I
nte
rna
t
io
n
a
l J
o
urna
l o
f
I
nfo
r
m
a
t
ics a
nd
Co
mm
u
n
ica
t
io
n T
ec
hn
o
lo
g
y
(
I
J
-
I
CT
)
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
201
5
,
p
p
.
7
9
~
8
5
I
SS
N:
2252
-
8776
79
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
I
C
T
DSS using
AH
P
i
n Selec
tion o
f
Le
c
turer
Adriy
endi
*
,
Yeni
M
elia
**
*
D
e
p
a
rte
m
e
n
t
o
f
In
f
o
r
m
a
ti
c
M
a
n
a
g
e
m
e
n
t
,
S
T
A
IN Batu
sa
n
g
k
a
r
,
In
d
o
n
e
sia
*
*
De
p
a
rte
m
e
n
t
o
f
Eco
n
o
m
ic
,
UPI
YP
T
K
P
a
d
a
n
g
,
I
n
d
o
n
e
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
r
1
8
,
2
0
1
5
R
ev
i
s
ed
J
u
n
2
3
,
2
0
1
5
A
cc
ep
ted
J
u
l
26
,
2
0
1
5
T
h
is
p
a
p
e
r
w
a
s
c
o
n
d
u
c
ted
to
a
p
p
ly
A
n
a
l
y
ti
c
a
l
Hie
ra
rc
y
P
ro
c
e
ss
(AH
P
),
a
p
p
li
e
d
a
s
De
c
isio
n
S
u
p
p
o
rt
S
y
st
e
m
(DSS
)
m
o
d
e
l
in
se
lec
ti
o
n
o
f
lec
tu
re
r
a
t
S
TA
IN
Ba
tsa
n
g
k
a
r.
Da
ta
c
o
ll
e
c
ted
b
y
th
ro
u
g
h
o
b
se
rv
a
ti
o
n
a
n
d
in
terv
i
e
w
d
o
n
e
in
s
h
a
re
s
o
f
a
d
m
in
istratio
n
a
c
a
d
e
m
ic
d
a
ta
c
e
n
ter
a
t
c
o
ll
e
g
e
.
He
re
in
d
a
ta
a
n
a
l
y
z
e
d
to
lea
rn
th
e
p
a
tt
e
rn
f
ro
m
m
e
th
o
d
u
se
d
a
n
d
a
d
d
e
d
w
it
h
th
e
re
fe
re
n
c
e
f
ro
m
li
tera
tu
re
.
Ex
p
e
rime
n
t
d
o
n
e
u
sin
g
M
icro
so
f
t
Ex
c
e
l
a
n
d
Ex
p
e
rt
Ch
o
ice
S
o
f
tw
a
r
e
,
k
n
o
w
n
th
a
t
m
e
t
h
o
d
c
a
n
y
ield
th
e
o
p
t
im
a
l
d
e
c
isio
n
in
se
lec
ti
o
n
o
f
lec
tu
re
r.
T
h
e
re
b
y
t
h
e
m
e
th
o
d
re
c
o
m
m
e
n
d
e
d
to
b
e
a
p
p
li
e
d
t
o
g
e
tt
in
g
o
p
ti
m
a
l
re
su
lt
in
d
e
c
isio
n
m
a
k
in
g
.
K
ey
w
o
r
d
:
An
al
y
tical
h
ier
ar
ch
y
p
r
o
ce
s
s
C
o
n
s
is
te
n
c
y
r
atio
Dec
is
io
n
s
u
p
p
o
r
t s
y
s
te
m
Dec
o
m
p
o
s
itio
n
P
air
w
is
e
co
m
p
ar
is
o
n
Co
p
y
rig
h
t
©
2
0
1
5
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
A
d
r
i
y
e
n
d
i
,
De
p
a
rte
m
e
n
t
o
f
In
f
o
r
m
a
ti
c
M
a
n
a
g
e
m
e
n
t
,
S
TA
IN Batu
sa
n
g
k
a
r,
In
d
o
n
e
sia
.
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
d
ev
elo
p
m
e
n
t
o
f
i
n
f
o
r
m
atio
n
t
ec
h
n
o
lo
g
y
en
ab
le
s
d
ec
is
io
n
m
ak
in
g
a
n
d
r
ep
r
esen
tatio
n
o
f
in
f
o
r
m
atio
n
ca
n
b
e
d
o
n
e
q
u
ic
k
l
y
i
n
ac
co
r
d
an
ce
w
it
h
th
e
d
ev
elo
p
m
e
n
t
o
f
th
e
u
s
e
co
m
p
u
t
er
.
P
r
esen
tatio
n
o
f
d
ata
an
d
in
f
o
r
m
atio
n
i
s
h
i
g
h
l
y
d
ep
en
d
en
t
o
n
th
e
s
o
f
t
w
ar
e
u
s
ed
[
1
]
.
T
h
e
s
o
f
t
w
ar
e
is
a
tec
h
n
o
lo
g
y
ca
n
b
e
u
s
e
d
to
p
r
o
ce
s
s
,
f
i
n
d
,
ass
e
m
b
le,
s
to
r
e
an
d
m
a
n
ip
u
late
d
ata.
So
f
t
war
e
d
esig
n
ed
s
h
o
u
ld
p
a
y
at
ten
tio
n
to
t
h
i
n
g
s
li
k
e
s
ca
lab
iit
y
,
s
ec
u
r
it
y
a
n
d
ex
ec
u
tio
n
.
B
esid
e
its
ar
ch
itectu
r
e
m
u
s
t
b
e
d
ef
i
n
ed
clea
r
l
y
,
s
o
t
h
at
th
e
b
u
g
s
i
s
ea
s
i
l
y
f
o
u
n
d
an
d
co
r
r
ec
ted
,
ei
th
er
b
y
p
r
o
g
r
am
m
er
s
o
r
b
y
o
th
er
s
.
An
o
th
er
ad
v
an
tag
e
o
f
m
atu
r
e
ar
ch
itect
u
r
al
p
lan
n
in
g
is
s
h
ar
i
n
g
u
s
e
o
f
t
h
e
r
et
u
r
n
m
o
d
u
le
o
r
co
m
p
o
n
e
n
t
f
o
r
o
th
er
s
o
f
t
w
ar
e
ap
p
licatio
n
s
t
h
a
t
r
eq
u
ir
e
t
h
e
s
a
m
e
f
u
n
ctio
n
alit
y
[
2
]
.
T
h
e
d
ata
p
r
o
ce
s
s
in
g
[3
]
in
to
in
f
o
r
m
at
io
n
ca
n
b
e
d
o
n
e
b
y
a
s
y
s
te
m
w
h
ic
h
s
tar
t
s
f
r
o
m
E
lectr
o
n
ic
Data
P
r
o
ce
s
s
in
g
(
E
DP
)
to
Ma
n
ag
e
m
e
n
t
I
n
f
o
r
m
at
i
o
n
S
y
s
te
m
(
MI
S)
an
d
co
n
ti
n
io
u
s
i
n
to
a
Dec
is
io
n
Su
p
p
o
r
t
S
y
s
te
m
(
DS
S).
E
DP
w
a
s
p
lace
d
o
n
d
ata
s
to
r
ag
e,
p
r
o
ce
s
s
in
g
an
d
in
f
o
r
m
a
tio
n
f
lo
w
as
w
el
l
as
ef
f
o
r
t
s
to
in
cr
ea
s
e
th
e
e
f
f
ici
en
t
p
r
o
c
ess
i
n
g
[
4
]
.
MI
S
f
o
cu
s
ed
o
n
th
e
p
r
esen
tat
io
n
o
f
i
n
f
o
r
m
ati
o
n
[
5
]
f
o
r
m
id
d
le
m
an
a
g
er
s
.
D
SS
f
o
cu
s
ed
o
n
a
d
ec
is
io
n
ad
d
r
ess
ed
to
o
f
f
icia
ls
o
f
t
h
e
d
ec
is
io
n
m
a
k
er
s
as
w
ell
as
r
est
in
g
o
n
f
le
x
ib
ilit
y
,
ad
ap
tab
ilit
y
a
n
d
f
as
t r
esp
o
n
s
e
ca
n
b
e
co
n
tr
o
lled
b
y
th
e
u
s
er
[
6
]
.
DSS is
a
s
y
s
te
m
ca
n
b
e
d
ev
e
lo
p
ed
,
ab
le
to
s
u
p
p
o
r
t
d
ata
an
al
y
s
is
an
d
d
ec
is
io
n
m
o
d
elli
n
g
,
o
r
ien
ted
o
n
p
lan
n
in
g
o
n
t
h
e
f
u
t
u
r
e
an
d
ca
n
n
o
t
b
e
p
lan
n
ed
i
n
ter
v
al
s
(
p
er
io
d
s
)
o
f
ti
m
e
u
s
e
[
7
]
.
I
n
a
d
ec
i
s
io
n
t
h
a
t
j
u
s
t
i
n
v
o
l
v
es
a
litt
le
f
ac
to
r
s
i
n
it.
T
h
en
d
ec
i
s
o
n
ca
n
b
e
tak
e
n
in
t
u
it
v
el
y
(
w
h
ic
h
u
n
d
er
lies
th
e
r
ea
s
o
n
i
n
g
i
n
t
h
o
u
g
h
ts
o
r
o
p
in
io
n
s
t
h
at
co
m
e
o
u
t
s
p
o
n
ta
n
eo
u
s
l
y
f
r
o
m
s
o
m
eo
n
e)
.
Ho
w
ev
er
,
in
t
h
e
d
ec
is
io
n
m
a
k
i
n
g
t
h
at
i
n
v
o
l
v
es
m
a
n
y
f
ac
to
r
s
,
i
ts
n
ec
e
s
s
ar
y
to
u
s
e
a
p
ar
t
ic
u
lar
m
et
h
o
d
[
8
]
.
T
h
e
d
ec
is
io
n
i
n
s
elec
tio
n
o
f
lect
u
r
er
,
in
it
th
e
r
e
ar
e
f
ac
to
r
s
th
at
n
ee
d
to
b
e
co
n
s
id
er
ed
.
T
h
ese
f
ac
to
r
s
k
ee
p
i
n
m
i
n
d
its
co
n
tr
ib
u
tio
n
to
s
elec
tio
n
o
f
lect
u
r
e
r
in
o
r
d
er
th
at
cr
iter
ia
an
d
s
tr
ateg
ies
t
h
at
w
il
l
b
e
d
o
n
e
is
r
ig
h
t
to
o
n
tar
g
et
a
d
ec
is
io
n
to
b
e
o
p
tim
a
l.
DSS
c
a
n
ex
p
o
s
e
an
alter
n
ati
v
e
ch
o
i
ce
to
th
e
d
ec
is
io
n
m
ak
er
s
.
W
h
ate
v
er
an
h
o
w
ev
e
r
th
e
p
r
o
ce
s
s
,
o
n
t
h
e
m
o
s
t
d
if
f
ic
u
lt
s
ta
g
e
s
o
f
i
n
f
o
r
m
atio
n
th
at
w
i
ll
b
e
f
ac
ed
b
y
d
ec
is
io
n
m
a
k
er
s
i
n
ter
m
s
o
f
ap
p
licatio
n
.
An
al
y
tical
Hier
ar
ch
y
P
r
o
ce
s
s
(
A
HP
)
d
ev
elo
p
e
d
b
y
T
h
o
m
a
s
L
.
Saa
t
y
,
u
s
e
f
u
ll
h
elp
d
ec
is
io
n
m
a
k
er
s
[
9
]
.
T
o
g
et
th
e
b
est
d
ec
is
io
n
b
y
co
m
p
ar
i
n
g
f
ac
to
r
s
s
u
ch
as
c
r
iter
ia.
A
HP
allo
w
s
d
ec
is
io
n
m
ak
er
s
to
co
n
f
r
o
n
t
t
h
e
r
ea
l
f
ac
to
r
s
an
d
f
ac
to
r
s
t
h
at
ar
e
n
o
t
r
ea
l
[
1
0
]
.
T
h
e
ad
v
an
tag
e
s
o
f
AHP
in
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
201
5
:
7
9
–
8
5
80
co
m
p
ar
is
o
n
to
th
e
o
th
er
d
u
e
t
o
s
tr
u
ct
u
r
e
o
f
h
ier
ar
ch
ical
s
tr
u
ctu
r
e
[
1
1
]
,
as
a
co
n
s
eq
u
en
ce
o
f
ch
o
s
en
cr
iter
ia,
u
n
t
il
th
e
s
u
b
-
s
ec
tio
n
o
f
t
h
e
m
o
s
t
d
etailed
cr
iter
ia
[
1
2
]
.
T
ak
e
in
to
ac
co
u
n
t
v
al
id
it
y
u
p
to
th
e
li
m
it
o
f
to
ler
an
ce
i
n
co
n
s
is
te
n
cie
s
o
f
v
ar
io
u
s
cr
it
er
ia
[
1
3
]
,
an
d
alter
n
ativ
e
s
ch
o
s
en
b
y
d
ec
is
io
n
-
m
a
k
er
s
[
1
4
]
.
T
h
is
p
ap
er
ai
m
s
to
b
u
ild
A
HP
as
D
SS
m
o
d
el
w
it
h
t
h
e
i
m
p
le
m
en
ta
tio
n
i
n
to
Mi
cr
o
s
o
f
t
E
x
ce
l
an
d
E
x
p
er
t
C
h
o
ice
S
o
f
t
w
ar
e.
T
h
i
s
p
ap
er
u
s
ed
in
s
elec
tio
n
o
f
lect
u
r
er
s
o
th
at
d
ec
is
io
n
-
m
a
k
i
n
g
b
ec
o
m
e
s
r
atio
n
al
a
n
d
o
p
ti
m
al.
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.
1
.
F
r
a
m
ew
o
rk
Resea
rc
h
I
n
th
is
p
ap
er
,
m
o
r
e
g
en
er
all
y
in
ac
co
r
d
an
ce
w
i
th
th
e
p
u
r
p
o
s
es
f
o
r
w
h
ic
h
it
s
e
x
p
ec
ted
,
f
r
a
m
e
w
o
r
k
r
esear
ch
th
at
w
i
ll b
e
ex
a
m
in
ed
ar
e
as f
o
llo
w
s
:
1.
T
h
e
s
tu
d
y
o
f
li
ter
atu
r
e
o
n
A
H
P
m
et
h
o
d
as DSS
m
o
d
el
2.
Ob
s
er
v
atio
n
i
n
ap
p
l
y
i
n
g
AHP
m
et
h
o
d
as DS
S
m
o
d
el
i
n
s
elec
tio
n
o
f
lect
u
r
er
3.
I
m
p
le
m
e
n
tatio
n
o
f
A
HP
m
et
h
o
d
as DSS
m
o
d
el
in
s
e
lectio
n
o
f
lectu
r
er
o
n
t
h
e
ap
p
licatio
n
s
o
f
t
w
ar
e
4.
E
v
alu
a
te
A
HP
m
et
h
o
d
in
ap
p
licatio
n
s
o
f
t
w
ar
e
in
DS
S to
s
ele
ctio
n
o
f
lect
u
r
er
to
m
ak
e
o
p
ti
m
al
d
ec
is
io
n
2
.
2
.
P
r
o
po
s
ed
M
e
t
ho
d
P
r
o
p
o
s
ed
m
et
h
o
d
in
DSS
m
o
d
el:
d
ec
is
io
n
,
c
r
iter
ia
a
n
d
a
lte
r
n
at
iv
e.
AHP
m
et
h
o
d
as
d
ec
is
io
n
m
o
d
el
an
d
s
o
f
t
w
ar
e
(
M
icr
o
s
o
f
t
E
x
ce
l
an
d
E
x
p
er
t Ch
o
ice)
f
o
r
d
ata
p
r
o
ce
s
s
in
g
.
DSS
m
o
d
el
ca
n
b
e
s
ee
n
i
n
Fi
g
u
r
e
1
.
Fig
u
r
e
1
.
DSS
m
o
d
el
2
.
3
.
AH
P
M
et
ho
d
In
s
elec
tio
n
o
f
lect
u
r
er
,
in
w
h
ich
f
u
n
d
a
m
e
n
tal
is
s
u
e
s
is
co
m
p
r
eh
en
s
i
v
el
y
p
la
n
n
in
g
an
d
in
t
eg
r
ated
to
tu
r
n
d
o
w
n
le
v
el
o
f
r
is
k
f
ail
u
r
e
o
f
s
elec
tio
n
o
f
lect
u
r
er
ca
r
ef
u
ll
y
.
T
h
e
p
r
o
b
le
m
ar
i
s
es
b
ec
au
s
e
t
h
e
p
r
o
ce
s
s
o
f
d
eter
m
in
i
n
g
cr
iter
ia
,
in
d
ec
id
in
g
a
d
if
f
ic
u
lt
ch
o
ice
co
n
s
id
er
p
er
s
o
n
al
ac
cid
en
t
an
d
r
esu
l
tin
g
in
a
co
m
p
lex
ass
es
s
m
en
t
a
n
d
co
n
s
id
er
atio
n
o
f
d
ec
is
io
n
m
ak
er
s
ten
d
to
b
e
b
iased
an
d
s
u
b
j
ec
tiv
e.
Fo
r
th
is
p
r
o
b
lem
,
th
e
m
et
h
o
d
o
f
A
n
al
y
tical
Hier
ar
ch
y
P
r
o
ce
s
s
(
A
HP
)
ca
n
b
e
u
s
ed
.
A
HP
m
et
h
o
d
in
s
elec
tio
n
o
f
l
ec
tu
r
er
ca
n
b
e
s
ee
n
F
ig
u
r
e
2
.
Fig
u
r
e
2
.
A
HP
m
et
h
o
d
A
HP
m
e
th
o
d
in
s
elec
tio
n
o
f
l
ec
tu
r
er
in
Fi
g
u
r
e
,
s
h
o
w
n
t
h
e
d
ec
o
m
p
o
s
itio
n
p
r
o
ce
s
s
th
at
b
r
ea
k
s
d
o
w
n
th
e
q
u
es
tio
n
o
f
a
w
h
o
le
in
to
its
ele
m
e
n
t
s
.
T
h
e
r
eso
lu
tio
n
w
ill
r
es
u
lt
i
n
s
o
m
e
lev
e
l
o
f
an
is
s
u
e.
F
u
r
th
er
co
m
p
ar
is
o
n
s
o
f
t
h
e
ass
es
s
m
e
n
t
p
r
o
ce
s
s
co
n
d
u
cted
b
y
m
a
k
in
g
u
s
e
o
f
p
air
w
i
s
e
co
m
p
ar
is
o
n
.
P
r
io
r
t
o
th
e
d
eter
m
in
at
io
n
o
f
p
r
io
r
it
y
s
y
n
t
h
esi
s
,
f
ir
s
t
o
cc
u
r
r
en
ce
ca
n
b
e
d
eter
m
in
ed
t
h
e
b
u
s
in
e
s
s
f
ea
s
i
b
ilit
y
o
f
th
e
r
es
u
lt
s
v
alu
e
s
o
f
f
ac
to
r
s
o
b
tain
ed
b
y
m
ea
s
u
r
in
g
t
h
e
le
v
el
o
f
co
n
s
i
s
t
en
c
y
.
T
h
e
p
r
o
ce
d
u
r
e
p
er
f
o
r
m
s
d
if
f
er
e
n
t
s
y
n
t
h
esi
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
DS
S
u
s
in
g
A
HP
i
n
S
elec
tio
n
o
f Lec
tu
r
er
(
A
d
r
iyen
d
i
)
81
ac
co
r
d
in
g
to
th
e
h
ier
ar
ch
y
.
I
n
th
e
en
d
an
alter
n
ati
v
e
w
it
h
th
e
h
i
g
h
e
s
t
to
tal
v
al
u
e
w
as
ch
o
s
en
as
t
h
e
b
est
alter
n
ati
v
e.
3.
RE
SU
L
T
S
A
ND
D
I
SCU
SS
I
O
N
3
.
1
.
P
re
lim
ina
ry
Da
t
a
Data
s
o
u
r
ce
to
b
e
an
aly
ze
d
to
d
eter
m
i
n
e
th
e
f
o
r
m
u
la
o
f
th
e
s
elec
tio
n
cr
iter
ia
lectu
r
er
w
it
h
d
ata
class
i
f
icatio
n
o
b
j
ec
tiv
es
,
cr
iter
ia
an
d
alter
n
ati
v
e
m
a
k
i
n
g
ca
n
b
e
s
ee
n
o
n
T
ab
le
1
.
T
ab
le
1
.
C
lass
if
icatio
n
L
e
v
el
L
e
v
e
l
O
b
j
e
c
t
i
v
i
e
s
L
e
v
e
l
C
r
i
t
e
r
i
a
L
e
v
e
l
A
l
t
e
r
n
a
t
i
v
e
S
e
l
e
c
t
i
o
n
o
f
l
e
c
t
u
r
e
r
Ed
u
c
a
t
i
on
A
b
i
l
t
i
y
K
n
o
w
l
e
d
g
e
Ex
p
e
r
i
e
c
e
P
e
r
so
n
a
l
i
t
y
C
a
n
d
i
d
a
t
e
1
C
a
n
d
i
d
a
t
e
2
C
a
n
d
i
d
a
t
e
3
C
a
n
d
i
d
a
t
e
4
C
a
n
d
i
d
a
t
e
5
3
.
2
.
Select
io
n o
f
L
ec
t
urer
T
h
e
o
b
j
ec
tiv
es,
cr
iter
ia
an
d
alter
n
ativ
e
i
n
DS
S
f
o
r
s
elec
tio
n
o
f
lectu
r
er
ca
n
b
e
s
ee
n
in
F
ig
u
r
e
3
.
Fig
u
r
e
3
.
Dec
is
io
n
h
ier
a
r
ch
y
Fig
u
r
e
3
is
a
h
ier
ar
ch
y
o
f
d
e
cisi
o
n
f
o
r
s
elec
t
io
n
o
f
lect
u
r
e
r
w
h
o
h
a
v
e
t
h
r
ee
d
i
f
f
er
e
n
t
le
v
els.
T
o
p
L
e
v
el
d
escr
ib
es
th
e
o
v
er
all
d
ec
is
io
n
th
a
t
th
e
s
elec
tio
n
o
f
lectu
r
er
.
Hig
h
L
ev
e
l
in
th
e
h
ier
ar
ch
y
to
ex
p
lain
t
h
e
cr
it
er
ia
in
to
co
n
s
id
er
atio
n
i
s
:
e
d
u
ca
tio
n
,
ab
ilit
y
,
k
n
o
w
led
g
e,
ex
p
er
ien
ce
an
d
p
er
s
o
n
ali
t
y
.
T
h
e
L
o
w
e
s
t
L
ev
el
o
f
th
e
h
ier
ar
c
h
y
's
d
ec
is
io
n
s
h
o
ws
th
e
alter
n
ati
v
e
p
r
o
s
p
ec
tiv
e
l
ec
tu
r
er
th
at
ca
n
d
id
ate1
,
ca
n
d
id
ate2
,
ca
n
d
id
ates
3
,
ca
n
d
id
ates
4
an
d
ca
n
d
id
ate
5
(
f
o
r
th
is
ca
s
e
th
er
e
f
i
v
e
ca
n
d
i
d
ates
d
esp
ite
th
e
f
ac
t
i
t
co
u
ld
h
av
e
b
ee
n
a
lo
t)
.
P
air
w
is
e
co
m
p
ar
i
s
o
n
i
s
th
e
m
o
s
t
i
m
p
o
r
tan
t
a
s
p
ec
t
in
u
s
i
n
g
AHP
.
Dec
is
io
n
m
a
k
er
s
t
o
co
m
p
ar
e
t
h
e
t
w
o
alter
n
ati
v
es t
h
at
d
if
f
er
in
o
n
e
l
ev
el
b
y
u
s
i
n
g
a
s
ca
le
th
at
v
ar
ie
s
ca
n
b
e
s
ee
n
i
n
Fi
g
u
r
e
4
.
Fig
u
r
e
4
.
P
air
w
i
s
e
co
m
p
ar
is
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
201
5
:
7
9
–
8
5
82
Fig
u
r
e
4
s
h
o
w
n
t
h
at
p
air
w
is
e
co
m
p
ar
is
o
n
m
ad
e
r
ef
er
e
n
ce
to
th
e
s
ca
le,
b
u
t
s
ca
le
w
ei
g
h
t
co
m
p
ar
i
s
o
n
co
u
ld
b
e
m
ad
e
b
y
t
h
e
d
ec
is
io
n
m
ak
er
o
f
o
r
ig
in
i
n
ac
co
r
d
an
ce
w
it
h
t
h
e
ter
m
s
b
ased
o
n
a
p
r
e
d
eter
m
in
ed
s
ca
le.
3
.
3
.
P
a
irw
is
e
Co
m
pa
riso
n
P
air
w
is
e
co
m
p
ar
is
o
n
is
d
o
n
e
b
ased
o
n
cr
iter
ia
w
ei
g
h
ts
f
o
r
v
a
lu
atio
n
r
u
les a
s
s
h
o
w
n
on
T
ab
le
2
.
T
ab
le
2
.
W
eig
h
tin
g
o
f
C
r
iter
ia
P
a
r
a
me
t
e
r
S
c
a
l
e
P
r
e
t
t
y
I
mp
o
r
t
a
n
t
1
I
mp
o
r
t
a
n
t
2
V
e
r
y
I
mp
o
r
t
a
n
t
3
Star
tin
g
w
it
h
a
lo
o
k
at
th
e
cr
iter
ia
an
d
d
o
a
co
m
p
ar
is
o
n
b
et
w
ee
n
ed
u
ca
tio
n
,
ab
ilit
y
,
k
n
o
w
led
g
e,
ex
p
er
ien
ce
an
d
p
er
s
o
n
al
it
y
b
y
u
s
i
n
g
p
ar
a
m
e
ter
s
o
n
t
h
e
ta
b
le
an
d
s
c
ale
th
e
w
e
ig
h
ti
n
g
cr
iter
ia.
E
d
u
ca
tio
n
cr
iter
ia
an
d
ab
ilit
y
cr
iter
ia
.
T
h
en
,
ed
u
ca
tio
n
cr
iter
ia
co
m
p
ar
ed
w
it
h
k
n
o
w
led
g
e
cr
iter
ia
.
E
d
u
ca
tio
n
cr
iter
i
a
co
m
p
ar
ed
t
o
th
e
ed
u
ca
tio
n
cr
i
ter
ia
co
m
p
ar
e
w
it
h
ex
p
er
ien
c
e
cr
iter
ia,
a
nd
ed
au
ca
tio
n
cr
iter
ia
co
m
p
ar
ed
w
it
h
p
er
s
o
n
alit
y
cr
iter
ia
.
A
co
m
p
ar
i
s
o
n
b
et
w
ee
n
cr
iter
ia
w
i
th
t
h
e
o
th
er
s
cr
iter
ia
u
s
in
g
t
h
e
p
air
w
i
s
e
m
atr
i
x
.
P
air
w
i
s
e
co
m
p
ar
is
o
n
m
a
tr
ix
f
o
r
cr
iter
ia
s
u
c
h
as t
h
e
f
o
llo
w
i
n
g
:
Cr
t
E
d
u
A
b
l
Kn
w
E
x
p
P
s
n
Descr
ip
tio
n
:
E
d
u
1
/1
1
/1
1
/1
1
/1
C
r
t: C
r
iter
ia
A
b
l
1
/1
2
/1
2
/1
2
/1
E
d
u
: E
d
u
ca
tio
n
Kn
w
1
/1
1
/1
2
/1
A
b
l:
A
b
ilit
y
E
x
p
1
/1
2
/1
E
x
p
: P
s
n
P
s
n
1
/1
P
s
n
: P
er
s
o
n
alit
y
W
h
er
e
is
th
e
r
ep
r
esen
t
atio
n
o
f
a
v
alu
e
o
f
2
f
o
r
th
e
ed
u
ca
tio
n
cr
iter
ia
a
n
d
v
al
u
e
2
to
ab
ilit
y
cr
iter
ia,
2
/1
th
at
ed
u
ca
tio
n
cr
iter
ia
co
n
s
id
e
r
ed
im
p
o
r
tan
t o
n
e
le
v
el
ab
o
v
e
ab
ilit
y
cr
iter
i
a
an
d
s
o
o
n
.
3.
4.
Co
m
pa
ra
t
iv
e
M
a
t
rix
No
r
m
a
ll
y
,
p
air
w
is
e
co
m
p
ar
is
o
n
m
a
tr
ix
f
o
r
an
y
th
i
n
g
,
m
a
y
b
e
p
lace
d
n
u
m
b
er
1
d
iag
o
n
all
y
o
n
th
e
to
p
lef
t
co
r
n
er
to
t
h
e
lo
w
er
r
ig
h
t
co
r
n
er
,
b
ec
au
s
e
it
m
ea
n
s
th
at
co
m
p
ar
is
o
n
o
f
t
w
o
is
t
h
e
s
a
m
e
th
i
n
g
1
o
r
eq
u
all
y
p
r
ef
er
r
ed
.
T
o
ac
c
o
m
p
lis
h
t
h
is
ca
n
b
e
elab
o
r
a
ted
th
at
if
ed
u
ca
tio
n
cr
iter
ia
is
t
w
ice
ab
ili
t
y
cr
i
ter
ia
,
th
en
it c
a
n
b
e
in
f
er
r
ed
th
at
th
e
ab
ilit
y
cr
iter
i
a
is
v
ie
w
ed
es
s
e
n
tial
h
alf
o
f
v
alu
e
ed
u
ca
tio
n
cr
iter
ia.
So
d
id
th
e
co
m
p
ar
is
o
n
m
o
r
e
s
o
p
air
w
is
e
co
m
p
ar
i
s
o
n
m
atr
i
x
o
b
tain
ed
n
e
w
o
n
e
s
s
u
c
h
as b
elo
w
:
C
r
t
E
d
u
A
b
l
Kn
w
E
x
p
P
s
n
E
d
u
1
/1
1
/1
1
/1
1
/1
A
b
l
½
1
/1
2
/1
2
/1
2
/1
Kn
w
1
/1
½
1
/1
1
/1
2
/1
E
x
p
1
/1
½
1
/1
1
/1
2
/1
P
s
n
1
/1
½
1/
1
½
1
/1
3.
5.
E
v
a
lua
t
io
n
f
o
r
Crit
er
ia
Af
ter
a
f
u
ll
co
m
p
ar
is
o
n
m
atr
i
x
p
air
is
cr
ea
ted
,
th
e
n
e
x
t
s
te
p
is
to
s
tar
t
co
u
n
ti
n
g
f
o
r
e
v
al
u
atio
n
o
f
cr
iter
ia.
T
o
f
ac
ilit
ate
t
h
e
ca
lcu
lat
io
n
o
f
t
h
e
f
i
g
u
r
es
in
p
air
w
i
s
e
co
m
p
ar
is
o
n
m
atr
ix
ca
n
b
e
m
o
d
if
ied
in
t
h
e
f
o
r
m
o
f
n
u
m
b
er
s
w
it
h
a
d
ec
i
m
al
f
o
r
m
at
an
d
th
e
n
d
o
n
e
th
e
s
u
m
s
ea
ch
o
f
co
lu
m
n
s
.
R
es
u
lt
s
o
f
th
e
r
ec
ip
r
o
ca
l
m
atr
i
x
ev
alu
a
tio
n
o
f
cr
iter
ia
ca
n
b
e
s
ee
n
o
n
T
ab
le
3.
2/
2
/
2
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
DS
S
u
s
in
g
A
HP
i
n
S
elec
tio
n
o
f Lec
tu
r
er
(
A
d
r
iyen
d
i
)
83
T
ab
le
3
.
R
ec
ip
r
o
ca
l
M
atr
ix
C
r
t
Ed
u
A
b
l
K
n
w
Ex
p
P
sn
Ed
u
1
,
0
0
0
0
2
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
A
b
l
0
,
5
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
2
,
0
0
0
0
2
,
0
0
0
0
K
n
w
1
,
0
0
0
0
0
,
5
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
Ex
p
1
,
0
0
0
0
0
,
5
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
P
sn
1
,
0
0
0
0
0
,
5
0
0
0
0
,
5
0
0
0
0
,
5
0
0
0
1
,
0
0
0
0
S
u
m
4
,
5
0
0
0
4
,
5
0
0
0
5
,
5
0
0
0
5
,
5
0
0
0
8
,
0
0
0
0
T
h
e
n
ex
t
s
tep
is
to
d
eter
m
i
n
e
th
e
N
o
r
m
al
ized
M
atr
ix
(
NM
)
f
o
r
cr
iter
ia
b
y
m
ea
n
s
o
f
m
a
tr
ix
v
a
lu
e
s
d
iv
id
ed
b
y
t
h
e
n
u
m
b
er
o
f
cr
ite
r
ia
(
Su
m
)
m
atr
ix
o
f
cr
iter
ia
f
o
r
e
d
u
ca
tio
n
co
lu
m
n
a
s
f
o
llo
w
s
:
NM
1
,
0
0
0
0
1
,
0
0
0
0
/ 4
,
5
0
0
0
=
0
,
2
2
2
2
NM
0
,
5
0
0
0
0
,
5
0
0
0
/ 4
,
5
0
0
0
=
0
,
1
1
1
1
NM
1
,
0
0
0
0
1
,
0
0
0
0
/ 4
,
5
0
0
0
=
0
,
2
2
2
2
NM
1
,
0
0
0
0
1
,
0
0
0
0
/ 4
,
5
0
0
0
=
0
,
2
2
2
2
NM
1
,
0
0
0
0
1
,
0
0
0
0
/ 4
,
5
0
0
0
=
0
,
2
2
2
2
+
1
,
0
0
0
0
T
h
e
s
a
m
e
t
h
i
n
g
is
d
o
n
e
o
n
t
h
e
co
lu
m
n
t
h
e
co
lu
m
n
ab
ilit
y
u
n
ti
l
p
er
s
o
n
alit
y
cr
iter
ia
.
E
ac
h
r
o
w
is
ca
lcu
lated
to
g
et
n
o
r
m
alize
d
v
alu
e
m
a
tr
ix
ea
c
h
co
m
p
ar
is
o
n
a
s
s
h
o
w
n
on
T
ab
le
4.
T
ab
le
4
.
N
o
r
m
al
ized
M
atr
ix
N
o
r
mal
i
z
e
d
M
a
t
r
i
x
(
N
M
)
S
u
m
Ed
u
0
,
2
2
2
2
0
,
4
4
4
4
0
,
1
8
1
8
0
,
1
8
1
8
0
,
1
2
5
0
1
,
1
5
5
3
A
b
l
0
,
1
1
1
1
0
,
2
2
2
2
0
,
3
6
3
6
0
,
3
6
3
6
0
,
3
6
3
6
1
,
3
1
0
6
K
n
w
0
,
2
2
2
2
0
,
1
1
1
1
0
,
1
8
1
8
0
,
1
8
1
8
0
,
2
5
0
0
0
,
9
4
7
0
Ex
p
0
,
2
2
2
2
0
,
1
111
0
,
1
8
1
8
0
,
1
8
1
8
0
,
2
5
0
0
0
,
9
4
7
0
P
sn
0
,
2
2
2
2
0
,
1
1
1
1
0
,
0
9
0
9
0
,
0
9
0
9
0
,
1
2
5
0
0
,
6
5
0
2
S
u
m
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
5
,
0
0
0
0
T
o
s
p
ec
if
y
t
h
e
p
r
io
r
ity
o
n
ed
u
c
atio
n
cr
iter
a
on
T
ab
le
4
is
o
b
t
ain
ed
f
r
o
m
t
h
e
av
er
a
g
e
v
al
u
e
o
f
p
air
w
i
s
e
co
m
p
ar
is
o
n
m
atr
i
x
r
o
w
w
it
h
n
o
r
m
alize
d
cr
iter
ia
m
atr
ix
t
h
e
f
ir
s
t
r
o
w
w
it
h
a
v
al
u
e
o
f
1
,
1
5
5
3
d
iv
id
ed
b
y
t
h
e
n
u
m
b
er
o
f
cr
iter
ia
th
at
is
f
iv
e
s
o
o
b
tain
ed
th
e
r
es
u
lts
o
f
0
,
2
3
1
1
.
T
h
e
s
a
m
e
w
a
y
d
o
n
e
also
o
n
ab
ili
t
y
cr
iter
ia,
k
n
o
w
led
g
e
cr
iter
ia
,
ex
p
er
ien
c
e
cr
iter
ia
an
d
p
er
s
o
n
alit
y
cr
ite
r
ia
.
T
h
e
r
esu
lts
o
f
p
r
io
r
it
y
v
ec
to
r
in
th
e
f
ir
s
t
li
n
e,
s
ec
o
n
d
li
n
e,
t
h
ir
d
li
n
e
.T
h
e
li
n
e
o
f
t
h
e
f
o
u
r
t
h
a
n
d
f
i
f
t
h
r
o
w
(
d
ep
en
d
i
n
g
o
n
t
h
e
d
ata
cr
i
ter
ia
an
d
al
ter
n
ati
v
e
cr
iter
ia
in
d
ec
is
io
n
m
ak
in
g
)
.
T
h
e
r
es
u
l
ts
o
f
ca
lc
u
latio
n
s
as
s
h
o
w
n
on
T
ab
le
5
.
T
ab
le
5
.
P
r
io
r
ity
Vec
to
r
C
r
i
t
e
r
i
a
S
u
m
P
r
i
o
r
i
t
y
V
e
c
t
o
r
Ed
u
1
,
1
5
5
3
0
,
2
3
1
1
A
b
l
1
,
3
1
0
6
0
,
2
6
2
1
K
n
w
0
,
9
4
7
0
0
,
1
8
9
4
Ex
p
0
,
9
4
7
0
0
,
1
8
9
4
P
sn
0
,
6
4
0
2
0
,
1
2
8
0
S
u
m
5
,
0
0
0
0
1
,
0
0
0
0
T
ab
le
5
s
h
o
w
n
th
e
P
r
io
r
it
y
V
ec
to
r
(
P
V
)
is
th
e
h
i
g
h
est
o
n
t
h
e
cr
iter
ia
o
f
ab
ilit
y
w
it
h
a
v
alu
e
o
f
P
V
0
,
2
6
2
1
f
o
llo
w
ed
b
y
th
e
cr
iter
i
a
o
f
ed
u
ca
t
io
n
w
i
th
a
v
a
lu
e
o
f
P
V
0
,
2
3
1
1
,
cr
iter
ia
o
f
k
n
o
w
le
d
g
e
an
d
e
x
p
er
ien
ce
w
it
h
t
h
e
cr
iter
io
n
v
a
lu
e
o
f
P
V
0
,
1
8
9
4
as
w
el
l
as
th
e
cr
iter
ia
o
f
p
er
s
o
n
alit
y
w
it
h
a
v
al
u
e
o
f
P
V
0
,
1
2
8
0
.
I
n
th
e
s
a
m
e
w
a
y
u
s
ed
to
o
b
tain
t
h
e
r
esu
lt
s
o
f
t
h
e
ev
a
lu
at
io
n
b
ase
d
o
n
th
e
cr
iter
ia
f
o
r
ea
c
h
alte
r
n
ativ
e.
B
u
t
b
ef
o
r
e
s
etti
n
g
th
e
v
al
u
e
o
f
t
h
e
e
v
al
u
at
io
n
cr
iter
ia
as
t
h
e
b
asis
f
o
r
lat
er
ass
es
s
m
en
t,
n
ee
d
s
to
b
e
d
eter
m
in
ed
i
n
ad
v
an
c
e
w
h
et
h
er
t
h
e
p
air
w
is
e
co
m
p
ar
is
o
n
d
o
n
e
f
air
l
y
co
n
s
is
te
n
t
o
r
n
o
t
(
i
n
co
n
s
is
te
n
c
y
)
a
n
d
h
o
w
to
d
eter
m
i
n
e
th
e
co
n
s
is
ten
c
y
r
atio
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8776
IJ
-
I
C
T
Vo
l.
4
,
No
.
2
,
A
u
g
u
s
t
201
5
:
7
9
–
8
5
84
3
.
6.
Co
ns
is
t
ency
Ra
t
io
Dete
r
m
i
n
atio
n
co
n
s
i
s
te
n
c
y
r
atio
b
eg
in
s
w
it
h
d
eter
m
in
in
g
th
e
w
ei
g
h
ted
s
u
m
v
ec
to
r
o
r
m
ax
i
m
u
m
v
alu
e
o
f
la
m
b
d
a.
T
h
is
ca
n
b
e
d
o
n
e
b
y
m
u
ltip
l
y
in
g
t
h
e
n
u
m
b
er
o
f
ev
al
u
atio
n
c
r
iter
i
a
in
th
is
ca
s
e
ed
u
ca
tio
n
cr
iter
ia
o
n
t
h
e
tab
le
t
h
e
f
ir
s
t
c
o
lu
m
n
r
ec
ip
r
o
ca
l
m
atr
i
x
e
v
alu
atio
n
cr
iter
ia
w
it
h
t
h
e
v
al
u
e
o
f
th
e
f
ir
s
t
co
l
u
m
n
o
f
th
e
ta
b
le
in
P
V
.
I
n
t
h
e
s
a
m
e
w
a
y
u
s
ed
f
o
r
co
lu
m
n
s
o
f
t
h
e
s
ec
o
n
d
,
th
ir
d
,
f
o
u
r
t
h
a
n
d
f
if
th
.
T
h
en
s
u
m
m
i
n
g
t
h
e
v
alu
e
o
r
n
u
m
b
er
o
f
l
in
e
s
p
er
lin
e
as
f
o
llo
w
s
:
λ
=
(
4
,
5
0
0
0
*
0
,
2
3
1
1
)
+
(
4
,
5
0
0
0
*
0
,
2
6
2
1
)
+
(
5
,
5
0
0
0
*
0
,
1
8
9
4
)
+
(
5
,
5
0
0
0
*
0
,
1
8
9
4
)
+
(
8
,
0
0
0
0
*
0
,
1
2
8
0
)
=
5
,
3
2
6
9
.
T
h
e
n
ex
t
s
tep
i
s
d
eter
m
i
n
i
n
g
th
e
v
al
u
e
o
f
C
o
n
s
is
ten
c
y
I
n
d
ex
(
C
I
)
,
an
d
n
i
s
t
h
e
s
ize
o
f
t
h
e
m
atr
ix
ar
e
th
e
n
r
etr
iev
ed
th
e
v
al
u
e
o
f
C
I
as f
o
l
lo
w
s
:
C
I
=
(
λ
–
n
)
/ (
n
-
1
)
=
(
5
,
3
2
9
6
–
5
,
0
0
0
0
)
/ (
5
,
0
0
0
0
–
1
,
0
0
0
0
)
=
0
,
0
8
1
7
.
T
h
e
last
o
n
e
i
n
ca
lc
u
latio
n
o
f
A
HP
is
co
u
n
ti
n
g
C
o
n
s
is
te
n
c
y
R
at
io
.
C
o
n
s
is
te
n
c
y
R
at
io
(
C
R
)
i
s
th
e
s
a
m
e
w
i
th
t
h
e
C
o
n
s
i
s
te
n
c
y
I
n
d
ex
(
C
I
)
d
iv
id
ed
b
y
R
an
d
o
m
I
n
d
ex
(
R
I
)
.
R
I
is
d
eter
m
in
ed
b
ased
o
n
a
tab
le
o
f
R
I
.
R
an
d
o
m
I
n
d
ex
i
s
a
d
ir
ec
t
f
u
n
ctio
n
o
f
t
h
e
n
u
m
b
er
o
f
alter
n
ati
v
es
o
r
s
y
s
te
m
s
t
h
a
t
ar
e
b
ein
g
co
n
s
id
er
ed
.
T
ab
le
6
ar
e
p
r
esen
ted
b
elo
w
a
n
d
ar
e
f
o
llo
w
ed
b
y
a
ca
lc
u
lati
o
n
o
f
th
e
e
n
d
C
o
n
s
is
te
n
c
y
R
at
io
.
T
ab
le
6
.
Ma
tr
ix
Size
An
d
R
an
d
o
m
I
n
d
e
x
M
a
t
r
i
x
S
i
z
e
R
a
n
d
o
m
I
n
d
e
x
M
a
t
r
i
x
S
i
z
e
R
a
n
d
o
m
I
n
d
e
x
M
a
t
r
i
x
S
i
z
e
R
a
n
d
o
m
I
n
d
e
x
1
0
,
0
0
6
1
,
2
4
11
1
,
5
1
2
0
,
0
0
7
1
,
3
2
12
1
,
4
8
3
4
0
,
5
8
0
.
0
9
8
9
1
,
4
1
1
,
4
5
13
14
1
,
5
6
1
,
5
7
5
1
,
1
2
10
1
,
4
9
15
1
,
5
9
Gen
er
all
y
,
C
R
=
C
I
/R
I
w
it
h
t
h
e
s
ize
o
f
th
e
m
atr
i
x
(
n
)
in
t
h
i
s
ca
s
e
5
w
it
h
R
I
=
1
.
1
2
.
I
n
th
is
ca
s
e,
C
R
=
C
I
/R
I
=
0
,
0
8
1
7
/0
,
0
7
3
0
=
1
.
1
2
.
Th
e
r
es
u
lts
o
f
ca
lcu
la
tio
n
o
f
AHP
to
th
e
c
r
iter
ia
ca
n
b
e
s
ee
n
o
n
T
ab
l
e
7
an
d
T
ab
le
8
.
T
ab
le
7
.
C
alcu
latio
n
o
f
R
ec
ip
r
o
ca
l M
atr
ix
R
e
c
i
p
r
o
c
a
l
M
a
t
r
i
x
(
R
M
)
C
rt
Ed
u
A
b
l
K
n
w
Ex
p
P
sn
Ed
u
1
,
0
0
0
0
2
,
0
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
1
,
0
0
0
0
A
b
l
0
,
5
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
K
n
w
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
1
,
0
0
0
0
Ex
p
0
,
5
0
0
0
1
,
0
0
0
0
0
,
5
0
0
0
1
,
0
0
0
0
2
,
0
0
0
0
P
sn
1
,
0
0
0
0
0
,
5
0
0
0
1
,
0
0
0
0
0
,
5
0
0
0
1
,
0
0
0
0
S
u
m
4
,
5
0
0
0
4
,
5
0
0
0
5
,
5
0
0
0
5
,
5
0
0
0
8
,
0
0
0
0
T
ab
le
8.
C
alcu
la
tio
n
o
f
No
r
m
a
lized
Ma
tr
ix
N
o
r
mal
i
z
e
d
M
a
t
r
i
x
(
N
M
)
S
u
m
PV
Ed
u
0
,
2
2
2
2
0
,
4
4
4
4
0
,
1
8
1
8
0
,
1
8
1
8
0
,
1
2
5
0
1
,
1
5
5
3
0
,
2
3
1
1
A
b
l
0
,
1
1
1
1
0
,
2
2
2
2
0
,
3
6
3
6
0
,
3
6
3
6
0
,
2
5
0
0
1
,
3
1
0
6
0
,
2
6
2
1
K
n
w
0
,
2
2
2
2
0
,
1
1
1
1
0
,
1
8
1
8
0
,
1
8
1
8
0
,
2
5
0
0
0
,
9
4
7
0
0
,
1
8
9
4
Ex
p
0
,
2
2
2
2
0
,
1
1
1
1
0
,
1
8
1
8
0
,
1
8
1
8
0
,
2
5
0
0
0
,
9
4
7
0
0
,
1
8
9
4
P
sn
0
,
2
2
2
2
0
,
1
1
1
1
0
,
0
9
0
9
0
,
0
9
0
9
0
,
1
2
5
0
0
,
6
4
0
2
0
,
1
2
8
0
S
u
m
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
1
,
0
0
0
0
5
,
0
0
0
0
1
,
0
0
0
0
λ=
5
,
3
2
6
9
-
-
λ
=
W
e
i
g
h
t
e
d
S
u
m V
e
c
t
o
r
C
I
=
0
,
0
8
1
7
N
5
C
I
=
C
o
n
si
s
t
e
n
c
y
I
n
d
e
x
CR=
0
,
0
7
3
0
-
-
C
R
=
C
o
n
s
i
st
e
n
c
y
R
a
t
i
o
T
h
e
v
alu
e
o
f
C
R
s
h
o
w
n
le
s
s
co
n
s
is
ten
t
co
m
p
ar
i
s
o
n
i
s
d
o
n
e,
w
h
ile
t
h
e
v
a
lu
e
o
f
th
e
C
R
th
e
lo
w
er
in
d
icate
t
h
e
m
o
r
e
co
n
s
is
ten
t
c
o
m
p
ar
is
o
n
is
d
o
n
e.
No
r
m
all
y
,
if
t
h
e
C
R
i
s
0
.
1
0
o
r
less
,
th
e
n
t
h
e
co
m
p
ar
is
o
n
s
ca
r
r
ied
o
u
t
th
e
d
ec
is
io
n
m
ak
er
s
i
n
clu
d
i
n
g
t
h
e
v
al
u
e
o
f
t
h
e
r
e
s
u
lt
s
o
f
t
h
e
co
m
p
ar
i
s
o
n
to
b
a
s
e
d
ec
is
io
n
-
m
ak
i
n
g
o
n
a
r
elativ
e
b
asis
i
s
s
aid
to
b
e
co
n
s
is
te
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
I
C
T
I
SS
N:
2252
-
8776
DS
S
u
s
in
g
A
HP
i
n
S
elec
tio
n
o
f Lec
tu
r
er
(
A
d
r
iyen
d
i
)
85
4
.
CO
NCLUS
I
O
N
B
ased
o
n
th
e
ca
lcu
latio
n
s
t
h
at
h
av
e
b
ee
n
d
o
n
e
in
w
h
ic
h
th
e
v
alu
e
o
f
t
h
e
C
R
f
o
r
th
e
cr
iter
ia
in
d
icate
v
alu
e
s
t
h
at
ar
e
s
m
aller
th
a
n
1
,
th
en
it
ca
n
b
e
in
f
er
r
ed
th
a
t t
h
e
p
air
w
i
s
e
co
m
p
ar
i
s
o
n
d
o
n
e
b
y
d
ec
is
io
n
m
a
k
er
s
i
s
co
n
s
is
ten
t
,
s
o
t
h
at
r
es
u
lts
o
f
v
a
lu
e
ev
al
u
atio
n
o
f
cr
iter
ia
ca
n
b
e
ac
ce
p
ted
.
RE
F
E
R
E
NC
E
S
[1
]
F
re
d
,
N
.
;
S
a
lv
a
to
re
,
T.
M
.;
,
"
De
s
ig
n
S
c
ien
c
e
a
n
d
T
h
e
Ac
c
u
m
u
lat
io
n
o
f
Kn
o
w
led
g
e
i
n
T
h
e
In
f
o
r
m
a
ti
o
n
S
y
ste
m
s
Disc
ip
li
n
e
,
"
ACM
T
M
IS
J
o
u
rn
a
l
,
v
o
l.
3
,
n
o
.
1
,
A
p
r
.
2
0
1
2
[2
]
Ja
y
,
F.
N
.
Jr.
;
Ro
b
e
rt
,
O.
B
.;
,
"
T
o
wa
rd
a
B
ro
a
d
e
r
V
isio
n
f
o
r
In
f
o
rm
a
ti
o
n
S
y
ste
m
s
,
"
ACM
T
M
IS
J
o
u
r
n
a
l
,
v
ol
.
2
,
n
o
.
4
,
De
c
.
2
0
1
1
[3
]
S
a
m
i
,
N
.;
,
"
T
o
w
a
rd
Re
d
u
c
in
g
Da
ta C
u
b
e
s
,
"
J
o
u
rn
a
l
o
f
Da
t
a
Pr
o
c
e
ss
in
g
,
"
p
p
.
68
-
71,
v
o
l.
2
,
n
o
.
2
,
J
u
n
.
2
0
1
2
[4
]
Ke
tt
n
e
r,
K
.
H
.
;
"
T
h
e
In
teg
ra
ti
v
e
E
ff
e
c
t
o
f
El
e
c
tro
n
ic
Da
ta
P
ro
c
e
ss
in
g
,
Bu
sin
e
ss
&
In
fo
rm
a
ti
o
n
S
y
ste
ms
En
g
in
e
e
rin
g
J
o
u
rn
a
l,
v
o
l.
1
,i
ss
.
1
,
p
p
.
84
-
88
,
2
0
0
9
[5
]
Ja
n
,
R
.
.;
"
In
f
o
rm
a
ti
o
n
S
y
ste
m
s
R
e
se
a
rc
h
a
s
a
S
c
ien
ce
:
S
c
i
e
n
ti
f
ic
Re
se
a
rc
h
in
In
f
o
r
m
a
ti
o
n
S
y
st
e
m
s
,
"
Pro
g
re
ss
in
IS
,
pp
.
11
-
21
,
2
0
1
3
[6
]
M
a
riy
a
,
A
.
S
.;
,
"
A
M
u
lt
icriteria
M
u
lt
il
e
v
e
l
G
ro
u
p
De
c
isio
n
M
e
th
o
d
f
o
r
S
u
p
p
li
e
r
S
e
lec
ti
o
n
a
n
d
Ord
e
r
A
ll
o
c
a
ti
o
n
,
"
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
S
tra
teg
ic De
c
isio
n
S
c
ien
c
e
s (
I
J
S
DS
)
,
p
p
.
2
5
,
v
ol
.
3
,
i
ss
:
1
,
2
0
1
2
[7
]
A
lan
,
S
.
A
.;
Cli
ff
,
T
.
R
.;
,
"
A
De
c
isio
n
S
u
p
p
o
rt
S
y
ste
m
F
o
r
P
a
ti
e
n
t
S
c
h
e
d
u
li
n
g
i
n
T
ra
v
e
l
V
a
c
c
in
e
A
d
m
in
istratio
n
,
"
De
c
isio
n
S
u
p
p
o
rt S
y
ste
ms
El
se
v
ier
Pu
b
li
sh
e
r
,
p
p
.
2
1
5
-
2
2
5
,
v
o
l.
5
4
,
i
ss
:
1
,
De
c
.
2
0
1
2
[8
]
Re
e
v
a
,
L
.
;
Ro
b
e
rt
,
B
.
J
.;
,
"
De
c
is
io
n
S
u
p
p
o
rt
o
r
S
u
p
p
o
rt
f
o
r
S
it
u
a
ted
Ch
o
ice
:
L
e
ss
o
n
s
f
o
r
S
y
ste
m
De
sig
n
f
ro
m
Eff
e
c
ti
v
e
M
a
n
u
a
l
S
y
ste
m
s
,
"
Eu
ro
p
e
a
n
J
o
u
rn
a
l
o
f
I
n
fo
rm
a
ti
o
n
S
y
ste
ms
,
p
p
.
5
1
0
-
5
2
8
,
A
p
ril
1
9
,
2
0
1
1
[9
]
Ra
k
e
sh
,
V
.;
S
a
r
o
j
,
K
.
;,
"
D
y
n
a
m
ic
V
e
n
d
o
r
S
e
lec
ti
o
n
:
A
F
u
z
z
y
A
h
p
A
p
p
ro
a
c
h
,
t
h
e
A
n
a
l
y
ti
c
Hie
ra
rc
h
y
P
r
o
c
e
ss
,
"
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
th
e
An
a
lytic Hier
a
rc
h
y
Pro
c
e
ss
,
v
o
l.
4
,
n
o
.
2
,
2
0
1
2
[1
0
]
Jiten
d
ra
,
K
.
;
Nirjh
a
r
,
R.
;
,
"
A
n
a
l
y
ti
c
Hie
ra
r
c
h
y
P
ro
c
e
ss
(A
HP
)
f
o
r
a
P
o
w
e
r
T
ra
n
s
m
issio
n
In
d
u
str
y
to
V
e
n
d
o
r
S
e
lec
ti
o
n
De
c
isio
n
s
,
"
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
s
,
p
p
.
26
–
3
0
,
Ja
n
.
2
0
1
1
[1
1
]
M
u
ru
g
e
sa
n
,
P
.
;
P
o
n
n
u
sa
m
y
,
M
.;
G
a
n
e
s
a
n
,
L
.;
,
"
A
Co
m
b
in
e
d
A
p
p
li
c
a
ti
o
n
o
f
S
tru
c
t
u
ra
l
Eq
u
a
ti
o
n
M
o
d
e
li
n
g
a
nd
AHP
i
n
S
u
p
p
li
e
r
S
e
lec
ti
o
n
,
"
Ben
c
h
ma
rk
in
g
:
An
I
n
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
,
v
o
l.
1
9
,
i
ss
:
1
,
p
p
.
7
0
–
92
,
2
0
1
2
[1
2
]
A
les
sio
,
I
.
;
A
sh
ra
f
,
L
.;
,
"
A
n
a
l
y
ti
c
Hie
ra
rc
h
y
P
ro
c
e
ss
a
n
d
E
x
p
e
rt
Ch
o
ice
:
Be
n
e
f
it
s
a
n
d
L
i
m
it
a
ti
o
n
s
,
"
OR
In
sig
h
t
,
v
o
l.
2
2
,
p
p
.
2
0
1
–
2
2
0
,
2
0
0
9
[1
3
]
Ha
rsh
it
,
K.
D
.;
Ke
y
u
r
,
P
.
D
.;
Ha
rit
,
K
.
R
.
;
,
"
A
De
c
isi
o
n
S
u
p
p
o
r
t
S
y
ste
m
f
o
r
T
o
o
l
El
e
c
tro
d
e
S
e
lec
t
io
n
f
o
r
El
e
c
t
ro
Di
sc
h
a
rg
e
M
a
c
h
in
in
g
P
ro
c
e
ss
u
s
in
g
A
HP
,
"
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
th
e
An
a
lytic
Hie
ra
rc
h
y
Pro
c
e
ss
,
v
o
l.
4
,
n
o
.
2
,
2
0
1
2
[1
4
]
W
a
n
,
K
.
;
W
a
n
,
I
.;
L
a
z
i
m
,
A
.;
,
"
A
N
e
w
En
v
iro
n
m
e
n
tal
P
e
rf
o
rm
a
n
c
e
In
d
e
x
u
sin
g
A
n
a
l
y
ti
c
H
iera
r
c
h
y
P
r
o
c
e
ss
:
A
C
a
se
o
f
A
S
E
A
N
C
o
u
n
tri
e
s
,
"
En
v
iro
n
me
n
ta
l
S
k
e
p
ti
c
s a
n
d
Criti
c
s,
v
o
l.
1
,
is
s:
3
,
p
p
.
39
-
47
,
2
0
1
2
Evaluation Warning : The document was created with Spire.PDF for Python.