I
nte
rna
t
io
na
l J
o
urna
l
o
f
I
nfo
r
m
a
t
ics a
nd
Co
mm
u
n
ica
t
io
n T
ec
hn
o
lo
g
y
(
I
J
-
I
CT
)
Vo
l.
3
,
No
.
3
,
Octo
b
e
r
2
0
1
4
,
p
p
.
1
7
1
~1
7
7
I
SS
N:
2252
-
8776
171
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
I
C
T
Decisio
n Suppo
r
t
Sy
ste
m
using
Dat
a
Mining
Metho
d
f
o
r a
Cro
ss
Selling
St
ra
t
eg
y
in
Retail
Stores
I
m
a
m
T
a
hy
u
din
,
M
o
ha
m
m
a
d I
m
ro
n,
Siti
Alv
i So
li
kh
a
t
in
De
p
a
rtme
n
o
f
In
f
o
rm
a
ti
o
n
S
y
ste
m
,
S
T
M
IK
A
M
IKO
M
P
u
rw
o
k
e
rto
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l 1
8
,
2
0
1
4
R
ev
i
s
ed
Sep
2
1
,
2
0
1
4
A
cc
ep
ted
Sep
g
2
2
,
2
0
1
4
A
s
a
les
tran
sa
c
ti
o
n
d
a
tao
f
a
re
tai
l
c
o
m
p
a
n
y
w
h
ich
is
c
o
ll
e
c
t
e
d
e
v
e
r
y
d
a
y
is
e
n
o
rm
o
u
s.
V
e
ry
larg
e
d
a
ta
will
b
e
m
o
re
m
e
a
n
in
g
f
u
lt
o
in
c
re
a
se
th
e
c
o
m
p
a
n
y
’s
p
ro
f
it
sif
it
c
a
n
b
e
e
x
trac
ted
p
ro
p
e
rly
.
Ba
se
d
o
n
t
h
e
re
se
a
rc
h
re
su
lt
so
f
A
n
d
h
ik
a
,
e
t
a
l[1
]
,
Zh
a
n
g
a
n
d
Ru
a
n
[
6
],
He
re
ra
e
t
a
l
[
7
],
W
it
ten
[
1
1
]
,
e
x
p
lain
e
d
th
a
t
o
n
e
o
f
th
e
m
e
th
o
d
s
t
h
a
t
c
a
n
g
a
th
e
r
in
f
o
rm
a
ti
o
n
f
ro
m
th
e
tran
sa
c
ti
o
n
d
a
ta
is
th
e
m
e
th
o
d
o
f
a
ss
o
c
iatio
n
.
W
it
h
th
is
m
e
th
o
d
it
c
a
n
b
e
d
e
term
in
e
d
th
e
p
a
tt
e
rn
s
o
f
tran
sa
c
ti
o
n
s
p
e
rf
o
r
m
e
d
si
m
u
lt
a
n
e
o
u
sly
a
n
d
re
p
e
a
ted
ly
.
T
h
u
s,
it
c
a
n
b
e
o
b
tai
n
e
d
a
m
o
d
e
l
th
a
t
c
a
n
b
e
u
se
d
a
s
a
re
fe
re
n
c
e
fo
r
c
ro
ss
se
ll
in
g
sa
l
e
s
stra
te
g
y
.
Th
e
p
u
r
p
o
se
o
f
th
is
re
se
a
rc
h
is
to
a
p
p
ly
d
a
ta
m
in
in
g
a
s
so
c
iatio
n
m
e
th
o
d
s
o
f
d
a
ta
m
in
in
g
b
y
u
sin
g
a
p
rio
ri
a
lg
o
rit
h
m
to
c
re
a
te
a
n
e
w
sa
l
e
s
stra
teg
y
fo
r
c
ro
ss
se
ll
i
n
g
.
Ba
se
d
o
n
c
a
lcu
latio
n
s,
A
s
so
c
iatio
n
Ru
le i
s im
p
le
m
e
n
ted
b
y
a
p
p
ly
in
g
Co
n
f
id
e
n
c
e
v
a
lu
e
=
0
.
8
w
h
il
e
th
e
v
a
lu
e
o
f
S
u
p
p
o
rt=0
.
1
o
f
th
e
d
e
f
in
e
d
m
in
im
u
m
v
a
lu
e
,
th
e
to
tal
re
su
lt
a
re
7
7
ru
les
.
K
ey
w
o
r
d
:
A
p
r
io
r
i a
lg
o
r
ith
m
Ass
o
ciatio
n
C
r
o
s
s
s
ell
in
g
Data
m
i
n
i
n
g
R
etail
s
to
r
es
Co
p
y
rig
h
t
©
2
0
1
4
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
I
m
a
m
T
ah
y
u
d
i
n
Dep
ar
t
m
en
o
f
I
n
f
o
r
m
atio
n
S
y
s
te
m
ST
MI
K
A
MI
KOM
P
u
r
w
o
k
er
t
o
P
u
r
w
o
k
er
to
,
I
n
d
o
n
es
ia
.
E
m
ail: i
m
a
m
.
tah
y
u
d
in
@
a
m
i
k
o
m
p
u
r
w
o
k
er
to
.
ac
.
id
1.
I
NT
RO
D
UCT
I
O
N
Dec
is
io
n
Su
p
p
o
r
t
S
y
s
te
m
(
DSS)
b
eg
a
n
to
attr
ac
t
atte
n
tio
n
a
m
o
n
g
p
r
o
g
r
a
m
m
er
s
a
n
d
s
y
s
te
m
s
an
al
y
s
ts
.
T
h
ese
s
y
s
te
m
s
as
s
is
t
d
ec
is
io
n
-
m
a
k
i
n
g
b
y
m
a
n
a
g
i
n
g
d
ata
an
d
u
s
i
n
g
ce
r
tain
m
o
d
els
to
s
o
lv
e
th
e
p
r
o
b
lem
.
Dec
is
io
n
s
u
p
p
o
r
t
s
y
s
te
m
s
to
b
e
s
p
ec
ial
b
ec
au
s
e
it
is
ab
le
t
o
s
o
l
v
et
h
e
p
r
o
b
lem
o
f
u
n
s
tr
u
ct
u
r
ed
o
r
s
e
m
i
-
s
tr
u
ct
u
r
ed
.
I
n
m
a
n
y
ar
ea
s
,
a
d
ec
is
io
n
s
u
p
p
o
r
t
s
y
s
te
m
h
as
m
a
n
y
p
er
ce
iv
ed
b
en
e
f
its
an
d
d
ep
en
d
en
c
y
to
u
s
e
t
h
e
s
y
s
te
m
in
cr
ea
s
in
g
w
i
t
h
t
h
e
in
cr
ea
s
in
g
co
m
p
le
x
it
y
o
f
t
h
e
d
ata
m
a
n
a
g
e
m
e
n
t
p
r
o
ce
s
s
ea
ch
i
n
f
o
r
m
atio
n
s
y
s
te
m
.
A
p
p
licatio
n
o
f
th
e
DS
S
to
a
b
u
s
i
n
es
s
in
ter
e
s
t
p
la
y
s
a
v
er
y
i
m
p
o
r
ta
n
t
r
o
le,
s
u
ch
a
s
to
p
r
o
v
id
e
ad
v
ice
in
t
h
e
p
r
ep
ar
atio
n
o
f
cr
o
s
s
-
s
elli
n
g
s
tr
ate
g
y
atr
etail
s
to
r
e
s
.
O
n
e
m
et
h
o
d
th
at
ca
n
b
e
u
s
ed
to
s
o
l
v
e
t
h
e
s
ep
r
o
b
lem
s
is
b
y
u
s
i
n
g
ass
o
cia
tio
n
m
et
h
o
d
o
f
ap
r
io
r
i
alg
o
r
ith
m
s
.
T
h
e
s
tu
d
y
o
n
th
e
ap
p
lic
atio
n
o
f
th
e
m
et
h
o
d
o
f
A
p
r
io
r
i
A
s
s
o
ciat
io
n
h
a
s
b
ee
n
d
o
n
e
b
y
p
r
ev
io
u
s
s
t
u
d
ies
w
it
h
a
v
ar
iet
y
o
f
o
b
j
ec
ts
.
R
esear
ch
co
n
d
u
cted
b
y
A
n
d
h
ik
a
et
al
[
1
]
en
ti
tled
E
x
ca
v
atio
n
A
s
s
o
ciatio
n
P
atter
n
s
i
n
Dat
a
W
ar
eh
o
u
s
e
Ag
e
n
t
Ma
n
u
f
ac
t
u
r
in
g
U
s
i
n
g
Mic
r
o
s
o
f
t
SQ
L
Ser
v
er
(
C
a
s
e
St
u
d
y
:
P
T
X
YZ
)
ai
m
s
to
cr
ea
tean
in
te
g
r
ated
s
y
s
te
m
,
u
s
i
n
g
th
e
d
ata
w
ar
e
h
o
u
s
e
a
n
d
ass
o
ciatio
n
m
et
h
o
d
o
f
r
u
le
m
i
n
in
g
,
t
h
at
f
o
u
n
d
a
p
atter
n
o
f
s
ales
tr
an
s
ac
tio
n
d
ata
f
r
o
m
p
r
ev
io
u
s
p
er
io
d
s
r
eg
ar
d
i
n
g
t
h
e
r
elatio
n
s
h
ip
b
et
w
ee
n
-
a
v
ar
iab
le
t
h
at
is
k
n
o
w
n
te
n
d
en
c
y
o
f
th
e
p
r
o
d
u
ct
to
b
e
p
u
r
ch
ased
b
y
th
e
c
u
s
to
m
er
in
co
n
j
u
n
ctio
n
w
i
th
t
h
e
s
p
ec
if
ic
p
r
o
d
u
ct.
T
h
e
m
et
h
o
d
u
s
ed
is
t
h
e
d
esi
g
n
o
f
t
h
e
d
ata,
s
tar
tin
g
f
r
o
m
t
h
e
f
o
r
m
u
latio
n
o
f
th
e
p
r
o
b
le
m
s
e
n
c
o
u
n
ter
ed
,
an
d
th
e
n
d
o
a
s
ea
r
ch
t
h
e
r
eq
u
ir
ed
d
ata.
O
n
ce
co
llected
,
th
e
d
ata
i
s
f
ilte
r
ed
an
d
tr
an
s
f
o
r
m
ed
t
h
at
i
n
to
a
f
o
r
m
co
n
s
i
s
ten
t
d
atab
ase.
Fu
r
th
er
m
o
r
e,
ap
p
ly
in
g
a
s
s
o
ciatio
n
r
u
le
m
i
n
i
n
g
u
s
in
g
Mic
r
o
s
o
f
t
Vis
u
al
St
u
d
io
.
T
h
e
en
d
r
esu
lt
is
an
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
3
,
No
.
3
,
Octo
b
e
r
201
4
:
1
7
1
–
177
172
ap
p
licatio
n
th
at
ca
n
p
r
o
v
id
e
cr
o
s
s
p
r
o
d
u
ct
r
ec
o
m
m
en
d
a
tio
n
s
-
s
el
lin
g
o
f
t
h
e
p
r
o
ce
s
s
o
f
e
x
tr
ac
tin
g
t
h
e
ass
o
ciatio
n
o
f
th
e
s
a
les d
ata
in
XYZ
,
s
o
it c
a
n
h
elp
XY
Z
p
er
f
o
r
m
d
ata
m
an
a
g
e
m
en
t a
n
d
d
ec
is
io
n
-
m
ak
i
n
g
.
Su
b
s
eq
u
e
n
t
r
esear
ch
co
n
d
u
cte
d
b
y
Do
n
g
w
o
o
n
,
etal.
[
4
]
w
it
h
t
h
e
tit
le
o
f
Hig
h
-
u
tili
t
y
r
u
le
m
i
n
in
g
f
o
r
cr
o
s
s
s
elli
n
g
.
T
h
e
o
b
j
ec
tiv
e
o
f
t
h
is
s
t
u
d
y
ai
m
s
to
d
eter
m
i
n
e
t
h
e
r
es
u
lt
s
o
f
t
h
e
e
x
ca
v
ati
o
n
cr
o
s
s
s
elli
n
g
w
i
t
h
HURM
m
et
h
o
d
(
h
ig
h
-
u
tili
t
y
r
u
le
m
in
in
g
)
to
d
ev
elo
p
t
h
r
ee
ele
m
e
n
t
s
o
f
t
h
e
tar
g
et,
ef
f
ec
ti
v
en
e
s
s
a
n
d
o
p
p
o
r
tu
n
itie
s
.
Av
er
ag
e
n
u
m
b
er
o
f
tr
an
s
ac
tio
n
s
ca
r
r
ied
o
u
t
b
u
y
s
ix
ite
m
s
a
n
d
p
r
o
d
u
cts.
Fu
r
t
h
er
r
esear
ch
co
n
d
u
cted
b
y
L
u
t
f
i[
1
4
]
,
en
tit
l
ed
A
p
p
licatio
n
o
f
Data
Mi
n
i
n
g
A
s
s
o
ciatio
n
A
l
g
o
r
ith
m
f
o
r
I
m
p
r
o
v
i
n
g
Sales.
T
h
is
s
t
u
d
y
ai
m
s
to
d
eter
m
i
n
e
t
h
e
g
r
o
u
p
s
o
f
ite
m
s
o
f
g
o
o
d
s
w
h
ic
h
h
ar
e
co
n
s
is
ten
tl
y
p
u
r
ch
ased
s
i
m
u
lta
n
eo
u
s
l
y
.
T
h
e
in
f
o
r
m
atio
n
o
b
tain
ed
is
u
s
ed
f
o
r
p
r
o
m
o
tio
n
s
,
s
to
r
e
la
y
o
u
ts
et
tin
g
s
to
p
u
t
t
h
e
g
o
o
d
s
ite
m
s
i
n
a
n
o
p
ti
m
al
r
elatio
n
to
ea
ch
o
th
er
,
d
esi
g
n
i
n
g
ca
talo
g
s
,
an
d
id
e
n
ti
f
y
cu
s
t
o
m
er
s
e
g
m
e
n
t
s
b
ased
o
n
t
h
e
p
atter
n
.
T
h
e
m
et
h
o
d
u
s
ed
in
t
h
is
r
esear
c
h
is
to
f
i
n
d
all
f
r
eq
u
e
n
tite
m
s
et,
th
en
b
r
in
g
u
p
th
e
s
tr
o
n
g
as
s
o
ciatio
n
r
u
le
f
r
o
m
f
r
eq
u
en
tite
m
s
et.
T
h
e
f
in
al
r
e
s
u
lt
s
ar
e
ex
p
ec
ted
f
r
o
m
th
e
b
u
ilt
s
y
s
te
m
th
a
t
h
a
s
th
e
ab
il
it
y
to
s
ee
p
atter
n
s
o
f
s
ales o
f
g
o
o
d
s
th
at
ca
n
t
h
e
n
b
e
u
s
ed
to
d
ev
elo
p
n
e
w
s
ales
s
tr
ateg
ies.
T
h
e
n
ex
t
s
t
u
d
y
w
a
s
co
n
d
u
c
te
d
b
y
Z
h
a
n
g
a
n
d
R
u
a
n
[
3
]
titl
ed
m
o
d
if
icatio
n
o
f
a
s
s
o
ciatio
n
alg
o
r
ith
m
w
it
h
it
s
ap
p
licatio
n
i
n
t
h
e
cr
o
s
s
-
s
ell
in
g
s
tr
ate
g
y
i
n
th
e
r
etai
l
in
d
u
s
tr
y
.
T
h
e
p
u
r
p
o
s
e
o
f
t
h
is
s
tu
d
y
is
to
m
o
d
if
y
th
e
ap
r
io
r
i
ass
o
ciatio
n
a
lg
o
r
i
th
m
b
y
r
ed
u
ci
n
g
th
e
s
ca
le
o
f
th
e
ca
n
d
id
ateite
m
s
et
C
k
a
n
d
th
e
in
p
u
t
o
u
tp
u
t.
B
ased
o
n
th
e
r
es
u
lt
s
o
b
tai
n
ed
s
h
o
w
t
h
at
t
h
e
m
o
d
i
f
ied
alg
o
r
ith
m
ca
n
i
m
p
r
o
v
e
t
h
e
p
er
f
o
r
m
an
ce
o
f
t
h
e
ap
r
io
r
i
ass
o
ciatio
n
al
g
o
r
ith
m
e
f
f
icien
tl
y
.
T
h
e
n
ex
t
r
esear
c
h
w
a
s
co
n
d
u
cted
b
y
T
an
g
,
etal[
6
]
w
it
h
t
h
e
t
itle
t
h
e
u
s
e
o
f
d
ata
m
in
in
g
to
ac
ce
ler
ate
cr
o
s
s
-
s
e
lli
n
g
.
T
h
e
p
u
r
p
o
s
eo
f
th
is
s
t
u
d
y
w
a
s
to
d
eter
m
i
n
e
th
e
p
atter
n
o
f
cr
o
s
s
-
s
elli
n
g
s
ale
s
to
b
e
tak
en
in
to
co
n
s
id
er
atio
n
to
m
a
k
e
s
ale
s
ac
ce
ler
atio
n
s
tr
ateg
y
.
T
h
e
m
e
th
o
d
u
s
ed
ap
r
io
r
i
ass
o
ciatio
n
alg
o
r
ith
m
m
et
h
o
d
w
it
h
XL
Mi
n
er
s
o
f
t
w
ar
e.
T
h
e
r
esu
lts
s
h
o
w
ed
th
at
b
y
u
s
i
n
g
t
h
e
p
ar
am
eter
s
o
f
m
in
i
m
u
m
s
u
p
p
o
r
t
an
d
m
in
i
m
u
m
co
n
f
id
e
n
ce
.
B
o
th
o
f
th
e
s
e
p
ar
am
eter
s
u
s
e
f
u
l a
n
d
in
f
l
u
e
n
tial
s
er
io
u
s
l
y
.
T
h
e
n
ex
t
r
esear
ch
w
as
co
n
d
u
cted
b
y
Yan
g
,
etal.
[
1
5
]
w
it
h
th
e
titl
e
t
h
e
u
s
e
o
f
d
ec
is
io
n
tr
ee
an
d
ass
o
ciatio
n
alg
o
r
it
h
m
f
o
r
p
r
ed
ictiv
e
cr
o
s
s
s
elli
n
g
o
p
p
o
r
tu
n
ities
.
T
h
e
p
u
r
p
o
s
e
o
f
t
h
is
s
t
u
d
y
is
to
p
r
ed
ict
th
e
cr
o
s
s
s
elli
n
g
o
p
p
o
r
tu
n
itie
s
w
it
h
i
n
n
o
v
ati
v
e
ap
p
r
o
ac
h
es
ef
f
ec
t
iv
el
y
.
T
h
e
m
et
h
o
d
u
s
e
d
is
th
e
m
e
th
o
d
o
f
d
ec
is
io
n
tr
ee
an
d
ass
o
ciatio
n
alg
o
r
ith
m
s
.
T
h
e
r
esu
lt
s
o
b
tain
ed
s
h
o
w
t
h
at
t
h
e
ap
p
r
o
ac
h
ca
n
i
m
p
r
o
v
ep
r
ed
ictio
n
ac
cu
r
ac
y
a
n
d
h
elp
s
telec
o
m
v
e
n
d
o
r
s
in
m
a
k
i
n
g
p
o
lic
y
f
o
r
cr
o
s
s
s
elli
n
g
.
R
esear
ch
co
n
d
u
cted
b
y
Y
u
s
u
f
,
et
al[
1
3
]
w
it
h
t
h
e
titl
e
o
f
t
h
e
ap
p
licatio
n
o
f
d
ata
m
in
i
n
g
i
n
t
h
e
d
eter
m
in
at
io
n
o
f
a
s
s
o
ci
atio
n
r
u
les
b
e
t
w
ee
n
t
y
p
es
o
f
ite
m
s
.
T
h
e
s
tu
d
y
ai
m
ed
to
d
eter
m
in
e
t
h
e
ass
o
ciatio
n
b
et
w
ee
n
th
e
t
y
p
e
o
f
p
r
o
d
u
ct,
th
e
t
y
p
es
o
f
p
r
o
d
u
cts
th
at
a
p
p
ea
r
th
e
s
a
m
e
o
n
ev
er
y
tr
an
s
ac
tio
n
s
o
t
h
at
th
e
tr
an
s
ac
tio
n
d
ata
is
a
n
i
m
p
o
r
t
an
t
i
n
p
u
t
i
n
m
ak
i
n
g
e
f
f
o
r
ts
to
in
cr
ea
s
e
t
h
e
s
ales.
T
h
e
m
et
h
o
d
u
s
ed
is
t
h
e
ass
o
ciatio
n
m
et
h
o
d
w
it
h
th
e
a
p
r
io
r
i
alg
o
r
ith
m
.
T
h
e
r
es
u
lt
s
o
b
tain
ed
s
h
o
w
t
h
at
t
h
e
s
ales
tr
a
n
s
ac
tio
n
d
ata
g
i
v
e
s
th
r
ee
r
u
les t
h
at
m
ee
t t
h
e
8
0
% c
o
n
f
id
e
n
ce
li
m
it.
2.
ASSOC
I
AT
I
O
N
M
E
T
H
O
D
AND
AP
RIOR
I
AL
G
O
RI
T
H
M
2
.
1
.
Ass
o
cia
t
io
n Rule
M
ini
ng
Ass
o
ciatio
n
r
u
le
m
in
in
g
i
s
a
m
eth
o
d
u
s
ed
to
d
eter
m
i
n
e
t
h
e
g
e
n
er
al
p
atter
n
s
a
n
d
r
ep
etitio
n
s
i
n
a
s
et
o
f
tr
an
s
ac
tio
n
s
i
n
lar
g
e
a
m
o
u
n
t
s
.
A
s
s
o
ciat
io
n
r
u
le
s
t
u
d
ied
t
h
e
f
r
eq
u
en
c
y
o
f
a
n
u
m
b
er
o
f
ite
m
s
th
a
to
cc
u
r
to
g
eth
er
i
n
a
tr
an
s
ac
tio
n
d
at
ab
ase
b
ased
o
n
t
w
o
m
e
a
s
u
r
es
ca
lled
s
u
p
p
o
r
t
an
d
co
n
f
id
en
ce
.
B
o
th
o
f
t
h
ese
m
ea
s
u
r
esto
id
en
tify
t
h
e
o
cc
u
r
r
en
ce
an
d
as
s
o
ciatio
n
r
u
les
f
r
o
m
t
h
e
ite
m
s
et.
T
h
e
f
o
r
m
atio
n
o
f
ass
o
ciatio
n
r
u
le
s
o
n
ite
m
s
et
i
f
t
h
e
s
u
p
p
o
r
t
an
d
co
n
f
id
e
n
ce
v
al
u
es
g
r
ea
ter
th
a
n
th
e
m
i
n
i
m
u
m
s
u
p
p
o
r
t
an
d
c
o
n
f
id
e
n
ce
s
p
ec
if
ied
b
y
t
h
e
an
a
l
y
s
t [
5
]
.
Ass
o
ciatio
n
r
u
le
ca
n
b
e
u
s
e
d
o
n
o
n
e
o
r
m
o
r
e
th
an
o
n
e
d
ata
d
i
m
en
s
io
n
.
I
f
i
t
is
i
n
o
n
e
-
d
im
en
s
io
n
a
l,
ass
o
ciatio
n
r
u
le
s
t
h
a
to
cc
u
r
o
n
l
y
i
n
v
o
lv
e
s
o
n
e
-
d
i
m
e
n
s
io
n
al
lo
g
ical
d
ata
f
r
o
m
m
u
ltip
le
d
i
m
en
s
io
n
s
o
f
d
ata
in
d
ata
w
ar
e
h
o
u
s
e
s
a
n
d
d
ata
m
a
r
ts
.
I
n
m
u
lti
d
i
m
en
s
io
n
al
as
s
o
ciatio
n
r
u
les
t
h
at
o
cc
u
r
in
v
o
l
v
in
g
m
o
r
e
t
h
a
n
o
n
e
d
i
m
en
s
io
n
o
f
t
h
e
lo
g
ica
l d
ata
f
r
o
m
m
u
l
tip
le
d
i
m
e
n
s
io
n
s
o
f
d
ata
in
d
ata
w
ar
e
h
o
u
s
es a
n
d
d
ata
m
ar
ts
.
A
p
r
o
ce
d
u
r
e
is
to
lo
o
k
f
o
r
r
el
atio
n
s
h
ip
s
b
et
w
ee
n
ite
m
s
in
a
s
p
e
cif
ied
d
ata
s
et
[
9
]
.
A
s
s
o
ci
atio
n
R
u
le
Min
i
n
g
i
n
cl
u
d
es t
w
o
s
ta
g
es:
a.
L
o
o
k
i
n
g
f
o
r
th
e
m
o
s
t c
o
m
m
o
n
co
m
b
i
n
atio
n
o
f
an
ite
m
s
e
t (
f
r
eq
u
en
t ite
m
s
et)
.
b.
Gen
er
ate
th
e
Ass
o
ciatio
n
R
u
le
o
f
f
r
eq
u
e
n
t ite
m
s
et
t
h
at
h
a
s
b
ee
n
m
ad
e
b
ef
o
r
e.
Gen
er
all
y
t
h
er
e
ar
e
t
w
o
m
ea
s
u
r
es
o
f
co
n
f
id
e
n
ce
(
in
ter
esti
n
g
n
es
s
m
ea
s
u
r
e)
u
s
ed
in
d
eter
m
i
n
in
g
an
as
s
o
ciatio
n
r
u
le,
n
a
m
e
l
y
t
h
e
Su
p
p
o
r
t a
n
d
C
o
n
f
id
en
ce
[
9
]
.
2
.
2
.
Aprio
ri
Alg
o
rit
h
m
f
o
r
F
ind
i
ng
F
re
qu
ent
I
t
e
m
Set
s
A
p
r
io
r
i
alg
o
r
it
h
m
i
s
an
e
f
f
ic
ien
t
m
et
h
o
d
f
o
r
s
e
lecti
n
g
s
tr
o
n
g
r
u
les
co
n
tai
n
ed
i
n
t
h
e
t
r
an
s
ac
tio
n
g
r
o
u
p
[
1
0
]
.
T
h
e
f
ir
s
t
p
h
ase
o
f
th
e
alg
o
r
ith
m
g
e
n
er
ates
f
r
eq
u
en
t
ite
m
s
et
ap
p
ea
r
s
in
a
s
y
s
te
m
a
tic
an
d
r
o
b
u
s
t
s
ec
o
n
d
p
h
ase
g
en
er
ates r
u
les
f
r
o
m
t
h
e
ite
m
s
et.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
Dec
is
io
n
S
u
p
p
o
r
t S
ystem
u
s
in
g
Da
ta
Min
in
g
…
(
I
ma
m
Ta
h
y
u
d
in
)
173
An
Ass
o
ciatio
n
r
u
le
ca
n
b
e
e
x
p
lain
ed
a
s
f
o
llo
w
s
:
Ois
a
s
e
t
o
f
ite
m
s
w
h
er
e
O=
{o
1
,
o
2
,
.
.
.
,
o
n
}.
T
iis
th
ei
-
t
h
e
tr
an
s
ac
tio
n
th
at
co
n
ta
in
s
a
s
et
o
f
ite
m
s
.
Dis
t
h
e
s
et
o
f
all
tr
an
s
ac
tio
n
s
s
o
th
at
D=
{T
1
,
T
2
,
.
.
.
.
,
T
m
}.
Ass
o
ciatio
n
r
u
le
to
g
e
n
er
ate
will b
es h
ap
ed
f
o
llo
w
in
g
i
m
p
lic
atio
n
s
:
"
I
f
A
,
th
e
n
B
"
o
r
"
A
⇒
B
"
A
is
th
e
an
tece
d
e
n
t
(
p
r
ed
ec
es
s
o
r
)
o
f
t
h
e
i
m
p
licatio
n
s
,
w
h
il
e
B
is
t
h
e
co
n
s
eq
u
e
n
t
(
f
o
llo
wer
)
o
f
th
e
i
m
p
licatio
n
s
.
A
an
d
B
ar
ep
u
r
es
u
b
s
ets o
f
I
s
o
t
h
at
A
,
B
⊂
I
.
A
a
n
d
B
ar
et
w
o
d
is
j
o
in
ts
et
s
s
o
A
∩
B
=
∅
.
T
h
er
e
ar
e
tw
o
s
ize
s
i
n
d
eter
m
i
n
in
g
w
h
e
th
e
r
ap
air
o
f
ite
m
s
ca
n
b
e
e
x
p
r
ess
ed
as
an
a
s
s
o
cia
tio
n
r
u
les.
T
h
is
s
ize
is
ex
p
r
es
s
ed
as s
u
p
p
o
r
t a
n
d
co
n
f
id
en
ce
.
a.
Su
p
p
o
r
tis
a
r
eq
u
ir
e
m
en
t
o
n
h
o
w
o
f
ten
a
n
/a
s
et
o
f
ite
m
s
m
u
s
tap
p
ea
r
to
b
e
ex
p
r
ess
ed
as
a
r
u
le.
Su
p
p
o
r
t
d
en
o
ted
b
y
s
.
s
u
p
p
{
A
⇒
B
)
}
=f
(
A
∪
B
)
n
u
m
b
er
o
f
T
m
i
n
D
b.
C
o
n
f
id
en
ce
s
h
o
w
s
t
h
e
le
v
el
o
f
co
n
f
id
e
n
ce
p
r
ed
ec
ess
o
r
ite
m
s
(
a
n
tece
d
en
t
s
)
an
d
a
f
o
llo
w
er
ite
m
s
(
co
n
s
eq
u
e
n
t)
w
ill
ap
p
ea
r
in
t
h
e
s
a
m
e
tr
a
n
s
ac
t
io
n
.
C
o
n
f
id
en
ce
is
d
en
o
ted
b
y
p
.
co
n
f
{
A
⇒
B
}
=
(
∪
)
(
)
I
te
m
s
et
i
s
a
s
et
co
m
p
r
is
i
n
g
s
o
m
e
o
r
all
o
f
t
h
e
i
te
m
s
t
h
at
ar
e
m
e
m
b
er
s
o
f
I
.
An
ite
m
s
et
co
n
s
i
s
ti
n
g
o
f
k
ite
m
s
i
s
ca
lled
a
k
-
ite
m
s
et.
A
f
r
eq
u
e
n
t
ite
m
s
et
(
f
r
eq
u
en
t
it
e
m
s
e
t)
is
a
n
ite
m
s
et
w
h
ic
h
h
as
a
f
r
eq
u
e
n
c
y
o
f
n
u
m
b
er
s
φ.
Fre
q
u
e
n
t ite
m
s
et
w
h
ic
h
h
a
s
k
ele
m
e
n
ts
i
s
ca
lled
ak
-
ite
m
s
et
(
f
r
eq
u
e
n
t
k
-
ite
m
s
e
t)
.
I
n
ad
d
itio
n
t
o
t
h
e
s
izeo
f
t
h
e
s
u
p
p
o
r
t
an
d
co
n
f
id
en
ce
o
f
a
n
ite
m
s
e
t
is
f
r
eq
u
e
n
t,
t
h
e
t
h
ir
d
m
e
asu
r
e
t
h
at
ca
n
b
e
co
n
s
id
er
ed
is
th
e
v
alu
e
o
f
th
e
li
f
t.
L
i
f
t size
i
s
d
eter
m
i
n
ed
as f
o
llo
w
s
:
=
lif
t{
A
⇒
B
}
=
(
∪
)
(
)
(
)
L
i
f
t V
al
u
e
ill
u
s
tr
ate
s
th
e
f
o
llo
w
i
n
g
p
o
in
ts
:
a.
I
f
th
e
v
al
u
e
o
f
th
e
l
if
t<1
,
th
en
A
a
n
d
B
h
av
e
t
h
e
s
a
m
e
lo
w
f
r
eq
u
en
c
y
o
f
o
cc
u
r
r
en
ce
i
n
t
h
e
d
ata
as
ex
p
ec
ted
b
ased
o
n
th
e
in
d
ep
en
d
e
n
t
as
s
u
m
p
tio
n
.
I
n
o
t
h
er
w
o
r
d
s
,
A
a
n
d
B
h
a
v
e
a
n
eg
a
tiv
e
d
ep
en
d
en
ce
an
d
t
h
e
in
f
lu
e
n
ce
o
f
s
u
b
s
t
itu
tio
n
b
et
wee
n
A
an
d
B
.
b.
I
f
th
e
v
al
u
e
o
f
th
e
li
f
t=1
,
th
e
n
A
a
n
d
B
at
th
e
s
a
m
e
f
r
eq
u
en
c
y
o
f
o
cc
u
r
r
en
ce
i
s
f
r
eq
u
en
t
i
n
t
h
e
d
ataa
s
ex
p
ec
ted
b
ased
o
n
th
e
in
d
ep
en
d
en
t a
s
s
u
m
p
tio
n
.
A
an
d
B
ca
n
b
e
s
aid
to
b
e
in
d
ep
en
d
en
t f
r
o
m
o
n
e
an
o
t
h
er
.
c.
I
f
t
h
e
v
a
lu
e
o
f
t
h
e
li
f
t>1
,
t
h
e
n
A
a
n
d
B
at
t
h
e
s
a
m
e
f
r
eq
u
en
c
y
o
f
o
cc
u
r
r
e
n
ce
o
f
m
o
r
e
f
r
eq
u
en
t
d
ata
as
ex
p
ec
ted
b
ased
o
n
th
e
in
d
ep
en
d
en
t
as
s
u
m
p
tio
n
.
I
n
o
th
er
w
o
r
d
s
,
A
a
n
d
B
ar
e
p
o
s
itiv
e
i
n
ter
d
ep
en
d
en
ce
,
an
d
th
er
e
is
a
co
m
p
le
m
en
tar
y
e
f
f
e
ct
b
et
w
ee
n
A
an
d
B
.
L
i
f
t
i
s
c
alc
u
lated
o
n
l
y
f
o
r
th
e
2
-
ite
m
s
et
b
ec
a
u
s
e
t
h
e
l
if
t
v
al
u
e
te
n
d
s
to
b
e
h
i
g
h
er
f
o
r
lar
g
e
ite
m
s
e
t
co
m
p
ar
ed
to
s
li
g
h
t
ite
m
s
et
T
o
th
at
e
n
d
,
th
e
l
if
t
is
n
o
ts
u
i
t
ab
le
to
d
eter
m
in
e
th
e
in
f
l
u
en
ce
o
f
d
if
f
er
en
t
s
ize
s
ite
m
s
et.
A
p
r
io
r
i
al
g
o
r
it
h
m
to
p
er
f
o
r
m
f
r
eq
u
en
tite
m
s
et
to
o
b
tain
a
s
s
o
ciatio
n
r
u
le
s
.
As
t
h
e
n
a
m
e
i
m
p
lies
,
th
i
s
alg
o
r
ith
m
u
s
e
s
p
r
io
r
k
n
o
w
l
ed
g
e
o
f
f
r
eq
u
e
n
t
ite
m
s
et
p
r
o
p
er
ties
o
n
w
h
ic
h
w
e
h
ad
k
n
o
w
n
b
e
f
o
r
e,
to
p
r
o
ce
s
s
f
u
r
t
h
er
i
n
f
o
r
m
atio
n
.
A
p
r
io
r
iu
s
e
s
a
n
iter
at
iv
ea
p
p
r
o
ac
h
i
s
r
ef
er
r
ed
to
as
le
v
el
-
w
i
s
e
s
ea
r
ch
w
h
er
ek
-
ite
m
s
et
is
u
s
ed
to
f
i
n
d
th
e(
k
+1
)
–
item
s
et
[
8
]
.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
Sa
m
p
le
d
ata
u
s
ed
co
m
es
f
r
o
m
r
etail
s
to
r
es
Alf
a
m
ar
t
J
l
MT
Har
y
o
n
o
C
ilaca
p
,
b
ased
o
n
th
e
co
llectio
n
o
f
s
ec
o
n
d
ar
y
d
ata,
it
i
s
o
b
tain
ed
th
at
ev
er
y
d
a
y
t
h
er
e
ar
e
ab
o
u
t
7
0
0
tr
an
s
ac
tio
n
s
o
cc
u
r
,
in
a
y
ea
r
t
h
er
e
ar
e
at
least
2
5
5
.
6
0
0
tr
an
s
ac
tio
n
s
.
T
h
is
is
j
u
s
t
o
n
e
b
r
an
c
h
o
f
Alf
a
m
ar
t
alo
n
e.
Nu
m
b
er
o
f
B
r
an
ch
e
s
in
C
ilaca
p
d
is
tr
ict
,
th
er
e
ar
e
ab
o
u
t
2
3
0
b
r
an
ch
es
A
l
f
a
m
ar
t.
T
h
en
,
af
ter
th
e
co
m
p
letio
n
o
f
d
ata
u
s
ed
ea
ch
y
ea
r
,
w
h
at
f
o
r
is
th
e
d
ata?
W
i
ll
it
b
e
d
is
ca
r
d
ed
?
I
s
th
at
j
u
s
t
k
ep
t
u
n
til
p
ili
n
g
n
u
m
b
er
s
?
Of
co
u
r
s
e,
alth
o
u
g
h
it
is
o
n
l
y
k
ep
t
o
n
f
ile
an
n
u
al,
t
h
er
e
ar
ec
o
s
ts
to
b
ein
c
u
r
r
ed
b
y
th
e
co
m
p
an
y
f
o
r
its
m
a
in
te
n
an
ce
.
I
f
th
e
d
ata
t
h
at
h
as
b
ee
n
ac
cu
m
u
lated
is
n
o
t u
s
ed
,
b
u
t t
h
er
e
ar
e
m
ai
n
te
n
an
ce
co
s
t
s
to
b
e
in
cu
r
r
ed
,
th
e
co
m
p
a
n
y
w
o
u
ld
g
et
lo
s
s
.
Fo
r
th
e
p
r
o
ce
s
s
o
f
ex
tr
ac
ti
n
g
d
ata
w
it
h
as
s
o
ciat
io
n
an
a
l
y
s
is
,
w
e
ta
k
e
asa
m
p
le
o
f
tr
an
s
ac
ti
o
n
d
ata
A
l
f
a
m
ar
t
J
l
MT
Har
y
o
n
o
,
th
e
tr
an
s
ac
tio
n
o
cc
u
r
r
ed
o
n
A
u
g
u
s
t 2
,
2
0
1
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
3
,
No
.
3
,
Octo
b
e
r
201
4
:
1
7
1
–
177
174
T
ab
le
1
.
S
h
o
p
p
in
g
ca
r
t tr
an
s
ac
t
io
n
d
ata
ID
T
r
a
n
sa
k
si
IT
E
M
1
0
1
-
1
3
5
5
K
I
N
O
L
R
T
N
P
E
T
2
0
0
M
L
1
0
1
-
1
3
5
6
S
A
M
P
O
ER
N
A
A
M
I
L
D
M
R
H
1
6
[
P
B
]
1
0
1
-
1
3
5
6
D
JA
R
U
M
7
6
G
G
S
U
R
Y
A
1
6
[
P
B
]
S
A
M
P
O
ER
N
A
A
M
I
L
D
M
R
H
1
2
[
P
B
]
1
0
1
-
1
3
6
1
D
JA
R
U
M
L
.
A
LI
G
H
T
1
6
G
G
F
I
L
T
ER
M
ER
A
H
1
2
1
0
1
-
1
3
6
3
W
A
LL
'S
C
R
N
T
B
L
A
C
K
&W
H
T
N
E
W
1
1
0
M
L
W
A
LL
'S
F
E
A
S
T
C
O
K
L
A
T
6
5
M
L
W
A
LL
'S
P
O
P
U
L
A
I
R
E
S
T
R
A
W
B
ER
R
Y
9
0
M
L
1
0
1
-
1
3
6
4
B
I
N
TA
N
G
Z
ER
O
K
L
G
3
3
0
M
L
1
0
1
-
1
3
6
5
M
A
R
L
B
O
R
O
B
L
A
C
K
M
EN
T
H
O
L
2
0
1
0
1
-
1
3
6
7
A
G
U
L
A
T
EB
U
L
O
K
A
L
1
K
G
A
B
C
S
P
C
G
R
A
D
E
C
O
C
O
P
A
N
D
A
N
5
8
5
M
L
K
A
P
A
L
A
P
I
K
O
P
I
S
P
EC
I
A
L
6
5
G
K
G
A
S
T
M
ER
A
H
M
I
N
I
7
0
0
G
S
A
R
I
W
A
N
G
I
T
EH
A
S
LI
2
5
'S
W
A
LL
'S
F
E
A
S
T
C
O
K
L
A
T
6
5
M
L
1
0
1
-
1
3
6
8
G
G
F
I
L
T
ER
M
ER
A
H
1
2
1
0
1
-
1
3
6
9
D
U
N
H
I
L
L
F
I
N
E
C
U
T
M
I
L
D
2
0
1
0
1
-
1
3
7
0
B
I
G
S
T
R
O
B
ER
I
P
ET
3
.
1
L
Ass
o
ciatio
n
an
al
y
s
i
s
is
u
s
e
f
u
l
f
o
r
f
in
d
in
g
i
m
p
o
r
ta
n
t r
elatio
n
s
h
ip
s
h
id
d
en
a
m
o
n
g
v
er
y
lar
g
e
d
atasets
.
Op
en
r
elatio
n
s
h
ip
al
r
ea
d
y
r
ep
r
esen
ted
i
n
th
e
f
o
r
m
o
f
a
s
s
o
ciat
io
n
r
u
leso
r
a
r
u
le
s
et
o
f
ite
m
s
t
h
at
f
r
eq
u
e
n
tl
y
ap
p
ea
r
.
T
h
e
r
u
lein
d
icate
s
a
s
tr
o
n
g
r
elatio
n
s
h
ip
b
et
w
ee
n
t
h
e
s
a
le
o
f
o
n
e
ite
m
to
an
o
th
er
b
ec
au
s
e
m
an
y
cu
s
to
m
er
s
b
u
y
t
w
o
ite
m
s
o
f
t
h
e
p
r
o
d
u
ct.
T
h
u
s
,
th
e
m
i
n
i
m
ar
k
et
m
a
n
a
g
e
m
en
t c
a
n
u
s
e
th
is
a
s
a
w
a
y
to
id
en
ti
f
y
p
o
ten
tial o
p
p
o
r
tu
n
ities
f
o
r
cr
o
s
s
-
s
ell
in
g
s
tr
ate
g
y
(
cr
o
s
s
-
s
elli
n
g
)
t
h
e
g
o
o
d
s
ar
es o
ld
.
3
.
1
.
M
o
delin
g
w
it
h Ra
pid
M
iner
5
.
0
Mo
d
elin
g
w
it
h
R
ap
id
Min
er
u
s
in
g
d
ata
f
r
o
m
s
ale
s
tr
an
s
ac
tio
n
s
in
Au
g
u
s
t 2
0
1
3
to
De
ce
m
b
er
2
0
1
3
.
P
r
o
ce
s
s
in
g
i
s
d
o
n
e
b
y
f
ir
s
t b
in
ar
in
g
e
x
is
t
in
g
tr
an
s
ac
tio
n
d
ata.
E
x
is
ti
n
g
r
a
w
tr
an
s
ac
tio
n
d
ata
ca
n
n
o
t b
e
p
r
o
ce
s
s
ed
b
ec
au
s
e
R
ap
id
Min
e
r
ca
n
o
n
l
y
r
ea
d
th
e
d
ata
in
t
h
e
f
o
r
m
o
f
b
i
n
ar
y
d
ata,
w
h
ic
h
is
r
ep
r
esen
ted
b
y
"
0
"
o
r
"
1
"
.
Data
tr
an
s
ac
tio
n
s
ar
e
p
r
o
ce
s
s
e
d
r
ea
l d
ata,
an
d
n
o
m
a
n
ip
u
lat
io
n
.
Desp
ite
o
n
l
y
u
s
i
n
g
tr
a
n
s
ac
ti
o
n
d
atain
a
d
ay
,
b
u
t t
h
e
p
atter
n
s
an
d
r
u
le
s
ca
n
b
e
o
b
tain
ed
is
ex
p
ec
ted
t
o
r
ep
r
esen
t th
e
s
p
en
d
i
n
g
b
eh
a
v
io
r
o
f
co
n
s
u
m
er
s
.
T
h
e
g
en
er
atio
n
o
f
a
s
s
o
ciatio
n
r
u
les ca
n
b
e
co
n
t
in
u
ed
w
it
h
d
ail
y
tr
an
s
a
ctio
n
d
ata
p
r
o
ce
s
s
i
n
g
b
ased
o
n
r
ec
eip
t
n
u
m
b
er
to
f
i
n
d
ite
m
s
th
a
t c
o
u
l
d
b
e
u
s
ed
ascr
o
s
s
-
s
elli
n
g
s
tr
ate
g
y
.
Fig
u
r
e
1
.
P
r
o
ce
s
s
o
f
A
s
s
o
ciatio
n
R
u
le
Mo
d
elin
g
w
it
h
R
ap
id
Min
er
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
Dec
is
io
n
S
u
p
p
o
r
t S
ystem
u
s
in
g
Da
ta
Min
in
g
…
(
I
ma
m
Ta
h
y
u
d
in
)
175
Fig
u
r
e
2
.
R
es
u
lts
o
f
A
p
p
licatio
n
o
f
A
s
s
o
ciatio
n
R
u
le
T
ab
le
V
ie
w
Fig
u
r
e
3
.
R
es
u
lts
o
f
A
p
p
licatio
n
o
f
A
s
s
o
ciatio
n
R
u
le
Gr
ap
h
Vie
w
C
alcu
latio
n
o
f
A
s
s
o
ciato
n
R
u
le
ap
p
lied
b
y
ap
p
ly
in
g
C
o
n
f
id
en
ce
v
al
u
e=
0
.
8
w
h
ile
th
e
v
alu
e
o
f
Su
p
p
o
r
t=0
.
1
.
Of
th
e
d
e
f
in
ed
m
i
n
i
m
u
m
v
al
u
e,
th
e
r
esu
lt
a
to
tal
is
7
7
r
u
le
s
.
R
ap
id
Mi
n
er
ca
n
ac
co
m
m
o
d
ate
u
p
to
th
o
u
s
a
n
d
s
o
f
r
u
les
i
n
ac
co
r
d
an
ce
w
ith
t
h
e
m
i
n
i
m
u
m
s
u
p
p
o
r
t
an
d
m
in
i
m
u
m
co
n
f
id
en
ce
t
h
a
t
w
e
s
p
ec
i
f
y
.
3.
2.
Co
nclus
io
n
s
o
f
Cro
s
s
-
s
elli
ng
I
t
e
m
Sev
er
al
co
n
cl
u
s
io
n
s
ab
o
u
t
cr
o
s
s
-
s
ell
in
g
p
r
o
d
u
cts
th
at
ca
n
b
e
r
ec
o
m
m
en
d
ed
f
r
o
m
th
e
p
r
o
ce
s
s
o
f
ex
tr
ac
ti
n
g
th
e
ass
o
ciatio
n
d
ata
i
n
clu
d
e:
a.
W
all’
s
Fea
s
t C
h
o
co
late
w
it
h
S
ar
i
w
a
n
g
i T
h
e
A
s
li
b.
Gu
d
an
g
Gar
a
m
Fil
ter
Me
r
ah
w
it
h
Dj
ar
u
m
L
A
L
i
g
h
t
c.
Sar
i
w
a
n
g
i T
h
e
Asl
i i
n
v
ar
io
u
s
s
ize
w
it
h
Kap
al
A
p
i K
o
p
i
w
it
h
d
if
f
er
e
n
t v
ar
ia
n
ts
a
n
d
s
izes
d.
Gu
la
T
eb
u
L
o
k
al
w
i
th
Kap
al
A
p
i
Ko
p
i
w
it
h
d
if
f
er
en
t
v
ar
ian
ts
an
d
s
ize
s
e.
Gu
la
T
eb
u
L
o
k
al
w
i
th
Sar
i
w
a
n
g
i T
h
e
A
s
li
w
it
h
d
if
f
er
en
t
v
ar
ian
ts
a
n
d
s
izes
f.
Gu
la
T
eb
u
L
o
k
al
w
i
th
A
B
C
S
p
ec
ial
Gr
ad
e
C
o
co
p
an
d
an
g.
Dj
ar
u
m
7
6
w
it
h
Gu
d
a
n
g
Gar
a
m
1
6
h.
Sar
i
w
a
n
g
i T
h
e
Asl
i,
Kap
al
A
p
i K
o
p
i
w
it
h
W
all’
s
Fe
ast
C
h
o
c
o
late
4.
CO
NCLU
SI
O
N
Fro
m
th
e
d
ata
p
r
o
ce
s
s
in
g
tr
an
s
ac
tio
n
d
ated
Au
g
u
s
t
2
,
2
0
1
3
o
n
o
n
e
b
r
an
ch
A
l
f
a
m
ar
t
m
i
n
i
m
ar
k
et
i
n
C
ilaca
p
,
it
is
o
b
tain
ed
th
e
r
es
u
lts
o
f
a
s
s
o
ciatio
n
r
u
les
o
r
lin
k
ag
e
s
a
m
o
n
g
p
r
o
d
u
cts
th
at
c
an
b
e
u
s
ed
f
o
r
th
e
co
n
s
id
er
atio
n
o
f
cr
o
s
s
-
s
elli
n
g
s
tr
ateg
ie
s
as
w
e
ll
as
to
d
eter
m
i
n
e
th
e
la
y
o
u
t
o
f
th
e
ite
m
s
i
n
th
e
s
h
o
p
w
i
n
d
o
w
.
Mo
d
elin
g
o
f
Ass
s
o
ciato
n
R
u
l
e
o
n
l
y
ta
k
es
a
s
a
m
p
le
o
f
d
ata
f
r
o
m
t
h
e
tr
an
s
ac
tio
n
f
o
r
o
n
e
d
a
y
.
Data
p
r
o
ce
s
s
in
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
3
,
No
.
3
,
Octo
b
e
r
201
4
:
1
7
1
–
177
176
an
d
m
o
d
eli
n
g
ca
n
b
e
ap
p
lied
to
lar
g
er
d
ata
to
f
i
n
d
a
co
m
b
i
n
a
tio
n
a
n
d
as
s
o
ciatio
n
r
u
les
an
d
also
a
li
n
k
ag
e
o
f
in
ter
-
co
m
p
lex
p
r
o
d
u
cts.
Sev
er
al
co
n
c
lu
s
io
n
s
ab
o
u
t
c
r
o
s
s
-
s
e
lli
n
g
p
r
o
d
u
cts
t
h
at
ca
n
b
e
r
ec
o
m
m
en
d
ed
f
r
o
m
p
r
o
ce
s
s
o
f
ex
tr
ac
ti
n
g
t
h
e
as
s
o
ciatio
n
d
ata
in
clu
d
e:
1.
W
all’
s
Fea
s
t C
h
o
co
late
w
it
h
S
ar
i
w
a
n
g
i T
h
e
A
s
li
2.
Gu
d
an
g
Gar
a
m
Fil
ter
Me
r
ah
w
it
h
Dj
ar
u
m
L
A
L
i
g
h
t
3.
Sar
i
w
a
n
g
i T
h
e
Asl
i i
n
v
ar
io
u
s
s
ize
w
it
h
Kap
al
A
p
i K
o
p
i
w
it
h
d
if
f
er
e
n
t v
ar
ia
n
ts
a
n
d
s
izes
4.
Gu
la
T
eb
u
L
o
k
al
w
i
th
Kap
al
A
p
i K
o
p
i
w
it
h
d
if
f
er
en
t
v
ar
ian
ts
an
d
s
ize
s
5.
Gu
la
T
eb
u
L
o
k
al
w
i
th
Sar
i
w
a
n
g
i T
h
e
A
s
li
w
it
h
d
if
f
er
en
t
v
ar
ian
ts
a
n
d
s
izes
6.
Gu
la
T
eb
u
L
o
k
al
w
i
th
A
B
C
S
p
ec
ial
Gr
ad
e
C
o
co
p
an
d
an
7.
Dj
ar
u
m
7
6
w
it
h
G
u
d
an
g
Gar
a
m
1
6
8.
Sar
i
w
a
n
g
i T
h
e
Asl
i,
Kap
al
A
p
i K
o
p
i
w
it
h
W
all’
s
Feast
C
h
o
c
o
late
ACK
NO
WL
E
D
G
M
E
NT
T
h
is
s
tu
d
y
h
a
s
b
ee
n
co
m
p
let
ed
th
an
k
s
to
t
h
e
h
e
lp
an
d
s
u
p
p
o
r
t
f
r
o
m
v
ar
io
u
s
p
ar
tie
s
th
a
t
ca
n
n
o
t
b
e
m
en
tio
n
ed
o
n
e
b
y
o
n
e.
E
s
p
ec
i
all
y
th
a
n
k
y
o
u
to
m
y
litt
le
f
a
m
il
y
,
ch
ild
r
en
a
n
d
m
y
w
i
f
e.
R
esear
ch
er
s
s
a
y
a
b
ig
th
an
k
y
o
u
to
f
a
m
i
l
y
ST
MI
K
AM
I
KOM
P
u
r
w
o
k
er
to
w
h
o
h
as
g
iv
e
n
s
u
p
p
o
r
t
to
co
m
p
lete
th
i
s
s
tu
d
y
.
Ho
p
e
f
u
ll
y
th
i
s
r
esear
c
h
ca
n
b
e
u
s
ef
u
l.
RE
F
E
R
E
NC
E
S
[1]
An
d
h
i
k
a,
R
u
ll
y
.
R
etn
o
.
,
(
2
0
1
3
)
.
E
x
ca
va
tio
n
A
s
s
o
cia
tio
n
P
a
tter
n
s
in
Da
ta
W
a
r
eh
o
u
s
e
A
g
en
t
Ma
n
u
fa
ctu
r
in
g
Usi
n
g
Micr
o
s
o
ft
S
QL
S
erver
(
C
a
s
e
S
tu
d
y:
X
YZ
.
)
,
E
n
g
in
ee
r
i
n
g
J
o
u
r
n
al
o
f
P
OM
I
T
S
Vo
l.
2
n
o
.
2
Feb
r
u
ar
y
.
I
SS
N
2
2
2
3
-
3
5
3
9
.
(
2
3
0
1
-
9
2
7
1
P
r
in
t)
.
[2]
C
o
x
,
R
o
g
er
&
B
r
ittain
,
P
a
u
l.(
2
0
0
0
)
.
R
eta
il
Ma
n
g
eme
n
t
4
th
E
d
itio
n
.
Lo
n
d
o
n
:
P
ea
r
s
o
n
E
d
u
ca
tio
n
L
i
m
ited
.
[3]
C
h
a
n
g
s
h
en
g
,
J
in
g
R
u
a
n
,
(
2
0
0
9
)
.
A
Mo
d
ified
A
p
r
io
r
i
A
lg
o
r
ith
m
w
ith
I
ts
A
p
p
lic
a
tio
n
i
n
I
n
s
titu
tin
g
C
r
o
s
s
-
S
ellin
g
S
tr
a
teg
ies
o
f
th
e
R
eta
il
I
n
d
u
s
tr
y,
2
0
0
9
I
n
ter
n
atio
n
a
l
C
o
n
f
er
e
n
ce
o
n
E
lectr
o
n
ic
C
o
m
m
er
ce
an
d
B
u
s
i
n
ess
I
n
telli
g
e
n
ce
,
9
7
8
-
7
6
9
5
-
3661
-
3
/0
9
,
©2
0
0
9
I
E
E
E
,
DOI
1
0
.
1
1
0
9
/ECB
I
.
2
0
0
9
.
1
2
1
[4]
Do
n
g
w
o
n
,
Su
n
g
-
H
y
u
k
P
ar
k
,
So
n
g
c
h
u
n
Mo
o
n
,
(
2
0
1
1
)
.
H
ig
h
-
Utilit
y
R
u
le
Min
in
g
fo
r
C
r
o
s
s
-
S
ellin
g
,
P
r
o
cc
e
d
in
g
s
o
f
t
h
e
4
4
th
Ha
waii
I
n
ter
n
atio
n
al
C
o
n
f
er
en
ce
o
n
S
y
s
te
m
Sc
ien
ce
s
,
1
5
3
0
-
1
6
0
5
/1
1
,
©2
0
1
1
IEEE
[5]
Go
ld
ie,
Dan
a
I
n
d
r
a
Sen
s
u
e,
(
2
0
1
2
)
.
A
p
p
lica
tio
n
o
f
D
a
ta
Min
in
g
Meth
o
d
o
f
Ma
r
ke
t
B
a
s
ke
t
A
n
a
lysi
s
Of
P
r
o
d
u
ct
S
a
les
Da
ta
B
o
o
k
w
ith
A
p
r
io
r
i
A
lg
o
r
ith
m
Us
in
g
F
r
eq
u
en
t
P
a
tter
n
a
n
d
Gro
w
th
:
C
a
s
e
S
tu
d
ies
P
r
in
tin
g
P
T.
S
ch
o
l
a
s
tic
,
J
o
u
r
n
al
o
f
T
elem
ati
k
a
MK
OM
,
Vo
l.
4
.
1
,
Ma
r
et
2
0
1
2
.
I
SS
N:
2
0
8
5
-
7
2
5
X.
[6]
T
an
g
,
He
w
e
n
;
Z
en
g
f
a
n
g
Ya
n
g
,
P
in
g
zh
e
n
Z
h
an
g
,
Ho
n
g
l
in
Yan
,
(
2
0
0
8
)
.
Usi
n
g
Da
t
a
Min
in
g
to
A
cc
elera
te
C
r
o
s
s
-
S
ellin
g
,
I
n
t
er
n
atio
n
al
Se
m
i
n
ar
o
n
B
u
s
i
n
ess
an
d
I
n
f
o
r
m
atio
n
Ma
n
ag
e
m
en
t.
9
7
8
-
0
-
7695
-
3
5
6
0
-
9
/0
8
,
©2
0
0
8
I
E
E
E
,
DOI
1
0
.
1
1
0
9
/I
SB
I
M.
2
0
0
8
.
1
8
6
[7]
Her
er
a,
f
r
an
cisco
,
2
0
1
0
.
D
a
ta
Min
in
g
a
n
d
S
o
ft
C
o
m
p
u
tin
g
,
De
p
t.
o
f
C
o
m
p
u
ter
Scien
ce
an
d
A
.
I
.
Un
iv
er
s
it
y
o
f
Gr
an
ad
a,
Sp
ain
.
[8]
Ku
s
r
i
n
i.
(
2
0
0
7
)
.
C
o
n
ce
p
t a
n
d
A
p
p
lica
tio
n
.
Dec
is
io
n
S
u
p
p
o
r
t S
ystem
.
Yo
g
y
a
k
ar
ta
:
A
n
d
i P
u
b
lis
h
er
[9]
Han
,
J
.
,
&
Ka
m
b
er
,
M.
(
2
0
0
6
)
.
Da
ta
Min
in
g
C
o
n
ce
p
t a
n
d
Teh
n
iq
u
es.
San
Fra
n
s
is
co
: M
o
r
g
an
Ka
u
f
f
m
a
n
.
I
SB
N
1
3
: 9
7
8
-
1
-
55860
-
9
0
1
-
3
[10]
Ver
ce
llis
,
C
ar
lo
.
(
2
0
0
9
)
.
B
u
s
i
n
ess
I
n
tellig
en
ce
:
Da
ta
Min
in
g
a
n
d
Op
timiz
a
tio
n
fo
r
Dec
is
io
n
Ma
kin
g
.
W
est Su
s
s
e
x
: J
o
h
n
W
ile
y
&
S
o
n
s
L
td
.
[11]
W
itten
,
I
an
,
H;
E
ib
e,
Fra
n
k
;
Hall,
A
.
M.
2
0
1
1
.
Da
ta
Min
in
g
:
P
r
a
ctica
l
Ma
ch
in
e
Lea
r
n
i
n
g
To
o
ls
a
n
d
Tech
n
iq
u
e
,
3
r
d
e
d
.
,
A
s
m
a
Sth
ep
an
an
d
B
u
r
lin
g
to
n
,
E
d
s
.
U
n
i
ted
States
o
f
Am
er
ica,
Mo
r
g
a
n
Kau
f
m
a
n
.
[12]
Xu
e
-
C
h
e
n
g
Ya
n
g
,
J
u
n
.
W
.
;
Xiao
-
Ha
n
g
.
Z
.
,
T
in
g
-
J
ie.
L
.
,
(
2
0
0
8
)
.
Usi
n
g
Dec
is
io
n
Tr
ee
A
n
d
A
s
s
o
cia
tio
n
R
u
les
To
P
r
ed
ict
C
r
o
s
s
S
ell
in
g
Op
p
o
r
tu
n
ities
,
P
r
o
cc
ed
in
g
s
o
f
t
h
e
Se
v
e
n
th
I
n
ter
n
atio
n
a
l
C
o
n
f
er
en
ce
o
n
Ma
ch
i
n
e
L
ea
r
n
i
n
g
a
n
d
C
y
b
er
n
etics,
9
7
8
-
14244
-
2
0
9
6
-
4
/0
8
,
©2
0
0
8
I
E
E
E
[13]
Yu
s
u
f
,
Y.
,
F.
R
ia
n
.
;
Ger
r
y
T
.
,
(
2
0
0
6
)
.
A
p
p
lica
tio
n
o
f
Da
t
a
Min
in
g
in
th
e
Dete
r
min
a
ti
o
n
o
f
R
u
les
o
f
A
s
s
o
cia
tio
n
B
etw
ee
n
Typ
e
I
tem,
Natio
n
al
Se
m
i
n
ar
A
p
p
licat
io
n
o
f
I
n
f
o
r
m
at
io
n
T
ec
h
n
o
lo
g
y
(
SN
A
T
I
2
0
0
6
)
,
I
SS
N:
1
9
0
7
-
5022
[14]
L
u
th
f
i,
T
.
E
.
,
(
2
0
0
9
)
.
A
p
p
lica
tio
n
o
f
Da
ta
Min
in
g
A
lg
o
r
it
h
ms
to
I
mp
r
o
ve
S
a
les
A
s
s
o
c
ia
tio
n
.
J
u
r
n
al
DASI
.
Vo
l.
1
0
No
.
1
Ma
r
et
2
0
0
9
.
I
SS
N
: 1
4
1
1
-
3
2
0
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
Dec
is
io
n
S
u
p
p
o
r
t S
ystem
u
s
in
g
Da
ta
Min
in
g
…
(
I
ma
m
Ta
h
y
u
d
in
)
177
[15]
Yan
g
X,
C
;
Z
h
a
n
g
H
X;
L
u
T
J
,
(
2
0
0
8
)
.
Usi
n
g
Dec
is
io
n
Tr
ee
a
n
d
A
s
s
o
cia
tio
n
R
u
les
to
P
r
ed
ict
C
r
o
s
s
S
ellin
g
Op
o
r
tu
n
ities
.
P
r
o
ce
e
d
in
g
s
o
f
s
ev
e
n
t
h
in
ter
n
atio
n
al
co
n
f
er
en
ce
o
n
m
ac
h
in
e
L
ea
r
n
i
n
g
an
d
C
y
b
er
n
et
ics,
K
u
n
i
n
g
an
,
1
2
–
1
5
J
u
ly
2
0
0
8
.
9
7
8
-
1
-
4
2
4
4
-
2096
-
4
/0
8
/$
2
5
.
0
0
@
2
0
0
8
I
E
E
E
BI
O
G
RAP
H
Y
I
E
S
O
F
AU
T
H
O
RS
Im
a
m
T
a
h
y
u
d
in
w
a
s
b
o
rn
i
n
I
n
d
r
a
m
a
y
u
,
Wes
t
Ja
v
a
,
In
d
o
n
e
sia
,
o
n
J
u
ly
1
2
,
1
9
8
3
.
He
Re
c
e
iv
e
d
S
.
S
i
d
e
g
re
e
f
ro
m
F
a
c
u
lt
y
o
f
S
c
ie
n
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
in
2
0
0
6
a
n
d
M
.
M
.
d
e
g
re
e
f
ro
m
f
a
c
u
lt
y
o
f
Eco
n
o
m
ic
in
2
0
1
0
f
ro
m
Je
n
d
e
ra
l
S
o
e
d
irm
a
n
Un
iv
e
rsit
y
,
P
u
r
w
o
k
e
rto
,
In
d
o
n
e
sia
.
He
wa
s
g
ra
d
u
a
ted
th
e
M
.
En
g
.
d
e
g
re
e
in
D
e
p
a
rtme
n
t
o
f
Co
m
p
u
ter
En
g
in
e
e
rin
g
S
T
M
IK
A
M
IKO
M
Yo
g
y
a
k
a
rta,
In
d
o
n
e
sia
,
in
t
h
e
f
ield
o
f
in
f
o
rm
a
ti
o
n
sy
ste
m
in
2
0
1
3
.
He
is
lec
tu
re
r
i
n
t
h
e
d
e
p
a
rtm
e
n
t
o
f
in
f
o
r
m
a
ti
o
n
sy
st
e
m
S
T
M
IK
A
M
IKO
M
P
u
rw
o
k
e
rto
,
In
d
o
n
e
sia
.
His
re
se
a
rc
h
in
tere
sts a
re
in
k
n
o
w
led
g
e
m
a
n
a
g
e
m
e
n
t
a
n
d
d
a
ta m
in
in
g
a
n
d
a
rti
f
icia
l
in
telleg
e
n
t.
M
o
h
a
m
m
a
d
I
m
ro
n
w
a
s
b
o
rn
in
Bre
b
e
s
,
Ce
n
tral
Ja
v
a
,
In
d
o
n
e
sia
,
o
n
S
e
p
tem
b
e
r
2
9
,
1
9
8
3
.
He
Re
c
e
iv
e
d
S
.
Ko
m
d
e
g
re
e
f
ro
m
S
T
M
IK
A
M
IKO
M
P
u
rw
o
k
e
rto
in
2
0
1
0
.
He
c
u
rre
n
tl
y
stu
d
y
M.
Ko
m
.
d
e
g
re
e
in
D
e
p
a
rt
m
e
n
t
o
f
Co
m
p
u
ter
En
g
in
e
e
rin
g
Dia
n
Nu
sw
a
n
to
ro
Un
iv
e
rsity
,
S
e
m
a
ra
n
g
,
In
d
o
n
e
sia
,
in
th
e
f
ield
o
f
in
f
o
rm
a
ti
o
n
sy
ste
m
S
in
c
e
2
0
1
2
.
He
is
lec
tu
re
r
i
n
t
h
e
d
e
p
a
rtm
e
n
t
o
f
in
f
o
r
m
a
ti
o
n
sy
st
e
m
S
T
M
IK
A
M
IKO
M
P
u
rw
o
k
e
rto
,
In
d
o
n
e
sia
.
H
is
re
se
a
rc
h
in
tere
st
is
in
f
o
rm
a
ti
o
n
S
y
ste
m
.
S
it
i
A
lv
i
S
o
li
k
h
a
ti
n
w
a
s
b
o
r
n
i
n
Ng
a
w
i
,
Eas
t
Ja
v
a
,
In
d
o
n
e
sia
,
o
n
No
v
e
m
b
e
r
8
,
1
9
89
.
Sh
e
is
stu
d
e
n
t
in
De
p
a
rtm
e
n
o
f
In
f
o
r
m
a
ti
o
n
S
y
ste
m
,
S
T
M
IK
A
M
IKO
M
P
u
rw
o
k
e
rto
,
I
n
d
o
n
e
sia
.
H
er
re
se
a
rc
h
in
tere
st
is
d
a
ta
m
in
in
g
a
n
d
a
rti
f
icia
l
in
telleg
e
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.