I
nte
rna
t
io
na
l J
o
urna
l o
f
I
nfo
r
m
a
t
ics a
nd
Co
mm
u
n
ica
t
io
n T
ec
hn
o
lo
g
y
(
I
J
-
I
CT
)
Vo
l.
6
,
No
.
1
,
A
p
r
il
201
7
,
p
p
.
58
~
68
I
SS
N:
2252
-
8776
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
ict.
v
6
i1
.
p
p
58
-
68
58
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
I
C
T
Co
pla
na
r Wav
eg
uide F
ed Ci
rcula
r
ly
P
o
la
riz
e
d Not
c
h Ba
nd
Antenna w
ith
De
f
ecte
d
G
ro
un
d St
r
ucture
P
P
o
o
rna
P
riy
a
,
H
a
bib
ull
a
K
ha
n,
B
T
P
M
a
dh
a
v
*
1
De
p
a
rtme
n
t
o
f
ECE
,
K L
Un
iv
e
rsity
,
A
P
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
1
8
,
2
0
1
7
R
ev
i
s
ed
Feb
2
7
,
2
0
1
7
A
cc
ep
ted
Mar
20
,
2
0
1
7
A
c
o
m
p
a
c
t
p
rin
ted
w
id
e
b
a
n
d
a
n
t
e
n
n
a
w
it
h
c
ircu
lar
p
o
lariz
a
ti
o
n
is
d
e
sig
n
e
d
a
n
d
th
e
a
n
ten
n
a
p
a
ra
m
e
t
e
rs
a
re
a
n
a
ly
z
e
d
in
th
is
w
o
rk
.
F
in
it
e
El
e
m
e
n
t
m
e
th
o
d
b
a
se
d
HFS
S
to
o
l
is
u
se
d
t
o
d
e
sig
n
a
n
d
sim
u
late
th
e
a
n
ten
n
a
m
o
d
e
l.
A
b
a
sic
stru
c
tu
re
o
f
re
c
tan
g
u
lar
m
o
n
o
p
o
l
e
is
c
o
n
v
e
rted
i
n
to
a
trap
e
z
o
i
d
a
l
sh
a
p
e
w
it
h
tap
e
re
d
ste
p
g
ro
u
n
d
.
Dif
f
e
r
e
n
t
it
e
ra
ti
o
n
s
o
f
ra
d
iatin
g
e
le
m
e
n
t
a
s
w
e
ll
a
s
d
e
f
e
c
ted
g
ro
u
n
d
stru
c
t
u
re
s
a
re
e
x
a
m
in
e
d
in
t
h
is
w
o
rk
to
a
n
a
ly
z
e
t
h
e
c
ircu
lar
p
o
lariz
a
ti
o
n
c
h
a
ra
c
teristics
o
f
th
e
a
n
ten
n
a
.
A
p
e
a
k
re
a
li
z
e
d
g
a
in
o
f
4
.
3
d
B
a
n
d
p
e
a
k
d
irec
ti
v
it
y
o
f
3
.
8
d
B
is
a
tt
a
i
n
e
d
f
ro
m
th
e
c
u
rre
n
t
d
e
sig
n
e
d
m
o
d
e
ls.
T
h
e
d
e
sig
n
m
o
d
e
ls
a
re
o
p
t
im
ize
d
a
n
d
p
r
o
to
ty
p
e
d
o
n
F
R4
su
b
stra
te
f
o
r
m
e
a
su
re
m
e
n
t
v
a
li
d
a
ti
o
n
.
By
in
c
o
rp
o
ra
ti
n
g
S
p
li
t
ri
n
g
re
so
n
a
to
r
(S
RR)
n
o
tc
h
b
a
n
d
c
h
a
ra
c
teristics
a
re
a
tt
a
in
e
d
in
th
e
p
ro
p
o
se
d
w
id
e
b
a
n
d
a
n
ten
n
a
.
K
ey
w
o
r
d
s
:
C
ir
cu
lar
P
o
lar
izatio
n
Def
ec
ted
Gr
o
u
n
d
Stru
ct
u
r
e
No
tch
B
an
d
Sp
lit R
i
n
g
R
eso
n
ato
r
W
id
eb
an
d
A
n
te
n
n
a
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
B
T
P M
ad
h
av
,
Dep
ar
te
m
en
t o
f
E
C
E
,
K
L
U
n
iv
er
s
it
y
,
A
P
,
I
n
d
ia.
E
m
ail: b
tp
m
ad
h
av
@
k
l
u
n
i
v
er
s
i
t
y
.
in
1.
I
NT
RO
D
UCT
I
O
N
C
ir
cu
lar
p
o
lar
izatio
n
h
a
s
ac
k
n
o
w
led
g
ed
as
o
n
e
o
f
t
h
e
ex
tr
e
m
el
y
r
eq
u
ir
ed
ch
ar
ac
ter
is
tics
o
f
an
u
l
tr
a
-
w
id
eb
an
d
a
n
ten
n
a
[
1
-
2
]
.
T
h
o
u
g
h
,
cir
cu
lar
p
o
lar
izatio
n
w
h
i
ch
is
t
h
e
r
estricti
n
g
i
n
s
tan
ce
o
f
th
e
m
o
s
t
co
m
m
o
n
ellip
tical
p
o
lar
izatio
n
is
f
air
l
y
h
ar
d
to
ac
co
m
p
lis
h
b
ec
au
s
e
o
f
th
e
s
tr
in
g
e
n
t
d
e
m
a
n
d
s
o
n
th
e
p
h
a
s
e
an
d
is
u
n
d
er
s
to
o
d
j
u
s
t
i
n
t
h
e
v
ici
n
it
y
o
f
t
w
o
o
r
th
o
g
o
n
al
co
m
p
o
n
en
ts
o
f
th
e
elec
tr
ic
f
ield
v
ec
to
r
in
e
x
ac
t
p
h
ase
q
u
ad
r
atu
r
e
[
3
-
8
]
.
Gen
er
all
y
,
cir
cu
lar
l
y
p
o
lar
ized
an
te
n
n
as
w
er
e
u
ti
lized
f
o
r
p
o
in
t
to
p
o
in
t
s
atellite
c
o
m
m
u
n
icatio
n
s
an
d
ac
co
r
d
in
g
l
y
,
th
e
a
n
ten
n
as
u
s
ed
to
u
n
d
er
s
ta
n
d
cir
cu
lar
p
o
lar
izatio
n
h
ad
n
o
s
p
ac
e
r
estrictio
n
s
a
n
d
co
u
ld
o
f
f
er
to
b
e
lar
g
e
[
9
-
1
2
]
.
C
r
o
s
s
ed
d
ip
o
les,
A
r
c
h
i
m
ed
ea
n
Sp
ir
als
a
n
d
Yag
i
-
Ud
a‟
s
g
a
v
e
th
e
r
eq
u
ir
ed
cir
cu
lar
p
o
lar
izatio
n
ch
ar
ac
ter
is
tics
.
A
d
d
it
io
n
all
y
,
t
h
e
is
s
u
e
o
f
s
p
ec
t
r
u
m
b
y
Fed
er
al
C
o
m
m
u
n
ica
tio
n
s
C
o
m
m
i
s
s
io
n
(
FEC)
f
o
r
P
er
s
o
n
al
A
r
ea
Net
w
o
r
k
(
P
A
N)
o
p
er
atio
n
s
h
as
e
m
p
lo
y
ed
an
in
cr
ea
s
i
n
g
d
e
m
a
n
d
o
n
t
h
e
f
le
x
ib
ilit
y
o
f
t
h
e
b
asic
m
icr
o
s
tr
ip
p
atch
an
te
n
n
a
n
ee
d
to
b
e
co
m
p
ac
t
in
s
ize,
r
o
b
u
s
t
in
d
esi
g
n
a
n
d
al
m
o
s
t
o
m
n
id
ir
ec
tio
n
al
i
n
r
ad
iatio
n
w
h
ile
in
th
e
m
ea
n
t
i
m
e
p
r
o
v
id
in
g
a
lar
g
e
i
m
p
ed
a
n
ce
b
an
d
w
id
t
h
to
f
it
f
o
r
a
n
u
m
er
o
u
s
ap
p
licatio
n
s
in
t
h
e
u
ltra
-
w
i
d
eb
an
d
r
eg
io
n
[
1
3
-
1
8
]
.
I
n
th
i
s
p
ap
er
,
b
asic
s
tr
u
ctu
r
e
o
f
r
ec
tan
g
u
lar
m
o
n
o
p
o
le
is
co
n
v
er
ted
in
to
tr
ap
ez
o
i
d
al
s
h
ap
e
w
i
th
tap
er
ed
s
tep
g
r
o
u
n
d
.
Dif
f
er
e
n
t
iter
atio
n
s
o
f
r
ad
iatin
g
ele
m
en
t
as
w
e
ll
as
d
ef
ec
ted
g
r
o
u
n
d
s
tr
u
ct
u
r
es
ar
e
ex
a
m
in
ed
i
n
t
h
is
w
o
r
k
to
an
al
y
ze
t
h
e
cir
cu
lar
p
o
lar
izatio
n
c
h
ar
ac
ter
is
tic
s
o
f
t
h
e
a
n
te
n
n
a.
A
d
e
f
ec
ted
s
tr
u
ctu
r
e
etch
ed
in
t
h
e
m
etallic
g
r
o
u
n
d
p
lan
e
o
f
a
m
icr
o
s
tr
ip
li
n
e
is
o
n
e
o
f
th
e
s
m
ar
t
s
o
lu
t
io
n
s
.
I
t
p
r
o
v
id
es
d
ee
p
an
d
ex
ten
s
i
v
e
s
to
p
b
an
d
,
s
h
ar
p
cu
to
f
f
w
it
h
its
co
m
p
ac
t
s
ize
to
en
co
u
n
ter
ev
o
l
v
i
n
g
ap
p
licatio
n
s
.
C
u
r
r
en
t
m
o
d
el
co
n
s
is
tin
g
o
f
a
co
m
p
ac
t
u
ltra
-
w
id
eb
an
d
u
s
es
a
n
i
n
d
iv
id
u
al
s
p
lit
r
in
g
r
eso
n
ato
r
w
h
ic
h
is
e
x
ited
b
y
a
m
o
n
o
p
o
le
an
ten
n
a.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
C
o
p
la
n
a
r
W
a
ve
g
u
id
e
F
ed
C
ir
cu
la
r
ly
P
o
la
r
iz
ed
…
(
P
P
o
o
r
n
a
P
r
iy
a
r)
59
2.
M
AT
E
RIAL
A
ND
M
E
T
H
O
D
I
n
Fig
u
r
e
1
,
th
e
an
te
n
n
a
m
o
d
el
1
s
h
o
w
s
t
h
e
tr
ap
ez
o
id
al
s
h
ap
e
s
lo
t
an
te
n
n
a
o
n
d
ef
ec
t
ed
g
r
o
u
n
d
s
tr
u
ct
u
r
e.
T
h
e
an
ten
n
a
is
d
esi
g
n
ed
o
n
F
R
4
s
u
b
s
tr
ate
o
f
d
im
en
s
io
n
s
6
0
x
5
0
x
1
.
5
3
m
m
.
A
g
r
o
u
n
d
is
als
o
p
r
in
ted
in
th
e
s
a
m
e
s
id
e
o
f
s
u
b
s
tr
ate
alo
n
g
w
i
th
r
ad
iati
n
g
p
atch
ele
m
e
n
t.
A
r
ec
ta
n
g
u
lar
s
l
o
t
o
f
d
i
m
en
s
io
n
s
4
0
X
2
3
m
m
is
etc
h
ed
o
n
g
r
o
u
n
d
p
lan
e
an
d
is
ex
c
ited
b
y
C
P
W
f
ee
d
li
n
e.
T
h
e
f
ee
d
l
in
e
is
en
d
ed
w
i
th
a
tr
ap
ez
o
id
al
s
h
ap
ed
tu
n
in
g
s
t
u
b
ex
ten
d
ed
in
to
th
e
ce
n
ter
o
f
s
lo
t.
T
h
e
r
ec
tan
g
u
lar
s
lo
t
is
c
u
t
in
to
t
w
o
cir
cu
lar
ar
cs
at
lo
w
er
le
f
t
co
r
n
er
a
n
d
u
p
p
er
r
ig
h
t
co
r
n
er
a
n
d
h
a
v
i
n
g
d
if
f
er
e
n
t
r
ad
ii
to
s
er
v
e
a
s
p
er
tu
r
b
atio
n
s
r
eq
u
ir
ed
f
o
r
r
ec
o
g
n
izi
n
g
cir
cu
lar
p
o
lar
izatio
n
.
T
h
e
d
is
tan
ce
b
et
w
ee
n
th
e
s
tu
b
an
d
th
e
g
r
o
u
n
d
p
lan
e
is
r
ep
r
esen
ted
as
„
S
‟
an
d
t
h
e
s
p
ac
i
n
g
b
et
w
ee
n
t
h
e
f
ee
d
li
n
e
an
d
t
h
e
g
r
o
u
n
d
p
lan
e
is
r
ep
r
esen
ted
b
y
„
G
‟
.
T
h
e
tr
ap
ez
o
id
al
s
h
ap
e
s
tu
b
h
a
s
w
id
t
h
s
o
f
W
s
1
an
d
W
s
2
an
d
h
as le
n
g
th
a
s
L
s
.
T
h
e
p
ar
a
m
eter
v
al
u
es a
r
e
s
h
o
w
n
i
n
T
ab
le
1
.
Fig
u
r
e
.
1
T
a
p
er
ed
Gr
o
u
n
d
Mo
n
o
p
o
le,
(
a)
T
r
ap
ez
o
id
al
M
o
n
o
p
o
le,
(
b
)
T
r
a
p
ez
o
id
al
Stu
b
Mo
n
o
p
o
le
w
it
h
DGS,
(
c)
T
r
ap
ez
o
id
al
Step
p
ed
Stu
b
Mo
n
o
p
o
le
w
it
h
DGS
T
ab
le
1
.
A
n
te
n
n
a
Mo
d
el
1
Dim
en
s
io
n
s
Fro
m
th
e
a
n
te
n
n
a
m
o
d
el
1
s
h
o
w
n
in
Fi
g
u
r
e
1
,
th
e
s
lo
t
p
er
im
eter
Sp
er
an
d
t
h
e
s
t
u
b
h
e
ig
h
t
h
s
ca
n
b
e
ca
lcu
lated
as
-
-
-
-
(
1
)
√
-
-
-
-
-
-
(
2
)
P
a
r
a
me
t
e
r
D
i
me
n
si
o
n
s(
i
n
mm
)
Wg
60
Lg
50
W
40
L
23
R1
6
R2
10
Lf
1
6
.
6
2
Wf
2
.
8
S
3
.
6
8
G
0
.
8
5
W
s1
7
W
s2
14
Ls
7
.
5
H
1
.
5
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
6
,
No
.
1
,
A
p
r
il
20
1
7
:
58
–
68
60
T
h
e
s
lo
t p
er
im
eter
ca
n
b
e
ass
e
s
s
ed
to
t
w
o
g
u
id
ed
w
a
v
ele
n
g
t
h
s
at
t
h
e
lo
w
e
r
r
eso
n
a
n
t
f
r
eq
u
en
cies.
T
h
e
lo
w
er
r
eso
n
a
n
t
f
r
eq
u
e
n
c
y
is
g
iv
en
as
f
1
an
d
o
n
th
e
u
p
p
er
s
i
d
e,
th
e
m
o
n
o
p
o
le
lik
e
o
p
er
atio
n
o
f
a
n
ten
n
a
ta
k
e
s
p
lace
an
d
th
e
u
p
p
er
r
eso
n
an
t
f
r
eq
u
en
c
y
i
s
g
i
v
e
n
b
y
√
-
-
-
-
-
(
3
)
√
-
-
-
-
-
-
(
4
)
I
n
th
e
ab
o
v
e
e
x
p
r
ess
io
n
„
c‟
i
s
th
e
v
elo
cit
y
o
f
lig
h
t
i
n
f
r
ee
s
p
ac
e
an
d
εr
ef
f
is
th
e
e
f
f
ec
ti
v
e
r
elati
v
e
p
er
m
i
tti
v
it
y
o
f
th
e
s
u
b
s
tr
ate
an
d
it is
g
i
v
en
b
y
t
h
e
[
-
-
-
-
(
5
)
An
te
n
n
a
m
o
d
el
1
is
m
o
d
if
ie
d
f
u
r
t
h
er
to
i
m
p
r
o
v
e
i
m
p
ed
a
n
c
e
b
an
d
w
id
th
a
n
d
cir
cu
lar
p
o
lar
izatio
n
ch
ar
ac
ter
is
tic
s
.
A
cc
o
r
d
in
g
l
y
,
t
h
e
t
w
o
m
o
d
i
f
ied
v
er
s
io
n
o
f
a
n
ten
n
a
m
o
d
el
1
ar
e
d
es
ig
n
ed
th
e
y
ar
e
n
a
m
ed
as
an
ten
n
a
m
o
d
el
2
an
d
an
ten
n
a
m
o
d
el
3
.
T
h
e
an
te
n
n
a
m
o
d
el
2
h
as
s
tep
s
ize
1
1
X
2
m
m
i
s
ad
d
ed
to
tr
ap
ez
o
id
al
s
h
ap
ed
t
u
n
i
n
g
s
t
u
b
,
t
w
o
r
ec
ta
n
g
u
lar
s
lo
ts
o
f
d
i
m
e
n
s
io
n
s
3
X
4
m
m
ar
e
cu
t
i
n
t
h
e
g
r
o
u
n
d
p
l
an
e.
I
n
th
e
a
n
te
n
n
a
m
o
d
el
3
,
o
n
e
m
o
r
e
s
tep
is
ad
d
ed
to
th
e
tu
n
i
n
g
s
tu
b
a
n
d
a
s
lit
o
f
d
i
m
e
n
s
io
n
s
2
x
0
.
2
m
m
i
s
cu
t
at
t
h
e
ce
n
ter
o
f
tr
ap
ez
o
id
al
tu
n
i
n
g
s
t
u
b
.
T
h
e
m
o
d
i
f
ied
d
i
m
en
s
io
n
s
o
f
a
n
te
n
n
a
m
o
d
el
2
a
n
d
an
ten
n
a
m
o
d
el
3
ar
e
s
h
o
w
n
i
n
T
ab
le
2
.
T
ab
le
2
: M
o
d
if
ied
Dim
e
n
s
io
n
s
(
in
m
m
)
o
f
a
n
te
n
n
a
m
o
d
el
2
an
d
an
te
n
n
a
m
o
d
el
3
P
a
r
a
me
t
e
r
W1
S1
W2
S2
X
a
b
A
n
t
e
n
n
a
mo
d
e
l
2
d
i
me
n
s
i
o
n
s
11
2
-
-
-
3
4
A
n
t
e
n
n
a
mo
d
e
l
3
d
i
me
n
s
i
o
n
s
11
2
7
1
3
.
6
3
4
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
Fig
u
r
e
2
s
h
o
w
th
e
r
ef
lectio
n
c
o
ef
f
icie
n
t
o
f
t
h
e
an
te
n
n
a
iter
at
io
n
s
s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
An
te
n
n
a
m
o
d
el
1
is
g
i
v
i
n
g
a
b
an
d
w
id
t
h
o
f
4
.
8
GHz
an
d
a
n
te
n
n
a
m
o
d
el
2
is
g
iv
i
n
g
th
e
b
an
d
w
id
th
o
f
5
.
4
G
Hz.
B
y
ch
a
n
g
in
g
t
h
e
r
ad
iatin
g
ele
m
e
n
t s
h
ap
e
an
d
b
y
in
co
r
p
o
r
atin
g
d
ef
ec
ted
g
r
o
u
n
d
s
tr
u
ct
u
r
e
w
e
attai
n
ad
d
itio
n
al
r
eso
n
an
t b
a
n
d
f
o
r
an
ten
n
a
m
o
d
el
2
.
T
o
im
p
r
o
v
e
th
e
b
an
d
w
id
t
h
ch
ar
ac
ter
is
tic
s
o
f
th
e
d
esig
n
ed
an
te
n
n
a
m
o
d
el,
w
e
in
co
r
p
o
r
ated
ad
d
itio
n
al
ch
a
n
g
e
s
in
t
h
e
p
at
ch
ele
m
en
t
b
y
tak
in
g
tap
er
ed
s
tep
s
tr
u
ct
u
r
e.
An
te
n
n
a
m
o
d
el
3
is
p
r
o
v
id
in
g
b
an
d
w
id
t
h
en
h
a
n
ce
m
e
n
t o
f
7
.
2
GHz
w
h
ich
i
s
al
m
o
s
t d
o
u
b
le
to
th
e
b
asic a
n
te
n
n
a
m
o
d
el
1
.
Fig
u
r
e
2
.
R
ef
lect
io
n
co
ef
f
icie
n
t o
f
an
te
n
n
a
m
o
d
els 1
,
2
an
d
3
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
C
o
p
la
n
a
r
W
a
ve
g
u
id
e
F
ed
C
ir
cu
la
r
ly
P
o
la
r
iz
ed
…
(
P
P
o
o
r
n
a
P
r
iy
a
r)
61
Fig
u
r
e
3
.
I
m
p
ed
an
ce
V
s
Fre
q
u
en
c
y
o
f
an
te
n
n
a
m
o
d
els 1
,
2
an
d
3
Fig
u
r
e
4
.
Gain
o
f
a
n
ten
n
a
m
o
d
els 1
,
2
an
d
3
w
it
h
r
esp
ec
t to
r
eso
n
an
t f
r
eq
u
e
n
c
y
Fig
u
r
e
5
.
Dir
ec
tiv
it
y
o
f
a
n
ten
n
a
m
o
d
els 1
,
2
an
d
3
w
it
h
r
esp
e
ct
to
r
eso
n
an
t
f
r
eq
u
en
c
y
An
i
m
p
ed
an
ce
b
a
n
d
w
id
th
o
f
1
2
0
%
is
attai
n
ed
f
r
o
m
th
e
m
o
d
i
f
ied
s
tr
u
ct
u
r
e
o
f
an
ten
n
a
m
o
d
el
3
.
Fig
u
r
e
3
s
h
o
w
s
t
h
e
i
m
p
ed
an
c
e
ch
ar
ac
ter
is
tics
o
f
th
e
a
n
te
n
n
a
m
o
d
els
in
F
ig
u
r
e
1
.
A
ll
t
h
e
m
o
d
el
s
ar
e
s
h
o
w
i
n
g
an
av
er
ag
e
i
m
p
ed
an
ce
o
f
4
0
Ω
.
Fig
u
r
e
4
s
h
o
w
s
th
e
g
ain
c
h
ar
ac
ter
is
tic
s
o
f
th
e
d
esi
g
n
ed
an
ten
n
a
m
o
d
el
s
w
it
h
r
esp
ec
t
to
o
p
er
atin
g
f
r
eq
u
e
n
c
y
b
an
d
.
Mo
d
el
1
is
s
h
o
w
in
g
p
ea
k
r
ea
lized
g
ai
n
o
f
3
d
B
w
h
er
ea
s
m
o
d
el
2
is
s
h
o
w
i
n
g
3
.
5
d
B
an
d
th
e
m
o
d
if
i
ed
m
o
d
el
3
is
p
r
o
v
id
in
g
th
e
p
e
ak
g
a
in
o
f
4
.
2
d
B
.
Fig
u
r
e
5
s
h
o
w
s
th
e
d
ir
ec
ti
v
it
y
o
f
th
e
a
n
te
n
n
a
m
o
d
els
w
it
h
a
ch
an
g
e
i
n
f
r
eq
u
en
c
y
.
An
ten
n
a
m
o
d
el
2
is
g
i
v
i
n
g
s
u
p
er
io
r
d
ir
ec
tiv
it
y
v
alu
e
w
h
e
n
co
m
p
ar
ed
w
it
h
th
e
o
t
h
er
m
o
d
els.
A
p
ea
k
d
ir
ec
tiv
it
y
o
f
3
.
5
d
B
is
at
tain
ed
f
r
o
m
m
o
d
el
2
.
T
h
e
cir
cu
lar
p
o
lar
izatio
n
ch
ar
ac
ter
is
tics
o
f
t
h
e
d
esi
g
n
ed
m
o
d
els
ca
n
b
e
o
b
s
er
v
ed
t
h
r
o
u
g
h
ax
ial
r
atio
cu
r
v
e
o
f
Fi
g
u
r
e
6
.
I
n
th
e
o
p
er
atin
g
b
an
d
o
f
th
i
s
an
te
n
n
a
m
o
d
els
o
n
l
y
at
ce
r
tain
f
r
eq
u
en
c
y
b
an
d
s
,
th
e
d
esig
n
ed
an
ten
n
a
s
ar
e
s
h
o
w
i
n
g
cir
c
u
lar
p
o
lar
izatio
n
ch
ar
ac
ter
is
tics
.
3
d
B
cu
to
f
f
cir
cu
lar
p
o
lar
izatio
n
ch
ar
ac
ter
is
t
ics
a
t
ce
r
tain
f
r
eq
u
e
n
c
y
b
a
n
d
s
ca
n
b
e
o
b
s
er
v
ed
f
r
o
m
F
ig
u
r
e
6
.
Fig
u
r
e
7
,
8
an
d
9
s
h
o
w
s
th
e
r
ad
ia
tio
n
ch
ar
ac
ter
is
t
ics
o
f
th
e
d
esi
g
n
ed
a
n
te
n
n
a
m
o
d
els
at
ce
n
ter
r
eso
n
a
n
t
f
r
eq
u
e
n
c
y
in
th
e
o
p
er
atin
g
b
a
n
d
.
All
th
e
s
e
m
o
d
el
s
ar
e
p
r
o
v
id
in
g
al
m
o
s
t
o
m
n
id
ir
ec
tio
n
al
r
ad
iatio
n
p
atter
n
i
n
H
-
p
lan
e
an
d
m
o
n
o
p
o
le
lik
e
r
ad
iat
io
n
in
t
h
e
E
-
p
lan
e
.
Fig
u
r
e
1
0
s
h
o
w
s
th
e
s
u
r
f
ac
e
cu
r
r
en
t
d
is
tr
ib
u
tio
n
o
f
d
esi
g
n
ed
a
n
te
n
n
a
m
o
d
els
a
n
d
b
y
an
a
l
y
zi
n
g
cu
r
r
e
n
t
di
s
tr
ib
u
tio
n
c
h
ar
ac
ter
is
tic
s
at
d
if
f
er
e
n
t p
h
ase
s
w
e
ex
a
m
i
n
ed
th
e
cir
cu
lar
p
o
lar
izatio
n
f
r
o
m
t
h
ese
m
o
d
el
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
6
,
No
.
1
,
A
p
r
il
20
1
7
:
58
–
68
62
Fig
u
r
e
6
.
Ax
ial
r
atio
o
f
an
te
n
n
a
m
o
d
els 1
,
2
an
d
3
w
it
h
r
esp
e
ct
to
r
eso
n
an
t
f
r
eq
u
en
c
y
Fig
u
r
e
7
.
R
ad
iatio
n
p
atter
n
o
f
an
ten
n
a
m
o
d
el
1
at
4
GHz
Fig
u
r
e
8
.
R
ad
iatio
n
p
atter
n
o
f
an
ten
n
a
m
o
d
el
2
at
4
GHz
Fig
u
r
e
9
.
R
ad
iatio
n
p
atter
n
o
f
an
ten
n
a
m
o
d
el
3
at
4
GHz
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
C
o
p
la
n
a
r
W
a
ve
g
u
id
e
F
ed
C
ir
cu
la
r
ly
P
o
la
r
iz
ed
…
(
P
P
o
o
r
n
a
P
r
iy
a
r)
63
Fig
u
r
e
1
0
.
C
u
r
r
en
t d
is
tr
ib
u
tio
n
o
f
an
te
n
n
a
m
o
d
els 1
,
2
an
d
3
at
4
GHz
Fig
u
r
e
1
1
s
h
o
w
s
th
e
m
o
d
if
ie
d
an
ten
n
a
s
tr
u
ct
u
r
es
o
f
b
asic
m
o
d
els
o
f
1
,
2
an
d
3
.
I
n
th
e
m
o
d
if
ie
d
s
tr
u
ct
u
r
es,
r
eso
n
a
n
t
f
r
eq
u
e
n
ci
es
ar
e
n
o
tch
ed
i
n
t
h
e
w
id
e
b
a
n
d
b
y
i
n
co
r
p
o
r
atin
g
a
s
p
lit
r
in
g
r
e
s
o
n
ato
r
s
h
ap
ed
s
lo
ts
o
n
th
e
r
ad
iatin
g
ele
m
e
n
t.
T
h
e
in
itial
d
esig
n
s
ar
e
m
o
d
if
i
ed
b
y
u
s
i
n
g
a
s
p
lit
r
in
g
r
eso
n
a
to
r
(
SR
R
)
w
h
ich
is
p
lace
d
alm
o
s
t
o
n
th
e
r
ad
iati
n
g
ele
m
e
n
t
to
n
o
tc
h
a
p
ar
ticu
l
ar
b
an
d
o
f
f
r
eq
u
en
cie
s
an
d
to
o
b
s
er
v
e
th
e
n
o
tc
h
b
an
d
ch
ar
ac
ter
is
tics
i
n
t
h
e
d
esig
n
ed
w
id
eb
an
d
an
ten
n
a.
Fig
u
r
e
1
2
s
h
o
w
s
th
e
co
r
r
esp
o
n
d
in
g
r
ef
lectio
n
co
ef
f
icie
n
t
c
h
ar
ac
ter
is
tic
s
o
f
t
h
e
n
o
tc
h
b
an
d
an
te
n
n
a
s
.
T
h
e
n
o
tch
in
g
is
o
cc
u
r
r
ed
b
et
w
ee
n
5
to
6
GHz
w
h
ic
h
is
p
o
p
u
lar
ly
k
n
o
w
n
f
o
r
W
L
AN
co
m
m
u
n
icatio
n
b
an
d
.
W
ith
t
h
e
an
te
n
n
a
m
o
d
el
6
w
e
o
b
tain
ed
a
p
er
f
ec
t
n
o
tc
h
b
an
d
b
et
w
e
e
n
5
.
4
to
5
.
8
GHz
(
W
L
A
N)
.
T
h
e
i
m
p
ed
an
ce
ch
ar
ac
ter
is
tics
o
f
m
o
d
if
ied
n
o
tc
h
a
n
te
n
n
a
s
ca
n
b
e
o
b
s
er
v
ed
f
r
o
m
Fi
g
u
r
e
13.
Fig
u
r
e
1
1
.
Mo
d
if
ied
an
ten
n
a
m
o
d
el
s
4
,
5
an
d
6
,
(
a
)
T
r
ap
ez
o
id
al
Mo
n
o
p
o
le
w
ith
SR
R
,
(
b
)
T
r
a
p
ez
o
id
al
Stu
b
Mo
n
o
p
o
le
w
it
h
SR
R
an
d
DG
S
,
(
c)
T
r
a
p
ez
o
id
al
Step
p
e
d
Stu
b
Mo
n
o
p
o
le
w
ith
SR
R
an
d
DG
S
Fig
u
r
e
1
2
.
R
ef
lectio
n
co
ef
f
icie
n
t o
f
a
n
ten
n
a
m
o
d
el
s
4
,
5
an
d
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
6
,
No
.
1
,
A
p
r
il
20
1
7
:
58
–
68
64
Fig
u
r
e
1
3
.
I
m
p
ed
an
ce
Vs
Fre
q
u
en
c
y
o
f
a
n
te
n
n
a
m
o
d
els 4
,
5
an
d
6
Fig
u
r
e
1
4
.
Gain
o
f
an
te
n
n
a
m
o
d
els 4
,
5
an
d
6
w
it
h
r
esp
ec
t to
r
eso
n
an
t
f
r
eq
u
e
n
c
y
Fig
u
r
e
1
5
.
Dir
ec
tiv
it
y
o
f
an
te
n
n
a
m
o
d
els 4
,
5
an
d
6
w
it
h
r
esp
ec
t to
r
eso
n
an
t
f
r
eq
u
en
c
y
Fig
u
r
e
1
6
.
A
x
ia
l r
atio
o
f
an
te
n
n
a
m
o
d
els 4
,
5
an
d
6
w
it
h
r
esp
ec
t to
r
eso
n
an
t
f
r
eq
u
en
c
y
Fig
u
r
e
1
4
an
d
1
5
s
h
o
w
s
t
h
e
g
ain
a
n
d
d
ir
ec
tiv
i
t
y
p
lo
t
s
o
f
th
e
m
o
d
if
ied
n
o
tc
h
a
n
ten
n
as.
A
t
n
o
tch
b
a
n
d
f
r
eq
u
en
c
ies
w
e
ca
n
o
b
s
er
v
e
t
h
e
r
ed
u
ctio
n
i
n
g
ai
n
a
n
d
d
ir
e
ctiv
it
y
f
r
o
m
t
h
ese
Fi
g
u
r
e
s
.
Fi
g
u
r
e
1
6
s
h
o
w
s
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
C
o
p
la
n
a
r
W
a
ve
g
u
id
e
F
ed
C
ir
cu
la
r
ly
P
o
la
r
iz
ed
…
(
P
P
o
o
r
n
a
P
r
iy
a
r)
65
ax
ial
r
atio
v
er
s
u
s
f
r
eq
u
e
n
c
y
p
lo
t
o
f
th
e
n
o
tch
b
an
d
a
n
ten
n
a
s
.
E
x
ce
p
t
at
n
o
tc
h
b
an
d
,
at
o
th
er
o
p
er
atin
g
b
an
d
s
an
ten
n
a
m
o
d
el
s
ar
e
p
r
o
v
id
in
g
3
d
B
ax
ial
r
atio
.
T
h
e
r
ad
iatio
n
ch
ar
ac
ter
is
tic
s
o
f
t
h
ese
n
o
tc
h
b
an
d
a
n
te
n
n
a
s
c
an
b
e
o
b
s
er
v
ed
f
r
o
m
t
h
e
Fig
u
r
e
1
7
to
2
2
an
d
cu
r
r
en
t
d
i
s
tr
ib
u
tio
n
p
lo
t
f
o
r
p
r
o
p
o
s
ed
m
o
d
e
l
g
i
v
en
in
Fi
g
u
r
e
2
3
.
T
h
e
p
r
o
p
o
s
ed
an
ten
n
a
m
o
d
el
is
s
h
o
w
i
n
g
o
m
n
i
d
ir
ec
tio
n
al
r
ad
iatio
n
p
at
ter
n
in
th
e
H
-
p
la
n
e
an
d
m
o
n
o
p
o
le
lik
e
r
ad
iatio
n
in
t
h
e
E
-
p
lan
e.
T
h
e
s
u
r
f
ac
e
cu
r
r
en
t
d
is
tr
ib
u
t
io
n
p
lo
ts
ar
e
s
h
o
w
in
g
th
e
c
u
r
r
en
t
in
ten
s
it
y
a
cc
u
m
u
lat
io
n
at
s
tr
o
n
g
p
o
s
itio
n
s
o
n
th
e
f
ee
d
l
in
e
an
d
p
atch
s
u
r
f
ac
e
at
d
if
f
er
e
n
t f
r
eq
u
en
cies.
Fig
u
r
e
1
7
.
R
ad
iatio
n
p
atter
n
o
f
an
te
n
n
a
m
o
d
el
4
at
3
.
7
GHz
Fig
u
r
e
1
8
.
R
ad
iatio
n
p
atter
n
o
f
an
te
n
n
a
m
o
d
el
4
at
5
.
7
GHz
Fig
u
r
e
1
9
.
R
ad
iatio
n
p
atter
n
o
f
an
te
n
n
a
m
o
d
el
5
at
2
.
5
GHz
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
6
,
No
.
1
,
A
p
r
il
20
1
7
:
58
–
68
66
Fig
u
r
e
2
0
.
R
ad
iatio
n
p
atter
n
o
f
an
te
n
n
a
m
o
d
el
5
at
6
.
3
GHz
Fig
u
r
e
2
1
.
R
ad
iatio
n
p
atter
n
o
f
an
te
n
n
a
m
o
d
el
6
at
2
.
1
GHz
Fig
u
r
e
2
2
.
R
ad
iatio
n
p
atter
n
o
f
an
te
n
n
a
m
o
d
el
6
at
6
.
8
GHz
Fig
u
r
e
2
3
.
C
u
r
r
en
t d
is
tr
ib
u
tio
n
o
f
an
te
n
n
a
m
o
d
el
6
at
2
.
1
an
d
6
.
8
GHz
Fig
u
r
e
2
4
.
Fab
r
icate
d
A
n
te
n
n
a
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
C
o
p
la
n
a
r
W
a
ve
g
u
id
e
F
ed
C
ir
cu
la
r
ly
P
o
la
r
iz
ed
…
(
P
P
o
o
r
n
a
P
r
iy
a
r)
67
T
h
e
p
r
o
p
o
s
ed
f
ab
r
icate
d
n
o
tch
a
n
ten
n
a
i
s
te
s
ted
o
n
Z
NB
2
0
v
ec
to
r
n
et
w
o
r
k
an
a
l
y
ze
r
a
n
d
o
b
s
er
v
ed
th
at
th
e
m
ea
s
u
r
ed
r
esu
lt
s
ar
e
in
g
o
o
d
ag
r
ee
m
e
n
t
w
it
h
th
e
s
i
m
u
lated
r
esu
lt
s
.
P
r
o
to
ty
p
ed
an
ten
n
a
is
s
h
o
w
n
in
Fig
u
r
e
2
4
n
o
tch
i
n
g
t
h
e
f
r
eq
u
e
n
c
y
b
a
n
d
b
et
w
ee
n
4
.
5
to
5
GH
z
an
d
th
e
r
ef
lec
tio
n
co
ef
f
icie
n
t
is
less
t
h
a
n
-
1
0
d
B
in
th
e
o
p
er
atin
g
b
an
d
.
4.
CO
NCLU
SI
O
N
Fro
m
th
e
d
esi
g
n
ed
an
te
n
n
a
m
o
d
els,
th
e
f
o
llo
w
i
n
g
co
n
c
lu
s
io
n
s
w
er
e
d
r
a
w
n
:
A
n
o
v
e
l str
u
ct
u
r
e
o
f
tr
ap
ez
o
id
al
m
o
n
o
p
o
le
an
ten
n
a
w
it
h
d
ef
ec
ted
g
r
o
u
n
d
s
tr
u
c
tu
r
e
i
s
d
esi
g
n
ed
in
t
h
i
s
w
o
r
k
.
A
m
o
d
i
f
ied
s
tr
u
c
tu
r
e
i
s
d
r
a
w
n
f
r
o
m
t
h
e
b
asic
s
tr
u
c
t
u
r
e
w
i
th
s
p
li
t
r
in
g
r
eso
n
ato
r
to
n
o
tch
f
r
eq
u
e
n
c
y
b
an
d
f
r
o
m
4
.
5
to
5
GHz
an
d
a
ch
iev
ed
cir
c
u
lar
p
o
la
r
izatio
n
.
P
ea
k
r
ea
lized
g
ai
n
o
f
4
d
B
an
d
d
ir
ec
tiv
it
y
o
f
3
.
8
d
B
is
atta
i
n
ed
f
r
o
m
t
h
e
m
o
d
i
f
ied
a
n
ten
n
a
s
tr
u
ct
u
r
e.
An
te
n
n
a
is
s
h
o
w
in
g
o
m
n
i
d
ir
e
ctio
n
al
r
ad
iatio
n
p
atter
n
in
H
-
p
lan
e
an
d
d
ip
o
le
li
k
e
r
ad
iatio
n
i
n
t
h
e
E
-
p
lan
e.
A
t
n
o
tch
b
an
d
a
n
te
n
n
a
i
s
s
h
o
w
i
n
g
lo
w
g
ai
n
w
it
h
d
is
t
u
r
b
ed
r
ad
iatio
n
p
atter
n
.
C
ir
c
u
lar
p
o
lar
izatio
n
w
it
h
ax
ia
l
r
atio
b
an
d
w
id
th
o
f
4
5
% a
n
d
6
8
% is
attain
ed
f
o
r
th
e
p
r
o
p
o
s
e
d
an
ten
n
a
in
b
o
th
t
h
e
p
ass
b
an
d
s
.
T
h
e
p
r
o
p
o
s
ed
o
p
tim
ized
a
n
te
n
n
a
m
o
d
el
i
s
f
ab
r
icate
d
o
n
F
R
4
s
u
b
s
tr
ate
a
n
d
test
ed
f
o
r
r
eliab
il
it
y
o
n
Z
NB
2
0
v
ec
to
r
n
et
w
o
r
k
a
n
al
y
ze
r
.
Me
asu
r
ed
r
ef
lect
io
n
co
ef
f
icien
t
i
s
s
h
o
w
i
n
g
b
an
d
w
id
t
h
o
f
3
.
8
GHz
at
f
ir
s
t
r
eso
n
an
t
b
an
d
a
n
d
4
GHz
at
s
ec
o
n
d
r
eso
n
a
n
t
b
a
n
d
.
T
h
e
m
ea
s
u
r
ed
r
es
u
lts
ar
e
i
n
v
er
y
g
o
o
d
ag
r
ee
m
e
n
t
w
i
th
s
i
m
u
lated
r
es
u
lts
ta
k
e
n
f
r
o
m
HFSS
.
ACK
N
O
WL
E
D
G
E
M
E
NT
S
Au
t
h
o
r
s
li
k
e
to
ex
p
r
ess
th
eir
g
r
atit
u
d
e
to
w
ar
d
s
t
h
e
d
ep
ar
tm
en
t
o
f
E
C
E
an
d
m
an
a
g
e
m
e
n
t
o
f
K
L
Un
i
v
er
s
it
y
f
o
r
th
eir
s
u
p
p
o
r
t
an
d
en
co
u
r
ag
e
m
en
t
d
u
r
i
n
g
t
h
is
w
o
r
k
.
F
u
r
th
er
Ma
d
h
av
li
k
es
to
e
x
p
r
ess
h
i
s
g
r
atit
u
d
e
to
DST
th
r
o
u
g
h
FI
S
T
g
r
an
t SR
/F
ST
/E
T
I
-
31
6
/2
0
1
2
,
E
C
R
/2
0
1
6
/0
0
0
5
6
9
.
RE
F
E
R
E
NC
E
S
[1
]
R.
V
.
S
Ra
m
Krish
n
a
;
Ra
j
Ku
m
a
r
,
“
De
sig
n
o
f
u
lt
ra
-
w
id
e
b
a
n
d
trap
e
z
o
id
a
l
sh
a
p
e
slo
t
a
n
ten
n
a
w
it
h
c
ircu
lar
p
o
lariz
a
ti
o
n
”
,
A
EU
-
in
tern
a
ti
o
n
a
l
jo
u
r
n
a
l
o
f
e
lec
tro
n
ics
a
n
d
c
o
m
m
u
n
ica
ti
o
n
s
,
v
o
l
.
6
7
,
no.
12
,
p
p
.
1
0
3
8
–
1
0
4
7
,
2
0
1
3
.
[2
]
B
T
P
M
a
d
h
a
v
;
K
S
a
i
ra
m
;
M
De
e
p
ik
a
;
V
Na
r
e
sh
,
“
Circu
larl
y
P
o
lariz
e
d
Ko
c
h
F
ra
c
tal
T
rib
a
n
d
A
n
ten
n
a
f
o
r
Co
m
m
u
n
ica
ti
o
n
A
p
p
li
c
a
ti
o
n
s”
,
A
RP
N
J
o
u
r
n
a
l
o
f
En
g
i
n
e
e
rin
g
a
n
d
A
p
p
li
e
d
S
c
ien
c
e
s
,
v
o
l
.
1
0
,
no.
4
,
p
p
5
7
9
5
-
5
8
0
1
,
2
0
1
5
.
[3
]
W
a
n
g
C
-
J;
L
in
C
-
M
v
,
“
A
CP
W
-
f
e
d
o
p
e
n
-
slo
t
a
n
ten
n
a
f
o
r
m
u
lt
ip
le
w
irele
ss
c
o
m
m
u
n
ica
ti
o
n
s
y
ste
m
s”
,
IEE
E
A
n
ten
n
a
s W
irele
ss
P
ro
p
a
g
L
e
tt
,
,
1
1
,
p
p
.
6
2
0
,
2
0
1
2
.
[4
]
K
P
h
a
n
i
S
ri
n
iv
a
s;
B
T
P
M
a
d
h
a
v
,
“
No
v
e
l
Ko
c
h
f
ra
c
tal
c
irc
u
larly
p
o
lariz
e
d
m
icro
strip
a
n
ten
n
a
f
o
r
g
lo
b
a
l
p
o
siti
o
n
i
n
g
sy
ste
m
a
p
p
li
c
a
ti
o
n
”
,
L
e
o
n
a
rd
o
El
e
c
tro
n
ic Jo
u
r
n
a
l
o
f
P
r
a
c
ti
c
e
s an
d
T
e
c
h
n
o
lo
g
ies
,
v
o
l.
2
7
,
no.
2
,
p
p
3
1
-
4
0
,
2
0
1
5
.
[5
]
Ch
e
n
C
-
H,
Yu
n
g
EKN,
“
Du
a
l
-
b
a
n
d
c
ircu
larly
-
p
o
lariz
e
d
CP
W
-
f
e
d
slo
t
a
n
ten
n
a
w
it
h
a
s
m
a
ll
f
re
q
u
e
n
c
y
ra
ti
o
a
n
d
w
id
e
b
a
n
d
w
id
th
s”
,
IEE
E
T
ra
n
s An
ten
n
a
s
P
r
o
p
a
g
,
v
o
l
.
5
9
,
n
o
.
4
,
p
p
.
1
3
7
9
–
8
4
,
2
0
1
1
.
[6
]
M
L
S
N
S
L
a
k
sh
m
i;
Ha
b
ib
u
ll
a
Kh
a
n
;
B
T
P
M
a
d
h
a
v
,
“
No
v
e
l
S
e
q
u
e
n
t
ial
Ro
tate
d
2
x
2
A
rra
y
N
o
tch
e
d
C
ircu
lar
P
a
tch
A
n
ten
n
a
”
,
Jo
u
rn
a
l
o
f
En
g
in
e
e
rin
g
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
R
e
v
ie
w
,
v
o
l.
8
,
n
o
.
4
,
p
p
.
73
-
7
7
,
2
0
1
5
.
[7
]
B.
T
.
P
.
M
a
d
h
a
v
;
Ha
b
i
b
u
ll
a
K
h
a
n
;
S
a
ra
t
K.
Ko
tam
ra
ju
,
“
Circu
larl
y
P
o
lariz
e
d
S
lo
t
ted
A
p
e
rtu
re
A
n
ten
n
a
W
it
h
Co
p
lan
a
r
W
a
v
e
g
u
id
e
F
e
d
f
o
r
Bro
a
d
b
a
n
d
A
p
p
li
c
a
ti
o
n
s”
,
Jo
u
rn
a
l
o
f
En
g
in
e
e
rin
g
S
c
ien
c
e
a
n
d
Tec
h
n
o
lo
g
y
,
v
o
l.
1
1
,
no.
2,
pp.
2
6
7
–
2
7
7
.
[8
]
B
T
P
M
a
d
h
a
v
,
“
A
n
a
ly
sis
o
f
De
fe
c
ted
G
ro
u
n
d
S
tr
u
c
tu
re
N
o
t
c
h
e
d
M
o
n
o
p
o
le
A
n
ten
n
a
”
,
A
RP
N
J
o
u
r
n
a
l
o
f
En
g
in
e
e
rin
g
a
n
d
A
p
p
li
e
d
S
c
ien
c
e
s,
v
o
l.
1
0
,
no.
2
,
p
p
.
7
4
7
-
7
5
2
,
2
0
1
5
.
[9
]
S
z
e
J
-
Y;
Ch
e
n
W
-
H
,
“
Ax
ial
-
ra
t
io
-
b
a
n
d
w
id
th
e
n
h
a
n
c
e
m
e
n
t
o
f
a
m
icro
strip
-
li
n
e
-
f
e
d
c
ircu
larl
y
p
o
lariz
e
d
a
n
n
u
lar
-
rin
g
slo
t
a
n
ten
n
a
”
,
IE
EE
T
ra
n
s
An
ten
n
a
s
P
r
o
p
a
g
,
v
o
l
.
5
9
,
no.
7
,
p
p
.
2
4
5
0
–
6
,
2
0
1
1
.
[1
0
]
B
T
P
M
a
d
h
a
v
;
Ha
rish
Ka
z
a
,
“
No
v
e
l
P
ri
n
ted
M
o
n
o
p
o
le
T
ra
p
e
z
o
id
a
l
N
o
tch
A
n
ten
n
a
w
it
h
S
-
B
a
n
d
Re
jec
ti
o
n
”
,
Jo
u
rn
a
l
o
f
T
h
e
o
re
ti
c
a
l
a
n
d
A
p
p
li
e
d
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
v
o
l.
7
6
,
n
o
.
1,
p
p
4
2
-
4
9
,
2
0
1
5
.
[1
1
]
Ja
e
-
Y
e
o
n
Ch
o
i
,
“
De
sig
n
a
n
d
A
n
a
l
y
si
s
o
f
S
q
u
a
re
d
P
a
tch
A
n
ten
n
a
w
it
h
M
u
lt
i
S
q
u
a
re
d
S
l
o
ts”
,
I
n
d
ian
Jo
u
rn
a
l
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
no.
2
6
,
v
o
l.
8
,
2
0
1
5
.
[1
2
]
P
.
L
a
k
sh
m
ik
a
n
th
;
Kh
T
a
k
e
sh
o
re
;
B
T
P
M
a
d
h
a
v
,
“
P
ri
n
ted
L
o
g
P
e
rio
d
ic
d
ip
o
le
a
n
te
n
n
a
w
it
h
No
tc
h
e
d
f
il
ter
a
t
2
.
4
5
G
H
z
F
re
q
u
e
n
c
y
f
o
r
w
ir
e
les
s
c
o
m
m
u
n
ica
ti
o
n
a
p
p
li
c
a
ti
o
n
s”
,
Jo
u
r
n
a
l
o
f
En
g
in
e
e
rin
g
a
n
d
A
p
p
l
ied
S
c
ien
c
e
s,
v
o
l.
1
0
,
n
o
.
3
,
p
p
.
40
-
4
4
,
2
0
1
5
.
[1
3
]
G
a
y
a
th
ri
Ra
jara
m
a
n
;
M
.
A
n
it
h
a
;
A
th
rish
M
u
k
e
rjee
;
Kh
a
g
in
d
ra
S
o
o
d
;
Ra
jee
v
Jy
o
ti
,
“
Du
a
l
-
Ba
n
d
,
M
i
n
iatu
rize
d
,
En
h
a
n
c
e
d
-
G
a
in
P
a
tch
A
n
ten
n
a
s
Us
in
g
Diff
e
r
e
n
ti
a
ll
y
-
L
o
a
d
e
d
M
e
tas
tru
c
tu
re
s
,
“
In
d
ian
Jo
u
rn
a
l
o
f
sc
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
v
o
l.
8
,
n
o
.
1
,
2
0
1
5
.
[1
4
]
D
S
Ra
m
Kira
n
,
B
T
P
M
a
d
h
a
v
,
“
No
v
e
l
c
o
m
p
a
c
t
a
s
y
m
m
e
tri
c
a
l
fra
c
tal
a
p
e
rtu
re
No
tch
b
a
n
d
a
n
ten
n
a
”
,
L
e
o
n
a
rd
o
El
e
c
tro
n
ic Jo
u
rn
a
l
o
f
P
ra
c
ti
c
e
s an
d
T
e
c
h
n
o
lo
g
ies
,
v
o
l
.
2
7
,
no.
2
,
p
p
1
-
1
2
,
2
0
1
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.