I
nte
rna
t
io
na
l J
o
urna
l o
f
I
nfo
r
m
a
t
ics a
nd
Co
mm
u
n
ica
t
io
n T
ec
hn
o
lo
g
y
(
I
J
-
I
CT
)
Vo
l.
4
,
No
.
1
,
A
p
r
il
201
5
,
p
p
.
38
~
4
4
I
SS
N:
2252
-
8776
38
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
I
C
T
De
m
o
ns
tration
of
Multi
Pu
m
p
Wid
e G
a
in
Ra
m
a
n
A
m
pli
fiers
for Ma
x
i
m
i
z
a
tion
o
f
Rep
ea
ters
Dist
a
nce in
O
pti
ca
l
Co
m
m
uni
ca
tion
Sy
ste
m
s
Ah
m
ed
Na
bi
h
Z
a
k
i R
a
s
hed
,
Abd
-
El
-
Na
s
er
A.
M
o
ha
m
m
e
d
,
M
o
ha
m
ed
A.
M
et
a
w
e’
e
E
l
e
c
t
r
o
n
i
c
s
a
n
d
E
l
e
c
t
r
i
c
a
l
C
o
m
m
u
n
i
c
a
t
i
o
n
s
E
n
g
i
n
e
e
r
i
n
g
D
e
p
a
r
tm
e
n
t
,
F
a
c
u
l
ty
o
f
E
l
e
c
t
r
o
n
i
c
E
n
g
i
n
e
e
r
i
n
g
,
M
e
n
o
u
f
i
a
U
n
i
v
e
r
s
i
ty
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
1
2
,
2
0
1
4
R
ev
i
s
ed
Feb
2
0
,
2
0
1
5
A
cc
ep
ted
Mar
2
6
,
2
0
1
5
F
ib
e
r
Ra
m
a
n
a
m
p
li
f
ier
s in
u
lt
ra
w
id
e
w
a
v
e
len
g
th
d
iv
isio
n
m
u
lt
ip
lex
in
g
(UW
-
W
DM)
s
y
ste
m
s
h
a
v
e
re
c
e
n
tl
y
r
e
c
e
iv
e
d
m
u
c
h
m
o
re
a
tt
e
n
ti
o
n
b
e
c
a
u
se
o
f
th
e
ir
g
re
a
tl
y
e
x
ten
d
e
d
b
a
n
d
w
id
th
a
n
d
d
istri
b
u
ted
a
m
p
li
f
ic
a
ti
o
n
w
it
h
th
e
in
sta
ll
e
d
f
ib
e
r
a
s
g
a
in
m
e
d
iu
m
.
It
h
a
s
b
e
e
n
sh
o
w
n
th
a
t
th
e
b
a
n
d
w
id
th
o
f
th
e
a
m
p
li
f
ier
c
a
n
b
e
f
u
rth
e
r
in
c
re
a
se
d
a
n
d
g
a
in
sp
e
c
tru
m
c
a
n
b
e
tailo
re
d
b
y
u
sin
g
p
u
m
p
in
g
w
it
h
m
u
lt
ip
le
w
a
v
e
len
g
th
s.
W
id
e
g
a
in
o
f
th
e
a
m
p
li
f
ier
is
c
o
n
sid
e
re
d
w
h
e
re
tw
o
se
ts
o
f
p
u
m
p
s
N
R
{5
,
1
0
}
a
r
e
in
v
e
stig
a
ted
.
T
h
e
g
a
in
c
o
e
ff
ici
e
n
t
i
s
c
a
st
u
n
d
e
r
p
o
ly
n
o
m
ial
f
o
r
m
s.
T
h
e
p
u
m
p
in
g
w
a
v
e
len
g
th
R
is
o
v
e
r
th
e
ra
n
g
e
1
.
4
0
R
,
m
1
.
4
4
a
n
d
th
e
c
h
a
n
n
e
l
w
a
v
e
len
g
th
s
is
o
v
e
r
th
e
ra
n
g
e
1
.
4
5
s
,
m
1
.
6
5
.
T
w
o
m
u
lt
ip
lex
in
g
tec
h
n
i
q
u
e
s
a
re
p
r
o
c
e
ss
e
d
in
lo
n
g
-
h
a
u
l
tran
sm
issio
n
c
a
b
les
w
h
e
r
e
n
u
m
b
e
r
o
f
c
h
a
n
n
e
ls
is
u
p
to
1
0
0
0
0
i
n
u
lt
ra
-
w
id
e
w
a
v
e
len
g
th
d
iv
isio
n
m
u
lt
ip
lex
in
g
(U
W
-
W
DM)
w
it
h
n
u
m
b
e
r
o
f
l
in
k
s
u
p
to
4
8
0
.
T
h
e
p
ro
b
lem
is
in
v
e
stig
a
ted
o
v
e
r
w
id
e
ra
n
g
e
s
o
f
a
ff
e
c
ti
n
g
se
ts
o
f
p
a
ra
m
e
ters
.
K
ey
w
o
r
d
:
Dis
tr
ib
u
ted
a
m
p
l
if
icatio
n
Mu
lti p
u
m
p
ed
f
ib
er
R
a
m
a
n
a
m
p
li
f
ier
Op
tical
f
ib
er
co
m
m
u
n
icatio
n
W
id
e
g
ain
s
p
ec
tr
u
m
Co
p
y
rig
h
t
©
2
0
1
5
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ah
m
ed
Nab
ih
Z
ak
i
R
as
h
ed
,
E
l
e
c
t
r
o
n
i
cs
an
d
E
l
e
ct
r
i
c
a
l
C
o
m
m
u
n
i
c
at
i
o
n
s
E
n
g
in
e
e
r
i
n
g
D
e
p
ar
tm
en
t
,
F
a
c
u
l
ty
o
f
E
l
ec
t
r
o
n
i
c
E
n
g
in
e
e
r
in
g
,
M
en
o
u
f
,
3
2
9
5
1
,
M
e
n
o
u
f
i
a
U
n
i
v
e
r
s
ity
,
E
g
y
p
t
.
E
-
m
a
il: ah
m
ed
_
7
3
3
@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Mu
lti
-
w
av
elen
g
th
p
u
m
p
ed
R
am
an
am
p
lif
ier
s
(
R
A
s
)
h
av
e
attr
ac
ted
m
o
r
e
an
d
m
o
r
e
atten
tio
n
in
r
ec
en
t
y
ea
r
s
[
1
]
.
I
n
th
is
ty
p
e
o
f
am
p
lif
icatio
n
a
w
id
ely
u
s
ed
co
n
ce
p
t,
f
o
r
h
ig
h
ca
p
ac
ity
lo
n
g
d
is
tan
ce
w
av
elen
g
th
d
iv
is
io
n
m
u
ltip
lex
in
g
(
W
DM
)
tr
an
s
m
is
s
io
n
s
y
s
tem
s
w
as
u
s
ed
.
T
h
ey
h
av
e
b
ee
n
alr
ea
d
y
u
s
ed
in
m
an
y
u
ltra
lo
n
g
h
au
l
d
en
s
e
W
DM
(
DW
DM
)
tr
an
s
m
is
s
io
n
s
y
s
tem
s
[
2
]
.
I
t
s
u
p
p
o
r
ts
h
ig
h
b
it
r
ate
d
ata
tr
an
s
m
is
s
io
n
o
v
er
lo
n
g
f
ib
er
s
p
an
s
,
d
u
e
to
its
b
en
ef
its
s
u
ch
as
p
r
o
p
er
g
ain
an
d
o
p
tical
s
ig
n
al
to
n
o
is
e
r
atio
(
OSNR
)
[
3
]
.
I
n
ad
d
itio
n
,
it
ca
n
b
e
u
s
ed
f
o
r
in
cr
ea
s
in
g
th
e
b
an
d
w
id
th
o
f
E
r
b
iu
m
d
o
p
ed
f
ib
er
am
p
lif
ier
s
(
E
DFA
s
)
in
h
y
b
r
id
s
y
s
tem
s
[
4
]
.
A
n
o
th
er
im
p
o
r
tan
t
f
ea
tu
r
e
o
f
R
A
s
is
its
g
ain
b
an
d
w
id
th
,
w
h
ich
is
d
eter
m
in
ed
b
y
p
u
m
p
w
av
elen
g
th
.
Mu
lti
-
w
av
elen
g
th
p
u
m
p
in
g
s
ch
em
e
is
u
s
u
all
y
u
s
ed
to
in
cr
ea
s
e
th
e
g
ain
f
latten
in
g
an
d
b
an
d
w
id
th
f
o
r
h
ig
h
ca
p
ac
ity
W
DM
tr
an
s
m
is
s
io
n
s
y
s
tem
s
.
I
n
b
ac
k
w
ar
d
-
p
u
m
p
ed
f
ib
er
R
am
an
am
p
lif
ier
s
,
o
th
er
n
o
is
e
s
o
u
r
ce
s
,
s
u
ch
as
th
e
r
elativ
e
in
ten
s
ity
n
o
is
e
(
R
I
N)
tr
an
s
f
er
ar
e
m
in
im
ized
[
5
]
,
b
ec
au
s
e
th
is
s
ch
em
e
ca
n
s
u
p
p
r
ess
th
e
r
elate
d
s
ig
n
al
p
o
w
er
f
lu
ctu
atio
n
.
Of
co
u
r
s
e,
th
e
r
ep
o
r
ted
r
esu
lts
in
th
e
liter
atu
r
es
s
h
o
w
th
e
OSNR
o
f
th
is
ex
citatio
n
is
tilt
ed
,
an
d
ch
an
n
els
w
ith
lo
n
g
er
w
av
elen
g
th
h
av
e
lo
n
g
er
OSNR
r
esp
ec
t
to
th
e
s
h
o
r
ter
w
av
elen
g
th
ch
an
n
els
[
6
]
.
T
h
ese
am
p
lif
i
er
s
also
h
av
e
th
e
u
n
iq
u
e
ch
ar
ac
ter
is
tic
o
f
b
ein
g
tu
n
ab
le
at
an
y
w
av
elen
g
th
,
s
im
p
ly
b
y
ch
an
g
in
g
th
e
p
u
m
p
f
r
eq
u
en
cy
,
s
in
ce
g
ain
d
ep
en
d
s
o
n
ly
o
n
th
e
s
ig
n
al
-
p
u
m
p
f
r
eq
u
en
cy
s
h
if
t
[
7
]
.
T
h
e
s
atu
r
atio
n
p
o
w
er
o
f
f
ib
er
R
am
an
am
p
lif
ier
s
is
b
y
f
ar
lar
g
er
th
an
th
at
o
f
th
e
eq
u
iv
alen
t
E
DFA
s
,
th
u
s
,
lim
it
th
e
ef
f
ec
ts
o
f
cr
o
s
s
-
g
ain
m
o
d
u
latio
n
in
r
ec
o
n
f
ig
u
r
ab
le
DW
DM
s
y
s
tem
s
.
Du
e
to
th
ese
r
ea
s
o
n
s
,
R
am
an
am
p
lif
ier
s
ar
e
w
id
ely
u
s
ed
in
th
e
f
ib
er
o
p
tical
co
m
m
u
n
icatio
n
s
y
s
tem
s
.
I
n
d
ee
d
,
atten
tio
n
h
as
b
ee
n
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
Dem
o
n
s
tr
a
tio
n
o
f Mu
lti P
u
mp
Wid
e
Ga
in
R
a
ma
n
....
(
A
h
med
N
a
b
ih
Za
ki
R
a
s
h
ed
)
39
f
o
cu
s
ed
o
n
R
A
s
b
ec
au
s
e
o
f
t
h
e
av
ailab
ilit
y
o
f
h
ig
h
-
p
o
w
er
co
m
p
ac
t
p
u
m
p
laser
s
[
8
]
,
th
eir
s
u
p
er
io
r
p
er
f
o
r
m
an
ce
,
s
u
ch
as
u
ltra
-
w
id
e
b
an
d
w
id
th
,
lo
w
n
o
is
e
an
d
s
u
p
p
r
ess
ed
n
o
n
lin
ea
r
ity
p
er
f
o
r
m
an
ce
s
in
tr
an
s
m
is
s
io
n
s
y
s
tem
s
,
an
d
lo
w
er
n
o
is
e
f
ig
u
r
e.
T
h
e
p
er
f
o
r
m
an
ce
o
f
a
R
A
d
ep
en
d
s
o
n
th
e
ch
ar
ac
ter
is
tics
o
f
f
ib
er
g
ain
.
So
,
to
d
esig
n
ap
p
r
o
p
r
iate
f
ib
er
s
,
it
is
u
s
ef
u
l
to
p
r
ed
ict
th
e
f
ib
er
p
r
o
p
er
ties
.
I
n
s
ilica
-
o
p
tical
f
ib
er
s
,
R
am
an
am
p
lif
icatio
n
b
an
d
ex
ten
d
s
o
v
er
a
f
ew
ter
ah
er
tz,
an
d
it
ca
n
b
e
f
u
r
th
er
b
r
o
ad
en
ed
b
y
m
u
ltip
le
p
u
m
p
in
g
s
ch
em
es
[
5
]
an
d
[
7
]
.
T
h
er
e
ar
e
m
an
y
m
eth
o
d
s
to
d
esig
n
a
m
u
ltis
tag
e
g
ain
f
latten
ed
f
ib
er
R
A
s
u
s
in
g
m
u
lti
-
w
av
elen
g
th
p
u
m
p
in
g
s
ch
em
e
(
f
o
r
ex
am
p
le
in
[
9
,
1
0
]
)
.
I
n
th
e
p
r
esen
t
s
tu
d
y
,
th
e
r
ep
ea
ter
s
p
ac
in
g
u
s
in
g
m
u
lti
-
p
u
m
p
in
g
R
am
an
am
p
lif
ier
w
ill
b
e
in
v
esti
g
ated
f
o
r
N
R
p
u
m
p
s
in
o
p
tical
p
u
m
p
in
g
w
av
elen
g
th
1
.
4
2
RM
1
.
4
4
to
am
p
lif
y
N
t
o
p
tical
ch
an
n
els
w
h
er
e
th
e
o
p
tical
w
av
elen
g
th
r
an
g
e
s
atis
f
ies
1
.
4
5
s
,
m
1
.
6
5
.
T
h
e
p
r
esen
t
in
v
esti
g
atio
n
h
as
clar
if
ied
v
ital
ca
u
s
es
th
at
af
f
ec
t
b
o
th
R
am
an
g
ain
an
d
th
e
r
ep
ea
ter
s
p
ac
in
g
u
p
to
3
6
0
k
m
.
T
h
e
in
v
esti
g
atio
n
o
f
th
e
f
latn
ess
o
f
th
e
g
ain
co
n
s
tan
t
h
as
in
d
icate
d
th
at
th
e
R
am
an
p
u
m
p
s
s
h
o
u
ld
b
e
d
is
tr
ib
u
ted
o
v
er
w
id
e
r
an
g
e
o
f
p
u
m
p
in
g
w
av
elen
g
th
b
ef
o
r
e
th
e
s
tar
tin
g
o
f
th
e
ch
an
n
els
w
av
elen
g
th
r
an
g
e.
2.
M
O
DE
L
I
NG
DE
SCRI
P
T
I
O
N
AND
ANALYSI
S
T
h
e
tw
o
m
a
j
o
r
r
ate
eq
u
atio
n
s
o
f
m
u
lti
-
p
u
m
p
in
g
[
1
1
,
1
2
]
R
am
an
am
p
lif
ier
ca
s
e
o
f
UW
-
W
DM
ar
e
th
at
o
f
s
ig
n
al
p
o
w
er
P
si
,
an
d
p
u
m
p
p
o
w
er
P
Rj
w
h
er
e
"
i"
r
ef
er
to
th
e
i
th
ch
an
n
el,
an
d
"
j
"
r
ef
er
to
th
e
p
u
m
p
,
w
h
er
e
si
Sm
si
Rj
si
si
si
P
P
P
P
P
dz
dP
)
(
3
2
1
(
1
)
Si
Rm
R
Si
Rj
Rj
Rj
P
P
P
P
P
dz
dP
)
(
3
2
1
(
2
)
W
h
er
e:
,
0
1
R
c
N
G
(
3
)
),
1
(
1
2
s
c
i
G
(
4
)
)
(
1
2
3
s
ch
si
sa
c
i
N
G
(
5
)
,
2
0
1
si
sa
ch
R
N
G
(
6
)
),
1
(
1
2
R
R
j
G
(
7
)
),
(
2
3
R
R
Rj
Ra
R
j
N
G
(
8
)
,
es
R
os
A
g
G
an
d
er
R
oR
A
g
G
(
9
)
w
h
er
e:
N
R
=
n
u
m
b
er
o
f
R
am
an
P
u
m
p
s
,
N
ch
=
n
u
m
b
er
o
f
ch
an
n
els/
lin
k
,
34
.
1
/
)
80
1
(
Rj
o
R
n
g
g
,
(
1
0
)
)
1
(
1
(
5
.
0
i
s
sc
h
sa
,
an
d
(
1
1
)
).
(
5
.
0
2
si
s
c
h
sa
(
1
2
)
W
h
er
e
g
R
is
th
e
d
if
f
er
en
tial
g
ain
,
A
e
is
th
e
ef
f
ec
tiv
e
ar
ea
,
e
R
A
g
is
th
e
g
ain
co
n
s
tan
t,
s,
R
is
th
e
s
p
ec
tr
al
lo
s
s
,
th
e
s
u
f
f
ix
"
S"
r
ef
er
s
to
th
e
s
ig
n
al,
s
u
f
f
ix
:R
"
r
ef
er
s
to
th
e
p
u
m
p
an
d
Г
is
a
p
o
lar
izatio
n
f
ac
to
r
,
=
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
4
,
No
.
1
,
A
p
r
il
20
1
5
:
38
–
4
4
40
I
n
th
e
p
r
esen
t p
ap
er
,
w
e
ca
s
t
th
e
g
ain
co
n
s
tan
t
e
R
A
g
u
n
d
er
th
e
f
o
r
m
:
1
m
m
si
m
e
R
c
a
A
g
G
(
1
3
)
a
m
i
s
a
f
u
n
ct
io
n
o
f
N
R
a
n
d
Δ
n
w
h
er
e
N
R
is
o
v
er
t
h
e
r
an
g
e
{5
,
1
0
}
an
d
Δ
n
is
o
v
er
t
h
e
r
an
g
e
{0
.
0
0
5
,
0
.
0
1
2
}.
w
h
er
e
a
m
is
g
iv
e
n
b
y
:
0
j
j
j
m
n
b
a
,
an
d
(
1
4
-
a)
1
k
k
R
k
k
N
C
b
.
(
1
4
-
b)
w
h
er
e
Si
is
th
e
o
p
tical
ch
an
n
el
w
av
elen
g
th
an
d
is
g
iv
en
b
y
:
)
1
(
)
1
)(
1
(
i
i
N
o
t
o
f
o
Si
(
1
5
)
o
is
th
e
in
itial
ch
an
n
el
o
f
in
ter
est,
=1
.
4
5
m
,
f
is
th
e
f
in
al
ch
an
n
el
o
f
in
ter
est,
=1
.
6
5
m
,
an
d
N
t
is
th
e
to
tal
n
u
m
b
er
o
f
ch
an
n
els
(
u
p
to
1
0
0
0
0
)
.
I
n
E
q
.
(
1
3
)
,
av
er
ag
in
g
is
d
o
n
e
o
v
er
p
u
m
p
in
g
w
av
elen
g
th
in
th
e
r
an
g
e
1
.
4
0
R
,
m
1
.
4
4
,
an
d
th
e
co
ef
f
icien
ts
m
ar
e
f
u
n
ctio
n
s
o
f
n
(
th
e
r
elativ
e
r
ef
r
ac
tiv
e
in
d
ex
d
if
f
er
en
ce
)
,
an
d
th
e
n
u
m
b
er
o
f
R
am
an
p
u
m
p
s
.
No
w
,
N
t
(
to
tal
ch
an
n
els)
is
d
is
tr
ib
u
ted
in
N
L
lin
k
s
(
s
p
ac
e
-
d
iv
is
io
n
m
u
ltip
lex
in
g
)
w
h
er
e
ea
ch
lin
k
ca
r
r
ies N
Ch/L
=N
t
/N
L
ch
an
n
els
an
d
its
ce
n
ter
is
CL
w
h
er
e:
)
5
.
0
(
.
L
O
ch
iL
CL
N
N
(
1
6
)
)
5
.
0
(
.
L
O
ch
i
iL
N
N
(
1
7
)
W
ith
N
O.
L
is
th
e
o
r
d
er
o
f
lin
k
an
d
is
th
e
ch
an
n
el
s
p
ac
in
g
an
d
is
g
iv
en
b
y
:
)
1
/(
)
(
t
i
f
N
.
I
n
th
e
p
r
esen
t
p
ap
er
,
w
e
s
u
g
g
ested
a
n
ew
ap
p
r
o
ac
h
to
in
v
esti
g
ate
th
e
f
latn
ess
o
f
th
e
g
ain
co
n
s
tan
t
G
c
(
E
q
n
.
(
1
3
)
)
th
r
o
u
g
h
th
e
f
o
llo
w
in
g
b
an
d
w
id
th
B
W
c
.
I
t
is
th
e
b
an
d
w
id
th
w
h
ich
s
atis
f
ies
2,
1
at
w
h
ich
4
/
3
/
)
(
m
a
x
,
c
si
c
G
G
,
i.e
.
,
dB
G
G
L
o
g
c
si
c
25
.
1
/
)
(
10
m
a
x
,
(
1
8
-
a)
W
h
er
e
G
c,
m
ax
is
t
h
e
m
ax
i
m
u
m
g
ain
co
n
s
ta
n
t.
T
h
u
s
:
1
2
c
BW
(
1
8
-
b)
3.
SI
M
UL
AT
I
O
N
RE
SUL
T
S
AND
P
E
RF
O
RM
ANCE AN
AL
YSI
S
E
m
p
lo
y
in
g
th
e
ab
o
v
e
m
o
d
el,
w
e
h
av
e
in
v
esti
g
ated
th
e
m
u
ltip
lex
in
g
o
f
N
t
o
p
tical
ch
an
n
els
in
th
e
r
an
g
e
1
.
4
5
s
,
m
1
.
6
5
th
r
o
u
g
h
N
L
o
f
f
ib
er
s
8
0
N
L
4
8
0
,
u
s
in
g
N
R
p
u
m
p
s
(
5
o
r
1
0
)
o
f
eq
u
al
s
p
ac
in
g
p
u
m
p
in
g
w
av
elen
g
th
R
in
th
e
r
an
g
e
1
.
4
0
RM
1
.
4
4
.
A
t
en
tr
an
ce
o
f
a
lin
k
z=
0
.
0
,
ea
ch
ch
an
n
el
p
o
s
s
ess
es
a
p
o
w
er
P
si
(
0
.
0
)
=P
s
W
att
an
d
ea
ch
p
u
m
p
p
o
s
s
ess
es
a
p
o
w
er
P
Rj
(
0
.
0
)
=P
R
w
h
er
e
P
s
=0
.
2
m
W
att
an
d
P
R
=0
.
5
W
at
t.
T
h
u
s
,
at
z=
0
.
0
,
w
e
h
av
e:
s
s
s
R
s
s
z
si
P
P
P
P
P
dz
dP
3
2
1
0
.
0
(
1
9
)
R
R
R
s
R
R
z
Rj
P
P
P
P
P
dz
dP
3
2
1
0
.
0
(
2
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
Dem
o
n
s
tr
a
tio
n
o
f Mu
lti P
u
mp
Wid
e
Ga
in
R
a
ma
n
....
(
A
h
med
N
a
b
ih
Za
ki
R
a
s
h
ed
)
41
E
q
u
atio
n
s
(
1
)
an
d
(
2
)
w
ill
b
e
n
u
m
er
ically
h
an
d
led
w
ith
m
o
r
e
r
ig
o
r
o
u
s
an
aly
s
is
th
an
th
at
h
ad
b
ee
n
d
o
n
e
in
[
1
2
]
em
p
lo
y
in
g
R
u
n
g
e
-
Ku
tta
o
f
f
o
u
r
th
o
r
d
er
[
1
3
]
w
ith
th
e
in
itial
co
n
d
itio
n
s
g
iv
en
b
y
E
q
s
.
(
1
9
)
an
d
(
2
0
)
w
h
er
e
w
e
h
av
e
at
z=
h
,
h
=0
.
1
k
m
4
3
2
1
1
2
2
6
1
n
n
n
n
no
n
K
K
K
K
P
P
(
2
1
)
w
h
er
e:
K
1n
=h
K
n
(P
no
)
,
K
2n
=h
K
n
(P
no
+0
.
5
K
1n
)
,
K
3n
=
h
K
n
(P
no
+0
.
5
K
2n
)
,
an
d
K
4n
=h
K
n
(P
no
+K
3n
).
T
h
e
s
u
f
f
ix
"
n
"
in
th
e
ab
o
v
e
eq
u
atio
n
s
s
tan
d
s
f
o
r
eith
er
"
S"
in
E
q
.
(
1
)
o
r
"
R
"
in
E
q
.
(
2
)
.
A
s
p
ec
ially
d
esig
n
ed
s
o
f
tw
ar
e
is
ca
s
t
to
h
an
d
le
th
e
s
et
o
f
eq
u
atio
n
s
{(
1
)
-
(
2
)
}
f
o
r
eith
er
P
si
o
r
P
Rj
alo
n
g
th
e
p
r
o
p
ag
atio
n
d
is
tan
ce
z=
n
h
,
n
=1
,
2
,
3
,
….
,
N
f
,
w
h
er
e
at
z=
N
f
h
w
e
g
et
th
e
d
esire
d
r
ep
ea
ter
s
p
ac
in
g
R
R
d
u
e
to
R
am
an
am
p
lif
ier
o
n
ly
.
P
si
(R
R
)
=A
SE
,
W
att
(
2
2
)
w
h
er
e
A
SE
is
th
e
am
p
lif
ied
s
p
o
n
t
an
eo
u
s
em
is
s
io
n
n
o
is
e
p
o
w
er
an
d
is
g
iv
en
b
y
[
1
1
]
:
W
a
t
t
,
/
10
9876
.
1
19
Ra
e
BW
x
AS
E
(
2
3
)
w
h
er
e
B
W
e
is
th
e
ef
f
ec
tiv
e
b
an
d
w
id
th
an
d
Ra
is
th
e
av
er
ag
e
R
am
an
w
av
elen
g
th
,
=
1
.
4
3
μ
m
.
A
ll
-
w
av
e
f
ib
er
s
ar
e
em
p
lo
y
ed
[
1
4
]
w
h
er
e
th
e
s
p
ec
tr
al
lo
s
s
e
s
(
s
)
is
ca
s
t u
n
d
er
th
e
f
o
r
m
:
km
dB
s
s
s
s
s
/
,
)
55
.
1
(
7
.
36
)
55
.
1
(
11
.
72
)
55
.
1
(
06
.
34
)
55
.
1
(
04
.
7
19
.
0
)
(
5
4
3
2
(
2
4
)
B
ased
o
n
th
e
b
asic
eq
u
atio
n
s
an
aly
s
is
,
an
d
th
e
s
er
ies
o
f
th
e
o
p
er
atin
g
p
ar
am
eter
s
,
th
e
f
o
llo
w
in
g
f
ea
tu
r
es
ar
e
ass
u
r
ed
as
s
h
o
w
n
in
th
e
s
er
ies
o
f
th
e
Fig
u
r
e
1
-
12:
1.
Fi
g
u
r
e
.
(
1
-
4
)
h
av
e
ass
u
r
ed
th
at
as
r
elativ
e
r
ef
r
ac
tiv
e
in
d
ex
d
if
f
er
en
ce
Δ
n
in
cr
ea
s
es,
r
esu
ltin
g
in
in
cr
ea
s
in
g
o
f
b
o
th
av
er
ag
e
r
ep
ea
ter
s
p
ac
in
g
p
er
lin
k
an
d
g
ain
,
an
d
d
ec
r
ea
s
in
g
o
f
b
o
th
am
p
lif
ied
s
p
o
n
tan
eo
u
s
em
is
s
io
n
p
o
w
er
an
d
ef
f
ec
tiv
e
co
r
e
ar
ea
.
2.
A
s
th
e
n
u
m
b
er
o
f
p
u
m
p
s
in
cr
ea
s
es,
r
esu
ltin
g
in
av
er
ag
e
r
ep
ea
ter
s
p
ac
in
g
p
er
lin
k
as sh
o
w
n
in
Fig
.
5
.
3.
Fig
u
r
e
(6
-
8
)
h
av
e
d
em
o
n
s
tr
ated
th
at
as
in
th
e
s
p
ec
tr
al
d
o
m
ain
ar
o
u
n
d
th
e
o
p
tical
w
av
elen
g
th
C
1
.
5
5
m
,
lead
to
av
er
ag
e
r
ep
ea
ter
s
p
ac
in
g
p
er
lin
k
p
o
s
s
ess
es
its
m
ax
im
u
m
v
alu
e.
4.
A
s
s
h
o
w
n
in
th
e
s
er
ies
o
f
Fig
s
.
(
9
-
1
1
)
h
as
p
r
o
v
ed
th
at
as
th
e
n
u
m
b
er
o
f
tr
an
s
m
itted
ch
an
n
els
N
T
in
cr
ea
s
es,
r
esu
ltin
g
in
d
ec
ea
s
in
g
o
f
av
er
ag
e
r
ep
ea
ter
s
p
ac
in
g
p
er
lin
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
4
,
No
.
1
,
A
p
r
il
20
1
5
:
38
–
4
4
42
5.
A
s
in
itial
R
am
an
p
u
m
p
in
g
w
av
elen
g
th
,
Ri
d
ec
r
ea
s
es,
e
f
f
ec
tiv
e
b
an
d
w
id
th
,
B
W
c
in
cr
ea
s
es
in
s
id
e
th
e
o
p
er
atin
g
ch
an
n
els
r
an
g
e
(
65
.
1
,
45
.
1
m
si
as
s
h
o
w
n
in
Fig
.
1
2
,
w
h
er
e
g
o
o
d
f
latn
ess
h
as
b
ee
n
o
b
tain
ed
u
p
to
9
0
% o
f
th
e
ab
o
v
e
r
an
g
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
Dem
o
n
s
tr
a
tio
n
o
f Mu
lti P
u
mp
Wid
e
Ga
in
R
a
ma
n
....
(
A
h
med
N
a
b
ih
Za
ki
R
a
s
h
ed
)
43
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
4
,
No
.
1
,
A
p
r
il
20
1
5
:
38
–
4
4
44
4.
CO
NCLUS
I
O
NS
T
h
e
ad
v
an
tag
es
o
f
f
ib
er
R
am
an
am
p
lif
ier
s
o
v
er
th
e
o
p
tical
am
p
lif
ier
s
in
clu
d
e
th
e
p
o
s
s
ib
ilit
y
to
o
p
er
ate
in
an
y
w
av
elen
g
th
r
eg
io
n
an
d
s
u
p
er
io
r
n
o
is
e
p
er
f
o
r
m
an
ce
o
f
d
is
tr
ib
u
ted
am
p
lif
icatio
n
,
as
w
ell
as
p
er
m
its
,
w
ith
th
e
ap
p
r
o
p
r
iate
ch
o
ice
o
f
p
u
m
p
w
av
elen
g
th
s
an
d
p
o
w
er
s
,
f
latten
in
g
o
f
th
e
g
ain
p
r
o
f
ile
o
v
er
th
e
w
h
o
le
b
an
d
w
id
th
.
E
m
p
lo
y
in
g
s
p
ec
ial
n
u
m
er
ical
tech
n
iq
u
e,
w
e
h
av
e
s
u
cc
ee
d
ed
to
m
ax
im
ize
th
e
r
ep
ea
ter
s
p
ac
in
g
em
p
lo
y
in
g
m
u
lti
-
p
u
m
p
in
g
R
am
an
am
p
lif
ier
o
f
w
id
e
f
lat
g
ain
.
W
e
h
av
e
p
r
o
ce
s
s
ed
tw
o
co
u
p
led
n
o
n
lin
ea
r
d
if
f
er
en
tial
eq
u
atio
n
s
to
ac
co
u
n
t
th
e
s
ig
n
al
b
eh
av
io
r
.
R
am
an
p
u
m
p
s
ar
e
o
f
eq
u
al
s
p
ec
tr
al
s
p
ac
in
g
an
d
eq
u
al
p
u
m
p
in
g
p
o
w
er
.
T
w
o
s
ets
o
f
p
u
m
p
s
ar
e
p
r
o
ce
s
s
ed
o
v
er
th
e
s
p
ec
tr
al
w
id
th
1
.
4
0
R
,
m
1
.
4
4
an
d
ch
an
n
el
w
id
th
1
.
4
5
s
,
m
1
.
6
5
.
T
w
o
u
ltra
-
w
id
e
tr
an
s
m
is
s
io
n
m
u
ltip
lex
in
g
tech
n
iq
u
es
ar
e
ap
p
lied
,
w
h
er
e
1
0
,
0
0
0
o
p
tical
ch
an
n
els
ar
e
m
u
ltip
lex
ed
(
W
DM
)
th
r
o
u
g
h
4
8
0
f
ib
er
lin
k
s
(
SDM)
.
I
n
g
en
er
al,
p
o
s
itiv
e
lin
ea
r
o
r
w
ea
k
n
o
n
lin
ea
r
co
r
r
elatio
n
s
ar
e
d
ep
icted
am
o
n
g
th
e
av
er
ag
e
r
ep
ea
ter
s
p
ac
in
g
an
d
th
e
co
n
tr
o
llin
g
s
ets
o
f
p
ar
am
eter
s
.
T
h
e
g
ain
co
ef
f
icien
t
u
n
d
er
g
o
es
g
o
o
d
f
latn
ess
at
h
ig
h
er
n
an
d
p
o
s
s
ess
es
,
in
g
en
er
al,
p
o
s
itiv
e
co
r
r
elatio
n
w
ith
th
e
r
elativ
e
r
ef
r
ac
tiv
e
in
d
ex
d
if
f
er
en
ce
.
A
m
ax
im
u
m
r
ep
ea
ter
s
p
ac
in
g
o
f
3
6
0
k
m
ca
n
b
e
ac
h
iev
ed
.
A
m
ax
im
u
m
f
latn
ess
o
v
er
9
0
%
o
f
th
e
ch
an
n
el
o
p
er
atin
g
r
an
g
e
h
as
b
ee
n
o
b
tain
ed
b
y
d
ec
r
ea
s
in
g
th
e
in
itial
R
am
an
p
u
m
p
in
g
w
av
elen
g
th
.
RE
F
E
R
E
NC
E
S
[1
]
J.
Na
g
e
l,
V
.
T
e
m
y
a
n
k
o
,
J.
Do
b
ler,
E.
Dia
n
o
v
,
A
.
S
y
so
li
a
t
in
,
A
.
Biri
u
k
o
v
,
R.
No
rw
o
o
d
,
N.
P
e
y
g
h
a
m
b
a
rian
,
“
Na
rro
w
L
in
e
w
id
th
Co
n
ti
n
u
o
u
s
W
a
v
e
F
ib
e
r
Ra
m
a
n
A
m
p
li
f
ier
f
o
r
Re
m
o
te
S
e
n
sin
g
o
f
A
tm
o
sp
h
e
ric
O
2
a
t
1
.
2
7
μm
,
”
T
e
c
h
n
ica
l
Dig
e
st F
IL
AS
,
V
o
l.
2
2
,
No
.
2
,
p
p
.
1
6
-
1
7
,
2
0
1
1
.
[2
]
J.
Na
g
e
l,
V
.
T
e
m
y
a
n
k
o
,
J.
Do
b
ler,
E.
Dia
n
o
v
,
A
.
S
y
so
li
a
ti
n
,
A
.
Biri
u
k
o
v
,
R.
No
rw
o
o
d
,
N.
P
e
y
g
h
a
m
b
a
rian
,
“
Hig
h
P
o
w
e
r,
Na
rro
w
L
in
e
w
id
th
Co
n
ti
n
u
o
u
s
W
a
v
e
Ra
m
a
n
A
m
p
li
f
ier
a
t
1
.
2
7
μm
,
”
IEE
E
Ph
o
to
n
ics
T
e
c
h
n
o
lo
g
y
L
e
tt
e
rs
,
V
o
l.
2
3
,
No
.
9
,
p
p
.
1
-
3
,
2
0
1
1
.
[3
]
F
a
th
y
M
.
M
u
sta
f
a
,
A
sh
ra
f
A
.
Kh
a
laf
a
n
d
F
.
A
.
El
-
G
e
ld
a
w
y
,
“
Im
p
ro
v
e
m
e
n
t
th
e
F
latn
e
ss
,
G
a
in
a
n
d
Ba
n
d
w
id
th
o
f
Ca
sc
a
d
e
d
Ra
m
a
n
A
m
p
li
f
iers
f
o
r
L
o
n
g
-
Ha
u
l
UW
-
W
DM
Op
ti
c
a
l
Co
m
m
u
n
ica
ti
o
n
s
S
y
ste
m
s,”
IJ
CS
I
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mp
u
ter
S
c
ien
c
e
Iss
u
e
s
,
V
o
l.
8
,
No
.
6
,
p
p
.
3
7
7
-
3
8
4
,
No
v
.
2
0
1
1
[4
]
M
.
W
a
sf
i,
“
Op
ti
c
a
l
F
ib
e
r
A
m
p
li
f
iers
Re
v
ie
w,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mm
u
n
ica
ti
o
n
Ne
two
rk
s
a
n
d
In
fo
rm
a
ti
o
n
S
e
c
u
rity (
IJ
CNIS
)
,
V
o
l.
1
,
No
.
1
,
p
p
.
4
2
-
4
7
,
A
p
r.
2
0
0
9
.
[5
]
M
o
h
a
m
e
d
M
.
E.
EL
-
Ha
law
a
n
y
,
“
Ef
f
icie
n
t
Ra
m
a
n
A
m
p
li
f
iers
w
it
h
in
P
ro
p
a
g
a
ti
o
n
a
n
d
M
u
lt
ip
lex
in
g
T
e
c
h
n
iq
u
e
s
f
o
r
Hig
h
Ca
p
a
c
it
y
a
n
d
Ultra
L
o
n
g
Ha
u
l
T
ra
n
sm
is
sio
n
S
y
ste
m
s,”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mp
u
ter
S
c
ien
c
e
a
n
d
T
e
lec
o
mm
u
n
ica
ti
o
n
s
,
V
o
l.
2
,
No
.
3
,
p
p
.
1
6
-
2
4
,
Ju
n
e
2
0
1
1
.
[6
]
B.
G
.
L
e
e
,
A
.
Bib
e
rm
a
n
,
A
.
C.
T
u
n
e
r,
M
.
A
.
F
o
ste
r,
M
.
L
ip
so
n
,
A
.
L
.
G
a
e
ta,
K.
Be
rg
m
a
n
,
“
De
m
o
n
stra
ti
o
n
o
f
Bro
a
d
b
a
n
d
W
a
v
e
len
g
th
Co
n
v
e
rsio
n
a
t
4
0
G
b
/se
c
in
S
il
ico
n
W
a
v
e
g
u
id
e
s,”
IEE
E
Ph
o
to
n
ics
T
e
c
h
n
o
lo
g
y
L
e
tt
e
rs
,
V
o
l.
2
1
,
No
.
3
,
p
p
.
1
8
2
-
1
8
4
,
F
e
b
.
2
0
0
9
.
[7
]
L
.
T
.
Jo
rd
a
n
o
v
a
,
a
n
d
V
.
I.
T
o
p
c
h
iev
,
“
Im
p
ro
v
e
m
e
n
t
o
f
th
e
Op
ti
c
a
l
Ch
a
n
n
e
l
No
ise
Ch
a
ra
c
teristics
u
sin
g
Distrib
u
ted
Ra
m
a
n
A
m
p
li
f
iers
,
”
ICES
T
,
V
o
l.
1
2
,
No
.
5
,
p
p
.
2
0
-
2
3
,
Ju
n
e
2
0
0
8
.
[8
]
A
.
N.
A
.
M
o
h
a
m
m
e
d
,
A
.
F
.
A
.
S
a
a
d
,
A
h
m
e
d
Na
b
ih
Zak
i
Ra
sh
e
d
,
M
.
M
.
Ei
d
,
“
Ch
a
ra
c
teristics
o
f
M
u
lt
i
-
P
u
m
p
e
d
Ra
m
a
n
A
m
p
li
f
iers
in
De
n
se
W
a
v
e
len
g
th
Div
isio
n
M
u
lt
ip
lex
in
g
(DW
DM)
Op
ti
c
a
l
A
c
c
e
ss
Ne
tw
o
rk
s,”
IJ
CS
NS
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mp
u
t
e
r S
c
ien
c
e
a
n
d
Ne
two
rk
S
e
c
u
rity
,
V
o
l.
9
,
No
.
2
,
p
p
.
2
7
7
-
2
8
4
,
F
e
b
.
2
0
0
9
.
[9
]
J.
Hu
,
B.
S
.
M
a
rk
s,
a
n
d
C.
R.
M
e
n
y
n
k
,
"
F
lat
-
G
a
in
F
ib
e
r
Ra
m
a
n
A
m
p
li
f
iers
Us
in
g
Eq
u
a
ll
y
S
p
a
c
e
d
P
u
m
p
s"
,
J.
L
ig
h
twa
v
e
T
e
c
h
n
o
l
.
,
V
o
l.
2
2
,
No
.
6
,
p
p
.
1
5
1
9
-
1
5
2
2
,
Ju
n
e
,
2
0
0
4
.
[1
0
]
J.
C.
Ba
o
u
tea
ll
e
r,
L
.
L
e
n
g
a
n
d
C.
He
a
d
ley
.
,
"
P
u
m
p
-
P
u
m
p
F
o
u
r
W
a
v
e
M
ix
in
g
in
Distrib
u
ted
Ra
m
a
n
A
m
p
li
f
ied
S
y
ste
m
s,"
J
.
L
ig
h
twa
v
e
T
e
c
h
n
o
l
.
,
V
o
l.
2
2
,
No
.
3
,
p
p
.
7
2
3
-
7
3
1
,
M
a
rc
h
,
2
0
0
4
.
[1
1
]
P
.
X
iao
.
O.
Zen
g
,
J.
Hu
a
n
g
,
a
n
d
J.
L
iu
,
"
A
Ne
w
Op
ti
m
a
l
A
lg
o
rit
h
m
f
o
r
M
u
lt
i
-
P
u
m
p
in
g
S
o
u
rc
e
s
o
f
Distrib
u
t
e
d
F
ib
e
r
Ra
m
a
n
A
m
p
li
f
ier,"
IEE
E
Ph
o
to
n
ics
T
e
c
h
n
o
l
.
L
e
tt
.
,
V
o
l.
1
5
,
No
.
2
,
p
p
.
2
0
6
-
2
0
8
,
2
0
0
3
.
[1
2
]
E.
A
.
El
-
Ba
d
a
w
y
,
A
b
d
El
-
Na
se
r
A
.
M
o
h
a
m
m
e
d
,
A
.
A
.
S
a
a
d
,
a
n
d
M
.
M
.
A
.
Ei
d
,
"
M
a
x
imiza
ti
o
n
o
f
Rep
e
a
ter
S
p
a
c
in
g
Us
in
g
M
u
lt
i
-
Pu
mp
in
g
Ra
ma
n
Amp
li
fi
e
r
o
f
W
id
e
Ga
in
,
"
P
ro
c
.
T
h
e
1
0
th
W
o
rld
M
u
lt
i
-
Co
n
f
e
re
n
c
e
o
n
S
y
ste
m
ics
,
Cy
b
e
rn
e
ti
c
s
a
n
d
In
f
o
rm
a
ti
c
s
(W
M
S
CI),
V
o
l.
V
,
Ju
ly
1
6
-
1
9
,
Orla
n
d
o
,
F
lo
rid
a
,
USA
,
2
0
0
6
.
[1
3
]
J.
Bro
m
a
g
e
,
"
Ra
m
a
n
A
m
p
li
f
ica
ti
o
n
f
o
r
F
ib
e
r
Co
m
m
u
n
ica
ti
o
n
s
S
y
ste
m
s,"
J
.
L
ig
h
twa
v
e
T
e
c
h
n
o
l
.
,
V
o
l.
2
2
,
No
.
1
,
p
p
.
79
-
9
3
,
2
0
0
4
.
[14]
W
.
H.
KN
o
x
,
“
T
h
e
F
u
tu
re
o
f
W
a
v
e
len
g
th
Div
isio
n
M
u
lt
i
p
lex
in
g
”
,
OPN
T
re
n
d
s
,
V
o
l
.
1
8
,
No
.
1
,
p
p
.
5
-
6
,
M
a
rc
h
2
0
0
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.