I
nte
rna
t
io
na
l J
o
urna
l o
f
Adv
a
nces in Applie
d Science
s
(
I
J
AAS)
Vo
l.
14
,
No
.
2
,
J
u
n
e
2
0
2
5
,
p
p
.
345
~
3
5
1
I
SS
N:
2252
-
8
8
1
4
,
DOI
:
1
0
.
1
1
5
9
1
/ijaas
.
v
14
.
i
2
.
pp
345
-
3
5
1
345
J
o
ur
na
l
ho
m
ep
a
g
e
:
h
ttp
:
//ij
a
a
s
.
ia
esco
r
e.
co
m
Ro
a
d pav
ement
d
eforma
tion usin
g
remo
te
sens
ing
te
chnique
K
is
ha
n P
a
t
el
,
Ra
j
esh
G
uja
r
D
e
p
a
r
t
me
n
t
o
f
C
i
v
i
l
En
g
i
n
e
e
r
i
n
g
,
P
a
n
d
i
t
D
e
e
n
d
a
y
a
l
En
e
r
g
y
U
n
i
v
e
r
si
t
y
,
G
a
n
d
h
i
n
a
g
a
r
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ap
r
14
,
2
0
2
4
R
ev
is
ed
Mar
5
,
2
0
2
5
Acc
ep
ted
Mar
28
,
2
0
2
5
Th
e
ro
a
d
su
rfa
c
e
re
flec
ts
th
e
sta
tu
s
o
f
th
e
c
it
y
’s
in
fra
stru
c
t
u
re
.
R
o
a
d
sa
fe
ty
a
n
d
d
r
iv
i
n
g
c
o
m
fo
rt
c
a
n
b
e
a
ffe
c
ted
b
y
th
e
r
o
u
g
h
su
rfa
c
e
.
To
m
in
i
m
ize
ro
a
d
h
a
z
a
rd
s,
p
a
v
e
m
e
n
t
c
o
n
d
it
i
o
n
s
m
u
st
b
e
p
e
rio
d
ica
ll
y
in
sp
e
c
ted
f
o
r
d
a
m
a
g
e
d
su
rfa
c
e
s.
A
q
u
ick
a
n
d
e
fficie
n
t
d
a
ta
c
o
ll
e
c
ti
o
n
c
a
n
b
e
p
ro
v
id
e
d
b
y
th
e
ra
d
a
r
ima
g
e
s.
F
o
r
a
lar
g
e
sp
a
ti
a
l
c
o
v
e
ra
g
e
,
ra
d
a
r
ima
g
e
p
ro
v
id
e
s
a
n
o
n
-
d
e
stru
c
ti
v
e
d
a
ta
c
o
ll
e
c
ti
o
n
tec
h
n
iq
u
e
fo
r
a
n
a
ly
z
in
g
r
o
a
d
c
o
n
d
it
io
n
s
a
n
d
c
las
sify
in
g
d
istres
s.
Th
e
su
rfa
c
e
d
istres
s
c
a
n
b
e
c
o
rre
late
d
b
y
a
n
a
l
y
z
in
g
th
e
ima
g
e
s
c
o
ll
e
c
ted
fro
m
h
i
g
h
-
re
so
l
u
ti
o
n
c
a
m
e
ra
s
a
n
d
sa
telli
tes
.
Th
is
a
rti
c
l
e
o
u
tl
i
n
e
s
th
e
a
p
p
li
c
a
b
il
i
ty
o
f
sy
n
th
e
ti
c
a
p
e
rtu
re
ra
d
a
r
(S
AR)
a
n
d
i
n
terf
e
ro
m
e
tri
c
sy
n
th
e
ti
c
a
p
e
rtu
re
ra
d
a
r
(I
n
S
A
R)
b
a
se
d
ima
g
e
s
to
m
a
n
a
g
e
a
n
d
m
o
n
it
o
r
p
a
v
e
m
e
n
t
in
fra
str
u
c
tu
re
.
T
h
e
re
fo
re
,
th
e
d
e
tec
ti
o
n
o
f
d
e
terio
ra
ti
n
g
su
rfa
c
e
s
c
a
n
b
e
imp
ro
v
e
d
b
y
a
n
a
ly
z
i
n
g
t
h
e
ra
d
a
r
ima
g
e
s
ti
m
e
ly
.
Th
e
re
su
lt
s
sh
o
we
d
th
e
d
e
ficie
n
c
ies
o
n
th
e
s
u
rfa
c
e
th
a
t
c
a
n
b
e
u
se
d
to
m
it
i
g
a
te
b
a
d
p
a
v
e
m
e
n
t
c
o
n
d
i
ti
o
n
s
a
n
d
a
ll
o
w
r
o
a
d
u
se
rs
to
u
se
g
o
o
d
r
o
a
d
i
n
fra
stru
c
t
u
re
with
sa
fe
ty
a
n
d
c
o
m
fo
r
t.
K
ey
w
o
r
d
s
:
Def
o
r
m
atio
n
Po
th
o
les
R
em
o
te
s
en
s
in
g
R
o
ad
p
av
em
en
t
Sy
n
th
etic
ap
er
tu
r
e
r
ad
ar
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
R
ajesh
Gu
jar
Dep
ar
tm
en
t o
f
C
iv
il E
n
g
in
ee
r
i
n
g
,
Pan
d
it De
en
d
ay
al
E
n
e
r
g
y
Un
iv
er
s
ity
Kn
o
wled
g
e
C
o
r
r
id
o
r
,
R
aisan
Villag
e,
PDPU R
o
ad
,
Gan
d
h
in
ag
ar
,
Gu
ja
r
at
3
8
2
0
0
7
,
I
n
d
ia
E
m
ail: r
ajesh
.
g
u
jar
@
s
o
t.p
d
p
u
.
ac
.
in
1.
I
NT
RO
D
UCT
I
O
N
R
o
ad
in
f
r
astru
ctu
r
es
ar
e
an
im
p
o
r
tan
t
ass
et
f
o
r
an
y
co
u
n
tr
y
as
th
e
y
s
er
v
e
co
n
n
ec
tiv
it
y
f
o
r
th
e
tr
an
s
p
o
r
tatio
n
o
f
g
o
o
d
s
an
d
h
u
m
a
n
s
.
An
in
ef
f
icien
t
r
o
a
d
n
etwo
r
k
ca
n
ca
u
s
e
o
b
s
tac
les
f
o
r
h
u
m
an
s
i
n
co
m
m
u
n
icatio
n
s
f
o
r
c
o
m
m
er
c
e
an
d
ac
tiv
ities
.
T
h
er
e
f
o
r
e,
it
i
s
n
e
ce
s
s
ar
y
to
m
ain
tain
r
o
ad
i
n
f
r
astru
ctu
r
e
tim
el
y
an
d
ef
f
ec
tiv
e.
C
o
n
tin
u
o
u
s
wea
r
an
d
tear
o
f
r
o
ad
s
u
r
f
ac
es
c
au
s
e
d
am
ag
e
an
d
p
r
o
d
u
ce
d
ef
icien
cies.
W
h
en
th
e
r
o
ad
s
u
r
f
ac
e
co
u
n
ter
ac
ts
th
e
a
x
el
lo
ad
s
o
f
4
t
h
p
o
wer
,
it d
eter
io
r
ates
m
o
r
e
q
u
ick
l
y
[
1
]
.
I
n
iti
ally
,
d
if
f
e
r
en
t
k
i
n
d
s
o
f
cr
ac
k
s
ar
e
f
o
r
m
ed
an
d
co
n
v
er
ted
i
n
to
p
o
th
o
les
if
n
o
t
ad
d
r
ess
ed
wh
en
th
e
s
ev
er
ity
is
m
o
d
er
ate.
T
h
u
s
,
m
o
n
ito
r
in
g
r
o
ad
c
o
n
d
itio
n
s
h
as
b
ec
o
m
e
m
o
r
e
cr
itical
as
r
ep
air
in
g
th
e
p
o
t
h
o
les
co
s
ts
m
o
r
e
th
an
r
en
ewin
g
th
e
cr
ac
k
s
.
T
h
e
well
-
m
ain
tain
ed
s
u
r
f
ac
e
co
n
d
itio
n
p
r
o
v
i
d
es
an
en
jo
y
ab
le
ex
p
er
ien
ce
t
o
its
u
s
er
s
.
T
h
e
im
p
r
o
v
em
e
n
t
o
f
th
e
tr
an
s
p
o
r
t
s
y
s
tem
in
ter
m
s
o
f
d
r
iv
in
g
s
af
ety
an
d
c
o
m
f
o
r
t
ca
n
b
e
d
o
n
e
b
y
co
n
tin
u
o
u
s
m
o
n
ito
r
in
g
o
f
r
o
ad
s
u
r
f
ac
es.
Fre
q
u
en
t
d
ata
co
llectio
n
a
n
d
tim
ely
d
etec
tio
n
o
f
d
ef
icien
cies
ar
e
two
m
ajo
r
o
b
s
tacle
s
in
s
u
r
f
ac
e
m
o
n
ito
r
in
g
.
T
h
e
f
o
r
m
er
b
ec
o
m
es
m
o
r
e
ch
allen
g
in
g
wh
e
n
it
co
m
es
to
m
an
u
al
in
s
p
ec
tio
n
.
I
t
co
n
s
is
ts
o
f
d
ata
c
o
llecti
o
n
b
y
d
o
in
g
m
an
u
al
s
ite
in
s
p
ec
tio
n
s
an
d
d
r
aw
in
g
r
o
a
d
n
etwo
r
k
s
m
an
u
ally
.
T
h
is
m
eth
o
d
also
en
co
u
n
ter
s
a
h
ig
h
wo
r
k
lo
a
d
an
d
lo
w
ef
f
icien
c
ies
[
2
]
,
[
3
]
.
T
h
er
ef
o
r
e,
au
t
o
m
atic
d
ata
co
llectio
n
m
eth
o
d
s
h
a
v
e
b
ec
o
m
e
m
o
r
e
e
f
f
ec
tiv
e
in
r
ec
en
t
d
ec
ad
es.
T
h
is
m
eth
o
d
e
m
p
h
asizes
m
o
r
e
f
ea
tu
r
es
s
u
ch
as
lin
e
d
etec
tio
n
,
s
u
r
f
ac
e
class
if
icatio
n
,
an
d
m
at
h
em
atica
l
m
o
r
p
h
o
lo
g
y
[
4
]
–
[
6
]
.
Ma
n
y
s
tu
d
ies
an
d
ex
p
er
ts
o
f
h
ig
h
way
en
g
in
ee
r
in
g
a
g
en
cies
h
av
e
e
x
p
lain
ed
th
at
th
e
tim
ely
d
ete
ctio
n
o
f
s
u
r
f
ac
e
d
e
f
o
r
m
atio
n
ca
n
b
e
h
elp
f
u
l
f
o
r
tak
in
g
p
r
ev
en
tiv
e
m
ea
s
u
r
es
t
o
en
s
u
r
e
s
av
in
g
s
i
n
m
ain
te
n
a
n
ce
co
s
ts
,
en
h
an
ce
life
,
an
d
p
r
eser
v
e
q
u
ality
an
d
s
af
ety
[
7
]
.
Ur
b
an
r
o
ad
n
etwo
r
k
s
en
co
u
n
ter
a
lar
g
e
r
p
o
p
u
latio
n
.
T
h
er
ef
o
r
e,
it
r
eq
u
ir
es
m
o
r
e
ad
v
a
n
ce
d
t
o
o
ls
f
o
r
d
ata
co
llecti
o
n
,
an
aly
s
is
,
p
lan
n
in
g
,
an
d
m
o
n
ito
r
in
g
o
f
r
o
ad
s
u
r
f
ac
es.
T
y
p
ically
,
th
e
c
o
s
t
o
f
p
r
eser
v
in
g
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
2
,
J
u
n
e
2
0
2
5
:
3
4
5
-
351
346
f
r
eq
u
e
n
tly
m
ain
tain
e
d
r
o
a
d
is
m
ay
b
e
less
th
an
th
r
ee
tim
es
o
f
d
eter
io
r
ate
d
r
o
a
d
wh
ich
o
cc
u
r
r
ed
d
u
e
t
o
lack
o
f
tim
ely
m
ain
ten
an
ce
[
8
]
.
R
em
o
te
s
en
s
in
g
tech
n
iq
u
es
ar
e
u
s
ef
u
l
in
d
ata
co
llectio
n
f
r
o
m
an
y
wh
er
e
an
d
an
y
tim
e.
Ma
n
y
r
esear
ch
er
s
u
s
ed
o
p
tical
im
ag
es
to
d
etec
t
r
o
ad
s
u
r
f
ac
e
d
ef
icien
cies
in
w
h
ich
th
e
s
u
r
f
a
ce
s
m
ay
ap
p
ea
r
as
d
ar
k
an
d
b
r
ig
h
t
s
u
r
f
ac
es
[
9
]
.
W
h
er
ea
s
,
th
ese
s
u
r
f
ac
es
ac
t
d
if
f
er
en
tly
in
r
ad
a
r
im
ag
es
wh
ich
ar
e
b
ased
o
n
m
icr
o
wav
e
wav
ele
n
g
th
s
an
d
th
eir
b
ac
k
s
ca
tter
in
g
r
esp
o
n
s
es.
T
h
is
s
tu
d
y
f
o
cu
s
es
o
n
th
e
tech
n
iq
u
es
an
d
p
r
o
ce
s
s
in
g
o
f
im
ag
es
f
r
o
m
r
ad
ar
.
I
t
p
r
o
v
id
es
r
em
o
te
d
e
tectio
n
,
id
en
tify
i
n
g
,
class
if
y
in
g
,
an
d
an
aly
zi
n
g
p
av
em
en
t
d
is
tr
ess
.
T
h
er
e
h
av
e
b
ee
n
m
a
n
y
s
tu
d
i
es
ca
r
r
ied
o
u
t
with
s
y
n
th
etic
ap
er
tu
r
e
r
a
d
ar
(
SAR
)
tech
n
o
lo
g
y
f
o
r
s
ig
n
if
ican
t
m
o
n
ito
r
in
g
o
f
r
o
a
d
p
av
em
en
t
s
u
r
f
ac
e
s
in
p
ast
d
ec
ad
es
[
1
0
]
.
On
e
o
f
th
e
a
d
v
an
t
a
g
es
o
f
SAR
im
ag
es
is
th
at
it
h
elp
s
to
s
en
s
e
lar
g
e
g
eo
g
r
a
p
h
ical
ar
ea
s
.
T
h
ese
d
at
a
s
ets
ca
n
b
e
u
tili
ze
d
f
o
r
a
wi
d
e
r
an
g
e
o
f
,
s
u
ch
as
f
r
o
m
th
e
ea
r
th
s
cien
ce
s
to
m
ilit
ar
y
r
ec
o
n
n
aiss
an
ce
.
Alth
o
u
g
h
th
ese
d
ata
m
ay
co
v
e
r
b
r
o
ad
r
eg
io
n
al
o
r
co
n
tin
en
tal
r
eg
io
n
s
i
n
a
s
in
g
le
im
ag
e
,
d
ata
c
o
llectio
n
,
q
u
alit
y
,
an
d
u
s
e
m
ig
h
t
b
e
r
estricte
d
b
y
r
e
v
is
it
d
u
r
atio
n
s
,
atm
o
s
p
h
er
ic
in
ter
f
er
e
n
ce
s
,
an
d
s
p
atial
r
eso
lu
tio
n
[
1
1
]
.
T
h
es
e
s
p
atial
d
ataset
h
elp
s
to
an
al
y
ze
th
e
r
o
ad
s
u
r
f
ac
e
f
ea
tu
r
es.
T
h
is
s
tu
d
y
f
o
cu
s
es
o
n
th
e
u
s
e
o
f
m
u
ltip
le
SAR
im
ag
es
f
o
r
a
s
ig
n
if
ican
t
s
tu
d
y
ar
ea
f
o
r
d
if
f
er
e
n
t
d
u
r
atio
n
s
.
T
h
is
en
ab
les
in
id
e
n
tific
atio
n
o
f
c
h
an
g
es
in
r
o
a
d
s
u
r
f
ac
e
d
is
tr
ess
an
d
th
eir
s
ev
e
r
ity
with
r
esp
ec
t
to
tim
e.
Als
o
,
th
e
ac
cu
r
ac
y
o
f
class
if
icatio
n
is
co
n
s
id
e
r
ed
d
u
e
to
th
e
im
p
ac
t
o
f
s
p
atial
r
eso
lu
tio
n
,
in
s
tu
d
ies
[
1
2
]
–
[
1
5
]
c
o
n
s
id
er
e
d
th
e
o
p
tim
u
m
s
p
atial
r
eso
lu
tio
n
b
ef
o
r
e
class
if
icatio
n
.
[
1
4
]
co
m
p
u
ted
t
h
at
th
e
r
eso
lu
tio
n
ca
p
ac
ity
was r
elate
d
to
th
e
ac
c
u
r
ac
y
o
f
th
e
class
if
icatio
n
.
T
h
is
r
esear
ch
aim
s
to
p
r
o
v
id
e
a
tech
n
iq
u
e
t
o
ex
tr
ac
t
r
o
ad
n
etwo
r
k
s
ac
cu
r
ately
w
h
ile
m
ain
tain
in
g
th
eir
in
teg
r
ity
f
r
o
m
SAR
im
ag
es.
Als
o
aim
s
to
an
aly
ze
th
e
d
is
tr
ess
v
alu
es
co
m
p
u
ted
f
r
o
m
th
e
am
p
litu
d
e
o
f
th
e
SAR
im
ag
es.
Ou
r
r
esear
c
h
o
f
f
er
s
f
r
esh
in
s
ig
h
ts
in
to
in
t
eg
r
atin
g
m
u
ltip
le
s
o
u
r
ce
s
o
f
S
AR
an
d
d
ig
ital
d
ata
f
o
r
t
h
e
ch
allen
g
in
g
task
o
f
r
o
a
d
ex
tr
ac
tio
n
.
Giv
e
n
th
e
co
m
p
l
ex
ity
o
f
r
o
ad
e
x
tr
ac
tio
n
,
o
u
r
s
t
u
d
y
p
r
o
p
o
s
es
n
o
v
el
id
ea
s
f
o
r
co
m
b
in
in
g
SAR
,
o
p
tical,
an
d
d
ig
ital
d
ata
to
im
p
r
o
v
e
th
e
p
r
o
ce
s
s
.
Ho
wev
er
,
th
e
lim
ited
co
v
er
ag
e
ar
ea
in
o
p
tical
im
ag
es
m
a
y
r
e
d
u
ce
t
h
e
e
x
p
o
s
u
r
e
o
f
th
e
s
tu
d
y
ar
ea
.
T
h
is
ca
n
b
e
im
p
r
o
v
ed
b
y
u
s
in
g
o
p
tical
d
ata
with
a
lar
g
e
co
v
er
ag
e
a
r
ea
.
T
h
e
u
s
e
o
f
r
a
d
ar
im
ag
es
in
tr
an
s
p
o
r
tatio
n
r
esear
ch
is
a
g
r
o
win
g
an
d
ec
o
n
o
m
ically
b
en
ef
icial
ar
ea
o
f
s
tu
d
y
.
C
r
ac
k
d
etec
tio
n
b
y
co
m
b
in
in
g
v
ar
i
o
u
s
an
aly
s
is
alg
o
r
ith
m
s
u
s
in
g
u
ltra
-
s
o
n
ic
s
en
s
o
r
s
with
im
ag
in
g
tech
n
iq
u
es
was
d
o
n
e.
T
h
e
s
tu
d
y
r
ev
ea
le
d
in
d
i
v
id
u
al
cr
ac
k
s
d
etec
ted
with
th
ick
n
ess
g
r
ea
ter
th
an
0
.
1
m
m
,
with
a
m
ax
im
u
m
er
r
o
r
in
len
g
th
o
f
7
.
3
%.
T
h
e
in
tr
o
d
u
ctio
n
is
f
o
llo
wed
b
y
th
e
r
esear
ch
m
eth
o
d
,
w
h
ich
f
o
cu
s
es
o
n
th
e
s
tu
d
y
a
r
ea
,
d
ata
ac
q
u
is
itio
n
,
d
ata
an
aly
s
is
p
r
e
-
p
r
o
ce
s
s
in
g
o
f
SAR
im
ag
es.
T
h
is
s
ec
tio
n
also
d
escr
ib
es
h
o
w
r
o
ad
ex
tr
ac
tio
n
is
d
o
n
e
ac
cu
r
ately
.
I
n
s
ec
tio
n
3
,
ex
p
er
im
en
ts
o
n
r
o
ad
ex
tr
ac
ti
o
n
an
d
r
o
ad
d
is
tr
ess
ar
e
p
r
esen
ted
an
d
th
e
r
esu
lts
ar
e
ev
alu
ated
.
Fin
ally
,
co
n
cl
u
s
io
n
s
wer
e
d
r
awn
f
r
o
m
th
e
d
ef
o
r
m
atio
n
v
alu
es a
n
d
r
esu
lts
ev
alu
ated
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
SAR
im
ag
e
is
a
co
m
p
lex
im
a
g
e
th
at
co
n
tain
s
g
eo
g
r
ap
h
ical
f
ea
tu
r
es.
I
t
r
eq
u
ir
es
th
e
d
etec
ti
o
n
o
f
r
o
ad
s
u
r
f
ac
e
o
n
ly
am
o
n
g
s
t
o
th
er
g
eo
g
r
ap
h
ical
f
ea
tu
r
es
s
u
ch
as
wate
r
b
o
d
ies,
o
p
en
lan
d
,
v
e
g
etatio
n
co
v
er
,
an
d
b
u
ild
in
g
s
.
Ma
th
em
atica
l m
o
r
p
h
o
lo
g
y
ca
n
b
e
u
s
ed
in
r
o
ad
c
h
ar
ac
ter
is
tics
to
en
s
u
r
e
lin
e
lin
k
ag
es a
n
d
to
s
m
o
o
th
th
e
r
o
a
d
e
d
g
es
[
1
6
]
.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
u
s
u
ally
co
n
s
id
er
s
s
ev
er
al
asp
ec
ts
s
u
ch
as
s
tu
d
y
ar
ea
,
p
r
o
ce
s
s
in
g
f
lo
w,
r
eso
lu
tio
n
t
y
p
e
an
d
s
ize,
an
d
h
u
m
an
i
n
ter
v
en
tio
n
[
1
7
]
,
[
1
8
]
.
2
.
1
.
Study
a
r
ea
Var
io
u
s
r
o
a
d
s
u
r
f
ac
es
with
d
i
f
f
er
en
t
d
is
tr
ess
ar
e
r
eq
u
ir
ed
t
o
ca
r
r
y
o
u
t
th
is
r
esear
c
h
.
Fo
r
th
is
,
th
r
ee
d
if
f
er
en
t
r
o
a
d
n
etwo
r
k
s
o
f
A
h
m
ed
ab
a
d
C
ity
(
Gu
jar
at,
I
n
d
ia)
wer
e
s
elec
ted
f
o
r
th
e
r
ese
ar
ch
with
d
if
f
er
en
t
g
eo
m
etr
ic
f
ea
tu
r
es.
Fig
u
r
e
1
s
h
o
ws
th
e
Go
o
g
le
E
ar
th
im
a
g
es
o
f
all
th
r
ee
r
o
ad
n
etwo
r
k
s
with
b
lu
e
co
lo
r
o
u
tlin
es.
T
h
e
f
ir
s
t
s
tu
d
y
ar
ea
i
s
Go
ta
-
Og
n
aj
R
o
ad
s
h
o
wn
in
Fig
u
r
e
1
(
a)
.
T
h
e
s
ec
o
n
d
r
o
ad
n
etwo
r
k
s
elec
ted
is
Scien
ce
-
C
ity
R
o
ad
an
d
th
e
th
ir
d
s
tu
d
y
ar
e
a
ch
o
s
en
is
Priy
ak
an
t
Par
ik
h
Ma
r
g
as
s
h
o
wn
in
Fig
u
r
e
1
(
b
)
a
n
d
Fig
u
r
e
1
(
c)
r
esp
ec
tiv
ely
.
All t
h
r
ee
r
o
a
d
n
etwo
r
k
s
p
ass
th
r
o
u
g
h
th
e
r
esid
e
n
tial a
n
d
co
m
m
er
cial
b
u
ild
in
g
s
.
2
.
2
.
Da
t
a
c
o
llect
io
n
Ma
jo
r
ly
th
r
ee
ty
p
es
o
f
im
ag
e
s
ca
lled
d
atasets
wer
e
co
llected
n
am
ely
SAR
im
ag
es,
o
p
ti
ca
l
im
ag
es,
an
d
d
ig
ital
im
ag
es.
I
n
th
is
s
tu
d
y
,
SAR
im
ag
es
p
r
o
v
i
d
ed
b
y
th
e
E
u
r
o
p
ea
n
Ag
e
n
cy
(
E
SA)
C
o
p
er
n
icu
s
Op
en
Acc
ess
Hu
b
o
f
Sen
tin
el
-
1
A
p
r
o
d
u
ct
wer
e
ac
q
u
i
r
ed
.
T
h
er
e
ar
e
a
to
tal
1
2
n
u
m
b
er
o
f
im
a
g
es
f
r
o
m
Sep
tem
b
er
2
0
2
3
to
Feb
r
u
ar
y
2
0
2
4
wer
e
ac
q
u
ir
ed
.
W
h
er
ea
s
f
o
r
o
p
t
ical
im
ag
es,
L
an
d
s
at
-
9
im
ag
es
b
y
USGS
E
ar
th
E
x
p
lo
r
er
wer
e
ac
ce
s
s
ed
.
Hig
h
-
r
eso
lu
tio
n
d
ig
ital c
am
e
r
a
u
s
ed
f
o
r
ca
p
t
u
r
in
g
d
ig
ital im
ag
es.
2
.
3
.
Da
t
a
a
na
ly
s
is
T
h
e
SAR
im
ag
e
is
cr
ea
ted
b
y
tr
an
s
m
itted
an
d
r
ec
eiv
e
d
m
ic
r
o
wav
es
f
r
o
m
illu
m
in
ated
g
e
o
g
r
ap
h
ical
f
ea
tu
r
es.
E
ac
h
p
ix
el
o
f
th
e
SAR
im
ag
e
h
as
am
p
litu
d
e
as
well
as
p
h
ase.
Du
e
to
am
p
litu
d
e,
th
e
r
ad
iatio
n
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
R
o
a
d
p
a
ve
men
t d
ef
o
r
ma
tio
n
u
s
in
g
r
emo
te
s
en
s
in
g
tech
n
iq
u
e
(
K
is
h
a
n
P
a
tel
)
347
m
icr
o
wav
e
b
ac
k
s
ca
t
ter
f
r
o
m
ea
ch
p
ix
el’
s
o
b
ject
p
r
o
v
id
e
s
d
if
f
er
en
tiatio
n
o
f
s
u
r
f
ac
e
ch
ar
ac
ter
is
tics
.
T
h
e
am
p
litu
d
e
is
m
o
r
e
d
ep
en
d
e
n
t
o
n
th
e
ab
ilit
y
o
f
th
e
s
u
r
f
ac
e
to
r
ef
lect
awa
y
th
e
r
ad
iatio
n
an
d
its
r
o
u
g
h
n
ess
[
1
9
]
.
I
m
ag
e
p
r
o
ce
s
s
in
g
is
th
e
f
ir
s
t
s
tep
to
war
d
s
d
ata
an
al
y
s
is
.
SAR
im
ag
e
is
f
ir
s
t
r
eq
u
ir
e
d
to
b
e
ca
lib
r
ated
.
T
h
en
af
ter
,
a
s
in
g
le
-
lo
o
k
in
g
SAR
i
m
ag
e
m
u
s
t
b
e
co
n
v
e
r
ted
to
m
u
ltil
o
o
k
in
g
to
g
et
m
a
x
im
u
m
r
o
ad
s
u
r
f
ac
e
f
ea
tu
r
es.
Af
ter
th
at,
v
ar
io
u
s
im
ag
e
p
r
o
c
ess
in
g
s
h
o
u
ld
b
e
d
o
n
e,
s
u
ch
a
s
s
p
ec
k
le
f
ilter
in
g
an
d
b
ac
k
s
ca
tter
in
g
th
at
h
elp
to
r
em
o
v
e
d
o
m
in
a
n
t
m
u
ltip
licativ
e
[
2
0
]
an
d
ad
d
itiv
e
n
o
is
e
p
r
esen
t
in
SAR
im
ag
es,
r
esp
ec
tiv
ely
.
T
h
e
f
o
r
m
e
r
n
o
is
e
was
m
in
im
ized
b
y
a
R
ef
in
ed
-
L
ee
s
p
ec
k
le
f
ilter
with
a
3
×3
win
d
o
w
[
2
1
]
.
Fig
u
r
e
2
s
h
o
ws
th
e
s
tep
-
by
-
s
tep
p
r
o
ce
d
u
r
e
o
f
SAR
im
ag
e
p
r
o
ce
s
s
in
g
.
(
a)
(
b
)
(
c)
Fig
u
r
e
1
.
T
h
e
s
tu
d
y
a
r
ea
o
f
th
e
r
o
ad
n
etwo
r
k
s
elec
ted
f
o
r
A
h
m
ed
ab
a
d
C
ity
of
(
a
)
Go
ta
-
Og
n
aj
R
o
ad
,
(
b
)
Scien
ce
C
ity
R
o
ad
,
an
d
(
c)
Priy
ak
an
t Par
ik
h
Ma
r
g
Fig
u
r
e
2
.
Data
p
r
o
ce
s
s
in
g
s
tep
s
f
o
r
SAR
im
ag
er
y
W
h
en
th
e
im
ag
e
is
co
n
v
e
r
ted
to
a
m
u
ltil
o
o
k
c
o
m
p
le
x
(
ML
C
)
,
it
r
ed
u
ce
s
th
e
s
p
atial
r
eso
lu
tio
n
an
d
en
h
an
ce
s
th
e
s
p
atial
r
eso
lu
tio
n
.
W
h
er
ea
s
p
ix
el
v
alu
e
s
o
lel
y
s
h
o
ws
th
e
r
ad
ar
b
ac
k
s
ca
tter
o
f
th
e
r
e
f
lectin
g
s
u
r
f
ac
e.
I
m
ag
es
wit
h
th
e
s
am
e
ac
q
u
is
itio
n
m
o
d
e
an
d
o
r
b
it
p
lace
d
d
u
e
to
co
-
r
eg
is
tr
atio
n
s
im
u
ltan
eo
u
s
ly
.
A
p
p
ly
in
g
a
s
p
ec
k
le
f
ilter
h
el
p
s
to
r
ed
u
ce
an
d
/o
r
r
em
o
v
e
b
lu
r
r
ed
s
u
r
f
ac
es
an
d
f
ea
tu
r
es.
A
d
ig
ital
elev
atio
n
m
o
d
el
(
DE
M)
is
u
s
ed
to
co
r
r
ec
t
SA
R
g
eo
m
etr
ic
d
is
to
r
tio
n
b
y
g
eo
co
d
i
n
g
th
e
im
ag
e
f
o
r
ter
r
ain
co
r
r
ec
tio
n
.
T
y
p
ically
,
th
er
e
ar
e
th
r
ee
ty
p
e
s
o
f
ter
r
ain
co
r
r
ec
tio
n
th
at
g
iv
e
b
etter
r
esu
lts
n
am
ely
,
s
ig
m
a
-
n
au
g
h
t
(
σ
o
)
,
b
eta
-
n
au
g
h
t
,
a
n
d
g
am
m
a
-
n
au
g
h
t.
O
u
t o
f
th
em
,
s
ig
m
a
n
a
u
g
h
t g
iv
e
s
b
etter
-
ca
lib
r
ated
r
ad
ar
b
r
ig
h
t
n
ess
m
ea
s
u
r
em
en
ts
[
2
2
]
.
E
ac
h
p
i
x
el'
s
σo
v
alu
es
a
r
e
esti
m
ated
in
d
iv
id
u
ally
,
wit
h
o
u
t
a
n
y
s
p
atial
av
e
r
ag
in
g
.
T
h
e
esti
m
ated
n
o
is
e
-
eq
u
iv
alen
t
b
eta
-
n
au
g
h
t
(
NE
B
N)
v
alu
es
ar
e
th
en
s
u
b
tr
ac
ted
f
r
o
m
t
h
e
σ
o
v
alu
es
to
r
ed
u
ce
ad
d
itiv
e
n
o
is
e
[
2
3
]
.
T
h
e
σ
o
im
ag
e
with
r
ed
u
ce
d
n
o
is
e
h
elp
s
in
co
m
p
a
r
in
g
b
ac
k
s
ca
tter
m
ea
s
u
r
em
en
ts
o
n
d
if
f
er
en
t
s
u
r
f
ac
es
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
2
,
J
u
n
e
2
0
2
5
:
3
4
5
-
351
348
allo
ws
f
o
r
th
e
esti
m
atio
n
o
f
s
u
r
f
ac
e
p
r
o
p
er
ties
lik
e
r
o
u
g
h
n
ess
.
Fo
llo
win
g
th
at,
th
e
ap
p
licatio
n
o
f
m
u
ltil
o
o
k
in
g
in
th
e
s
p
atial
d
o
m
ai
n
aim
s
to
d
ec
r
ea
s
e
s
p
ec
k
le
an
d
im
p
r
o
v
e
th
e
s
ig
n
al
-
to
-
n
o
is
e
r
atio
b
y
av
er
ag
in
g
ad
jace
n
t
p
ix
els
in
b
o
th
th
e
r
an
g
e
a
n
d
a
zim
u
th
d
ir
ec
tio
n
s
[
2
4
]
.
SAR
i
m
ag
es
s
h
o
w
in
d
ef
in
ite
lin
es
f
o
r
th
e
r
o
ad
n
etwo
r
k
.
T
h
is
h
ap
p
e
n
s
d
u
e
to
th
e
r
elativ
ely
s
m
o
o
t
h
s
u
r
f
ac
e
o
f
r
o
ad
s
th
an
s
u
r
r
o
u
n
d
in
g
s
,
h
en
ce
p
r
o
v
id
in
g
a
m
ir
r
o
r
-
lik
e
r
ef
lectio
n
r
esu
ltin
g
in
lo
w
r
e
t
u
r
n
s
o
f
a
r
a
d
ar
s
ig
n
al.
W
ith
m
o
r
e
g
eo
m
etr
ic
f
ea
tu
r
es,
th
is
ef
f
e
ct
m
u
ltip
lies
.
As
a
r
esu
lt,
r
o
ad
way
s
ap
p
ea
r
as
b
r
ig
h
t
lin
es
d
u
e
to
m
u
ltip
le
b
o
u
n
ce
s
in
th
e
az
im
u
th
d
ir
ec
tio
n
as
o
th
er
co
n
f
ig
u
r
atio
n
s
lik
e
elev
ated
r
o
ad
s
,
r
o
ad
r
ails
,
r
o
ad
b
o
r
d
er
s
,
an
d
b
r
id
g
es
ex
is
t.
Sin
ce
r
ad
a
r
s
ar
e
s
id
e
-
lo
o
k
in
g
s
en
s
o
r
s
,
th
e
d
ir
ec
tio
n
o
f
lo
o
k
in
g
g
r
ea
tly
in
f
l
u
en
ce
s
th
e
g
eo
g
r
ap
h
ic
f
ea
tu
r
es
o
f
th
e
ac
q
u
ir
ed
im
a
g
e
[
2
5
]
.
Dif
f
er
en
t
p
o
lar
izatio
n
s
tates
b
ased
o
n
t
r
an
s
m
itted
-
re
ce
iv
e
d
e
lectr
o
m
ag
n
etic
s
ig
n
als g
iv
e
d
if
f
er
en
t r
esu
lts
p
o
s
t
-
p
r
o
ce
s
s
in
g
th
e
im
a
g
e.
I
t
h
as
p
o
lar
izatio
n
o
f
h
o
r
izo
n
tal
an
d
v
er
tical
an
d
a
c
o
m
b
in
atio
n
o
f
b
o
th
as
well.
T
h
e
h
o
r
izo
n
tal
p
o
lar
izatio
n
h
as
im
ag
es
with
elec
tr
o
m
ag
n
etic
s
ig
n
als
b
o
th
tr
a
n
s
m
itted
an
d
r
ec
e
iv
ed
h
o
r
izo
n
tally
(
HH)
wh
ile
s
ig
n
als
tr
an
s
m
itte
d
h
o
r
izo
n
tally
an
d
r
ec
eiv
ed
v
er
tically
(
HV)
.
I
n
co
n
tr
ast,
v
er
tical
p
o
lar
izatio
n
h
as
im
ag
es
with
elec
tr
o
m
ag
n
etic
s
ig
n
als
b
o
th
tr
an
s
m
itte
d
an
d
r
ec
eiv
e
d
v
er
tically
(
VV)
wh
ile
s
ig
n
als
tr
an
s
m
itted
v
er
tically
an
d
r
e
c
eiv
ed
h
o
r
izo
n
tally
(
VH)
.
An
y
p
o
lar
izatio
n
ca
n
g
iv
e
o
p
tim
u
m
r
esu
lts
f
o
r
an
y
r
o
ad
n
etwo
r
k
.
Du
al
-
p
o
lar
izati
o
n
a
n
d
q
u
a
d
-
p
o
la
r
izatio
n
i
f
w
e
co
m
b
i
n
e
a
n
y
two
a
n
d
all
f
o
u
r
,
r
esp
ec
tiv
ely
.
T
h
e
s
ca
tter
in
g
m
atr
ix
ca
n
b
e
c
o
n
v
e
r
ted
in
to
o
th
e
r
p
o
lar
izatio
n
b
a
s
es
af
ter
i
t
h
as b
ee
n
ac
q
u
ir
e
d
,
s
u
ch
as
th
e
cir
cu
la
r
p
o
lar
izatio
n
b
ase,
allo
win
g
th
e
s
am
e
p
o
lar
im
etr
ic
d
ata
to
b
e
r
ea
d
f
r
o
m
s
ev
er
al
an
g
les
[
1
0
]
.
An
alg
o
r
ith
m
was
d
ev
elo
p
e
d
af
ter
p
r
o
ce
s
s
in
g
all
im
ag
es
f
o
r
au
to
m
atic
r
ea
l
-
tim
e
d
is
tr
ess
d
etec
tio
n
o
n
th
e
s
u
r
f
ac
e.
Fig
u
r
e
3
s
h
o
ws a
r
o
ad
n
etwo
r
k
o
f
Ah
m
ed
ab
ad
C
ity
e
x
tr
ac
ted
f
r
o
m
th
e
SAR
im
ag
e.
Fig
u
r
e
3
.
T
h
e
r
o
a
d
n
etwo
r
k
o
f
Ah
m
ed
ab
a
d
C
ity
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
s
tu
d
y
lo
o
k
e
d
in
to
th
e
s
y
n
er
g
ic
u
s
e
o
f
in
ter
f
er
o
m
et
r
ic
SAR
(
I
n
SAR
)
an
d
d
ig
ital
to
g
et
m
o
r
e
ac
cu
r
ate
r
esu
lts
wh
ile
p
r
ev
io
u
s
s
tu
d
ies
s
u
ch
as
[
2
6
]
u
s
ed
th
e
f
u
s
io
n
o
f
o
p
tical
,
SAR
,
an
d
lig
h
t
d
etec
tio
n
an
d
r
an
g
in
g
(
L
iDAR
)
an
d
[
2
7
]
u
s
ed
th
e
co
m
b
in
atio
n
o
f
o
p
tical
an
d
p
o
lar
im
etr
ic
SAR
(
Po
lS
AR
)
.
T
h
eir
r
esu
lt
s
s
h
o
wed
im
p
r
o
v
em
e
n
t
in
r
o
a
d
s
eg
m
en
tatio
n
m
eth
o
d
s
an
d
d
id
n
o
t
ex
p
licitly
ad
d
r
ess
its
i
n
f
lu
en
ce
o
n
s
u
r
f
ac
e
d
ef
icien
cies.
T
h
er
ef
o
r
e,
th
is
p
ap
er
aim
s
to
p
r
o
v
id
e
q
u
ick
an
d
ac
cu
r
ate
d
ata
ass
ess
m
en
t
b
y
u
s
in
g
SAR
im
ag
es
to
an
aly
ze
th
e
r
o
ad
s
u
r
f
ac
e
d
ef
o
r
m
atio
n
.
I
t
also
e
x
p
lo
r
es
th
e
r
e
q
u
ir
em
e
n
t
f
o
r
a
n
e
f
f
ec
tiv
e
an
d
au
to
m
ate
d
p
av
em
en
t
h
ea
lth
m
o
n
ito
r
in
g
s
y
s
tem
in
th
e
tr
an
s
p
o
r
tatio
n
i
n
d
u
s
tr
y
.
A
f
ter
an
aly
zi
n
g
th
e
th
o
u
s
an
d
s
o
f
p
ix
el
v
alu
es
o
f
σ
0
VV
a
n
d
σ
0
VH
,
th
e
s
u
r
f
ac
e
d
ef
o
r
m
atio
n
was
o
b
tain
ed
.
Ou
t
o
f
th
ese
v
al
u
es,
ten
v
alu
es
ar
e
s
h
o
wn
in
T
ab
le
1
.
T
ab
le
1
.
T
h
e
p
ix
el
v
alu
e
o
f
Scien
ce
C
ity
R
o
ad
S
r
.
N
o
.
σ0
VH
σ0
VV
A
mp
l
i
t
u
d
e
V
H
1
0
.
0
2
3
5
2
5
0
.
1
8
1
7
9
5
5
2
3
.
4
2
0
5
7
9
2
0
.
0
2
5
4
5
8
0
.
1
7
5
1
1
3
3
0
6
.
6
4
9
8
5
5
3
0
.
0
3
4
3
3
7
0
.
2
4
7
8
5
6
2
8
6
.
4
4
5
0
4
7
4
0
.
0
3
1
2
7
4
0
.
2
5
2
1
4
6
2
5
6
.
7
2
9
3
0
5
5
0
.
0
3
8
4
5
9
0
.
2
7
9
8
6
0
2
4
6
.
7
1
2
2
0
7
6
0
.
0
2
8
7
9
6
0
.
2
7
3
8
7
5
2
4
3
.
6
8
5
0
2
2
7
0
.
0
2
9
3
1
2
0
.
2
5
2
0
1
5
2
2
6
.
9
3
9
4
0
1
8
0
.
0
2
4
2
9
2
0
.
2
2
8
9
0
5
1
9
0
.
1
7
5
3
4
0
9
0
.
0
4
3
1
5
1
0
.
4
4
0
2
2
8
1
7
3
.
6
6
0
4
3
6
10
0
.
0
1
8
6
3
9
0
.
1
4
0
5
9
5
1
5
0
.
6
6
8
0
8
9
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
R
o
a
d
p
a
ve
men
t d
ef
o
r
ma
tio
n
u
s
in
g
r
emo
te
s
en
s
in
g
tech
n
iq
u
e
(
K
is
h
a
n
P
a
tel
)
349
T
h
ese
v
alu
es
ar
e
c
o
n
v
e
r
ted
with
m
ath
em
atica
l
m
o
d
eli
n
g
in
to
m
ea
s
u
r
ab
le
q
u
a
n
titi
es,
s
ay
len
g
th
s
.
T
h
er
ef
o
r
e,
len
g
th
s
o
f
r
o
a
d
d
ef
icien
cies
ca
n
b
e
id
en
tifie
d
.
T
h
ese
v
alu
es
ar
e
co
m
p
ar
ed
to
m
an
u
ally
ca
lcu
lated
v
alu
es a
s
well
as
d
ig
ital im
ag
es c
ap
tu
r
ed
f
o
r
th
o
s
e
r
o
ad
n
etwo
r
k
d
e
f
icien
cies.
I
t
ca
n
b
e
s
ee
n
f
r
o
m
Fig
u
r
e
4
th
at
th
e
s
u
r
f
ac
e
d
is
tr
ess
d
etec
t
ed
ca
n
b
e
v
er
if
ied
with
th
e
ac
tu
al
d
ig
ital
im
ag
e.
T
h
is
ca
n
b
e
d
o
n
e
with
th
e
g
eo
lo
ca
tio
n
o
f
th
at
s
p
ec
if
ic
d
is
tr
ess
.
T
h
e
m
an
u
al
v
alu
e
o
f
d
is
tr
ess
is
th
en
co
m
p
ar
ed
t
o
th
e
v
alu
e
o
f
th
e
SAR
im
ag
e.
I
t
g
iv
es
an
eq
u
iv
alen
t
v
alu
e
with
an
er
r
o
r
o
f
8
m
m
.
T
h
e
p
o
s
s
ib
le
r
ea
s
o
n
f
o
r
th
is
is
d
u
e
to
tak
i
n
g
th
e
m
ea
n
v
alu
e
o
f
ea
ch
p
i
x
el.
I
n
v
ar
io
u
s
ca
s
es
d
u
e
to
o
th
er
r
o
ad
f
ea
t
u
r
es,
v
o
lu
m
e
b
ac
k
s
ca
tter
ar
is
e
s
.
Ho
wev
er
,
a
b
etter
r
eso
lu
tio
n
o
f
th
e
SAR
im
ag
e
will
g
iv
e
r
esu
lts
with
h
ig
h
er
ac
cu
r
ac
y
as
it
p
r
o
v
id
es
m
o
r
e
p
ix
els
an
d
v
alu
es
in
a
s
in
g
le
i
m
ag
e.
Fu
tu
r
e
r
esear
ch
m
ay
n
o
t
r
eq
u
ir
e
th
e
o
p
tical
an
d
d
ig
ital
d
atasets
u
s
ed
in
th
is
s
tu
d
y
as
th
e
h
ig
h
er
s
p
atial
r
eso
lu
tio
n
will
g
iv
e
en
o
u
g
h
in
f
o
r
m
atio
n
o
n
s
u
r
f
ac
e
d
ef
o
r
m
atio
n
with
im
p
r
o
v
ed
r
e
s
u
lts
an
d
ev
en
tu
ally
s
av
e
tim
e.
Fig
u
r
e
4
.
R
o
ad
way
d
ef
o
r
m
atio
n
o
n
Scien
ce
C
ity
R
o
ad
4.
CO
NCLU
SI
O
N
T
h
is
r
esear
ch
aim
s
to
u
tili
ze
S
AR
im
ag
es
to
d
etec
t
an
d
id
en
tify
r
o
ad
s
u
r
f
ac
e
d
ef
o
r
m
atio
n
s
.
I
t
ca
n
b
e
o
b
tain
ed
b
y
ass
ess
in
g
th
e
r
o
ad
s
u
r
f
ac
e
f
r
o
m
th
e
r
ad
ar
im
a
g
e
an
d
co
n
v
er
tin
g
th
e
p
ix
el
v
al
u
es
in
to
m
ea
s
u
r
ab
le
q
u
an
titi
es.
T
h
u
s
,
th
e
ex
ac
t
lo
c
atio
n
o
f
t
h
e
s
u
r
f
ac
e
d
ef
o
r
m
ati
o
n
s
ca
n
b
e
id
en
tifie
d
ac
cu
r
atel
y
.
T
h
is
m
eth
o
d
ca
n
b
e
u
s
ed
t
o
d
eter
m
in
e
an
d
a
n
a
ly
ze
th
e
d
eg
r
ee
o
f
d
ef
icien
cie
s
at
th
e
ea
r
ly
s
tag
e.
T
h
e
r
ef
o
r
e,
th
e
m
ai
n
ten
an
ce
an
d
r
ep
air
wo
r
k
o
f
th
e
r
o
a
d
s
u
r
f
ac
e
ca
n
b
e
d
o
n
e
well
in
ad
v
an
ce
to
im
p
r
o
v
e
th
e
ex
p
e
r
ien
ce
o
f
th
e
r
o
ad
s
u
r
f
ac
e
f
o
r
its
u
s
er
s
.
Ma
c
h
in
e
lear
n
in
g
(
ML
)
ca
n
b
e
ap
p
lied
to
d
etec
t
a
n
d
class
if
y
th
e
d
is
tr
es
s
o
f
r
o
a
d
s
u
r
f
ac
es
f
ro
m
SAR
im
ag
es,
p
r
o
v
id
i
n
g
an
alter
n
ativ
e
t
o
d
ata
a
n
aly
s
is
o
f
r
o
ad
in
f
o
r
m
atio
n
.
I
n
f
u
tu
r
e
wo
r
k
,
we
s
h
o
u
ld
u
s
e
th
e
p
r
o
p
o
s
ed
m
eth
o
d
f
o
r
th
e
class
if
icatio
n
o
f
p
av
em
e
n
t
d
i
s
tr
ess
es
o
f
lar
g
e
r
o
ad
n
etwo
r
k
s
to
test
th
e
r
o
b
u
s
tn
ess
an
d
co
m
p
u
tatio
n
al
ca
p
ab
ilit
y
o
f
o
u
r
m
eth
o
d
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
T
h
e
a
u
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
is
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Kis
h
an
Patel
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
R
ajesh
Gu
jar
✓
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8
8
1
4
I
n
t J Ad
v
Ap
p
l Sci
,
Vo
l.
14
,
No
.
2
,
J
u
n
e
2
0
2
5
:
3
4
5
-
351
350
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
T
h
e
a
u
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
ter
est.
DATA AV
AI
L
AB
I
L
I
T
Y
-
T
h
e
d
ata
th
at
s
u
p
p
o
r
t
th
e
f
in
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
av
ailab
l
e
o
n
r
e
q
u
est
f
r
o
m
th
e
c
o
r
r
esp
o
n
d
in
g
au
t
h
o
r
,
[
R
G]
.
T
h
e
d
ata,
wh
ich
c
o
n
tai
n
in
f
o
r
m
atio
n
th
at
co
u
ld
co
m
p
r
o
m
is
e
th
e
p
r
i
v
ac
y
o
f
r
esear
ch
p
ar
ticip
an
ts
,
ar
e
n
o
t p
u
b
licly
av
aila
b
le
d
u
e
to
ce
r
tain
r
estrictio
n
s
.
-
T
h
e
d
ata
th
at
s
u
p
p
o
r
t
th
e
f
in
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
av
ailab
le
f
r
o
m
th
e
C
o
p
er
n
icu
s
Op
en
Acc
ess
Hu
b
o
f
Sen
tin
el
-
1
A
p
r
o
d
u
ct
b
y
th
e
E
u
r
o
p
ea
n
Sp
ac
e
Ag
en
c
y
an
d
U
SGS
E
ar
th
E
x
p
lo
r
er
.
R
estricti
o
n
s
ap
p
ly
t
o
th
e
av
ailab
ilit
y
o
f
th
ese
d
ata,
wh
ich
wer
e
u
s
ed
u
n
d
e
r
licen
s
e
f
o
r
th
is
s
tu
d
y
.
Data
ar
e
av
ailab
le
o
n
h
ttp
s
://b
r
o
wser
.
d
atasp
ac
e.
co
p
e
r
n
icu
s
.
eu
/
an
d
h
ttp
s
://ear
th
ex
p
lo
r
er
.
u
s
g
s
.
g
o
v
/
with
th
e
p
er
m
is
s
i
o
n
o
f
th
e
E
u
r
o
p
ea
n
Sp
ac
e
Ag
e
n
cy
an
d
USGS
.
RE
F
E
R
E
NC
E
S
[
1
]
H
.
B
.
I
b
r
a
h
i
m,
M
.
S
a
l
a
h
,
F
.
Z
a
r
z
o
u
r
a
,
a
n
d
M
.
El
-
M
e
w
a
f
i
,
“
S
m
a
r
t
mo
n
i
t
o
r
i
n
g
o
f
r
o
a
d
p
a
v
e
m
e
n
t
d
e
f
o
r
ma
t
i
o
n
s
f
r
o
m
U
A
V
i
ma
g
e
s
b
y
u
s
i
n
g
mac
h
i
n
e
l
e
a
r
n
i
n
g
,
”
I
n
n
o
v
a
t
i
v
e
I
n
f
ra
s
t
r
u
c
t
u
r
e
S
o
l
u
t
i
o
n
s
,
v
o
l
.
9
,
n
o
.
1
,
p
.
1
6
,
Ja
n
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
0
7
/
s
4
1
0
6
2
-
0
2
3
-
0
1
3
1
5
-
2.
[
2
]
W
.
W
a
n
g
,
N
.
Y
a
n
g
,
Y
.
Zh
a
n
g
,
F
.
W
a
n
g
,
T.
C
a
o
,
a
n
d
P
.
E
k
l
u
n
d
,
“
A
r
e
v
i
e
w
o
f
r
o
a
d
e
x
t
r
a
c
t
i
o
n
f
r
o
m
r
e
m
o
t
e
se
n
si
n
g
i
ma
g
e
s,”
J
o
u
rn
a
l
o
f
T
ra
f
f
i
c
a
n
d
T
r
a
n
s
p
o
r
t
a
t
i
o
n
En
g
i
n
e
e
ri
n
g
(
En
g
l
i
s
h
E
d
i
t
i
o
n
)
,
v
o
l
.
3
,
n
o
.
3
,
p
p
.
2
7
1
–
2
8
2
,
J
u
n
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
t
t
e
.
2
0
1
6
.
0
5
.
0
0
5.
[
3
]
H
.
R
.
R
.
B
a
k
h
t
i
a
r
i
,
A
.
A
b
d
o
l
l
a
h
i
,
a
n
d
H
.
R
e
z
a
e
i
a
n
,
“
S
e
m
i
a
u
t
o
ma
t
i
c
r
o
a
d
e
x
t
r
a
c
t
i
o
n
f
r
o
m
d
i
g
i
t
a
l
i
m
a
g
e
s,
”
T
h
e
Eg
y
p
t
i
a
n
J
o
u
rn
a
l
o
f
Re
m
o
t
e
S
e
n
si
n
g
a
n
d
S
p
a
c
e
S
c
i
e
n
c
e
s
,
v
o
l
.
2
0
,
n
o
.
1
,
p
p
.
1
1
7
–
1
2
3
,
J
u
n
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
j
r
s.
2
0
1
7
.
0
3
.
0
0
1
.
[
4
]
I
.
K
a
h
r
a
m
a
n
,
I
.
R
.
K
a
r
a
s
,
a
n
d
A
.
E
.
A
k
a
y
,
“
R
o
a
d
e
x
t
r
a
c
t
i
o
n
t
e
c
h
n
i
q
u
e
s
f
r
o
m
r
e
m
o
t
e
se
n
si
n
g
i
ma
g
e
s
:
a
r
e
v
i
e
w
,
”
T
h
e
I
n
t
e
r
n
a
t
i
o
n
a
l
Arc
h
i
v
e
s
o
f
t
h
e
Ph
o
t
o
g
r
a
m
m
e
t
r
y
,
Re
m
o
t
e
S
e
n
si
n
g
a
n
d
S
p
a
t
i
a
l
I
n
f
o
rm
a
t
i
o
n
S
c
i
e
n
c
e
s
,
v
o
l
.
X
LI
I
-
4
/
W
9
,
p
p
.
3
3
9
–
3
4
2
,
O
c
t
.
2
0
1
8
,
d
o
i
:
1
0
.
5
1
9
4
/
i
s
p
rs
-
a
r
c
h
i
v
e
s
-
X
LI
I
-
4
-
W9
-
3
3
9
-
2
0
1
8
.
[
5
]
P
.
Li
u
,
Q
.
W
a
n
g
,
G
.
Y
a
n
g
,
L
.
L
i
,
a
n
d
H
.
Z
h
a
n
g
,
“
S
u
r
v
e
y
o
f
r
o
a
d
e
x
t
r
a
c
t
i
o
n
me
t
h
o
d
s
i
n
r
e
m
o
t
e
s
e
n
s
i
n
g
i
m
a
g
e
s
b
a
se
d
o
n
d
e
e
p
l
e
a
r
n
i
n
g
,
”
PFG
–
J
o
u
r
n
a
l
o
f
Ph
o
t
o
g
ra
m
m
e
t
ry
,
R
e
m
o
t
e
S
e
n
s
i
n
g
a
n
d
G
e
o
i
n
f
o
rm
a
t
i
o
n
S
c
i
e
n
c
e
,
v
o
l
.
9
0
,
n
o
.
2
,
p
p
.
1
3
5
–
1
5
9
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s4
1
0
6
4
-
0
2
2
-
0
0
1
9
4
-
z.
[
6
]
D
.
P
a
t
i
l
a
n
d
S
.
J
a
d
h
a
v
,
“
R
o
a
d
e
x
t
r
a
c
t
i
o
n
t
e
c
h
n
i
q
u
e
s
f
r
o
m
r
e
m
o
t
e
s
e
n
s
i
n
g
i
mag
e
s:
a
r
e
v
i
e
w
,
”
i
n
I
n
n
o
v
a
t
i
v
e
D
a
t
a
C
o
m
m
u
n
i
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
a
n
d
A
p
p
l
i
c
a
t
i
o
n
,
S
p
r
i
n
g
e
r
,
S
i
n
g
a
p
o
r
e
,
2
0
2
1
,
p
p
.
6
6
3
–
6
77
,
d
o
i
:
1
0
.
1
0
0
7
/
9
7
8
-
9
8
1
-
15
-
9
6
5
1
-
3
_
5
5
.
[
7
]
A
meric
a
n
A
sso
c
i
a
t
i
o
n
o
f
S
t
a
t
e
H
i
g
h
w
a
y
a
n
d
Tr
a
n
s
p
o
r
t
a
t
i
o
n
O
f
f
i
c
i
a
l
s
,
A
AS
H
T
O
g
u
i
d
e
l
i
n
e
s
f
o
r
p
a
v
e
m
e
n
t
m
a
n
a
g
e
m
e
n
t
s
y
st
e
m
s
.
W
a
sh
i
n
g
t
o
n
D
.
C
.
:
A
meri
c
a
n
A
ss
o
c
i
a
t
i
o
n
o
f
S
t
a
t
e
H
i
g
h
w
a
y
a
n
d
Tr
a
n
s
p
o
r
t
a
t
i
o
n
O
f
f
i
c
i
a
l
s
,
1
9
9
0
.
[
O
n
l
i
n
e
]
.
A
v
a
i
l
a
b
l
e
:
h
t
t
p
s
:
/
/
b
o
o
k
s
.
g
o
o
g
l
e
.
c
o
.
i
d
/
b
o
o
k
s
?
i
d
=
TR
T
9
G
w
A
A
C
A
A
J
[
8
]
A
meric
a
n
A
ss
o
c
i
a
t
i
o
n
o
f
S
t
a
t
e
H
i
g
h
w
a
y
a
n
d
Tr
a
n
sp
o
r
t
a
t
i
o
n
O
f
f
i
c
i
a
l
s
(
A
A
S
H
TO
)
a
n
d
R
o
a
d
I
n
f
o
r
m
a
t
i
o
n
P
r
o
g
r
a
m,
R
o
u
g
h
ro
a
d
s
a
h
e
a
d
:
f
i
x
t
h
e
m
n
o
w
o
r
p
a
y
f
o
r
t
h
e
m
l
a
t
e
r
.
W
a
sh
i
n
g
t
o
n
D
.
C
.
:
A
A
S
H
TO
,
2
0
0
9
.
[
9
]
H
.
Z
h
a
n
g
,
H
.
L
i
n
,
Y
.
L
i
,
Y
.
Zh
a
n
g
,
a
n
d
C
.
F
a
n
g
,
“
M
a
p
p
i
n
g
u
r
b
a
n
i
m
p
e
r
v
i
o
u
s
s
u
r
f
a
c
e
w
i
t
h
d
u
a
l
-
p
o
l
a
r
i
me
t
r
i
c
S
A
R
d
a
t
a
:
a
n
i
mp
r
o
v
e
d
me
t
h
o
d
,
”
L
a
n
d
sc
a
p
e
a
n
d
U
rb
a
n
Pl
a
n
n
i
n
g
,
v
o
l
.
1
5
1
,
p
p
.
5
5
–
6
3
,
J
u
l
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
l
a
n
d
u
r
b
p
l
a
n
.
2
0
1
6
.
0
3
.
0
0
9
.
[
1
0
]
K.
O
u
c
h
i
,
“
R
e
c
e
n
t
t
r
e
n
d
a
n
d
a
d
v
a
n
c
e
o
f
sy
n
t
h
e
t
i
c
a
p
e
r
t
u
r
e
r
a
d
a
r
w
i
t
h
se
l
e
c
t
e
d
t
o
p
i
c
s,
”
Re
m
o
t
e
S
e
n
s
i
n
g
,
v
o
l
.
5
,
n
o
.
2
,
p
p
.
7
1
6
–
8
0
7
,
F
e
b
.
2
0
1
3
,
d
o
i
:
1
0
.
3
3
9
0
/
r
s
5
0
2
0
7
1
6
.
[
1
1
]
E.
S
c
h
n
e
b
e
l
e
,
B
.
F
.
T
a
n
y
u
,
G
.
C
e
r
v
o
n
e
,
a
n
d
N
.
W
a
t
e
r
s,
“
R
e
v
i
e
w
o
f
r
e
m
o
t
e
sen
s
i
n
g
m
e
t
h
o
d
o
l
o
g
i
e
s
f
o
r
p
a
v
e
me
n
t
man
a
g
e
me
n
t
a
n
d
a
ssessm
e
n
t
,
”
E
u
ro
p
e
a
n
T
r
a
n
sp
o
rt
Re
s
e
a
r
c
h
Re
v
i
e
w
,
v
o
l
.
7
,
n
o
.
2
,
J
u
n
.
2
0
1
5
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
2
5
4
4
-
0
1
5
-
0
1
5
6
-
6.
[
1
2
]
R
.
X
u
,
H
.
Zh
a
n
g
,
a
n
d
H
.
L
i
n
,
“
U
r
b
a
n
i
mp
e
r
v
i
o
u
s
su
r
f
a
c
e
s
e
s
t
i
m
a
t
i
o
n
f
r
o
m
o
p
t
i
c
a
l
a
n
d
S
A
R
i
m
a
g
e
r
y
:
a
c
o
mp
r
e
h
e
n
s
i
v
e
c
o
m
p
a
r
i
so
n
,
”
I
E
EE
J
o
u
r
n
a
l
o
f
S
e
l
e
c
t
e
d
T
o
p
i
c
s
i
n
A
p
p
l
i
e
d
E
a
rt
h
O
b
ser
v
a
t
i
o
n
s a
n
d
Re
m
o
t
e
S
e
n
s
i
n
g
,
v
o
l
.
1
0
,
n
o
.
9
,
p
p
.
4
0
1
0
–
4
0
2
1
,
S
e
p
.
2
0
1
7
,
d
o
i
:
1
0
.
1
1
0
9
/
JS
TA
R
S
.
2
0
1
7
.
2
7
0
6
7
4
7
.
[
1
3
]
C
.
E
.
W
o
o
d
c
o
c
k
a
n
d
A
.
H
.
S
t
r
a
h
l
e
r
,
“
Th
e
f
a
c
t
o
r
o
f
sc
a
l
e
i
n
r
e
m
o
t
e
se
n
s
i
n
g
,
”
R
e
m
o
t
e
S
e
n
s
i
n
g
o
f
E
n
v
i
r
o
n
m
e
n
t
,
v
o
l
.
2
1
,
n
o
.
3
,
p
p
.
3
1
1
–
3
3
2
,
A
p
r
.
1
9
8
7
,
d
o
i
:
1
0
.
1
0
1
6
/
0
0
3
4
-
4
2
5
7
(
8
7
)
9
0
0
1
5
-
0.
[
1
4
]
D
.
J.
M
a
r
c
e
a
u
,
“
Th
e
sc
a
l
e
i
ssu
e
i
n
t
h
e
s
o
c
i
a
l
a
n
d
n
a
t
u
r
a
l
sc
i
e
n
c
e
s,”
C
a
n
a
d
i
a
n
J
o
u
r
n
a
l
o
f
Re
m
o
t
e
S
e
n
s
i
n
g
,
v
o
l
.
2
5
,
n
o
.
4
,
p
p
.
3
4
7
–
3
5
6
,
O
c
t
.
1
9
9
9
,
d
o
i
:
1
0
.
1
0
8
0
/
0
7
0
3
8
9
9
2
.
1
9
9
9
.
1
0
8
7
4
7
3
4
.
[
1
5
]
J.
J
u
,
S
.
G
o
p
a
l
,
a
n
d
E.
D
.
K
o
l
a
c
z
y
k
,
“
O
n
t
h
e
c
h
o
i
c
e
o
f
s
p
a
t
i
a
l
a
n
d
c
a
t
e
g
o
r
i
c
a
l
sca
l
e
i
n
r
e
m
o
t
e
s
e
n
si
n
g
l
a
n
d
c
o
v
e
r
c
l
a
ss
i
f
i
c
a
t
i
o
n
,
”
Re
m
o
t
e
S
e
n
s
i
n
g
o
f
E
n
v
i
ro
n
m
e
n
t
,
v
o
l
.
9
6
,
n
o
.
1
,
p
p
.
6
2
–
7
7
,
M
a
y
2
0
0
5
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
r
se.
2
0
0
5
.
0
1
.
0
1
6
.
[
1
6
]
R
.
M
a
u
r
y
a
,
P
.
R
.
G
u
p
t
a
,
a
n
d
A
.
S
.
S
h
u
k
l
a
,
“
R
o
a
d
e
x
t
r
a
c
t
i
o
n
u
s
i
n
g
k
-
m
e
a
n
s
c
l
u
st
e
r
i
n
g
a
n
d
m
o
r
p
h
o
l
o
g
i
c
a
l
o
p
e
r
a
t
i
o
n
s,”
i
n
2
0
1
1
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
I
m
a
g
e
I
n
f
o
rm
a
t
i
o
n
Pro
c
e
ss
i
n
g
,
I
EEE,
N
o
v
.
2
0
1
1
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
I
P
.
2
0
1
1
.
6
1
0
8
8
3
9
.
[
1
7
]
J.
C
h
e
n
g
,
G
.
G
a
o
,
X
.
K
u
,
a
n
d
J.
S
u
n
,
“
R
e
v
i
e
w
o
f
r
o
a
d
n
e
t
w
o
r
k
e
x
t
r
a
c
t
i
o
n
f
r
o
m
S
A
R
i
ma
g
e
s,
”
J
o
u
r
n
a
l
o
f
I
m
a
g
e
a
n
d
G
ra
p
h
i
c
s
,
v
o
l
.
1
8
,
n
o
.
1
,
p
p
.
1
1
–
2
3
,
2
0
1
3
,
d
o
i
:
1
0
.
1
1
8
3
4
/
j
i
g
.
2
0
1
3
0
1
0
2
.
[
1
8
]
J
.
H
.
C
h
e
n
g
,
R
o
a
d
e
x
t
r
a
c
t
i
o
n
i
n
h
i
g
h
-
r
e
s
o
l
u
t
i
o
n
S
A
R
i
m
a
g
e
s
.
C
h
a
n
g
s
h
a
:
N
a
t
i
o
n
a
l
U
n
i
v
e
r
s
i
t
y
o
f
D
e
f
e
n
s
e
T
e
c
h
n
o
l
o
g
y
,
p
p
.
1
-
1
3
2
,
2
0
1
3
.
[
1
9
]
A
.
F
e
r
r
e
t
t
i
,
A
.
M
o
n
t
i
-
G
u
a
r
n
i
e
r
i
,
C
.
P
r
a
t
i
,
a
n
d
F
.
R
o
c
c
a
,
I
n
S
AR
p
ri
n
c
i
p
l
e
s:
g
u
i
d
e
l
i
n
e
s
f
o
r
S
A
R
i
n
t
e
rf
e
ro
m
e
t
r
y
p
r
o
c
e
ssi
n
g
a
n
d
i
n
t
e
r
p
re
t
a
t
i
o
n
.
ESA
P
u
b
l
i
c
a
t
i
o
n
s,
2
0
0
7
.
[
2
0
]
F
.
A
r
g
e
n
t
i
,
A
.
La
p
i
n
i
,
T
.
B
i
a
n
c
h
i
,
a
n
d
L.
A
l
p
a
r
o
n
e
,
“
A
t
u
t
o
r
i
a
l
o
n
s
p
e
c
k
l
e
r
e
d
u
c
t
i
o
n
i
n
sy
n
t
h
e
t
i
c
a
p
e
r
t
u
r
e
r
a
d
a
r
i
mag
e
s,
”
I
EE
E
G
e
o
sc
i
e
n
c
e
a
n
d
Re
m
o
t
e
S
e
n
si
n
g
M
a
g
a
zi
n
e
,
v
o
l
.
1
,
n
o
.
3
,
p
p
.
6
–
3
5
,
S
e
p
.
2
0
1
3
,
d
o
i
:
1
0
.
1
1
0
9
/
M
G
R
S
.
2
0
1
3
.
2
2
7
7
5
1
2
.
[
2
1
]
A
.
S
.
Y
o
mm
y
,
R
.
Li
u
,
a
n
d
A
.
S
.
W
u
,
“
S
A
R
i
ma
g
e
d
e
s
p
e
c
k
l
i
n
g
u
si
n
g
r
e
f
i
n
e
d
L
e
e
f
i
l
t
e
r
,
”
i
n
2
0
1
5
7
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
t
e
l
l
i
g
e
n
t
H
u
m
a
n
-
M
a
c
h
i
n
e
S
y
st
e
m
s
a
n
d
C
y
b
e
rn
e
t
i
c
s
,
I
EEE,
A
u
g
.
2
0
1
5
,
p
p
.
2
6
0
–
2
6
5
,
d
o
i
:
1
0
.
1
1
0
9
/
I
H
M
S
C
.
2
0
1
5
.
2
3
6
.
[
2
2
]
Z.
M
e
y
e
r
a
n
d
P
.
C
i
c
h
o
c
k
i
,
“
A
n
a
l
y
si
s
o
f
c
o
m
b
i
n
e
d
p
i
l
e
r
a
f
t
f
o
u
n
d
a
t
i
o
n
s
b
a
se
d
o
n
a
s
t
a
t
i
c
l
o
a
d
t
e
st
,
”
C
i
v
i
l
En
g
i
n
e
e
ri
n
g
a
n
d
Arc
h
i
t
e
c
t
u
r
e
,
v
o
l
.
8
,
n
o
.
2
,
p
p
.
1
0
1
–
1
1
2
,
A
p
r
.
2
0
2
0
,
d
o
i
:
1
0
.
1
3
1
8
9
/
c
e
a
.
2
0
2
0
.
0
8
0
2
0
8
.
[
2
3
]
A
i
r
b
u
s
D
e
f
e
n
c
e
a
n
d
S
p
a
c
e
I
G
e
o
-
I
n
t
e
l
l
i
g
e
n
c
e
,
R
a
d
i
o
m
e
t
ri
c
c
a
l
i
b
ra
t
i
o
n
o
f
t
e
rra
s
a
r
-
x
d
a
t
a
:
b
e
t
a
n
a
u
g
h
t
a
n
d
si
g
m
a
n
a
u
g
h
t
c
o
e
f
f
i
c
i
e
n
t
c
a
l
c
u
l
a
t
i
o
n
.
I
n
f
o
t
e
r
r
a
G
mb
H
,
2
0
1
4
.
[
2
4
]
A
.
B
r
a
u
n
a
n
d
L
.
V
e
c
i
,
S
e
n
t
i
n
e
l
-
1
t
o
o
l
b
o
x
:
s
a
r
b
a
s
i
c
s
t
u
t
o
ri
a
l
.
A
r
r
a
y
S
y
st
e
m
s C
o
mp
u
t
i
n
g
I
n
c
.
,
2
0
2
1
.
[
2
5
]
A
.
H
e
n
d
r
y
,
S
.
Q
u
e
g
a
n
,
a
n
d
J.
W
o
o
d
,
“
Th
e
v
i
s
i
b
i
l
i
t
y
o
f
l
i
n
e
a
r
f
e
a
t
u
r
e
s
i
n
S
A
R
i
m
a
g
e
s,
”
i
n
I
n
t
e
r
n
a
t
i
o
n
a
l
G
e
o
s
c
i
e
n
c
e
a
n
d
Re
m
o
t
e
S
e
n
si
n
g
S
y
m
p
o
s
i
u
m
,
“
R
e
m
o
t
e
S
e
n
s
i
n
g
:
Mo
v
i
n
g
T
o
w
a
r
d
t
h
e
2
1
s
t
C
e
n
t
u
r
y
”
.
,
I
EEE,
p
p
.
1
5
17
–
1
5
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
I
G
A
R
S
S
.
1
9
8
8
.
5
6
9
5
0
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ad
v
Ap
p
l Sci
I
SS
N:
2252
-
8
8
1
4
R
o
a
d
p
a
ve
men
t d
ef
o
r
ma
tio
n
u
s
in
g
r
emo
te
s
en
s
in
g
tech
n
iq
u
e
(
K
is
h
a
n
P
a
tel
)
351
[
2
6
]
Y
.
L
i
n
,
H
.
Z
h
a
n
g
,
G
.
Li
,
T.
W
a
n
g
,
L.
W
a
n
,
a
n
d
H
.
Li
n
,
“
I
mp
r
o
v
i
n
g
i
m
p
e
r
v
i
o
u
s
s
u
r
f
a
c
e
e
x
t
r
a
c
t
i
o
n
w
i
t
h
sh
a
d
o
w
-
b
a
s
e
d
s
p
a
r
se
r
e
p
r
e
s
e
n
t
a
t
i
o
n
f
r
o
m
o
p
t
i
c
a
l
,
S
A
R
,
a
n
d
l
i
D
A
R
d
a
t
a
,
”
I
EE
E
J
o
u
r
n
a
l
o
f
S
e
l
e
c
t
e
d
T
o
p
i
c
s
i
n
A
p
p
l
i
e
d
E
a
rt
h
O
b
s
e
rv
a
t
i
o
n
s
a
n
d
Re
m
o
t
e
S
e
n
si
n
g
,
v
o
l
.
1
2
,
n
o
.
7
,
p
p
.
2
4
1
7
–
2
4
2
8
,
J
u
l
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
JS
TA
R
S
.
2
0
1
9
.
2
9
0
7
7
4
4
.
[
2
7
]
H
.
Z
h
a
n
g
,
L.
W
a
n
,
T.
W
a
n
g
,
Y
.
Li
n
,
H
.
Li
n
,
a
n
d
Z.
Z
h
e
n
g
,
“
I
mp
e
r
v
i
o
u
s
su
r
f
a
c
e
e
st
i
ma
t
i
o
n
f
r
o
m
o
p
t
i
c
a
l
a
n
d
p
o
l
a
r
i
me
t
r
i
c
S
A
R
d
a
t
a
u
si
n
g
sma
l
l
-
p
a
t
c
h
e
d
d
e
e
p
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
t
w
o
r
k
s
:
a
c
o
mp
a
r
a
t
i
v
e
s
t
u
d
y
,
”
I
EEE
J
o
u
r
n
a
l
o
f
S
e
l
e
c
t
e
d
T
o
p
i
c
s
i
n
A
p
p
l
i
e
d
E
a
rt
h
O
b
serv
a
t
i
o
n
s
a
n
d
R
e
m
o
t
e
S
e
n
s
i
n
g
,
v
o
l
.
1
2
,
n
o
.
7
,
p
p
.
2
3
7
4
–
2
3
8
7
,
J
u
l
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
JS
TA
R
S
.
2
0
1
9
.
2
9
1
5
2
7
7
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
K
ish
a
n
Pa
te
l
is
a
re
se
a
rc
h
s
c
h
o
lar
in
t
h
e
De
p
a
rtme
n
t
o
f
Ci
v
i
l
En
g
in
e
e
rin
g
a
t
P
a
n
d
it
De
e
n
d
a
y
a
l
E
n
e
rg
y
Un
i
v
e
rsity
,
I
n
d
ia.
He
h
o
ld
s
a
n
M
.
Tec
h
d
e
g
re
e
i
n
In
fra
str
u
c
tu
re
En
g
i
n
e
e
rin
g
a
n
d
M
a
n
a
g
e
m
e
n
t
sp
e
c
ializ
in
g
i
n
Tran
sp
o
rtatio
n
En
g
i
n
e
e
rin
g
.
His
re
se
a
rc
h
a
re
a
s
a
re
p
a
v
e
m
e
n
t
m
a
in
te
n
a
n
c
e
,
d
e
fe
c
t
d
e
tec
ti
o
n
,
a
n
d
p
a
v
e
m
e
n
t
m
a
n
a
g
e
m
e
n
t
sy
ste
m
s
.
He
h
a
s
p
re
se
n
ted
m
o
re
th
a
n
5
re
se
a
rc
h
p
a
p
e
rs
at
v
a
rio
u
s
i
n
tern
a
ti
o
n
a
l
c
o
n
fe
re
n
c
e
s.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
k
is
h
a
n
.
p
p
h
d
1
9
@s
o
t.
p
d
p
u
.
a
c
.
i
n
.
Dr
.
Ra
je
sh
G
u
ja
r
is
c
u
rre
n
tl
y
a
n
As
so
c
iate
P
ro
fe
ss
o
r
in
th
e
De
p
a
rtme
n
t
o
f
Civ
il
En
g
i
n
e
e
rin
g
a
t
t
h
e
S
c
h
o
o
l
o
f
Tec
h
n
o
l
o
g
y
,
P
a
n
d
it
De
e
n
d
a
y
a
l
En
e
rg
y
U
n
iv
e
rsit
y
.
He
h
o
l
d
s
a
P
h
.
D.
in
Tra
n
sp
o
rtat
io
n
E
n
g
in
e
e
rin
g
fr
o
m
S
a
r
d
a
r
Va
ll
a
b
h
b
h
a
i
Na
ti
o
n
a
l
In
st
it
u
te
o
f
Tec
h
n
o
l
o
g
y
,
S
u
ra
t,
e
a
rn
e
d
in
2
0
1
6
.
Ad
d
it
i
o
n
a
ll
y
,
h
e
c
o
m
p
lete
d
h
is
M
.
E.
i
n
Co
n
stru
c
ti
o
n
En
g
i
n
e
e
rin
g
a
n
d
M
a
n
a
g
e
m
e
n
t
f
ro
m
B.
V.M
.
E
n
g
i
n
e
e
rin
g
Co
ll
e
g
e
,
S
.
P
.
Un
i
v
e
rsity
V.V.
Na
g
a
r,
An
a
n
d
,
in
1
9
9
9
,
a
n
d
h
is
B.
E.
in
C
iv
il
-
Wate
r
M
a
n
a
g
e
m
e
n
t
fro
m
S
.
G
.
G
.
S
.
C.
E.
a
n
d
T,
N
a
n
d
e
d
(
M
.
S
),
Dr.
B.
A
.
M
a
ra
t
h
wa
d
a
Un
i
v
e
rsity
,
Au
ra
n
g
a
b
a
d
(
M
.
S
.
),
i
n
1
9
9
7
.
He
h
a
s
a
n
e
x
ten
siv
e
e
d
u
c
a
ti
o
n
a
l
b
a
c
k
g
ro
u
n
d
a
n
d
is
a
ffil
iate
d
wi
th
in
stit
u
ti
o
n
s
s
u
c
h
a
s
S
.
V.
Na
ti
o
n
a
l
In
stit
u
te
o
f
Tec
h
n
o
l
o
g
y
,
S
u
ra
t,
CEP
T
U
n
iv
e
rsit
y
,
a
n
d
Lam
a
r
U
n
iv
e
rsit
y
,
Be
a
u
m
o
n
t,
Te
x
a
s,
USA.
He
h
a
s
re
c
e
iv
e
d
re
c
o
g
n
it
i
o
n
fo
r
h
is
c
o
n
tri
b
u
ti
o
n
s,
in
c
l
u
d
i
n
g
b
e
in
g
a
wa
rd
e
d
t
h
e
“
Be
st
P
e
rfo
rm
a
n
c
e
in
P
u
b
li
c
Wo
r
k
s
De
p
a
rtme
n
t
i
n
Ak
o
la
M
u
n
i
c
ip
a
l
Co
r
p
o
ra
ti
o
n
,
Ak
o
la
(M
a
h
a
ra
sh
tra).”
He
h
a
s
a
n
imp
r
e
ss
iv
e
p
u
b
li
c
a
ti
o
n
re
c
o
r
d
wit
h
n
u
m
e
ro
u
s
a
rti
c
les
,
c
h
a
p
ters
,
a
n
d
c
o
n
fe
re
n
c
e
p
a
p
e
rs.
No
ta
b
le
p
u
b
li
c
a
ti
o
n
s
in
c
l
u
d
e
a
rti
c
les
in
p
re
stig
io
u
s
jo
u
rn
a
ls
su
c
h
a
s
“
In
tern
a
ti
o
n
a
l
Jo
u
r
n
a
l
o
f
C
o
n
str
u
c
ti
o
n
M
a
n
a
g
e
m
e
n
t,
”
“
Jo
u
r
n
a
l
o
f
Th
e
I
n
stit
u
ti
o
n
o
f
En
g
in
e
e
rs
(In
d
ia):
S
e
ries
A,”
a
n
d
“
M
a
teria
ls
To
d
a
y
P
ro
c
e
e
d
i
n
g
s.”
His
re
se
a
rc
h
sp
a
n
s
v
a
rio
u
s
t
o
p
ics
,
in
c
lu
d
in
g
s
u
sta
in
a
b
le
ro
a
d
m
a
in
t
e
n
a
n
c
e
,
th
e
a
p
p
l
ica
ti
o
n
o
f
m
a
c
h
i
n
e
lea
rn
i
n
g
tec
h
n
i
q
u
e
s
in
tran
sp
o
rtati
o
n
p
r
o
jec
ts,
a
n
d
t
h
e
u
ti
li
z
a
ti
o
n
o
f
a
lt
e
rn
a
ti
v
e
m
a
teria
ls
in
c
o
n
str
u
c
ti
o
n
.
He
h
a
s
p
re
se
n
ted
h
is
wo
r
k
a
t
c
o
n
fe
re
n
c
e
s
a
n
d
h
a
s
a
c
ti
v
e
l
y
c
o
n
tri
b
u
te
d
t
o
th
e
a
c
a
d
e
m
ic
c
o
m
m
u
n
i
ty
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
ra
je
sh
.
g
u
jar@s
o
t.
p
d
p
u
.
a
c
.
i
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.