I
nte
rna
t
io
na
l J
o
urna
l o
f
I
nfo
r
m
a
t
ics a
nd
Co
mm
u
n
ica
t
io
n T
ec
hn
o
lo
g
y
(
I
J
-
I
CT
)
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
201
6
,
p
p
.
94
~
1
0
5
I
SS
N:
2252
-
8776
94
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
I
C
T
2
D O
p
tical
F
i
ber
Wa
v
e
G
uide
D
esi
g
n f
o
r Multi
H
a
ul
Applica
tions
Ven
k
a
t
a
Ra
g
ha
v
endra
M
iri
a
m
pa
lly
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
A
d
a
m
a
S
c
ien
c
e
&
T
e
c
h
n
o
lo
g
y
Un
iv
e
rsit
y
,
A
d
a
m
a
,
Et
h
io
p
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
u
s
t
2
,
2
0
1
6
R
ev
i
s
ed
Octo
b
er
7
,
2
0
1
6
A
cc
ep
ted
No
v
e
m
b
er
1
,
2
0
1
6
T
h
e
o
p
ti
c
a
l
c
o
m
m
u
n
ica
ti
o
n
s
h
a
d
a
n
e
x
p
o
n
e
n
ti
a
l
g
ro
w
th
o
v
e
r
th
e
las
t
fe
w
y
e
a
rs,
h
a
v
in
g
a
sig
n
i
f
ica
n
t
c
o
m
m
e
rc
ial
m
a
rk
e
t
in
o
p
ti
c
a
l
sy
ste
m
s
a
n
d
c
o
m
p
o
n
e
n
ts.
T
h
is
g
ro
w
th
h
a
s
b
e
e
n
e
x
ten
d
e
d
a
c
ro
ss
a
ll
a
p
p
li
c
a
ti
o
n
a
re
a
s,
f
ro
m
tran
sc
o
n
ti
n
e
n
tal
a
n
d
tran
so
c
e
a
n
ic
d
ista
n
c
e
s
to
re
g
io
n
a
l
n
e
t
w
o
rk
s
a
n
d
las
tl
y
to
c
a
m
p
u
s
a
n
d
b
u
il
d
i
n
g
w
iri
n
g
.
T
h
is
p
a
p
e
r
b
a
sic
a
ll
y
e
x
p
lain
s
th
e
c
o
n
c
e
p
t
o
f
Op
ti
c
a
l
f
ib
e
r
c
o
m
m
u
n
ica
ti
o
n
,
t
h
e
p
ro
p
a
g
a
ti
o
n
o
f
li
g
h
t
in
sid
e
t
h
e
f
ib
e
r
a
n
d
m
a
in
ly
th
e
tw
o
d
im
e
n
sio
n
a
l
d
e
sig
n
o
f
o
p
t
ica
l
f
ib
e
r
it
se
lf
.
T
h
e
re
se
a
rc
h
e
r
d
isc
u
ss
e
s
th
e
p
a
ra
m
e
te
rs
su
c
h
a
s
e
ff
e
c
ti
v
e
g
ro
u
p
d
e
lay
,
d
isp
e
rsio
n
.
M
o
d
e
s,
Be
n
d
i
n
g
L
o
ss
,
M
a
teria
l
Lo
ss
,
M
o
d
e
f
ield
,
Biref
rin
g
e
n
c
e
,
S
p
li
c
e
L
o
ss
,
P
o
lariz
a
ti
o
n
M
o
d
e
Disp
e
rsio
n
(
P
M
D),
Ef
fe
c
t
o
f
n
o
n
li
n
e
a
r
Re
f
ra
c
t
iv
e
In
d
e
x
.
F
in
a
ll
y
we
d
e
sig
n
th
e
o
p
ti
c
a
l
f
i
b
e
r
w
it
h
a
ll
th
e
a
b
o
v
e
m
e
n
ti
o
n
e
d
p
a
ra
m
e
ters
.
K
ey
w
o
r
d
:
B
en
d
in
g
lo
s
s
B
ir
ef
r
in
g
e
n
ce
m
o
d
e
f
ield
Dis
p
er
s
io
n
Gr
o
u
p
d
elay
Ma
ter
ial
lo
s
s
Mo
d
es
P
o
lar
izatio
n
m
o
d
e
d
is
p
er
s
io
n
Sp
lice
lo
s
s
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
All
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ven
k
ata
R
a
g
h
a
v
e
n
d
r
a
Mir
ia
m
p
all
y
Dep
ar
t
m
en
t o
f
E
lectr
ical
E
n
g
i
n
ee
r
in
g
,
A
d
a
m
a
Scie
n
ce
&
T
ec
h
n
o
lo
g
y
Un
iv
er
s
it
y
,
A
d
a
m
a,
E
th
io
p
ia
-
1888.
E
m
ail:
m
ir
ia
m
p
a
ll
y
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
I
n
th
e
ea
r
l
y
s
tag
e
s
o
f
d
ev
elo
p
m
e
n
t
o
f
tec
h
n
o
lo
g
y
,
f
ib
er
co
m
m
u
n
icatio
n
p
r
o
m
i
s
ed
ex
tr
e
m
el
y
h
i
g
h
d
ata
r
ates,
w
h
ic
h
allo
w
lar
g
e
a
m
o
u
n
t
o
f
d
ata
to
b
e
tr
an
s
m
it
ted
at
a
h
ig
h
er
d
ata
r
ate.
I
t
als
o
h
ad
th
e
p
o
ten
tial
f
o
r
tr
an
s
m
i
s
s
io
n
o
v
er
lo
n
g
d
i
s
tan
ce
s
w
it
h
o
u
t
a
r
ep
ea
ter
.
T
h
e
b
an
d
w
id
t
h
o
f
t
h
e
f
ib
er
o
p
tic
co
m
m
u
n
ica
tio
n
s
y
s
te
m
,
d
eter
m
i
n
es
t
h
e
m
ax
i
m
u
m
d
ata
r
ate
a
n
d
th
e
m
aj
o
r
co
m
p
o
n
en
t
s
o
f
t
h
e
s
y
s
te
m
.
Fig
u
r
e
1
s
h
o
w
s
t
h
e
b
lo
ck
d
iag
r
a
m
o
f
f
ib
er
o
p
tic
c
o
m
m
u
n
icatio
n
s
y
s
te
m
.
T
h
e
in
f
o
r
m
atio
n
s
i
g
n
al
t
h
at
i
s
to
b
e
tr
an
s
m
itted
m
a
y
b
e
co
m
p
u
ter
d
ata,
v
id
eo
o
r
v
o
ice.
T
h
e
f
ir
s
t
s
tep
is
to
co
n
v
er
t
th
e
i
n
f
o
r
m
atio
n
in
to
a
f
o
r
m
w
ell
s
u
ited
w
it
h
t
h
e
co
m
m
u
n
icatio
n
s
m
ed
iu
m
.
T
h
i
s
is
u
s
u
all
y
d
o
n
e
b
y
alter
in
g
c
o
n
tin
u
o
u
s
a
n
alo
g
s
ig
n
al
s
s
u
ch
as
T
V
(
v
o
ice
an
d
v
id
eo
)
s
ig
n
als i
n
to
a
s
er
ies o
f
d
ig
ital
p
u
l
s
es.
An
A
/D
co
n
v
er
ter
is
u
s
ed
f
o
r
th
is
p
u
r
p
o
s
e.
T
h
ese
d
ig
ital
p
u
ls
e
s
ar
e
th
e
n
u
s
ed
to
f
las
h
a
p
o
w
er
f
u
l
lig
h
t
s
o
u
r
ce
to
o
f
f
a
n
d
o
n
v
er
y
r
ap
id
l
y
.
I
n
a
s
i
m
p
le
s
y
s
te
m
f
o
r
s
h
o
r
t
d
is
ta
n
ce
s
,
t
h
e
l
ig
h
t
s
o
u
r
ce
is
u
s
u
a
ll
y
a
lig
h
t
e
m
i
tti
n
g
d
io
d
e.
T
h
is
is
a
s
e
m
ico
n
d
u
cto
r
d
ev
ice
th
at
g
i
v
es
lo
w
in
ten
s
it
y
r
ed
lig
h
t.
Ot
h
er
co
lo
r
s
ar
e
also
u
s
ed
.
A
n
o
t
h
er
co
m
m
o
n
l
y
u
s
ed
lig
h
t
s
o
u
r
ce
is
th
e
s
o
lid
s
tat
e
laser
t
h
at
g
e
n
er
ates
a
n
e
x
tr
e
m
el
y
h
ig
h
in
ten
s
e
co
h
er
en
t
li
g
h
t
b
ea
m
.
T
h
is
lig
h
t
b
ea
m
p
u
ls
e
s
ar
e
th
en
f
ed
in
t
o
a
f
ib
er
ca
b
le
w
h
er
e
th
e
y
ar
e
co
m
m
u
n
icate
d
o
v
er
lo
n
g
d
is
ta
n
ce
s
.
At
t
h
e
r
ec
ei
v
i
n
g
e
n
d
,
a
li
g
h
t
s
en
s
iti
v
e
d
e
v
ice
k
n
o
w
n
a
s
a
li
g
h
t
d
etec
to
r
o
r
p
h
o
to
ce
ll
is
u
s
ed
to
d
etec
t th
e
lig
h
t p
u
ls
es.
T
h
is
p
h
o
to
d
etec
to
r
o
r
p
h
o
to
ce
ll c
o
n
v
er
ts
th
e
li
g
h
t p
u
ls
e
s
in
to
an
ele
ctr
ical
s
ig
n
al.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
2
D
Op
tica
l fib
er W
a
ve
g
u
id
e
d
esig
n
fo
r
Mu
lti h
a
u
l A
p
p
lica
t
io
n
s
(
V
en
ka
ta
R
a
g
h
a
ve
n
d
r
a
Mir
ia
mp
a
lly
)
95
Fig
u
r
e
1
.
B
lo
ck
Diag
r
a
m
o
f
O
p
tical
Fib
er
C
o
m
m
u
n
icatio
n
T
h
e
elec
tr
ical
p
u
ls
es
ar
e
th
en
a
m
p
li
f
ied
an
d
r
esh
ap
ed
b
ac
k
in
to
d
ig
ital
f
o
r
m
.
B
o
th
th
e
s
o
u
r
ce
s
at
th
e
s
en
d
i
n
g
en
d
a
n
d
t
h
e
d
etec
to
r
s
o
n
th
e
r
ec
eiv
in
g
e
n
d
m
u
s
t
o
p
e
r
ate
at
t
h
e
s
a
m
e
d
ata
r
ate.
T
h
e
d
ev
ice
t
h
at
d
r
i
v
es
th
e
li
g
h
t
s
o
u
r
ce
an
d
th
e
cir
c
u
i
t
th
at
a
m
p
li
f
y
an
d
p
r
o
ce
s
s
th
e
d
etec
ted
lig
h
t
m
u
s
t
h
a
v
e
s
u
ita
b
le
h
ig
h
-
f
r
eq
u
e
n
c
y
r
esp
o
n
s
e.
T
h
e
f
ib
er
its
elf
m
u
s
t
n
o
t
g
ar
b
le
th
e
h
ig
h
-
s
p
ee
d
lig
h
t
p
u
ls
e
s
u
s
ed
in
t
h
e
d
ata
tr
an
s
m
i
s
s
io
n
.
T
h
ey
ar
e
g
iv
e
n
as
an
i
n
p
u
t
to
a
d
ec
o
d
er
,
s
u
ch
as
a
D/
A
,
w
h
er
e
th
e
o
r
i
g
in
a
l
d
ata
is
r
ec
o
v
er
ed
.
I
n
v
er
y
lo
n
g
tr
a
n
s
m
is
s
io
n
s
y
s
te
m
s
,
r
ep
ea
ter
s
ar
e
u
s
ed
al
o
n
g
t
h
e
w
a
y
.
Si
n
ce
t
h
e
li
g
h
t
is
s
ig
n
i
f
ica
n
tl
y
atte
n
u
a
ted
w
h
e
n
it
tr
av
el
s
o
v
er
lo
n
g
d
is
tan
ce
s
,
at
s
o
m
e
d
is
ta
n
ce
it
m
a
y
b
e
to
o
w
ea
k
to
b
e
r
ec
eiv
ed
co
n
s
tan
tl
y
.
T
o
o
v
er
co
m
e
th
is
d
if
f
icu
l
t
y
,
s
p
ec
ial
r
ep
ea
ter
s
tatio
n
s
ar
e
u
s
ed
to
p
i
ck
u
p
li
g
h
t b
ea
m
,
th
e
y
co
n
v
er
t
it b
ac
k
to
elec
tr
ical
p
u
ls
e
s
th
a
t a
r
e
am
p
li
f
ied
a
n
d
th
en
r
e
-
tr
an
s
m
it t
h
e
m
.
Sev
er
al
s
tag
e
s
o
f
r
ep
ea
ter
s
ar
e
d
esire
d
o
v
er
v
er
y
lo
n
g
d
is
ta
n
ce
s
.
T
h
is
atten
u
atio
n
i
s
d
u
e
to
s
o
m
a
n
y
p
ar
a
m
eter
s
a
n
d
w
e
w
ill d
i
s
cu
s
s
t
h
e
m
in
d
etail
as
f
o
llo
w
s
.
2.
E
F
F
E
C
T
I
V
E
G
RO
UP
DE
L
AY
I
f
th
e
in
d
e
x
o
f
r
ef
r
ac
tio
n
o
f
th
e
f
ib
er
m
ater
ial
v
ar
ies
w
it
h
wav
elen
g
t
h
ca
u
s
in
g
t
h
e
g
r
o
u
p
v
elo
cit
y
to
v
ar
y
,
it is
r
ep
r
ese
n
ted
as
m
ater
ial
d
is
p
er
s
io
n
.
T
h
e
g
r
o
u
p
d
elay
is
g
iv
en
b
y
th
e
p
r
o
d
u
ct
o
f
th
e
tr
an
s
m
i
s
s
io
n
d
is
tan
ce
z
b
y
t
h
e
f
ir
s
t
d
er
iv
ativ
e
o
f
f
r
eq
u
en
c
y
o
f
t
h
e
p
r
o
p
ag
atio
n
c
o
n
s
ta
n
t:
w
h
er
e
n
i
s
th
e
r
ef
r
ac
t
iv
e
i
n
d
ex
;
,
;
W
e
h
av
e
(
)
(
)
T
h
e
d
is
p
er
s
io
n
co
ef
f
icie
n
t D
i
s
d
ef
i
n
ed
as
; in
b
u
lk
m
ater
ial
s
w
e
h
av
e
2
.
1
.
M
a
t
er
ia
l D
is
persio
n o
f
t
he
F
iber
W
e
h
av
e
a
n
eq
u
at
io
n
t
h
at
t
h
e
v
elo
cit
y
o
f
l
ig
h
t
i
n
a
m
ed
i
u
m
is
g
i
v
en
b
y
v
=
c
/
n
.
W
h
er
e
n
is
th
e
r
ef
r
ac
tiv
e
in
d
e
x
o
f
th
e
m
ed
i
u
m
,
w
h
ic
h
d
ep
en
d
s
o
n
t
h
e
w
a
v
elen
g
th
.
T
h
i
s
d
ep
en
d
en
ce
o
f
t
h
e
r
ef
r
ac
ti
v
e
i
n
d
ex
o
n
w
a
v
ele
n
g
t
h
lead
s
to
d
is
p
ers
io
n
,
if
a
w
h
ite
p
en
cil
li
g
h
t
b
e
a
m
in
cid
e
n
t
o
n
a
p
r
is
m
.
Si
n
ce
th
e
r
ef
r
ac
ti
v
e
in
d
e
x
o
f
g
las
s
d
ep
en
d
s
o
n
th
e
w
a
v
el
en
g
t
h
,
th
e
a
n
g
le
o
f
r
ef
r
ac
tio
n
w
il
l
b
e
d
if
f
er
en
t
f
o
r
d
if
f
er
e
n
t
co
lo
r
s
.
T
h
e
in
cid
en
t
lig
h
t
w
i
ll
th
er
e
f
o
r
e
d
is
p
ers
e
i
n
to
its
co
n
s
t
itu
e
n
t
co
lo
r
s
,
th
e
d
i
s
p
er
s
io
n
w
i
ll
b
ec
o
m
e
m
o
r
e
ev
id
en
t
at
t
h
e
s
ec
o
n
d
s
u
r
f
ac
e
o
f
th
e
p
r
is
m
.
T
h
e
q
u
an
tit
y
d
ef
in
ed
is
u
s
u
all
y
r
ef
er
r
e
d
to
as th
e
p
h
a
s
e
ve
lo
city
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
2
0
1
6
:
94
–
1
0
5
96
Ho
w
e
v
er
,
a
p
u
ls
e
tr
av
el
s
w
it
h
is
k
n
o
w
n
as
t
h
e
g
r
o
u
p
ve
lo
city,
w
h
ich
i
s
g
i
v
e
n
b
y
v
g
=
c
/
n
g
;
w
h
er
e
n
g
is
k
n
o
w
n
a
s
t
h
e
g
r
o
u
p
i
n
d
ex
an
d
,
i
n
m
o
s
t
ca
s
es
it
s
v
al
u
e
is
s
li
g
h
tl
y
lar
g
er
th
a
n
n
.
I
n
T
ab
le
1
w
e
h
av
e
r
ep
r
esen
ted
n
an
d
n
g
f
o
r
p
u
r
e
s
ilica
f
o
r
v
ar
y
in
g
w
a
v
elen
g
t
h
b
et
w
ee
n
7
0
0
n
m
a
n
d
1
6
0
0
n
m
.
T
ab
le
1
.
R
ef
r
ac
tiv
e
I
n
d
e
x
an
d
Gr
o
u
p
I
n
d
ex
w
it
h
Var
y
i
n
g
W
a
v
ele
n
g
t
h
λ
0
(
n
m)
n
(
λ
0
)
n
g
(
λ
0
)
Dm
(
p
s/
n
m
-
k
m)
7
0
0
1
.
4
5
5
6
1
1
.
4
7
1
5
4
–
1
7
2
.
9
0
2
7
5
0
1
.
4
5
4
5
6
1
.
4
6
9
2
4
–
1
3
5
.
3
1
3
8
0
0
1
.
4
5
3
6
4
1
.
4
6
7
4
4
–
1
0
6
.
6
0
9
8
5
0
1
.
4
5
2
8
2
1
.
4
6
6
0
1
–
8
4
.
2
0
7
7
9
0
0
1
.
4
5
2
0
8
1
.
4
6
4
8
9
–
6
6
.
3
8
2
9
5
0
1
.
4
5
1
3
9
1
.
4
6
4
0
1
–
5
1
.
9
4
4
1
1
0
0
0
1
.
4
5
0
7
5
1
.
4
6
3
3
2
–
4
0
.
0
5
7
7
1
0
5
0
1
.
4
5
0
1
3
1
.
4
6
2
7
9
–
3
0
.
1
2
1
4
1
1
0
0
1
.
4
4
9
5
4
1
.
4
6
2
4
1
–
2
1
.
6
9
5
1
1
1
5
0
1
.
4
4
8
9
6
1
.
4
6
2
1
4
–
1
4
.
4
5
1
1
1
2
0
0
1
.
4
4
8
3
9
1
.
4
6
1
9
7
–
8
.
1
4
2
1
3
1
2
5
0
1
.
4
4
7
8
3
1
.
4
6
1
8
9
–
2
.
5
7
8
7
2
1
3
0
0
1
.
4
4
7
2
6
1
.
4
6
1
8
9
2
.
3
8
5
7
9
1
3
5
0
1
.
4
4
6
7
0
1
.
4
6
1
9
6
6
.
8
6
6
3
1
1
4
0
0
1
.
4
4
6
1
3
1
.
4
6
2
0
9
1
0
.
9
5
3
9
1
4
5
0
1
.
4
4
5
5
6
1
.
4
6
2
2
9
1
4
.
7
2
1
1
1
5
0
0
1
.
4
4
4
9
8
1
.
4
6
2
5
3
1
8
.
2
2
6
8
1
5
5
0
1
.
4
4
4
3
9
1
.
4
6
2
8
3
2
1
.
5
1
8
7
1
6
0
0
1
.
4
4
3
7
9
1
.
4
6
3
1
8
2
4
.
6
3
5
8
Fig
u
r
e
2
.
R
ef
r
ac
ti
v
e
I
n
d
ex
v
s
.
W
av
elen
g
t
h
(
n
m
t)
I
n
a
f
ib
er
,
th
e
co
r
e
an
d
clad
d
in
g
ar
e
f
ab
r
icate
d
w
it
h
d
i
f
f
er
e
n
t
m
ater
ials
.
W
e
ass
u
m
e
t
h
at
th
er
e
ar
e
L
la
y
er
s
i
n
th
e
f
ib
er
cr
o
s
s
-
s
ec
tio
n
,
ea
ch
la
y
er
h
as it
s
o
w
n
r
e
f
r
ac
tiv
e
i
n
d
ex
.
T
h
e
to
tal
m
ater
ial
d
is
p
er
s
io
n
o
f
th
e
o
p
tical
f
ib
er
is
ca
lcu
la
ted
b
y
:
∑
(
1
)
w
h
er
e
is
th
e
co
n
f
i
n
e
m
e
n
t
f
ac
to
r
o
f
ea
ch
la
y
er
.
T
h
e
co
n
f
i
n
e
m
e
n
t f
ac
to
r
is
th
e
p
o
r
tio
n
o
f
to
tal
p
o
w
er
g
u
id
ed
in
th
e
i
th
la
y
er
2
.
2
.
Wa
v
e
g
uid
e
Dis
pers
io
n
o
f
t
he
F
iber
W
av
elen
g
t
h
d
ep
en
d
en
ce
o
f
t
h
e
ef
f
ec
t
iv
e
er
e
f
r
ac
tiv
e
i
n
d
ex
o
f
th
e
f
ib
er
m
o
d
e
r
esu
lts
i
n
W
av
eg
u
id
e
d
is
p
er
s
io
n
.
T
h
e
w
av
eg
u
id
e
d
is
p
er
s
io
n
i
s
ca
lcu
la
t
ed
b
y
:
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
2
D
Op
tica
l fib
er W
a
ve
g
u
id
e
d
esig
n
fo
r
Mu
lti h
a
u
l A
p
p
lica
t
io
n
s
(
V
en
ka
ta
R
a
g
h
a
ve
n
d
r
a
Mir
ia
mp
a
lly
)
97
2
.
3
.
T
o
t
a
l D
is
persio
n
o
f
t
he
F
iber
T
h
e
to
tal
d
is
p
er
s
io
n
is
th
e
to
ta
l e
f
f
ec
t o
f
d
if
f
er
en
t d
is
p
er
s
io
n
s
s
u
c
h
as
m
ater
ial
a
n
d
w
a
v
e
g
u
id
e.
First
th
e
m
a
ter
ial
d
is
p
er
s
io
n
e
f
f
ec
t w
il
l b
e
ca
lcu
lated
.
T
h
en
th
e
m
o
d
e
s
o
lv
er
ca
lcu
lates t
h
e
m
o
d
e
ef
f
ec
t
iv
e
in
d
ex
.
T
h
e
to
tal
d
is
p
er
s
io
n
o
f
a
f
ib
er
is
:
(
2
)
3.
M
O
DE
F
I
E
L
D
DIAM
E
T
E
R
AND
M
O
DE
AREA DEF
I
NIT
I
O
NS M
O
DE
F
I
E
L
D
DI
AM
E
T
E
R
AND
ARE
A
I
M
P
O
RT
ANC
E
T
h
e
Mo
d
e
Field
Diam
eter
is
a
n
i
m
p
o
r
tan
t p
ar
a
m
eter
r
elate
d
to
th
e
o
p
tical
f
ield
d
is
tr
ib
u
tio
n
in
th
e
f
ib
er
.
I
t h
as b
ee
n
s
h
o
w
n
t
h
at
MFD
p
r
o
v
id
es u
s
e
f
u
l e
v
id
en
c
e
ab
o
u
t th
e
f
ib
er
ca
b
lin
g
b
eh
a
v
io
r
,
s
u
c
h
as p
o
s
s
ib
le
j
o
in
t,
m
ac
r
o
b
en
d
i
n
g
,
a
n
d
m
icr
o
b
en
d
in
g
lo
s
s
es.
T
h
e
ac
tu
al
ar
ea
o
f
th
e
f
ib
er
s
h
as a
r
elatio
n
t
o
th
e
n
o
n
li
n
ea
r
d
is
to
r
tio
n
s
i
n
lo
n
g
f
ib
er
li
n
k
s
.
3
.
1
.
Nea
r
-
F
ield Dia
m
et
er
De
f
ini
t
io
n
T
h
e
n
ea
r
-
f
ie
ld
Mo
d
e
Field
Diam
eter
is
al
s
o
k
n
o
w
n
ast
h
e
“
P
eter
m
an
n
I
”
d
ia
m
eter
.
I
t is d
ef
i
n
ed
as th
e
d
ia
m
eter
at
w
h
ic
h
t
h
e
n
ea
r
f
iel
d
p
o
w
er
f
a
lls
to
o
f
its
m
a
x
i
m
u
m
v
al
u
e.
I
t c
an
b
e
ca
lcu
la
ted
b
y
[
1
]
:
√
(
∫
∫
)
(
3
)
w
h
er
e
E
(
r
)
is
o
p
tical
m
o
d
e
f
ie
l
d
d
is
tr
ib
u
tio
n
.
3
.
2
.
F
a
r
-
F
ield Dia
m
et
er
Def
i
nitio
n
T
h
e
f
ar
-
f
ield
Mo
d
e
Field
Diam
eter
is
al
s
o
k
n
o
w
n
as t
h
e
“
P
eter
m
an
n
I
I
”
d
ia
m
eter
.
I
t is d
ef
i
n
ed
as th
e
d
ia
m
eter
at
w
h
ic
h
t
h
e
f
ar
f
ield
p
o
w
er
f
alls
to
o
f
its
m
ax
i
m
u
m
v
al
u
e.
I
t c
an
b
e
ca
lcu
la
ted
b
y
[
1
]
:
√
(
∫
∫
)
(
4
)
w
h
er
e
E
(
r
)
is
th
e
o
p
tical
m
o
d
e
f
ield
d
is
tr
ib
u
tio
n
,
an
d
p
r
i
m
e
d
en
o
tes t
h
e
f
ir
s
t d
er
iv
ati
v
e
o
f
E
(
r
)
3
.
3
.
E
f
f
ec
t
i
v
e
M
o
de
Are
a
Def
ini
t
io
n
T
h
e
ef
f
ec
ti
v
e
Mo
d
e
A
r
ea
is
ca
lcu
lated
as
*
∫
∫
|
|
+
∫
∫
|
|
(
5
)
w
h
er
e
E
(
x
,
y
)
is
t
h
e
o
p
tical
m
o
d
e
f
ield
d
is
tr
ib
u
tio
n
3
.
4
.
E
f
f
ec
t
i
v
e
M
o
de
F
ield Dia
m
et
er
Def
ini
t
io
n
E
f
f
ec
tiv
e
Mo
d
e
Field
Dia
m
ete
r
d
ef
in
ed
as:
√
∫
[
∫
]
=>
√
√
(
6
)
w
h
er
e
E
(
r
)
is
th
e
o
p
tical
m
o
d
e
f
ield
d
is
tr
ib
u
tio
n
4.
F
I
B
E
R
L
O
S
S M
O
DE
L
S
4
.
1
.
F
iber
P
ro
pa
g
a
t
io
n L
o
s
s
Def
ini
t
io
n
T
h
e
to
tal
f
ib
er
lo
s
s
ca
n
b
e
d
iv
id
ed
in
to
f
ib
er
in
d
u
ce
d
lo
s
s
es
an
d
m
ater
ial
lo
s
s
es.
Ma
te
r
ial
lo
s
s
es
in
cl
u
d
e
R
a
y
leig
h
s
ca
tter
in
g
,
u
ltra
v
io
let,
in
f
r
ar
ed
ab
s
o
r
p
tio
n
,
an
d
h
y
d
r
o
x
y
l
ab
s
o
r
p
tio
n
lo
s
s
es.
Ma
ter
ial
lo
s
s
e
s
ar
e
th
e
r
estra
in
i
n
g
lo
s
s
e
s
in
f
i
b
er
s
.
Fib
er
lo
s
s
is
d
ef
i
n
ed
as
th
e
r
atio
o
f
th
e
o
u
tp
u
t
o
p
tical
p
o
w
er
f
r
o
m
a
f
ib
er
o
f
len
g
t
h
L
to
th
e
i
n
p
u
t o
p
tical
p
o
w
er
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
2
0
1
6
:
94
–
1
0
5
98
T
h
e
s
y
m
b
o
l α
i
s
co
m
m
o
n
l
y
u
s
ed
to
ex
p
r
ess
lo
s
s
in
(
)
(
7
)
4
.
2
.
Ra
y
leig
h Sca
t
t
er
ing
M
o
del
L
i
g
h
t
tr
an
s
m
i
tted
th
r
o
u
g
h
t
h
e
f
ib
er
s
u
f
f
er
s
s
ca
tter
i
n
g
lo
s
s
d
u
e
to
r
o
u
g
h
ap
p
ea
r
an
ce
o
f
ato
m
s
o
r
m
o
lecu
le
s
o
f
th
e
g
lass
f
ib
er
,
w
h
ic
h
is
k
n
o
w
n
as
R
a
y
lei
g
h
s
ca
tter
in
g
lo
s
s
.
T
h
e
f
ib
er
lo
s
s
is
ex
p
r
ess
ed
in
th
r
o
u
g
h
[
2
]
:
;
f
o
r
a
s
in
g
le
-
c
o
m
p
o
n
en
t
g
las
s
s
u
c
h
a
s
Sio
2
;
W
h
er
e
is
th
e
r
ef
r
ac
ti
v
e
in
d
ex
,
p
is
th
e
p
h
o
to
elastic
co
ef
f
icien
t,
β
i
s
th
e
th
er
m
al
co
m
p
r
ess
ib
ilit
y
,
k
i
s
th
e
B
o
ltz
m
a
n
n
co
ef
f
icie
n
t,
a
n
d
T
is
th
e
ab
s
o
l
u
te
te
m
p
er
at
u
r
e
o
f
t
h
e
s
a
m
p
le.
4
.
3
.
M
a
cr
o
bend
ing
L
o
s
s
M
o
del
T
h
e
m
ac
r
o
b
en
d
i
n
g
lo
s
s
is
a
r
a
d
iativ
e
lo
s
s
o
cc
u
r
s
w
h
e
n
t
h
e
f
i
b
er
b
en
d
r
ad
iu
s
is
lar
g
e
co
m
p
ar
ed
to
th
e
f
ib
er
d
ia
m
eter
.
I
t
is
d
ef
i
n
ed
as
u
s
u
al
b
y
;
w
h
er
e
is
th
e
i
n
p
u
t
p
o
w
er
an
d
is
t
h
e
o
u
tp
u
t p
o
w
er
at
d
is
ta
n
ce
z
r
es
p
ec
tiv
el
y
.
T
h
er
e
ar
e
tw
o
m
o
d
el
s
f
o
r
Ma
cr
o
b
en
d
in
g
.
T
h
e
f
ir
s
t
u
s
e
s
t
h
e
clo
s
ed
-
f
o
r
m
in
te
g
r
al
f
o
r
m
u
la
[
3
]
.
Usi
n
g
th
is
t
h
e
m
ac
r
o
b
en
d
in
g
p
o
w
er
l
o
s
s
co
ef
f
icien
t is e
x
p
r
ess
ed
as
a
f
u
n
ctio
n
o
f
th
e
b
e
n
d
in
g
r
ad
iu
s
in
th
e
f
o
r
m
:
√
[
]
(
)
(
)
(
8
)
T
h
e
p
ar
am
eter
s
ap
p
ea
r
in
g
ab
o
v
e
ar
e
g
i
v
en
b
y
:
√
is
th
e
n
o
r
m
alize
d
d
i
m
e
n
s
io
n
le
s
s
f
r
eq
u
en
c
y
;
√
;
(
)
;
w
h
er
e
d
esig
n
ate
s
t
h
e
f
ib
er
co
r
e
r
ad
iu
s
,
is
t
h
e
m
ax
i
m
u
m
r
ef
r
ac
ti
v
e
i
n
d
ex
a
n
d
is
th
e
clad
d
in
g
r
ef
r
ac
ti
v
e
i
n
d
ex
,
βi
s
t
h
e
m
o
d
e
p
r
o
p
ag
atio
n
co
n
s
tan
t,
is
th
e
p
r
o
p
ag
atio
n
co
n
s
ta
n
t
i
n
v
ac
u
u
m
,
is
t
h
e
az
i
m
u
th
al
m
o
d
e
n
u
m
b
er
,
if
o
r
i
f
≠
0
an
d
is
th
e
m
o
d
if
ied
B
ess
el
f
u
n
ct
io
n
o
f
t
h
e
s
ec
o
n
d
k
i
n
d
o
f
o
r
d
er
.
Seco
n
d
m
ac
r
o
b
en
d
in
g
lo
s
s
m
o
d
el
is
ex
p
r
ess
ed
as [
4
]
:
(
)
⁄
(
)
*
∫
+
∫
(
9
)
w
h
er
e
is
th
e
r
ad
ial
f
ield
o
f
t
h
e
f
u
n
d
a
m
en
ta
l
m
o
d
e.
;
an
d
N(
R
)
is
th
e
r
ef
r
ac
ti
v
e
i
n
d
ex
p
r
o
f
ile
o
f
t
h
e
f
ib
er
.
T
h
e
o
th
er
p
ar
am
eter
s
ar
e
g
iv
e
n
ab
o
v
e.
T
h
e
t
w
o
m
o
d
els
g
iv
e
s
i
m
ilar
r
es
u
lt
s
f
o
r
s
t
ep
-
in
d
e
x
f
ib
er
s
.
T
h
e
lo
s
s
co
ef
f
icien
t
ca
n
b
e
co
n
v
er
ted
to
lo
s
s
in
u
n
its
as
f
o
llo
w
s
:
(
)
(
1
0
)
4
.
4
.
M
icr
o
bend
ing
L
o
s
s
M
o
del
Mic
r
o
b
en
d
in
g
lo
s
s
is
a
ls
o
a
r
ad
iativ
e
lo
s
s
i
n
f
ib
er
r
es
u
lti
n
g
f
r
o
m
m
o
d
e
co
u
p
li
n
g
ca
u
s
ed
b
y
r
an
d
o
m
m
icr
o
b
en
d
s
,
w
h
ic
h
ar
e
r
ep
eti
tiv
e
s
m
all
f
l
u
ct
u
atio
n
s
in
t
h
e
r
ad
iu
s
o
f
th
e
cu
r
v
at
u
r
e
o
f
th
e
f
ib
er
ax
is
.
An
ap
p
r
o
x
im
a
te
ex
p
r
ess
io
n
f
o
r
th
e
atten
u
a
tio
n
co
ef
f
icie
n
t i
s
g
i
v
en
b
y
[
5
]
:
;
w
h
er
e
A
is
a
co
n
s
tan
t,
is
th
e
n
ea
r
f
ield
d
ia
m
eter
,
is
th
e
co
r
e
r
ef
r
ac
tiv
e
in
d
ex
,
k
is
t
h
e
f
r
e
e
s
p
ac
e
w
a
v
e
n
u
m
b
er
,
an
d
p
is
th
e
e
x
p
o
n
en
t
in
th
e
p
o
w
er
la
w
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
2
D
Op
tica
l fib
er W
a
ve
g
u
id
e
d
esig
n
fo
r
Mu
lti h
a
u
l A
p
p
lica
t
io
n
s
(
V
en
ka
ta
R
a
g
h
a
ve
n
d
r
a
Mir
ia
mp
a
lly
)
99
4
.
5
.
Sp
lice
L
o
s
s
M
o
del
A
s
p
lice
is
a
j
o
in
t
(
d
ielec
tr
ic
in
ter
f
ac
e
b
et
w
ee
n
t
w
o
o
p
tical
f
ib
er
s
)
.
A
n
y
r
e
f
r
ac
tiv
e
in
d
e
x
m
is
m
a
tc
h
w
il
l
p
r
o
d
u
ce
r
ef
lectio
n
an
d
r
e
f
r
ac
tio
n
at
a
n
y
p
o
in
t
i
n
t
h
i
s
in
ter
f
ac
e.
Fo
r
s
p
lici
n
g
ca
lc
u
lat
io
n
s
,
w
e
a
s
s
u
m
e
th
a
t
th
e
m
o
d
e
f
ield
o
f
s
i
n
g
le
-
m
o
d
e
f
ib
er
i
s
n
ea
r
l
y
Gau
s
s
ia
n
.
T
h
e
co
u
p
lin
g
lo
s
s
es
f
o
r
t
h
e
s
p
lic
e
ca
n
b
e
ca
lc
u
lated
b
y
ev
a
lu
at
in
g
t
h
e
co
n
n
ec
tio
n
b
et
w
ee
n
t
w
o
m
is
al
ig
n
ed
Ga
u
s
s
ian
b
ea
m
s
.
B
ased
o
n
t
h
e
ab
o
v
e
m
o
d
el,
t
h
e
co
u
p
lin
g
lo
s
s
b
et
w
ee
n
t
w
o
s
i
n
g
le
m
o
d
e
f
ib
er
s
is
g
i
v
e
n
b
y
[
6
]
:
*
(
)
(
)
+
(
1
1
)
w
h
er
e
;
(
)
;
;
;
(
)
;
w
h
er
e
is
C
o
r
e
r
ef
r
ac
tiv
e
in
d
e
x
o
f
th
e
f
ib
er
,
is
R
ef
r
ac
ti
v
e
in
d
ex
o
f
th
e
m
ed
iu
m
b
et
w
ee
n
th
e
t
w
o
f
ib
er
s
,
is
W
av
ele
n
g
t
h
,
is
Nea
r
f
ield
m
o
d
e
f
ie
ld
r
ad
iu
s
o
f
tr
a
n
s
m
itt
i
n
g
f
ib
er
,
is
Nea
r
f
ie
ld
m
o
d
e
f
i
eld
r
ad
iu
s
o
f
r
ec
eiv
in
g
f
ib
er
,
is
L
ater
al
o
f
f
s
et,
is
L
o
n
g
it
u
d
in
a
l o
f
f
s
et,
is
An
g
u
lar
m
is
al
ig
n
m
en
t
5.
F
I
B
E
R
B
I
RE
F
R
I
N
G
E
NCE
M
O
DE
L
S
5
.
1
.
F
iber
B
iref
ring
ence
Def
i
nitio
n
T
h
e
d
if
f
er
en
ce
b
et
w
ee
n
t
h
e
p
r
o
p
ag
atio
n
co
n
s
tan
t
s
o
f
t
h
e
p
o
lar
izatio
n
E
ig
e
n
m
o
d
es
is
d
ef
in
ed
as f
ib
er
b
ir
ef
r
in
g
en
ce
,
t
h
at
is
:
.
T
h
e
Dif
f
er
e
n
tial G
r
o
u
p
Dela
y
p
er
u
n
it le
n
g
t
h
is
d
e
f
i
n
ed
b
y
:
(
1
2
)
5
.
2
.
I
ntr
ins
ic
P
er
t
urba
t
io
ns
B
iref
ring
ence
I
n
tr
in
s
ic
p
er
tu
r
b
atio
n
s
ar
e
g
en
er
all
y
h
av
e
a
h
u
g
e
i
m
p
ac
t
i
n
s
tep
in
d
ex
f
ib
er
s
o
n
l
y
a
n
d
th
e
y
ar
e
ex
i
s
t
d
u
r
in
g
t
h
e
m
an
u
f
ac
t
u
r
in
g
p
r
o
ce
s
s
a
n
d
ar
e
p
er
m
an
e
n
t
f
ea
t
u
r
e
o
f
th
e
f
ib
er
.
T
h
ey
in
cl
u
d
e
a
n
o
n
cir
cu
lar
co
r
e
a
n
d
n
o
n
s
y
m
m
etr
ical
s
tr
ess
f
ie
ld
s
in
t
h
e
g
las
s
ar
o
u
n
d
th
e
co
r
e
r
eg
io
n
.
A
n
o
n
cir
c
u
lar
co
r
e
r
esu
lt
s
i
n
g
eo
m
etr
ic
b
ir
ef
r
in
g
en
ce
,
w
h
er
ea
s
a
n
o
n
s
y
m
m
etr
ica
l stre
s
s
f
ield
r
es
u
lt
s
in
s
tr
es
s
b
ir
ef
r
i
n
g
e
n
ce
.
5
.
3
.
E
llip
t
ica
l C
o
re
B
iref
ring
ence
Def
ini
t
io
n
T
h
e
g
eo
m
etr
ical
v
ar
iatio
n
o
f
a
n
o
n
-
cir
cu
lar
co
r
e
in
tr
o
d
u
ce
s
a
lin
ea
r
b
ir
ef
r
i
n
g
en
ce
in
th
e
o
p
t
ical
f
ib
er
.
T
h
is
b
ir
ef
r
in
g
en
ce
d
ep
en
d
s
s
t
r
o
n
g
l
y
o
n
n
o
r
m
alize
d
f
r
eq
u
en
c
y
V,
at
w
h
ich
th
e
f
ib
er
is
b
ein
g
o
p
er
ated
.
T
h
e
ellip
ticit
y
(
n
o
n
cir
cu
lar
it
y
)
o
f
th
e
co
r
e
is
d
ef
in
ed
b
y
th
e
p
ar
a
m
eter
W
h
er
e
a,
b
ar
e
th
e
m
i
n
o
r
an
d
m
aj
o
r
ax
is
o
f
t
h
e
ellip
tical
co
r
e
r
esp
ec
tiv
el
y
.
T
h
e
b
ir
ef
r
in
g
e
n
ce
i
n
d
u
ce
d
b
y
an
ell
ip
tica
l c
o
r
e
is
lin
ea
r
.
I
n
th
e
ca
s
e
o
f
a
s
tep
in
d
ex
f
ib
e
r
,
th
e
b
ir
ef
r
in
g
en
ce
is
g
iv
e
n
b
y
[
7
]
:
(
1
3
)
w
h
er
e
is
t
h
e
r
ef
r
ac
ti
v
e
in
d
e
x
d
if
f
er
en
ce
b
et
w
ee
n
th
e
co
r
e
an
d
th
e
clad
d
in
g
.
T
h
e
w
av
e
p
r
o
p
ag
atio
n
co
n
s
ta
n
t is
;
T
h
e
f
u
n
ctio
n
in
th
e
b
ir
ef
r
in
g
e
n
ce
f
o
r
m
u
la
is
[
*
+
*
+
]
(
1
4
)
W
ith
th
e
f
o
llo
w
i
n
g
d
ef
in
i
tio
n
s
o
f
w
a
v
e
g
u
id
e
p
ar
a
m
eter
s
√
(
1
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
2
0
1
6
:
94
–
1
0
5
100
√
(
1
6
)
√
√
(
1
7
)
w
h
er
e
a
is
th
e
co
r
e
r
ad
iu
s
.
T
h
e
Dif
f
er
e
n
tial G
r
o
u
p
Dela
y
p
er
u
n
it le
n
g
t
h
is
(
1
8
)
w
h
er
e
c
is
th
e
s
p
ee
d
o
f
lig
h
t i
n
v
ac
u
u
m
.
5
.
4
.
E
x
t
rins
ic
P
er
t
urba
t
io
ns
B
iref
ring
ence
B
ir
ef
r
in
g
e
n
ce
ca
n
also
b
e
f
o
r
m
ed
in
a
f
ib
er
w
h
en
it
is
i
m
p
er
iled
to
ex
ter
n
al
f
o
r
ce
s
in
h
an
d
li
n
g
o
r
ca
b
lin
g
.
Su
c
h
e
x
tr
i
n
s
ic
s
o
u
r
ce
s
o
f
b
ir
ef
r
in
g
e
n
ce
co
m
p
r
i
s
e
o
f
later
al
s
tr
es
s
,
f
ib
er
b
en
d
in
g
an
d
f
ib
er
t
w
is
t
in
g
.
A
ll
t
h
r
ee
o
f
t
h
ese
m
ec
h
a
n
is
m
s
ar
e
u
s
u
all
y
p
r
esen
t
t
o
s
o
m
e
e
x
te
n
t
i
n
co
iled
an
d
f
ie
ld
-
i
n
s
ta
lled
telec
o
m
m
u
n
icatio
n
s
f
ib
er
.
5
.
5
.
L
a
t
er
a
l
Str
ess
B
iref
ring
ence
Def
ini
t
io
n
W
h
en
t
w
o
f
o
r
ce
s
o
f
eq
u
al
an
d
o
p
p
o
s
ite
in
m
ag
n
it
u
d
e
„
p
‟
ac
t
ac
r
o
s
s
an
ax
is
o
f
a
f
ib
er
w
i
th
a
d
iam
eter
d
,
th
e
b
ir
ef
r
in
g
e
n
ce
p
er
s
u
ad
ed
is
li
n
ea
r
.
T
h
e
f
ir
m
ax
is
o
f
b
ir
ef
r
in
g
e
n
ce
is
a
lig
n
ed
w
it
h
t
h
e
ax
is
r
ep
r
ese
n
ted
b
y
th
e
t
w
o
o
p
p
o
s
ite
f
o
r
ce
s
.
T
h
e
b
ir
ef
r
in
g
e
n
ce
is
g
iv
e
n
b
y
[
7
]
:
[
(
)
]
(
2
0
)
h
er
e
C
‟
is
P
h
o
to
elastic
co
n
s
ta
n
t,
„
p
‟
is
L
ater
al
f
o
r
ce
,
is
W
av
e
p
r
o
p
ag
atio
n
co
n
s
ta
n
t
i
n
v
a
cu
u
m
,
„
d
‟
is
T
h
e
o
u
ter
d
ia
m
eter
o
f
th
e
f
ib
er
,
„
a‟
i
s
th
e
a
v
er
ag
e
co
r
e
r
ad
i
u
s
.
I
n
ter
n
al
s
tr
es
s
b
ir
ef
r
in
g
e
n
ce
d
ef
i
n
itio
n
.
T
h
e
Dif
f
er
en
t
ial
Gr
o
u
p
Dela
y
p
er
u
n
i
t le
n
g
t
h
is
:
[
(
)
]
(
2
1
)
5
.
6
.
B
endin
g
B
iref
ring
ence
Def
ini
t
io
n
L
i
n
ea
r
b
ir
ef
r
in
g
e
n
ce
is
a
r
e
s
u
l
t
o
f
b
en
d
in
g
o
n
a
f
ib
er
w
it
h
a
b
en
d
in
g
r
ad
iu
s
R
>>
a
(
f
ib
er
co
r
e)
.
T
h
e
f
ir
m
a
x
i
s
o
f
b
ir
ef
r
i
n
g
e
n
ce
is
at
a
r
ig
h
t a
n
g
le
to
t
h
e
b
en
d
in
g
p
l
an
e.
T
h
e
s
lo
w
ax
i
s
is
ali
g
n
ed
w
ith
t
h
e
b
en
d
in
g
r
ad
iu
s
.
T
h
e
b
ir
ef
r
in
g
e
n
ce
is
g
iv
e
n
b
y
[
7
]
:
(
)
[
(
)
]
(
2
2
)
W
ith
„
R
‟
b
ein
g
t
h
e
b
en
d
i
n
g
r
ad
iu
s
,
an
d
d
‟
is
t
h
e
o
u
ter
d
i
a
m
eter
o
f
t
h
e
f
ib
er
,
„
E
‟
is
T
h
e
Yo
u
n
g
m
o
d
u
l
u
s
,
„
C
‟
is
P
h
o
to
elastic
co
n
s
ta
n
t,
is
W
av
e
p
r
o
p
ag
atio
n
co
n
s
ta
n
t
in
v
ac
u
u
m
,
„
a‟
is
t
h
e
av
er
ag
e
c
o
r
e
r
ad
iu
s
an
d
,
T
h
e
Dif
f
er
en
tia
l G
r
o
u
p
Dela
y
p
er
u
n
it le
n
g
th
i
s
:
(
)
[
(
)
*
+
]
(
2
3
)
6.
P
O
L
ARI
Z
AT
I
O
N
M
O
DE
DIS
P
E
R
SI
O
N
M
O
DE
L
S P
O
L
ARI
Z
A
T
I
O
N
M
O
DE
DIS
P
E
RS
I
O
N
P
r
o
p
ag
atio
n
co
n
s
ta
n
ts
o
f
th
e
t
w
o
p
o
lar
izatio
n
E
ig
e
n
m
o
d
es
th
at
ar
e
d
e
g
en
er
ate
in
id
ea
l
s
i
n
g
le
-
m
o
d
e
f
ib
er
s
,
in
r
ea
l
telec
o
m
m
u
n
icat
io
n
s
f
ib
er
s
,
p
er
tu
r
b
atio
n
s
p
er
f
o
r
m
a
n
ce
o
n
th
e
f
ib
er
in
a
w
a
y
t
h
at
it
in
d
u
ce
s
a
b
ir
ef
r
in
g
en
ce
.
C
o
n
s
eq
u
e
n
tl
y
,
w
h
e
n
a
p
u
ls
e
is
m
ad
e
to
tr
an
s
m
it
t
h
r
o
u
g
h
a
f
ib
er
,
it
r
esu
lts
in
a
d
if
f
e
r
e
n
tial
g
r
o
u
p
d
ela
y
b
et
w
ee
n
t
h
e
t
w
o
p
o
lar
izatio
n
E
ig
en
m
o
d
es.
T
h
e
s
to
ch
asti
c
b
eh
a
v
io
r
o
f
th
e
s
e
p
er
tu
r
b
atio
n
s
r
esu
l
ts
in
a
p
h
en
o
m
e
n
o
n
o
f
r
an
d
o
m
m
o
d
e
co
u
p
li
n
g
w
h
ic
h
m
ak
e
s
i
m
p
o
s
s
ib
le
ab
o
u
t d
if
f
er
e
n
tial
g
r
o
u
p
d
elay
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
2
D
Op
tica
l fib
er W
a
ve
g
u
id
e
d
esig
n
fo
r
Mu
lti h
a
u
l A
p
p
lica
t
io
n
s
(
V
en
ka
ta
R
a
g
h
a
ve
n
d
r
a
Mir
ia
mp
a
lly
)
101
6
.
1
.
P
rincipa
l St
a
t
es o
f
P
o
la
r
iza
t
io
n
T
h
e
P
r
in
cip
al
States
o
f
P
o
lar
i
za
tio
n
m
o
d
el
[
8
]
is
b
ased
o
n
t
h
e
o
b
s
er
v
atio
n
t
h
at
at
a
n
y
g
i
v
en
o
p
tical
f
r
eq
u
en
c
y
,
t
h
er
e
o
cc
u
r
s
a
s
et
o
f
t
w
o
m
u
tu
a
ll
y
p
er
p
en
d
icu
la
r
in
p
u
t
p
r
in
cip
le
s
tates
o
f
p
o
l
ar
izatio
n
f
o
r
w
h
ic
h
th
e
co
r
r
esp
o
n
d
in
g
o
u
tp
u
t
s
tat
es
o
f
p
o
lar
izatio
n
ar
e
i
n
d
ep
en
d
en
t
o
f
f
r
eq
u
e
n
c
y
.
T
h
e
Di
f
f
er
en
tial
Gr
o
u
p
Dela
y
r
esu
lti
n
g
f
r
o
m
P
o
lar
izatio
n
Mo
d
e
Dis
p
er
s
io
n
is
th
e
n
d
ef
in
ed
b
et
w
ee
n
th
e
t
w
o
o
u
tp
u
t
P
r
in
cip
al
States
o
f
P
o
lar
izatio
n
s
.
T
h
e
b
ir
ef
r
in
g
e
n
ce
i
n
te
leco
m
m
u
n
icat
io
n
s
in
g
le
-
m
o
d
e
f
ib
er
s
v
ar
ie
s
ar
b
itra
r
il
y
alo
n
g
th
e
f
ib
er
len
g
t
h
,
a
p
r
o
d
u
ct
o
f
v
ar
iatio
n
i
n
th
e
d
r
a
w
i
n
g
a
n
d
ca
b
li
n
g
p
r
o
ce
s
s
.
F
u
r
th
er
m
o
r
e,
d
u
e
to
t
h
e
te
m
p
er
at
u
r
e
d
ep
en
d
en
ce
o
f
m
an
y
o
f
th
e
f
l
u
ct
u
atio
n
s
t
h
at
p
r
esen
t
in
th
e
f
ib
er
d
u
r
i
n
g
m
a
n
u
f
ac
t
u
r
in
g
,
t
h
e
tr
an
s
m
is
s
io
n
p
r
o
p
er
ties
ty
p
icall
y
ch
an
g
e
as
a
m
b
ie
n
t
te
m
p
er
at
u
r
e
ch
an
g
es.
I
n
p
r
ac
tice,
th
e
s
e
p
er
tu
r
b
atio
n
s
in
te
m
p
er
at
u
r
e
s
tr
o
n
g
l
y
af
f
ec
t
P
o
lar
izatio
n
m
o
d
e
d
is
p
er
s
io
n
ti
m
e
ev
o
l
u
tio
n
.
T
o
ass
ess
p
r
o
p
er
ties
o
f
lo
n
g
f
ib
er
d
is
tan
ce
s
,
o
n
e
ca
n
ad
o
p
t
a
s
tatis
t
ical
ap
p
r
o
ac
h
.
I
n
t
h
is
c
ase
o
f
lo
n
g
d
is
ta
n
ce
f
ib
er
s
,
t
h
e
p
o
lar
izatio
n
E
i
g
en
s
tate
s
c
an
o
n
l
y
b
e
d
ef
in
ed
n
ea
r
b
y
an
d
t
h
e
b
ir
ef
r
in
g
e
n
ce
v
ec
to
r
h
as to
b
e
s
to
ch
asti
c.
6
.
2
.
Dis
persio
n Ve
ct
o
r
I
n
th
e
ti
m
e
d
o
m
ai
n
,
t
h
e
P
o
lar
izatio
n
Mo
d
e
Dis
p
er
s
io
n
i
n
d
u
c
es a
ti
m
e
s
h
i
f
t
b
et
w
ee
n
th
e
t
wo
P
r
in
cip
al
States
o
f
P
o
lar
izatio
n
.
I
n
th
e
f
r
eq
u
en
c
y
d
o
m
ain
,
t
h
e
o
u
tp
u
t
P
SP
s
u
n
d
er
g
o
es
a
r
o
tatio
n
o
n
th
e
P
o
in
t
ca
r
e
s
p
h
er
e
ab
o
u
t a
n
ax
is
co
n
n
ec
ti
n
g
th
e
t
w
o
P
SP
s
.
T
h
e
r
ate
an
d
d
ir
ec
tio
n
o
f
r
o
tati
o
n
is
g
i
v
e
n
b
y
t
h
e
d
is
p
er
s
io
n
v
ec
to
r
g
i
v
e
n
b
y
:
(
2
4
)
w
h
er
e
r
ep
r
esen
ts
t
h
e
n
e
g
ati
v
e
o
u
tp
u
t p
r
in
cip
al
s
ta
te.
T
h
e
s
tr
en
g
t
h
o
f
th
e
d
i
s
p
er
s
io
n
v
ec
to
r
is
eq
u
al
to
t
h
e
d
if
f
er
en
tial
d
ela
y
ti
m
e
b
et
w
ee
n
th
e
t
w
o
o
u
tp
u
t
p
r
in
cip
al
s
tates,
w
h
er
e
its
co
m
b
i
n
ed
Sto
k
es
v
ec
to
r
co
r
r
esp
o
n
d
s
to
th
e
Sto
k
es
v
ec
to
r
o
f
th
e
n
eg
at
iv
e
o
u
tp
u
t
p
r
in
cip
al
s
tate
.
T
h
e
d
ir
ec
tio
n
o
f
th
e
Dis
p
er
s
io
n
Vec
to
r
d
ef
in
e
s
an
ax
is
w
h
o
s
e
t
w
o
in
ter
ce
p
ts
w
it
h
t
h
e
s
u
r
f
ac
e
o
f
t
h
e
P
o
in
c
ar
e
s
p
h
er
e
co
r
r
esp
o
n
d
to
th
e
t
w
o
p
r
in
cip
al
s
tates
o
f
p
o
lar
izatio
n
at
t
h
e
f
ib
er
o
u
tp
u
t.
T
h
e
P
o
in
ca
r
e
s
p
h
er
e
is
a
g
r
ap
h
ical
to
o
l
t
h
at
al
lo
w
s
co
n
v
e
n
i
en
t
d
escr
ip
tio
n
o
f
p
o
lar
ized
s
i
g
n
al
s
a
n
d
p
o
lar
izatio
n
tr
an
s
f
o
r
m
atio
n
s
d
u
r
in
g
p
r
o
p
ag
atio
n
.
A
p
o
in
t
w
it
h
i
n
a
u
n
it
s
p
h
er
e
ca
n
u
n
i
q
u
el
y
r
ep
r
esen
t
an
y
s
tate
o
f
p
o
lar
izatio
n
,
w
h
er
e
cir
cu
lar
s
tates
o
f
p
o
lar
izatio
n
ar
e
lo
ca
ted
at
th
e
p
o
les
.
T
h
e
co
o
r
d
in
ates
o
f
a
p
o
in
t
w
it
h
i
n
o
r
o
n
th
e
P
o
in
ca
r
e
s
p
h
e
r
e
ar
e
th
e
n
o
r
m
alize
d
Sto
k
e
s
p
ar
a
m
eter
s
.
6
.
3
.
E
f
f
ec
t
o
f
no
nli
nea
r
Ref
r
a
ct
iv
e
I
nd
ex
Usu
al
l
y
o
n
e
o
f
th
e
d
esi
g
n
g
o
als
w
h
en
co
n
s
tr
u
cti
n
g
a
f
ib
er
is
to
m
i
n
i
m
ize
it
s
n
o
n
li
n
ea
r
i
ties
.
T
h
e
ef
f
ec
tiv
e
n
o
n
li
n
ea
r
co
ef
f
icie
n
ts
o
f
o
p
tical
f
ib
er
s
d
ep
en
d
o
n
t
h
e
n
o
n
li
n
ea
r
i
n
d
ices
o
f
th
e
b
u
lk
m
ater
ial
s
b
u
ild
in
g
t
h
e
f
ib
er
an
d
o
n
it
s
wav
e
g
u
id
i
n
g
p
r
o
p
er
ties
:
s
h
ap
e
o
f
m
o
d
es,
d
eg
r
ee
o
f
co
n
f
in
e
m
en
t,
etc.
A
s
a
r
e
s
u
lt
it c
an
v
ar
y
w
it
h
i
n
b
r
o
ad
lim
it
s
.
T
h
e
ef
f
ec
ti
v
e
n
o
n
lin
ea
r
co
ef
f
icien
t a
r
e
r
ep
r
esen
ted
as [
9
]
:
∫
∫
|
|
∫
∫
|
|
(
2
5
)
w
h
er
e
is
th
e
u
s
er
-
d
e
f
in
ed
s
p
at
iall
y
d
ep
en
d
en
t
n
o
n
li
n
ea
r
r
ef
r
ac
tiv
e
i
n
d
ex
o
f
t
h
e
v
ar
io
u
s
f
i
b
er
lay
er
s
an
d
is
th
e
n
o
r
m
alize
d
m
o
d
e
f
i
eld
p
atter
n
.
7.
SI
M
UL
AT
I
O
N
T
h
e
s
i
m
u
latio
n
i
s
d
o
n
e
h
a
v
i
n
g
th
e
v
ie
w
o
f
th
e
f
o
llo
w
i
n
g
p
ar
a
m
eter
s
:
R
ef
r
ac
ti
v
e
I
n
d
e
x
P
r
o
f
ile; Fo
u
r
r
eg
io
n
s
ar
e
co
n
s
id
er
ed
; W
av
e
L
en
g
t
h
1
.
3
µ
m
Reg
io
n 0
Star
tin
g
I
n
d
ex
: 2
.
4
4
3
7
,
E
n
d
in
g
R
e
f
r
ac
ti
v
e
I
n
d
ex
1
.
6
6
7
3
,
W
id
th
4
.
2
µm
,
u
s
er
f
u
n
ctio
n
P
o
s
itio
n
4
.
2
µm
w
it
h
li
n
ea
r
f
u
n
ctio
n
a
n
d
s
tep
s
2
0
M
a
t
er
ia
l P
r
o
pert
ies
Ho
s
t
-
p
u
r
e
Si
lica,
Do
p
an
t +
is
3
.
1
% g
er
m
an
i
u
m
d
o
p
ed
s
ilico
n
,
Do
p
an
t
–
is
1
% Flu
o
r
in
e
d
o
p
ed
s
ilica
Reg
io
n 1
Star
tin
g
I
n
d
ex
:
1
.
4
4
3
7
,
E
n
d
in
g
R
ef
r
ac
ti
v
e
I
n
d
ex
1
.
4
4
3
7
,
W
id
th
2
.
5
µ
m
,
w
i
th
co
n
s
ta
n
t
f
u
n
c
tio
n
a
n
d
R
e
f
r
ac
ti
v
e
I
n
d
ex
1
.
4
4
3
7
,
Po
s
itio
n
6
.
7
µm
lin
ea
r
f
u
n
c
tio
n
s
tep
s
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
5
,
No
.
3
,
Dec
em
b
er
2
0
1
6
:
94
–
1
0
5
102
Reg
io
n 2
Star
tin
g
I
n
d
ex
: 1
.
4
4
7
7
8
,
E
n
d
i
n
g
R
e
f
r
ac
tiv
e
I
n
d
e
x
1
.
4
4
7
7
8
,
W
id
th
6
.
7
5
µm
,
w
it
h
u
s
e
r
f
u
n
c
tio
n
an
d
P
o
s
itio
n
1
3
.
4
5
µm
li
n
ea
r
f
u
n
ct
io
n
s
tep
s
3
0
Reg
io
n 3
Star
tin
g
I
n
d
ex
:
1
.
4
4
6
9
2
,
E
n
d
in
g
R
e
f
r
ac
ti
v
e
I
n
d
e
x
1
.
4
4
6
9
2
,
W
id
th
4
9
.
0
5
µm
,
w
i
th
co
n
s
tan
t
f
u
n
ctio
n
an
d
R
ef
r
ac
ti
v
e
I
n
d
e
x
1
.
4
4
3
7
.
Po
s
itio
n
6
2
.
5
µm
li
n
ea
r
f
u
n
ct
io
n
s
t
ep
s
1
As
w
e
k
n
o
w
t
h
at
f
o
r
s
tep
in
d
e
x
f
ib
r
e
th
er
e
is
al
w
a
y
s
a
s
u
d
d
en
ch
a
n
g
e
in
th
e
r
e
f
r
ac
ti
v
e
in
d
ex
p
r
o
f
ile
at
th
e
i
n
ter
f
ac
e
b
et
w
ee
n
co
r
e
an
d
clad
d
i
n
g
m
ater
ials
,
w
h
ic
h
i
s
co
n
s
id
er
ed
d
u
r
i
n
g
t
h
e
m
an
u
f
ac
t
u
r
in
g
o
f
th
e
f
ib
r
e.
T
h
is
ca
n
b
e
clea
r
l
y
o
b
s
er
v
ed
in
th
e
Fig
u
r
e
3.
Mo
d
al
I
n
d
ex
d
ef
i
n
e
s
t
h
e
p
h
as
e
d
ela
y
p
er
u
n
i
t
le
n
g
th
f
o
r
o
p
t
ical
en
er
g
y
p
r
o
p
ag
atio
n
i
n
a
w
a
v
e
g
u
id
e.
I
n
o
p
tical
f
ib
r
e,
th
e
g
u
id
ed
L
i
g
h
t
ex
p
er
ien
ce
s
a
p
h
a
s
e
d
ela
y
alo
n
g
t
h
e
p
r
o
p
ag
atio
n
d
ir
ec
tio
n
w
h
ich
d
ep
en
d
s
o
n
b
o
th
I
n
d
ex
o
f
R
ef
r
ac
tio
n
s
o
f
th
e
C
o
r
e
an
d
th
e
C
lad
d
in
g
m
ater
ial
.
T
h
e
v
ar
iatio
n
o
f
Mo
d
al
I
n
d
ex
w
i
t
h
w
a
v
ele
n
g
t
h
ca
n
b
e
s
ee
n
i
n
Fi
g
u
r
e
4.
Gr
o
u
p
d
ela
y
is
th
e
t
i
m
e
d
ela
y
o
f
th
e
a
m
p
li
tu
d
e
e
n
v
elo
p
es
o
f
t
h
e
v
ar
io
u
s
f
r
eq
u
e
n
c
y
co
m
p
o
n
en
t
s
o
f
a
s
ig
n
al
t
h
r
o
u
g
h
a
n
o
p
tical
f
ib
r
e.
Fig
u
r
e
5
p
lo
ts
th
e
v
ar
iatio
n
o
f
Gr
o
u
p
d
ela
y
w
it
h
w
a
v
e
len
g
t
h
.
I
n
o
p
tical
f
ib
r
es
w
e
h
av
e
t
wo
t
y
p
es
o
f
d
i
s
p
er
s
io
n
s
n
a
m
el
y
w
a
v
e
g
u
id
e
a
n
d
m
ater
ial,
f
r
o
m
th
e
o
b
s
er
v
atio
n
it
h
as
b
ee
n
s
ee
n
t
h
at
t
h
er
e
is
a
m
a
x
i
m
u
m
i
n
to
t
al
d
is
p
er
s
io
n
w
h
ic
h
i
s
th
e
s
u
m
o
f
t
h
e
ab
o
v
e
t
w
o
t
y
p
es o
f
d
is
p
er
s
io
n
s
at
al
m
o
s
t
1
.
4
7
o
f
w
a
v
e
l
en
g
t
h
d
ep
icted
in
Fi
g
u
r
e
6.
T
h
e
MFD
i
s
u
s
ed
to
e
x
p
ec
t
f
ib
er
s
p
lice
lo
s
s
,
b
en
d
i
n
g
lo
s
s
,
cu
to
f
f
w
a
v
elen
g
t
h
,
a
n
d
w
a
v
eg
u
i
d
e
d
is
p
er
s
io
n
o
f
a
n
o
p
tical
f
ib
er
,
it
is
d
eter
m
i
n
e
d
f
r
o
m
th
e
m
o
d
e
‐
f
ield
d
is
tr
i
b
u
tio
n
o
f
t
h
e
f
u
n
d
a
m
en
tal
f
i
b
er
m
o
d
e
an
d
is
a
f
u
n
ctio
n
o
f
t
h
e
o
p
tical
s
o
u
r
ce
w
a
v
ele
n
g
t
h
,
w
h
ich
i
s
r
ep
r
esen
ted
in
Fig
u
r
e
1
2
.
T
h
e
v
ar
iatio
n
o
f
Mic
r
o
an
d
m
ac
r
o
b
en
d
in
g
lo
s
s
i
s
clea
r
l
y
r
e
p
r
esen
ted
in
Fi
g
u
r
e
9
.
W
h
en
a
p
u
ls
e
is
tr
an
s
m
itted
t
h
r
o
u
g
h
t
h
e
s
in
g
le
m
o
d
e
f
ib
er
it
h
as
to
b
e
co
m
p
letel
y
co
n
f
in
ed
w
i
th
in
th
e
f
ib
er
its
el
f
,
w
h
ic
h
h
a
s
b
ee
n
r
ep
r
esen
ted
in
Fi
g
u
r
e
1
1
.
T
h
e
av
er
ag
e
v
al
u
e
o
f
all
d
if
f
er
en
tial
g
r
o
u
p
d
ela
y
s
is
k
n
o
w
n
a
s
p
o
lar
izatio
n
m
o
d
e
d
is
p
er
s
io
n
an
d
h
o
w
th
is
v
ar
ies
w
i
th
w
a
v
ele
n
g
th
i
s
s
h
o
w
n
in
F
ig
u
r
e
14.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
2
D
Op
tica
l fib
er W
a
ve
g
u
id
e
d
esig
n
fo
r
Mu
lti h
a
u
l A
p
p
lica
t
io
n
s
(
V
en
ka
ta
R
a
g
h
a
ve
n
d
r
a
Mir
ia
mp
a
lly
)
103
Evaluation Warning : The document was created with Spire.PDF for Python.