
in
…
(
E
la
h
e
h
kh
eiri
)
131
th
e
m
u
ta
tio
n
o
p
er
ato
r
v
alu
e
h
as
b
ee
n
co
n
s
id
er
ed
0
.
7
an
d
0
.
0
1
.
Fig
u
r
e
2
s
h
o
w
s
g
r
ap
h
s
o
f
t
h
e
m
ea
n
f
it
n
ess
f
u
n
ctio
n
d
u
r
in
g
5
0
g
en
er
at
io
n
s
.
Fig
u
r
e
2
.
T
h
e
g
r
ap
h
o
f
th
e
f
it f
u
n
ct
io
n
v
a
lu
e
s
d
u
r
in
g
5
0
g
en
er
atio
n
s
Fig
u
r
e
3
.
VM
n
u
m
b
er
p
er
ea
ch
ten
a
n
t
T
h
e
n
u
m
b
er
o
f
VM
s
is
d
eter
m
in
ed
b
ased
o
n
th
e
w
ei
g
h
t
as
s
i
g
n
ed
to
ea
ch
ten
a
n
t.
Fig
u
r
e
3
s
h
o
w
s
V
M
n
u
m
b
er
s
p
er
ten
a
n
t in
t
w
o
T
B
R
A
M
A
-
G
A
a
n
d
T
B
R
A
M
A
-
H
E
alg
o
r
ith
m
s
.
On
e
o
f
t
h
e
m
o
s
t
i
m
p
o
r
tan
t
i
n
d
icato
r
s
o
f
th
e
s
er
v
ice
q
u
alit
y
i
s
r
eq
u
est
ti
m
e.
Fi
g
u
r
e
4
h
as
i
n
v
esti
g
ated
r
esp
o
n
s
e
ti
m
e
in
T
B
R
A
M
A
-
H
E
an
d
T
B
R
A
M
A
-
G
A
a
lg
o
r
it
h
m
s
.
Fig
u
r
e
4
in
d
icate
s
th
at
t
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
o
r
T
B
R
A
M
A
-
G
A
h
a
s
th
e
h
ig
h
est
s
p
ee
d
in
r
esp
o
n
d
in
g
to
r
eq
u
ests
b
y
s
er
v
er
s
.
Fig
u
r
e
5
s
h
o
w
s
t
h
e
a
v
er
ag
e
w
ait
in
g
ti
m
e
o
f
s
er
v
er
s
u
s
i
n
g
g
r
ap
h
alg
o
r
it
h
m
s
T
B
R
A
M
A
-
G
A
a
n
d
T
B
R
A
M
A
-
HE
.
I
t is cle
ar
t
h
at
th
e
lo
n
g
er
w
aiti
n
g
t
i
m
e
to
f
in
d
r
eso
u
r
ce
,
th
e
lo
n
g
er
r
esp
o
n
s
e
ti
m
e
w
il
l b
e.
Fig
u
r
e
4
.
R
esp
o
n
s
e
ti
m
e
i
n
b
o
th
alg
o
r
it
h
m
s
Fig
u
r
e
5
.
Ser
v
er
s
w
aiti
n
g
ti
m
e
f
o
r
f
in
d
i
n
g
s
o
u
r
ce
i
n
th
r
ee
alg
o
r
it
h
m
s
As
Fi
g
u
r
e
5
s
h
o
w
s
,
w
aiti
n
g
ti
m
e
o
f
s
er
v
er
s
i
n
T
B
R
A
M
A
-
G
A
m
et
h
o
d
is
less
th
a
n
an
o
t
h
er
alg
o
r
ith
m
,
w
h
ic
h
i
m
p
r
o
v
es
t
h
e
ef
f
icie
n
c
y
o
f
m
u
l
ti
-
ten
a
n
t
clo
u
d
co
m
p
u
t
in
g
s
y
s
te
m
.
O
n
e
o
f
t
h
e
m
o
s
t
i
m
p
o
r
ta
n
t
f
ac
to
r
s
i
n
th
e
s
elec
tio
n
o
f
o
p
ti
m
al
al
g
o
r
ith
m
is
a
v
ailab
ili
t
y
o
f
r
es
o
u
r
ce
s
an
d
Fi
g
u
r
e
6
s
h
o
w
s
th
i
s
f
ac
to
r
in
t
w
o
alg
o
r
ith
m
s
.
T
h
e
h
i
g
h
er
s
y
s
te
m
a
v
ailab
ilit
y
i
s
,
th
e
h
i
g
h
er
s
er
v
ice
q
u
a
lit
y
w
e
h
av
e.
Giv
en
t
h
e
n
u
m
b
er
o
f
r
eq
u
ests
a
n
d
r
esp
o
n
s
e
r
ate
s
p
er
u
n
it
o
f
ti
m
e
w
e
ca
n
ca
lc
u
late
a
v
ailab
ilit
y
o
f
an
y
s
o
u
r
ce
,
an
d
f
i
n
all
y
t
h
e
av
ailab
ilit
y
o
f
t
h
e
en
t
ir
e
s
y
s
te
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
6
,
No
.
3
,
Sep
tem
b
er
2
0
1
7
:
1
2
4
–
1
3
8
132
Fig
u
r
e
6
.
T
h
e
av
er
ag
e
av
ailab
i
lit
y
o
f
r
eso
u
r
ce
s
i
n
th
e
t
h
r
ee
al
g
o
r
ith
m
s
R
es
u
lts
o
f
Fi
g
u
r
e
6
s
h
o
w
s
th
e
b
etter
p
er
f
o
r
m
a
n
ce
o
f
T
B
R
A
M
A
-
G
A
i
n
ter
m
s
o
f
a
v
ailab
ilit
y
co
m
p
ar
ed
to
T
B
R
A
M
A
-
HE
.
A
cc
o
r
d
in
g
to
th
e
f
ig
u
r
e,
w
h
a
t
ev
er
th
e
n
u
m
b
er
o
f
r
eq
u
ests
in
cr
ea
s
es
av
ai
lab
ilit
y
o
f
T
B
R
A
M
A
-
G
A
al
g
o
r
ith
m
i
n
cr
ea
s
es c
o
m
p
ar
ed
to
alg
o
r
ith
m
T
B
R
A
M
A
-
HE
.
4
.
3
.
E
v
a
lua
t
i
o
n o
f
t
he
Seco
n
d Sena
rio
T
h
e
n
u
m
b
er
o
f
te
n
an
t
s
a
n
d
weig
h
ts
i
n
t
h
is
s
i
m
u
latio
n
ar
e
eq
u
al
to
5
.
T
h
e
w
ei
g
h
ts
allo
ca
t
ed
to
ea
ch
ten
an
t to
u
s
e
a
n
d
f
i
n
d
th
e
n
u
m
b
er
o
f
VM
s
h
as b
ee
n
s
p
ec
if
ied
in
T
ab
le
6
.
T
ab
le
6
.
W
eig
h
ts
allo
ca
ted
to
ea
ch
ten
a
n
t
T
e
n
a
n
t
5
T
e
n
a
n
t
4
T
e
n
a
n
t
3
T
e
n
a
n
t
2
T
e
n
a
n
t
1
2
1
0
4
9
3
80
1
9
5
3
7
0
I
n
T
B
R
A
M
A
-
G
A
alg
o
r
it
h
m
,
g
en
er
atio
n
an
d
in
itial
p
o
p
u
lati
o
n
o
f
5
0
,
th
e
co
m
b
i
n
e
o
p
er
ato
r
v
alu
e
o
f
0
.
7
an
d
m
u
tat
io
n
o
p
er
ato
r
o
f
0
.
0
1
h
av
e
b
ee
n
co
n
s
id
er
ed
.
Fig
u
r
e
7
s
h
o
w
s
t
h
e
g
r
ap
h
o
f
m
e
an
v
al
u
es
o
f
f
it
n
ess
f
u
n
ctio
n
d
u
r
in
g
5
0
g
en
er
atio
n
s
.
T
h
e
n
u
m
b
er
o
f
VM
is
d
e
ter
m
i
n
ed
b
ased
o
n
th
e
w
ei
g
h
t
allo
ca
ted
to
ea
ch
ten
an
t.
Fig
u
r
e
8
s
h
o
w
s
VM
n
u
m
b
er
s
p
er
ten
an
t i
n
T
B
R
A
M
A
-
G
A
a
n
d
T
B
R
A
M
A
-
HE
alg
o
r
i
th
m
s
.
Fig
u
r
e
7
.
Gr
ap
h
o
f
th
e
f
it
n
ess
f
u
n
ctio
n
d
u
r
in
g
5
0
g
en
er
at
io
n
s
0.2
0.087
0.065
0.18
0.041
0.009
0
0
.
0
5
0
.
1
0
.
1
5
0
.
2
0
.
2
5
200
500
1000
A
V
A
IL
A
B
IL
IT
Y
NU
M
B
E
R
OF
S
E
RV
E
RS
A
V
A
I
L
A
B
I
L
I
T
Y
T
B
RA
M
A-
GA
T
B
RA
M
A-
HE
0
20
40
60
80
1
0
0
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
Fi
t
n
e
ss
V
a
l
u
e
Gener
a
t
i
o
n
F
it
n
e
ss
V
a
lu
e
s(T
BRA
M
A
-
GA)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
A
n
A
p
p
r
o
c
h
b
a
s
ed
o
n
Gen
etic
A
lg
o
r
ith
m
fo
r
mu
lti
-
ten
a
n
t R
e
s
o
u
r
ce
A
llo
ca
tio
n
in
…
(
E
la
h
e
h
kh
eiri
)
133
Fig
u
r
e
8
.
T
h
e
n
u
m
b
er
o
f
VM
p
er
ten
an
t
On
e
o
f
th
e
m
o
s
t
i
m
p
o
r
ta
n
t
i
n
d
icato
r
s
o
f
t
h
e
s
e
r
v
ice
q
u
al
it
y
i
s
r
esp
o
n
s
e
d
u
r
atio
n
.
Fig
u
r
e
9
h
a
s
in
v
e
s
ti
g
ated
r
esp
o
n
s
e
ti
m
e
in
T
B
R
A
M
A
-
HE
an
d
T
B
R
AM
A
-
G
A
al
g
o
r
ith
m
s
.
Gi
v
e
n
th
at
r
esp
o
n
s
e
s
p
ee
d
in
d
icato
r
o
n
e
o
f
t
h
e
m
ai
n
q
u
al
it
y
s
tan
d
ar
d
s
o
f
r
eso
u
r
ce
allo
c
atio
n
al
g
o
r
ith
m
,
b
y
i
n
v
e
s
ti
g
ati
n
g
F
i
g
u
r
e
8
,
it
h
as
d
et
er
m
in
ed
th
a
t
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
o
r
T
B
R
A
M
A
-
G
A
h
as
th
e
h
ig
h
es
t
s
p
ee
d
in
r
esp
o
n
d
in
g
to
r
eq
u
est
s
b
y
its
s
er
v
er
s
.
Fi
g
u
r
e
1
0
s
h
o
w
s
t
h
e
av
er
a
g
e
w
aiti
n
g
ti
m
e
o
f
s
er
v
er
s
u
s
i
n
g
t
w
o
al
g
o
r
it
h
m
s
T
B
R
A
M
A
-
G
A
an
d
T
B
R
A
M
A
-
HE
.
I
t
is
clea
r
th
at
th
e
lo
n
g
er
w
aiti
n
g
d
u
r
atio
n
t
o
f
in
d
th
e
s
o
u
r
ce
w
il
l
ca
u
s
e
t
h
e
lo
n
g
er
r
esp
o
n
s
e
ti
m
e.
Fig
u
r
e
9
.
T
h
e
r
esp
o
n
s
e
ti
m
e
in
T
B
R
A
M
A
-
G
A
a
n
d
T
B
R
A
M
A
-
HE
al
g
o
r
ith
m
s
Fig
u
r
e
1
0
.
T
h
e
s
er
v
er
w
a
iti
n
g
ti
m
e
to
f
in
d
t
h
e
s
o
u
r
ce
T
h
e
s
er
v
er
w
a
iti
n
g
d
u
r
atio
n
t
o
r
ec
eiv
e
co
n
f
ir
m
atio
n
f
r
o
m
th
e
Data
C
e
n
ter
to
s
en
d
t
h
e
r
eq
u
est
i
s
m
ea
s
u
r
ed
in
t
h
is
s
ec
t
io
n
.
A
s
Fig
u
r
e
1
0
s
h
o
w
s
,
th
e
s
er
v
er
w
ait
in
g
d
u
r
atio
n
i
n
T
B
R
A
M
A
-
G
A
m
et
h
o
d
is
les
s
th
an
a
n
o
th
er
al
g
o
r
ith
m
,
w
h
ich
i
m
p
r
o
v
es t
h
e
ef
f
icie
n
c
y
o
f
m
u
lti
-
te
n
an
t c
lo
u
d
co
m
p
u
ti
n
g
s
y
s
te
m
.
On
e
o
f
th
e
m
o
s
t
i
m
p
o
r
tan
t
f
ac
to
r
s
in
t
h
e
s
elec
tio
n
o
f
th
e
o
p
ti
m
al
al
g
o
r
ith
m
is
th
e
a
v
a
ilab
ilit
y
o
f
r
eso
u
r
ce
s
.
Fi
g
u
r
e
1
1
s
h
o
w
s
t
h
i
s
f
ac
to
r
in
T
B
R
A
M
A
-
G
A
an
d
T
B
R
A
M
A
-
HE
al
g
o
r
ith
m
s
.
R
es
u
lts
o
f
Fi
g
u
r
e
1
0
s
h
o
w
s
b
etter
p
er
f
o
r
m
a
n
ce
o
f
T
B
R
A
M
A
-
G
A
in
ter
m
s
o
f
a
v
aila
b
ilit
y
t
h
a
n
T
B
R
A
M
A
-
HE
al
g
o
r
ith
m
.
0
2
1
5
3
3
1
1
3
3
0
1
2
3
4
5
6
T
en
a
n
t
_1
T
en
a
n
t
_2
T
en
a
n
t
_3
T
en
a
n
t
_4
T
en
a
n
t
_5
V
M
C
ount
Num
be
r
O
f
V
M
S
T
B
R
A
M
A
-
H
E
T
B
R
A
M
A
-
G
A
Evaluation Warning : The document was created with Spire.PDF for Python.