I
AE
S
I
nte
rna
t
io
na
l J
o
urna
l o
f
Art
if
icia
l In
t
ellig
ence
(
I
J
-
AI
)
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
,
p
p
.
119
~
126
I
SS
N:
2252
-
8938
119
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AI
The Chea
pes
t
Sh
o
p See
k
er
:
A
New
Algo
rith
m
For
O
pti
m
i
z
a
tion
Proble
m
in
a
Co
n
tinous
Space
P
.
B
.
Sh
o
la
De
p
a
rtm
e
n
t
o
f
Co
m
p
u
ter S
c
ien
c
e
,
Un
iv
e
rsity
o
f
Ilo
rin
,
Ilo
r
in
,
Ni
g
e
ria.
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
7
,
2
0
1
6
R
ev
i
s
ed
A
u
g
10
,
201
6
A
cc
ep
ted
A
u
g
u
s
t
2
6
,
2
0
1
6
In
th
is
p
a
p
e
r
a
p
o
p
u
latio
n
-
b
a
se
d
m
e
ta
-
h
e
u
risti
c
a
lg
o
rit
h
m
f
o
r
o
p
ti
m
iza
ti
o
n
p
ro
b
lem
s
in
a
c
o
n
ti
n
o
u
s
sp
a
c
e
is
p
re
se
n
ted
.
T
h
e
a
lg
o
rit
h
m
,
h
e
re
c
a
ll
e
d
c
h
e
a
p
e
st
sh
o
p
se
e
k
e
r
is
m
o
d
e
led
a
f
ter
a
g
ro
u
p
o
f
sh
o
p
p
e
rs
se
e
k
in
g
to
i
d
e
n
ti
fy
th
e
c
h
e
a
p
e
st
sh
o
p
(
a
m
o
n
g
m
a
n
y
a
v
a
il
a
b
le
)
f
o
r
sh
o
p
p
in
g
.
T
h
e
a
lg
o
rit
h
m
wa
s
tes
t
e
d
o
n
m
a
n
y
b
e
n
c
h
m
a
rk
f
u
n
c
ti
o
n
s
w
it
h
th
e
re
su
lt
c
o
m
p
a
re
d
w
it
h
th
o
se
f
ro
m
so
m
e
o
th
e
r
m
e
th
o
d
s.
T
h
e
a
lg
o
rit
h
m
a
p
p
e
a
rs
to
h
a
v
e
a
b
e
tt
e
r
su
c
c
e
ss
ra
te
o
f
h
it
ti
n
g
th
e
g
lo
b
a
l
o
p
ti
m
u
m
p
o
in
t
o
f
a
f
u
n
c
ti
o
n
a
n
d
o
f
t
h
e
ra
te
o
f
c
o
n
v
e
rg
e
n
c
e
(in
term
s
o
f
th
e
n
u
m
b
e
r
o
f
it
e
ra
ti
o
n
s
re
q
u
ired
to
re
a
c
h
th
e
o
p
ti
m
u
m
v
a
lu
e
)
f
o
r
so
m
e
f
u
n
c
ti
o
n
s
in
sp
it
e
o
f
it
s sim
p
li
c
it
y
.
K
ey
w
o
r
d
:
C
o
n
ti
n
o
u
s
Me
tah
e
u
r
is
tic
Op
ti
m
izatio
n
P
o
p
u
latio
n
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
P
.
B
.
Sh
o
la
,
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter S
c
ien
c
e
,
Un
iv
e
rsit
y
o
f
I
lo
r
in
,
I
lo
r
in
,
Nig
er
ia.
E
m
ail: s
h
o
la.
b
p
@
u
n
i
lo
r
in
.
ed
u
.
n
g
1.
I
NT
RO
D
UCT
I
O
N
Ma
n
y
o
p
ti
m
iza
tio
n
m
et
h
o
d
s
h
av
e
b
ee
n
d
ev
elo
p
ed
f
o
r
s
o
lv
i
n
g
o
p
ti
m
izatio
n
p
r
o
b
lem
s
.
Am
o
n
g
th
e
s
e
ar
e
ex
ac
t
m
et
h
o
d
s
s
u
c
h
as
d
y
n
a
m
ic
p
r
o
g
r
a
m
m
in
g
,
b
r
an
ch
an
d
b
o
u
n
d
b
u
t
th
e
s
e
ar
e
n
o
t
s
u
itab
le
f
o
r
lar
g
e
s
ca
le
p
r
o
b
lem
s
a
s
t
h
e
y
h
a
v
e
ex
p
o
n
e
n
tia
l
r
u
n
n
in
g
ti
m
e
.
T
h
e
tr
ad
itio
n
al
n
u
m
er
ical
m
et
h
o
d
s
s
u
ch
a
s
(
co
n
j
u
g
ate)
g
r
ad
ien
t
m
et
h
o
d
an
d
its
li
k
es
n
o
t
o
n
l
y
r
eq
u
ir
e
s
o
m
e
co
n
d
itio
n
s
(
f
o
r
in
s
ta
n
c
e
d
if
f
er
en
tiab
ilit
y
)
th
at
m
a
y
v
io
late
t
h
eir
ap
p
licab
ilit
y
to
s
o
m
e
p
r
o
b
le
m
s
b
u
t
u
s
u
all
y
g
et
tr
ap
p
ed
in
lo
ca
l
o
p
ti
m
u
m
s
w
h
e
n
ap
p
lied
to
o
p
tim
izatio
n
p
r
o
b
l
e
m
s
w
i
th
m
u
lti
-
m
o
d
al
o
b
j
ec
t
iv
e
f
u
n
ctio
n
s
.
T
h
e
h
e
u
r
is
t
ic
-
b
ased
m
eth
o
d
s
ar
e
li
m
ited
in
ap
p
licatio
n
to
th
o
s
e
p
r
o
b
lem
s
f
o
r
w
h
ic
h
th
e
h
eu
r
i
s
tics
ar
e
d
ev
is
ed
.
T
h
e
g
en
er
al
p
u
r
p
o
s
e
h
eu
r
is
tics
s
u
c
h
as
g
r
ee
d
y
m
e
th
o
d
,
h
ill
cli
m
b
i
n
g
,
a
n
d
n
ea
r
est
n
ei
g
h
b
o
u
r
u
s
u
all
y
p
r
o
d
u
ce
n
ea
r
-
o
p
ti
m
u
m
s
o
lu
tio
n
s
.
I
n
d
ee
d
f
in
d
i
n
g
a
m
e
th
o
d
th
a
t c
o
u
ld
p
r
o
d
u
ce
s
o
lu
tio
n
to
all
o
p
ti
m
izat
io
n
p
r
o
b
le
m
s
i
s
p
r
ac
ticall
y
i
m
p
o
s
s
ib
le[
1
]
.
T
h
e
o
n
ly
av
a
ilab
le
ap
p
r
o
ac
h
o
r
o
p
tio
n
w
e
ar
e
lef
t
w
ith
,
is
t
h
en
th
at
o
f
d
ev
elo
p
in
g
m
et
h
o
d
s
th
at
ar
e
a
b
l
e
t
o
s
o
lv
e
s
o
m
e
clas
s
es
o
f
t
h
e
p
r
o
b
le
m
b
u
t
u
n
ab
le
to
s
o
lv
e
o
t
h
e
r
s
:
ea
ch
o
p
ti
m
izatio
n
m
et
h
o
d
ea
ch
w
it
h
it
s
o
w
n
ar
ea
o
f
s
tr
en
g
th
a
n
d
w
ea
k
n
es
s
.
T
h
is
p
ap
er
p
r
esen
ts
a
p
o
p
u
lati
o
n
-
b
ased
,
m
eta
-
h
e
u
r
is
t
ic
m
et
h
o
d
f
o
r
s
o
l
v
in
g
o
p
ti
m
izatio
n
p
r
o
b
lem
i
n
a
co
n
tin
o
u
s
d
o
m
ain
b
ased
o
n
a
m
o
d
el
th
at
m
i
m
ics
t
h
e
b
eh
av
io
r
o
f
a
g
r
o
u
p
o
f
s
h
o
p
p
er
s
co
llab
o
r
atin
g
to
g
eth
er
to
id
en
t
if
y
t
h
e
ch
ea
p
e
s
t s
h
o
p
to
b
u
y
s
o
m
e
ite
m
s
i
n
a
s
p
ec
if
ied
ar
ea
o
r
r
eg
io
n
.
I
n
g
en
er
al
a
h
eu
r
i
s
tic
-
b
ased
m
e
th
o
d
u
s
e
s
a
k
i
n
d
o
f
m
ea
s
u
r
e
o
r
r
u
le
to
g
u
i
d
e
th
e
s
ea
r
ch
p
r
o
ce
s
s
w
it
h
in
th
e
s
ea
r
ch
s
p
ac
e
h
o
p
ef
u
ll
y
to
w
ar
d
s
t
h
e
s
o
l
u
tio
n
.
A
g
o
o
d
h
eu
r
is
tic
f
o
r
a
g
iv
e
n
p
r
o
b
le
m
e
n
ab
les
t
h
e
s
ea
r
c
h
p
r
o
ce
d
u
r
e
to
av
o
id
u
n
p
r
o
f
itab
le
p
at
h
o
r
d
ea
d
-
en
d
(
av
o
id
in
g
e
x
ce
s
s
iv
e
b
ac
k
t
r
ac
k
in
g
)
th
er
eb
y
h
a
s
ten
in
g
t
h
e
s
ea
r
ch
p
r
o
ce
s
s
to
w
ar
d
s
r
ea
ch
i
n
g
a
s
o
lu
tio
n
to
th
e
p
r
o
b
lem
in
a
r
ea
s
o
n
ab
l
e
a
m
o
u
n
t o
f
ti
m
e.
Of
a
g
e
n
er
al
u
tili
t
y
i
s
th
e
m
eta
-
h
e
u
r
is
tic
w
h
ich
ca
n
b
e
ap
p
lied
to
m
a
n
y
o
p
ti
m
izatio
n
p
r
o
b
l
e
m
s
e
v
e
n
th
o
u
g
h
t
h
e
y
co
u
ld
o
n
l
y
g
u
ar
an
tee
n
ea
r
o
p
ti
m
u
m
s
o
l
u
tio
n
(
an
d
n
o
t
o
p
ti
m
u
m
)
in
m
an
y
ca
s
es.
A
m
eta
-
h
eu
r
i
s
tic
i
s
a
h
i
g
h
-
lev
el
p
r
o
c
ed
u
r
e
o
r
h
eu
r
is
tic
d
e
s
ig
n
ed
to
f
i
n
d
,
g
en
er
ate
o
r
s
elec
t a
h
e
u
r
is
tic
(
p
ar
tial sear
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
1
9
–
1
2
6
120
alg
o
r
ith
m
)
t
h
at
m
a
y
p
r
o
v
id
e
a
s
u
f
f
icie
n
tl
y
g
o
o
d
s
o
lu
t
io
n
to
a
n
o
p
ti
m
iza
tio
n
p
r
o
b
lem
e
s
p
ec
iall
y
w
it
h
in
co
m
p
lete
o
r
i
m
p
er
f
ec
t
i
n
f
o
r
m
atio
n
o
r
li
m
ited
co
m
p
u
tatio
n
ca
p
ac
it
y
[
2
]
.
I
n
d
ee
d
m
eta
-
h
eu
r
i
s
tic
s
ee
m
s
y
et
to
h
a
v
e
a
s
er
io
u
s
r
iv
al
(
w
it
h
r
e
s
p
ec
t
to
co
m
p
u
tatio
n
a
l
ti
m
e)
w
h
e
n
it
co
m
es
to
s
o
l
v
i
n
g
lar
g
e
s
ca
le
o
p
ti
m
izatio
n
p
r
o
b
lem
.
T
h
es
e
o
th
er
m
et
h
o
d
s
1
.
1
.
Chea
p
est
Sh
o
p See
k
er
:
T
he
m
o
del a
nd
t
he
pro
po
s
e
d Alg
o
rit
h
m
T
h
e
ch
ea
p
estS
h
o
p
See
k
er
s
h
er
e
p
r
o
p
o
s
ed
is
m
o
d
eled
af
ter
a
g
r
o
u
p
o
f
s
h
o
p
p
er
s
co
o
p
er
ativ
el
y
s
ee
k
i
n
g
f
o
r
th
e
ch
ea
p
e
s
t
s
h
o
p
f
o
r
s
h
o
p
p
in
g
.
C
o
n
s
eq
u
en
tl
y
t
h
e
m
et
h
o
d
is
a
p
o
p
u
lat
io
n
-
b
ased
t
y
p
e.
A
p
o
p
u
l
atio
n
b
ased
tech
n
iq
u
e
e
n
g
a
g
es
a
co
llectio
n
o
f
ag
e
n
t
s
to
co
o
p
er
ativ
el
y
e
x
p
lo
r
e
th
e
s
ea
r
ch
s
p
ac
e
f
o
r
a
s
o
lu
tio
n
to
a
g
iv
e
n
o
p
ti
m
iz
atio
n
p
r
o
b
lem
.
Un
l
ik
e
a
s
i
n
g
le
s
o
lu
tio
n
s
ea
r
c
h
-
b
ased
ap
p
r
o
ac
h
th
a
t
m
o
d
i
f
ies
an
d
i
m
p
r
o
v
e
s
o
n
a
s
in
g
le
ca
n
d
id
ate
s
o
lu
t
io
n
at
ea
c
h
iter
atio
n
s
tep
,
t
h
e
p
o
p
u
latio
n
-
b
as
ed
m
ain
ta
in
s
an
d
i
m
p
r
o
v
es
o
n
m
u
ltip
le
ca
n
d
id
a
te
s
o
lu
tio
n
s
at
ea
ch
s
tep
o
f
its
iter
atio
n
.
T
h
e
s
u
cc
ess
o
f
th
e
m
et
h
o
d
h
in
g
es
o
n
th
e
a.
ab
ilit
y
o
f
t
h
e
i
n
d
iv
id
u
al
in
t
h
e
g
r
o
u
p
to
r
e
m
e
m
b
er
p
ast e
x
p
er
ien
ce
s
(
i.e
th
e
b
est p
o
s
it
io
n
attain
ed
s
o
f
ar
)
b.
co
o
p
er
atio
n
(
o
f
g
r
o
u
p
m
e
m
b
er
s
in
ter
m
s
o
f
e
x
p
er
ien
ce
s
h
ar
i
n
g
i
n
p
u
r
s
u
an
t o
f
th
e
co
m
m
o
n
g
o
al)
.
c.
co
m
p
eti
tio
n
(
o
f
g
r
o
u
p
m
e
m
b
er
s
w
o
r
k
i
n
g
to
s
u
r
v
iv
e
o
r
b
e
r
elev
an
t
i
n
th
e
g
r
o
u
p
)
.
I
n
ten
t
to
lo
o
k
f
o
r
p
o
s
itio
n
th
at
co
u
ld
i
m
p
r
o
v
e
o
n
th
e
cu
r
r
en
t b
es
t g
lo
b
al
p
o
s
itio
n
(
in
p
u
r
s
u
a
n
t
o
f
t
h
e
co
m
m
o
n
g
o
al)
.
d.
I
n
d
ep
en
d
en
ce
an
d
s
e
lf
–
i
m
p
r
o
v
e
m
e
n
t
o
f
ea
c
h
m
e
m
b
er
o
f
th
e
g
r
o
u
p
:
th
e
ab
ilit
y
o
f
th
e
in
d
iv
id
u
a
l
ag
en
t
to
in
d
ep
en
d
en
tl
y
d
ete
r
m
in
e
its
o
w
n
m
o
v
e
m
en
t
a
n
d
its
i
n
te
n
t
to
i
m
p
r
o
v
e
o
n
its
cu
r
r
e
n
t
p
o
s
itio
n
.
B
ased
o
n
th
ese
p
r
e
m
is
e
s
th
e
f
o
llo
w
in
g
as
s
u
m
p
tio
n
s
ar
e
m
a
d
e
to
p
r
o
d
u
ce
th
e
alg
o
r
ith
m
a.
T
h
e
s
ea
r
ch
s
p
ac
e
i
s
d
en
s
e
l
y
p
ac
k
ed
w
it
h
s
h
o
p
s
av
a
ilab
le
f
o
r
s
h
o
p
p
in
g
[
ea
ch
s
h
o
p
i
s
a
ca
n
d
id
ate
s
o
lu
tio
n
o
r
a
p
o
s
itio
n
to
b
e
te
s
ted
f
o
r
o
p
t
im
a
lit
y
]
b.
T
h
er
e
is
a
s
p
ec
i
f
ied
n
u
m
b
er
o
f
s
h
o
p
p
er
s
(
i.e
b
u
y
er
s
lo
o
k
in
g
f
o
r
c
h
ea
p
est
s
h
o
p
f
o
r
s
h
o
p
p
in
g
)
v
is
i
tin
g
t
h
ese
s
h
o
p
s
,
all
w
it
h
t
h
e
co
m
m
o
n
g
o
al
:
w
o
r
k
in
g
co
o
p
er
ativ
el
y
to
id
en
t
if
y
t
h
e
c
h
e
ap
est s
h
o
p
a
m
o
n
g
th
e
s
h
o
p
s
.
c.
T
h
e
s
h
o
p
p
er
s
co
m
m
u
n
icate
w
it
h
ea
ch
o
th
er
(
s
h
ar
in
g
th
ei
r
ex
p
er
ien
ce
o
r
a
d
v
en
tu
r
e
–
s
h
ar
in
g
th
e
ch
ea
p
est s
h
o
p
s
th
e
y
h
a
v
e
atta
in
ed
s
o
f
ar
)
.
d.
E
ac
h
s
h
o
p
p
er
u
s
e
s
t
h
is
in
f
o
r
m
at
io
n
r
ec
ei
v
ed
f
r
o
m
o
t
h
er
s
h
o
p
p
er
s
an
d
h
is
p
ast
e
x
p
er
ien
ce
to
d
eter
m
in
e
t
h
e
n
e
x
t s
h
o
p
to
v
is
it.
e.
A
s
h
o
p
p
er
at
o
r
n
ea
r
th
e
cu
r
r
en
t
c
h
ea
p
est
s
h
o
p
m
a
y
s
o
m
eti
m
e
s
i
g
n
o
r
e
h
i
s
e
x
p
er
ien
ce
o
r
in
f
o
r
m
atio
n
a
v
ailab
le
an
d
s
o
lau
n
c
h
o
u
t
to
ex
p
lo
r
e
o
th
er
p
o
s
itio
n
s
in
an
atte
m
p
t
to
f
i
n
d
a
p
o
in
t
b
etter
th
an
t
h
e
cu
r
r
e
n
t
g
lo
b
a
l
o
p
ti
m
u
m
p
o
in
t:
i
n
te
n
t
to
i
m
p
r
o
v
e
o
n
t
h
e
cu
r
r
en
t
g
lo
b
al
b
est
(
in
p
u
r
s
u
a
n
t o
r
f
u
r
th
er
a
n
ce
o
f
th
e
co
m
m
o
n
g
o
al
o
f
s
ee
k
i
n
g
t
h
e
c
h
ea
p
est s
h
o
p
)
.
I
n
m
a
k
i
n
g
d
ec
is
io
n
ab
o
u
t
it
s
n
ex
t
p
o
s
it
io
n
,
th
e
i
th
s
ee
k
er
(
f
o
r
i=1
,
2
,
.
.
p
o
p
u
latio
n
Size)
co
n
s
id
er
s
ad
j
u
s
tin
g
it
s
c
u
r
r
en
t
p
o
s
itio
n
to
(
i.e
m
o
v
i
n
g
to
a
n
eig
h
b
o
u
r
in
g
s
h
o
p
)
an
d
t
h
en
m
o
v
in
g
alo
n
g
th
e
d
ir
ec
tio
n
(
)
to
s
elec
t
th
e
p
o
in
t,
(
)
(
)
w
h
er
e
is
a
d
iag
o
n
al
m
atr
i
x
f
o
r
s
o
m
e
d
iag
o
n
al
en
tr
ies.
T
h
is
is
o
b
tain
ed
b
y
n
o
ti
n
g
th
at
ca
n
b
e
w
r
itte
n
as
f
o
r
s
o
m
e
d
iag
o
n
al
m
atr
i
x
.
T
h
e
ad
d
itio
n
o
f
(
w
h
ic
h
ca
n
b
e
r
an
d
o
m
o
r
o
th
er
w
is
e)
p
r
o
v
id
es
w
a
y
o
f
e
n
h
a
n
ci
n
g
d
i
v
er
s
i
f
icati
o
n
o
r
ex
p
lo
r
ativ
e
p
r
o
ce
s
s
.
Sin
ce
I
+D
’
is
s
till
ar
b
itra
r
y
d
u
e
to
ar
b
itra
r
in
ess
o
f
D’
w
e
co
u
ld
eq
u
al
w
r
i
te
th
e
ab
o
v
e
as
(
)
f
o
r
a
d
iag
o
n
al
m
a
tr
ix
D.
T
h
is
p
o
s
itio
n
is
n
o
w
co
m
p
ar
ed
w
it
h
t
h
e
p
o
s
itio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
Th
e
C
h
ea
p
est S
h
o
p
S
ee
ke
r
:
A
N
ew A
lg
o
r
ith
m
F
o
r
Op
timiz
a
t
io
n
P
r
o
b
lem
in
a
C
o
n
tin
o
u
s
S
p
a
ce
(
P
.
B
.
S
h
o
la
)
121
o
b
tain
ed
b
y
m
o
v
in
g
i
n
th
e
d
ir
ec
tio
n
f
r
o
m
its
c
u
r
r
en
t
p
o
s
itio
n
.
T
h
e
b
etter
o
f
th
e
p
o
s
itio
n
i
n
ter
m
s
o
f
t
h
e
f
i
t
n
es
s
v
al
u
e
is
t
h
e
n
s
elec
ted
:
{
(
)
(
)
Ho
w
e
v
er
if
th
e
p
o
s
itio
n
s
elec
ted
is
to
o
clo
s
e
to
th
e
cu
r
r
en
t
g
lo
b
al
o
p
tim
u
m
,
th
e
s
ee
k
er
,
(
d
r
iv
en
b
y
th
e
d
esire
to
b
e
r
elev
an
t,
co
m
p
ete,
o
r
im
p
r
o
v
e
o
n
th
e
cu
r
r
en
t
p
o
in
t
)
m
a
y
lau
n
c
h
o
u
t
to
e
x
p
lo
r
e
o
th
er
p
o
in
ts
in
th
e
s
p
ac
e
(
g
en
er
ati
n
g
its
p
o
s
itio
n
r
an
d
o
m
l
y
)
o
t
h
e
r
th
a
n
th
o
s
e
in
th
e
d
ir
ec
tio
n
s
,
(
)
.
B
y
t
h
i
s
ac
t th
e
e
x
p
lo
r
ativ
e
p
r
o
ce
s
s
o
f
t
h
e
alg
o
r
it
h
m
i
s
en
h
a
n
ce
d
.
G
(
)
L
X
Fig
u
r
e
1
.
A
s
h
o
w
o
f
d
ir
ec
tio
n
s
o
f
m
o
v
e
m
e
n
t
o
f
a
p
ar
ticle
f
o
r
th
e
ca
s
e
w
it
h
=0
B
ased
o
n
th
e
m
o
d
el
th
e
f
o
llo
win
g
al
g
o
r
it
h
m
r
es
u
lt
s
.
T
h
e
A
lg
o
r
it
h
m
W
ith
th
e
f
o
llo
w
in
g
p
ar
a
m
eter
s
as d
ef
i
n
ed
,
:
p
o
s
it
iv
e
co
n
s
tan
t
s
p
r
o
b
ab
ly
i
n
t
h
e
r
a
n
g
e
[
2
,
4
]
.
I
n
th
i
s
e
x
p
er
i
m
e
n
t,
,
=
3
.
5
ar
e
u
s
ed
.
d
i
m
:
th
e
d
i
m
e
n
s
io
n
o
f
th
e
p
r
o
b
lem
.
r
an
d
(
)
: a
r
an
d
o
m
n
u
m
b
er
g
e
n
er
ato
r
th
at
r
etu
r
n
s
a
r
an
d
o
m
n
u
m
b
er
in
t
h
e
r
an
g
e
[
0
,
1
]
:
a
v
ec
to
r
d
en
o
tin
g
t
h
e
p
o
s
iti
o
n
o
f
p
ar
ticle
i
at
ti
m
e
k
(
i.e
at
k
th
iter
atio
n
)
:
a
v
ec
to
r
d
en
o
tin
g
th
e
g
lo
b
al
b
est
p
o
s
itio
n
(
am
o
n
g
all
th
e
p
ar
ticles)
ev
er
attain
ed
u
p
to
ti
m
e
k
.
:
a
v
ec
to
r
d
en
o
tin
g
t
h
e
b
est p
o
s
itio
n
u
p
to
ti
m
e
k
ev
er
att
ain
ed
b
y
p
ar
ticle
i
:
th
e
g
eo
m
etr
ic
d
is
ta
n
ce
o
f
p
o
s
itio
n
f
r
o
m
m
i
n
x
=(
m
in
x
1
,
m
in
x
1
,
….
.
,
m
in
x
di
m
,
m
ax
x
=(
m
a
x
x
1
,
m
a
x
x
1
,
….
.
,
m
ax
x
di
m
)
w
h
er
e
m
i
n
x
j
,
m
a
x
x
j
(
f
o
r
j
=1
,
2
.
.
,
d
im
)
ar
e
r
esp
ec
tiv
e
l
y
t
h
e
lo
w
er
an
d
u
p
p
er
b
o
u
n
d
f
o
r
v
alu
e
o
f
co
m
p
o
n
e
n
t
j
o
f
f
itVa
l
u
e(
z
)
:
th
e
f
i
tn
e
s
s
v
a
lu
e
o
f
p
o
s
itio
n
z
.
:
t
h
e
b
o
u
n
d
o
n
th
e
d
is
ta
n
ce
o
f
th
e
p
ar
ticle
f
r
o
m
t
h
e
cu
r
r
en
t
g
lo
b
al
p
o
s
itio
n
b
elo
w
w
h
ic
h
p
ar
ticles
g
en
er
ate
th
eir
p
o
s
itio
n
r
an
d
o
m
l
y
T
h
e
v
alu
e
=1
0
-
10
is
u
s
ed
in
t
h
i
s
ex
p
er
im
e
n
t.
T
h
e
alg
o
r
ith
m
is
t
h
er
eb
y
s
t
ated
as
f
o
llo
w
s
,
I
n
itializatio
n
s
tep
:
a.
I
NI
T
I
A
L
I
Z
E
r
an
d
o
m
l
y
t
h
e
p
o
s
itio
n
s
o
f
all
th
e
p
ar
ticles
in
th
e
p
o
p
u
latio
n
:
,
f
o
r
i=
1
,
2
…,
n
o
Of
P
ar
ticles
b.
C
OM
P
UT
E
th
e
f
it
n
es
s
v
alu
e,
f
i
=
f
itVal
u
e(
)
,
o
f
ea
ch
p
ar
ticle
’
s
p
o
s
i
tio
n
(
f
o
r
i=0
1
,
2
,
…n
o
Of
P
ar
ticles).
c.
Set th
e
g
lo
b
al
b
est p
o
s
itio
n
t
o
th
e
p
ar
ticle
p
o
s
itio
n
w
it
h
th
e
b
est f
it
n
e
s
s
s
v
al
u
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
1
9
–
1
2
6
122
I
ter
ativ
e
s
tep
:
f
o
r
k
=1
,
2
,
……….
n
o
Of
I
ter
at
io
n
s
do
th
e
f
o
llo
w
in
g
lo
o
p
in
g
f
o
r
(
i=
1
,
….
.
,
n
o
Of
P
ar
ticles )
do
th
e
f
o
llo
w
in
g
{
(
i)
UP
DA
T
E
x
i
k
to
o
b
tain
x
i
k
+
1
:
a.
b
.
(
)
(
w
it
h
an
y
co
m
p
o
n
e
n
t
o
f
o
r
o
u
t
o
f
in
ter
v
al
b
o
u
n
d
g
en
er
ated
r
an
d
o
m
l
y
as i
n
s
tep
(
a)
o
f
in
itial
izatio
n
s
tep
)
c.
If
(
f
itVal
u
e(
v
)
>
f
itVal
u
e(
u
)
)
t
hen
s
et
else
s
et
;
d.
if
(
d
is
tan
ce
(
,
)
<
)
t
hen
(
ii)
UP
DA
T
E
g
lo
b
al
b
est p
o
s
itio
n
GB
to
o
b
tain
an
d
th
e
f
i
tn
e
s
s
v
al
u
e
o
f
:
if
(
f
itValu
e(
)
<
f
itVal
u
e(
)
)
th
en
s
et
=
else
=
1
.
2
.
O
utput
T
h
e
cu
r
r
en
t g
lo
b
al
b
est p
o
s
iti
o
n
,
,
an
d
its
f
it
n
es
s
v
al
u
e,
f
i
t
Valu
e(
).
2.
RE
SU
L
T
S
o
f
T
E
S
T
E
XP
E
R
I
M
E
NT
a
nd
DIS
CUS
I
O
N
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
was
i
m
p
le
m
e
n
ted
in
J
av
a
u
s
i
n
g
Netb
ea
n
s
5
.
0
an
d
test
ed
o
n
m
a
n
y
ex
is
t
in
g
b
en
ch
m
ar
k
f
u
n
ctio
n
s
d
ev
is
ed
f
o
r
o
p
tim
iza
t
io
n
s
ea
r
ch
alg
o
r
ith
m
s
.
T
h
e
b
en
ch
m
ar
k
f
u
n
ctio
n
s
m
a
y
b
e
g
r
o
u
p
ed
ac
co
r
d
in
g
to
w
h
et
h
er
t
h
e
y
ar
e
u
n
i
m
o
d
al
(
U)
h
av
in
g
o
n
e
g
lo
b
al
o
p
ti
m
u
m
p
o
in
t
,
m
u
lti
m
o
d
al
(
M)
h
av
e
m
a
n
y
lo
ca
l
o
p
ti
m
u
m
p
o
i
n
ts
an
d
s
ep
ar
ab
le(
S)
b
ein
g
ex
p
r
ess
ib
le
as
a
s
u
m
o
f
f
u
n
ctio
n
s
ea
ch
o
f
w
h
ic
h
i
s
a
f
u
n
ctio
n
o
f
o
n
e
v
ar
iab
le.
Ha
v
i
n
g
t
h
is
i
n
m
in
d
t
h
e
f
o
llo
w
i
n
g
b
en
c
h
m
ar
k
f
u
n
ctio
n
s
w
er
e
co
n
s
id
er
ed
f
o
r
p
r
esen
tatio
n
with
r
es
u
lt
s
o
b
ta
in
ed
p
lace
d
o
n
th
e
T
ab
les
.
T
h
e
m
i
n
i
m
izatio
n
p
r
o
b
lem
is
t
u
r
n
ed
in
to
o
p
ti
m
izatio
n
p
r
o
b
lem
b
y
n
eg
at
i
n
g
t
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
(
i.e
m
i
n
{
F(x
)
}
is
t
u
r
n
ed
i
n
t
o
m
a
x
{
-
F(
x
)
}
)
.
F0
:
R
o
s
en
b
r
o
ck
’
s
(
UN)
:
∑
[
]
.
Glo
b
al
Min
:
0
at
=1
in
[
-
3
,
3
]
d
.
F1
: D
e
J
o
n
g
’
s
∑
.
Glo
b
al
Min
:0
at
(
0
,
0
,
….
.
,
0
)
in
[
-
1
0
,
1
0
]
d
.
F2
: Sch
w
e
f
el
(
UN)
∑
(
∑
)
.
Glo
b
al
Min
:0
at
(
0
,
0
,
.
.
,
0
)
in
[
-
1
0
,
1
0
]
d
.
F3
:
E
g
g
er
ate
:
.
Glo
b
al
Min
:
0
at
(
0
,
0
,
.
.
,
0
)
in
[
-
2
π,
2
π]
2
.
F4
: A
c
k
le
y
’
s
(
MN
)
(
√
∑
)
∑
Glo
b
al
Min
:0
at
p
o
in
t
(
0
,
0
,
….
.
,
0
)
in
[
-
1
0
,
1
0
]
d
.
F5
:
Gr
ie
w
a
n
k
(
MN
)
:
∑
∏
√
.
Glo
b
al
Min
:0
at
(
0
,
0
,
…,
0
)
in
[
-
1
0
,
1
0
]
d
.
F6
:
∑
∏
√
.
Glo
b
al
Min
:1
0
at
(
0
,
0
,
…,
0
)
in
[
-
1
0
,
1
0
]
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
Th
e
C
h
ea
p
est S
h
o
p
S
ee
ke
r
:
A
N
ew A
lg
o
r
ith
m
F
o
r
Op
timiz
a
t
io
n
P
r
o
b
lem
in
a
C
o
n
tin
o
u
s
S
p
a
ce
(
P
.
B
.
S
h
o
la
)
123
F7
R
astri
g
i
n
(
MS)
:
∑
.
Glo
b
al
Min
:0
at
(
1
,
1
,
.
.
,
1
)
in
[
-
1
0
,
1
0
]
d
.
F8
Sch
w
e
f
el(
MS)
:
–
∑
√
.
Gl
o
b
al
Min
:0
at
=4
2
0
.
9
8
6
7
in
[
-
5
0
0
,
5
0
0
]
d
.
F9
St
y
b
li
n
s
k
i
-
T
an
g
(
)
:
∑
.
Op
ti
m
u
m
.
v
al
u
e:3
9
.
1
6
5
9
9
9
*
d
at
=
-
2
.
9
0
3
5
3
4
F1
0
Dix
o
n
-
P
r
ice
(
M
S)
:
∑
.
Glo
b
al
M
in
:0
,
i
n
[
-
1
0
,
1
0
]
d
F1
1
Z
ak
h
ar
o
v
(
MS)
:
∑
∑
∑
.
Glo
b
al
Min
:0
at
=0
in
[
-
5
,
1
0
]
d
.
F1
2
T
r
ial
6
(
MS)
:
∑
∑
.
Glo
b
al
Min
:
-
5
0
f
o
r
d
=6
,
-
2
0
0
f
o
r
d
=1
0
,
in
[
-
d
2
,
d
2
]
d
.
T
ab
les
1
,
2
p
r
esen
t
th
e
r
e
s
u
l
ts
o
b
tain
ed
f
r
o
m
th
e
m
eth
o
d
o
n
t
h
e
t
h
ese
f
u
n
ctio
n
s
b
u
t
w
it
h
t
h
e
d
i
m
en
s
io
n
1
0
,
2
0
,
3
0
,
4
0
an
d
p
o
p
u
latio
n
s
ize
2
0
.
T
h
e
av
er
ag
e
b
est
(
a
v
e.
B
est),
av
er
a
g
e
(
A
v
e)
an
d
t
h
e
s
tan
d
ar
d
d
ev
iatio
n
(
Std
.
Dev
)
o
f
f
it
n
ess
v
al
u
es
w
er
e
co
m
p
u
ted
o
v
er
2
0
r
u
n
s
o
f
th
e
al
g
o
r
i
th
m
w
i
th
ea
c
h
r
u
n
co
m
p
r
is
in
g
o
f
5
0
,
0
0
0
iter
atio
n
s
o
v
er
t
h
e
p
ar
ticle
p
o
p
u
latio
n
.
T
h
e
p
ar
a
m
eter
v
al
u
es
D=
[
]
(
w
i
th
=
2
.
4
h
er
e
f
o
r
all
i)
,
,
=
3
.
5
,
=
1
0
-
10
w
er
e
u
s
ed
in
t
h
e
test
.
T
h
e
alg
o
r
ith
m
attai
n
s
t
h
e
g
lo
b
al
o
p
ti
m
u
m
f
o
r
all
th
e
f
u
n
ct
io
n
s
e
x
ce
p
t
o
n
F1
0
f
o
r
d
i
m
e
n
s
io
n
ab
o
v
e
2
0
to
w
h
ic
h
t
h
e
al
g
o
r
ith
m
co
n
v
er
g
es
to
0
.
6
6
6
6
6
7
in
s
tead
o
f
th
e
o
p
ti
m
u
m
0
.
A
lt
h
o
u
g
h
f
o
r
d
i
m
e
n
s
io
n
4
0
th
e
alg
o
r
it
h
m
f
ail
s
to
r
ea
ch
th
e
o
p
tim
u
m
f
o
r
f
u
n
c
tio
n
F2
f
o
r
p
o
p
u
latio
n
s
ize
2
0
an
d
5
0
0
0
0
iter
atio
n
s
it
d
o
es
r
ea
ch
it
w
h
en
t
h
e
p
o
p
u
latio
n
an
d
th
e
n
u
m
b
er
o
f
iter
atio
n
s
w
er
e
in
cr
ea
s
ed
to
7
0
a
n
d
5
0
0
0
0
0
r
esp
ec
tiv
el
y
(
s
ee
T
ab
le
3
)
.
T
ab
le
1
.
R
esu
lt
co
m
p
ar
in
g
t
h
e
alg
o
r
it
h
m
w
it
h
P
SO
f
o
r
Di
m
e
n
s
io
n
=
1
0
p
o
p
u
latio
n
=
2
0
w
it
h
5
0
0
0
0
iter
atio
n
s
p
er
r
u
n
F
u
n
c
D
i
me
n
si
o
n
1
0
D
i
me
n
si
o
n
2
0
B
e
st
A
v
e
S
t
d
.
D
e
v
B
e
st
A
v
e
S
t
d
.
D
e
v
F0
0
.
0
0
0
0
0
1
0
.
0
0
0
0
0
2
0
.
0
0
0
0
0
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F2
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
1
8
5
5
0
.
0
0
6
6
8
7
F3
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F4
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F5
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F6
1
0
.
0
0
0
0
0
0
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
1
0
.
0
0
0
0
0
0
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F7
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F8
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
-
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
00
F9
3
9
1
.
6
6
1
8
0
4
3
9
1
.
6
6
1
6
8
2
0
.
0
0
0
0
9
2
7
8
3
.
3
2
3
6
6
9
7
8
3
.
3
2
3
4
2
5
0
.
0
0
0
1
4
7
F
1
0
0
.
0
0
0
0
0
0
0
.
5
3
3
3
3
3
0
.
2
6
6
6
6
7
-
0
.
0
0
0
0
0
0
-
0
.
6
3
3
3
3
3
0
.
1
4
5
2
9
7
F
1
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
T
ab
le
2
.
R
esu
lt
f
o
r
Di
m
en
s
io
n
=3
0
,
4
0
p
o
p
u
latio
n
=
2
0
w
it
h
5
0
0
0
0
iter
atio
n
s
p
er
r
u
n
Fu
c
D
i
me
n
si
o
n
:
3
0
D
i
me
n
si
o
n
:
4
0
B
e
st
A
v
e
S
t
d
.
D
e
v
B
e
st
A
v
e
S
t
d
.
D
e
v
F0
0
.
0
0
0
2
3
7
6
.
8
3
7
0
0
6
8
.
1
4
3
4
8
2
0
.
0
3
7
8
3
9
1
7
.
2
1
1
2
4
8
9
.
3
5
3
1
9
6
F1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
-
0
.
0
0
0
0
0
0
-
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F2
0
.
0
0
0
0
0
0
2
2
2
9
.
6
5
3
8
0
9
1
2
3
1
.
0
7
2
3
8
8
1
6
2
8
.
1
7
7
3
6
8
4
1
1
9
.
4
9
9
0
2
3
1
4
3
2
.
9
3
3
9
6
0
F3
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F4
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F5
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F6
1
0
.
0
0
0
0
0
0
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
1
0
.
0
0
0
0
0
0
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F7
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
F8
0
.
0
0
3
9
0
6
0
.
0
0
3
9
0
6
0
.
0
0
0
0
0
0
0
.
0
0
9
7
6
6
0
.
0
0
9
7
6
6
0
.
0
0
0
0
0
0
F9
1
1
7
4
.
9
8
5
7
1
1
1
7
4
.
9
8
5
5
9
6
0
.
0
0
0
2
8
1
1
5
6
6
.
6
4
8
3
1
5
1
5
6
6
.
6
4
7
7
0
5
0
.
0
0
0
3
9
1
F
1
0
0
.
6
6
6
6
6
7
0
.
6
6
6
6
6
7
0
.
0
0
0
0
0
0
0
.
6
6
6
6
6
7
3
.
2
3
5
8
7
9
9
.
5
7
7
6
8
6
F
1
1
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
0
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
1
9
–
1
2
6
124
Fig
u
r
e
2
p
r
esen
ts
a
g
r
ap
h
s
h
o
w
i
n
g
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
alg
o
r
ith
m
w
it
h
r
esp
ec
t
to
th
e
in
cr
ea
s
e
in
t
h
e
d
i
m
e
n
s
io
n
o
f
t
h
e
f
u
n
cti
o
n
s
w
it
h
t
h
e
p
o
p
u
latio
n
s
ize
an
d
n
u
m
b
er
o
f
iter
atio
n
s
f
i
x
e
d
at
2
0
an
d
5
0
0
0
0
r
esp
ec
tiv
el
y
.
I
t
is
a
p
lo
t
o
f
th
e
s
ta
n
d
ar
d
d
ev
iatio
n
o
f
t
h
e
f
it
n
es
s
v
a
lu
e
s
a
g
ai
n
s
t
t
h
e
f
u
n
ctio
n
s
’
d
i
m
en
s
io
n
.
E
x
ce
p
t
o
n
F2
,
th
e
g
r
ap
h
s
h
o
w
s
t
h
at
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
alg
o
r
it
h
m
o
n
th
e
s
e
o
th
er
f
u
n
ctio
n
s
is
n
o
t
m
u
c
h
a
f
f
ec
ted
w
it
h
th
is
i
n
cr
ea
s
e
in
t
h
e
f
u
n
ctio
n
’
s
d
i
m
en
s
io
n
.
B
u
t
Fo
r
F2
,
th
e
n
u
m
b
er
o
f
iter
atio
n
s
h
ad
to
b
e
in
cr
ea
s
ed
to
i
m
p
r
o
v
e
p
er
f
o
r
m
an
ce
a
s
th
e
d
i
m
en
s
io
n
i
n
cr
e
ases
b
e
y
o
n
d
2
0
.
D
i
me
ns
i
o
n
Fig
u
r
e
2.
A
g
r
ap
h
o
f
s
ta
n
d
ar
d
d
ev
iatio
n
o
f
f
it
n
es
s
v
al
u
es
o
f
th
e
f
u
n
ctio
n
s
ag
ai
n
s
t
th
e
d
i
m
en
s
io
n
o
f
th
e
f
u
n
ctio
n
s
p
o
p
u
latio
n
:2
0
,
n
u
m
b
er
o
f
iter
atio
n
s
:5
0
0
0
0
T
h
e
g
r
ap
h
in
F
ig
u
r
e
3
(
th
at
c
o
n
tain
s
a
p
lo
t
o
f
s
tan
d
ar
d
d
ev
iatio
n
ag
ai
n
s
t
th
e
n
u
m
b
er
o
f
i
ter
atio
n
s
)
s
h
o
w
s
t
h
e
e
f
f
ec
t
o
f
i
n
cr
ea
s
e
i
n
t
h
e
n
u
m
b
er
o
f
i
ter
atio
n
s
o
n
t
h
e
a
lg
o
r
it
h
m
w
it
h
d
i
m
en
s
i
o
n
f
ix
ed
at
1
0
.
T
h
e
g
r
ap
h
ap
p
ea
r
s
to
len
d
cr
ed
en
ce
to
th
is
v
ie
w
t
h
at
an
i
m
p
r
o
v
e
m
e
n
t
i
n
t
h
e
r
esu
l
t
m
a
y
s
o
m
eti
m
es
b
e
attai
n
ed
w
it
h
m
o
r
e
iter
atio
n
s
.
N
o
of
i
t
er
ati
on
s
Fi
g
u
r
e
3
.
A
g
r
ap
h
o
f
s
ta
n
d
ar
d
d
ev
iatio
n
o
f
f
it
n
es
s
v
al
u
e
s
o
f
th
e
f
u
n
ctio
n
s
ag
ai
n
s
t
th
e
n
u
m
b
er
o
f
iter
atio
n
s
f
o
r
d
im
e
n
s
io
n
1
0
,
p
o
p
u
latio
n
2
0
T
h
e
g
r
ap
h
al
s
o
s
h
o
w
s
t
h
at
ab
o
u
t
5
0
0
0
iter
atio
n
s
ar
e
n
ee
d
ed
to
g
et
r
ea
s
o
n
a
b
le
r
e
s
u
l
t
f
o
r
th
e
s
e
f
u
n
ctio
n
s
.
T
ab
le
4
b
elo
w
p
r
ese
n
ts
th
e
r
e
s
u
l
t
f
r
o
m
t
h
e
p
o
p
u
la
r
alg
o
r
ith
m
s
g
en
etic
alg
o
r
it
h
m
(
G
A
)
,
Di
f
f
er
en
tial
ev
o
lu
tio
n
(
DE
)
,
ar
tific
ial
b
ee
co
lo
n
y
(
A
B
C
)
as
r
ec
o
r
d
ed
in
[
1
9
,
2
0
]
f
o
r
p
o
p
u
latio
n
s
ize
5
0
an
d
5
0
0
0
0
0
iter
atio
n
s
o
n
s
o
m
e
b
e
n
ch
m
ar
k
f
u
n
ctio
n
s
.
A
l
s
o
p
r
esen
ted
o
n
t
h
e
t
ab
le
i
s
t
h
e
r
es
u
lt
o
f
t
h
e
ch
ea
p
ea
s
tS
h
o
p
Seek
er
s
(
C
SS
)
(
b
u
t
f
o
r
p
o
p
u
latio
n
2
0
,
a
n
d
5
0
0
0
0
iter
atio
n
s
)
f
o
r
c
o
m
p
ar
is
o
n
.
T
h
o
s
e
alg
o
r
ith
m
s
w
i
th
t
h
e
b
est r
es
u
lt
s
f
o
r
th
o
s
e
f
u
n
ctio
n
s
ar
e
w
r
itte
n
in
b
o
ld
.
0
200
400
600
800
100
0
120
0
140
0
160
0
10
20
30
40
F0
F1
F2
F3
F4
F5
F6
F7
0
50
100
150
200
250
300
500
100
0
200
0
500
0
100
00
200
00
300
00
400
00
500
00
F0
F1
F2
F3
F4
F5
F6
F7
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
Th
e
C
h
ea
p
est S
h
o
p
S
ee
ke
r
:
A
N
ew A
lg
o
r
ith
m
F
o
r
Op
timiz
a
t
io
n
P
r
o
b
lem
in
a
C
o
n
tin
o
u
s
S
p
a
ce
(
P
.
B
.
S
h
o
la
)
125
T
ab
le
4
.
c
o
m
p
ar
in
g
r
es
u
lt
s
o
f
th
e
alg
o
r
it
h
m
w
it
h
th
o
s
e
o
f
o
th
er
p
o
p
u
lar
alg
o
r
ith
m
s
C
SS
(
p
o
p
u
la
tio
n
:2
0
,
iter
atio
n
s
:5
0
0
0
0
)
,
GA
,
P
SO,D
E
,
A
B
C
(
p
o
p
u
latio
n
:5
0
iter
ati
o
n
s
: 5
0
0
0
0
0
)
Dim
e
n
s
io
n
:3
0
F
u
n
A
l
g
o
r
i
t
h
m
A
v
e
.
B
e
st
S
t
d
.
D
e
v
F
u
n
A
l
g
o
r
i
t
h
m
A
v
e
.
B
e
st
S
t
d
.
D
e
v
F0
C
S
S
GA
PSO
DE
A
B
C
0
.
0
0
0
2
3
7
1
.
9
6
E+
0
5
1
5
.
0
8
8
6
1
7
1
8
.
2
0
3
9
3
8
0
.
0
8
8
7
7
0
7
8
.
1
4
3
4
8
2
3
.
8
5
E+
0
4
2
4
.
1
7
0
1
9
6
5
.
0
3
6
1
8
7
0
.
0
7
7
3
9
0
F7
C
S
S
,
A
B
C
GA
PSO
DE
0
5
2
.
9
2
2
5
9
4
3
.
9
7
7
1
3
6
9
1
1
.
7
1
6
7
2
8
0
4
.
5
6
4
8
6
0
1
1
.
7
2
8
6
7
6
2
.
5
3
8
1
7
2
F8
C
S
S
GA
PSO
DE
A
B
C
0
.
0
0
3
9
0
6
-
1
1
5
9
3
.
4
-
6
9
0
9
.
1
3
5
9
-
1
0
2
6
6
-
1
2
5
6
.
4
8
7
0
9
3
.
2
5
4
2
4
0
4
5
7
.
9
5
7
7
8
3
5
2
1
.
8
4
9
2
9
2
0
F1
C
S
S
,
P
S
O
,
D
E,
A
B
C
GA
0
0
1
.
1
1
E+
0
3
0
0
7
4
.
2
1
4
4
7
4
F2
C
S
S
P
S
O
,
D
E,
A
B
C
GA
0
0
7
.
4
0
E+
0
3
1
2
3
1
.
0
7
2
3
8
8
0
1
.
1
4
E+
0
3
F4
C
S
S
,
D
E,
A
B
C
GA
PSO
0
0
1
4
.
6
7
1
7
8
0
.
1
6
4
6
2
2
3
6
0
0
0
.
1
7
8
1
4
1
0
.
4
9
3
8
6
7
F
1
0
C
S
S
GA
PSO
DE
A
B
C
0
.
6
6
6
6
6
6
6
7
1
.
2
2
E+
0
3
0
.
6
6
6
6
6
6
6
7
0
.
6
6
6
6
6
6
6
7
0
0
2
.
6
6
E+
0
2
E
-
8
E
-
9
0
F5
C
S
S
,
P
S
O
,
D
E
GA
A
B
C
0
0
.
0
1
3
3
5
5
0
.
0
0
0
2
4
7
6
0
0
.
0
0
4
5
3
2
0
.
0
0
0
1
8
3
F
1
1
C
S
S
,
A
B
C
GA
PSO
DE
0
1
0
.
6
3
3
4
6
0
.
1
7
3
9
1
1
8
0
.
0
0
1
4
7
9
2
0
1
.
1
6
1
4
5
5
0
.
0
2
0
8
0
8
0
.
0
0
2
9
5
8
T
h
e
alg
o
r
ith
m
is
ab
le
to
m
a
tc
h
t
h
ese
al
g
o
r
ith
m
s
(
in
ter
m
s
o
f
r
esu
lts
)
e
v
en
w
it
h
p
o
p
u
lati
o
n
s
ize
2
0
an
d
5
0
0
0
0
iter
atio
n
s
(
b
ein
g
a
m
o
n
g
t
h
e
b
est
f
o
r
th
e
s
e
f
u
n
ct
io
n
s
e
v
e
n
f
o
r
th
a
t
p
o
p
u
l
atio
n
s
ize
a
n
d
t
h
e
n
u
m
b
er
o
f
iter
atio
n
s
)
e
x
ce
p
t
f
o
r
f
u
n
ctio
n
F1
0
w
h
er
e
t
h
e
alg
o
r
it
h
m
f
ail
s
to
r
ea
c
h
t
h
e
o
p
ti
m
u
m
(
r
at
h
er
h
an
g
i
n
g
at
0
.
6
6
6
6
6
7
)
f
o
r
d
im
e
n
s
io
n
g
r
ea
ter
th
a
n
2
0
.
3.
CO
NCLU
SI
O
N
I
n
t
h
is
p
ap
er
a
p
o
p
u
latio
n
b
a
s
ed
m
eta
-
h
eu
r
i
s
tic
al
g
o
r
ith
m
f
o
r
o
p
ti
m
izatio
n
p
r
o
b
lem
s
i
s
p
r
esen
ted
.
T
h
e
alg
o
r
ith
m
,
ca
lled
ch
ea
p
es
t
s
h
o
p
s
ee
k
er
,
is
m
o
d
eled
t
o
m
i
m
ic
a
g
r
o
u
p
o
f
s
h
o
p
p
er
s
co
o
p
er
ativ
el
y
s
ee
k
i
n
g
f
o
r
th
e
c
h
ea
p
est
s
h
o
p
f
o
r
s
h
o
p
p
in
g
.
T
h
e
alg
o
r
ith
m
i
s
test
e
d
o
v
er
s
o
m
e
b
en
c
h
m
ar
k
f
u
n
cti
o
n
s
w
it
h
d
i
m
en
s
io
n
1
0
,
2
0
.
3
0
,
4
0
an
d
s
o
m
e
o
f
t
h
e
r
esu
lts
ar
e
p
r
esen
ted
o
n
t
h
e
tab
le
ab
o
v
e.
T
h
e
g
r
ap
h
s
d
ep
ictin
g
its
to
ler
an
c
e
to
d
i
m
en
s
io
n
i
n
cr
ea
s
e
(
at
lea
s
t
u
p
to
4
0
)
an
d
i
t
s
s
e
n
s
iti
v
it
y
to
t
h
e
n
u
m
b
er
o
f
iter
atio
n
s
r
eq
u
ir
ed
to
attai
n
o
p
tim
u
m
ar
e
also
p
r
esen
ted
.
A
co
m
p
ar
i
s
o
n
o
f
t
h
e
r
es
u
lts
th
e
al
g
o
r
ith
m
p
r
o
d
u
ce
d
o
n
th
ese
f
u
n
ctio
n
s
a
n
d
th
o
s
e
r
ec
o
r
d
ed
in
[
1
9
,
2
0
]
f
o
r
g
en
etic
al
g
o
r
ith
m
(
G
A
)
,
p
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
(
P
SO)
,
Dif
f
er
e
n
tial
ev
o
lu
tio
n
(
DE
)
an
d
ar
tific
ial
b
ee
co
lo
n
y
(
A
B
C
)
w
a
s
also
m
ad
e
an
d
p
r
esen
ted
.
T
h
e
alg
o
r
ith
m
ap
p
ea
r
s
to
h
a
v
e
a
b
etter
s
u
cc
e
s
s
r
ate
o
f
r
ea
ch
in
g
th
e
g
lo
b
al
o
p
ti
m
u
m
p
o
in
t
an
d
w
it
h
f
e
w
er
n
u
m
b
er
o
f
ite
r
atio
n
s
r
eq
u
ir
ed
to
attain
it.T
h
e
s
i
m
p
licit
y
o
f
t
h
e
alg
o
r
ith
m
co
m
p
ar
ed
w
ith
s
o
m
e
o
f
t
h
ese
al
g
o
r
ith
m
s
is
an
o
th
er
f
ea
t
u
r
e
o
f
th
e
alg
o
r
ith
m
.
RE
F
E
R
E
NC
E
S
[1
]
W
o
lp
er
t
D.
H,
Ma
cr
ea
d
y
W
.
G(
1
9
9
7
)
,
“
No
f
r
ee
l
u
n
c
h
t
h
eo
r
e
m
f
o
r
o
p
ti
m
izatio
n
”
;
I
E
E
E
Tr
a
n
s
.
E
vo
l.
C
o
mp
u
t
.
1
9
9
7
:1
:6
7
-
82.
[2
]
B
ian
ch
i,
L
eo
n
o
r
a,
M
Do
r
i
g
o
an
d
o
th
er
s
(
2
0
0
9
)
“
A
s
u
r
v
e
y
o
n
m
eta
h
eu
r
i
s
tic
f
o
r
s
to
ch
as
t
i
c
co
m
b
i
n
atio
n
a
l
o
p
tim
izatio
n
”
N
a
tu
r
a
l c
o
mp
u
tin
g
:
a
n
in
tern
a
tio
n
a
l J
o
u
r
n
a
l
8
(
2
)
:2
3
9
-
289
[3
]
R
.
S.P
ar
p
in
elli
A
n
d
H.
S.
L
o
p
e
s
(
2
0
1
1
)
,
New
i
n
s
p
ir
atio
n
s
in
s
w
ar
m
in
telli
g
en
ce
:
A
s
u
r
v
e
y
,
I
n
tern
a
tio
n
a
l
Jo
u
r
n
a
l
o
f
B
io
-
in
s
p
ir
ed
co
mp
u
ta
tio
n
Vo
l
3
.
No
.
1
2
0
1
1
p
p
1
-
15
[4
]
Ken
n
ed
y
J
.
an
d
E
b
e
r
h
ar
t
J
.
(
1
9
9
5
)
P
a
r
ticle
s
w
a
r
m
o
p
timiz
a
tio
n
.
I
n
P
r
o
c.
I
E
E
E
I
n
t
er
n
atio
n
al
C
o
n
f
er
en
ce
Ne
u
r
al
Net
w
o
r
k
s
,
P
is
ca
ta
w
a
y
,
NJ
,
v
o
l 4
,
1
9
9
5
,
p
p
1
9
4
2
-
1
9
4
8
.
[5
]
R
e
y
n
o
ld
s
C
.
W
(
1
9
8
7
)
.
F
lo
c
ks,
h
erb
s
a
n
d
s
ch
o
o
ls
:
A
d
is
tr
ib
u
ted
b
eh
a
vio
r
a
l
mo
d
el
,
Pro
ce
ed
in
g
s
o
n
co
m
p
u
ter
Gr
ap
h
ics
-
AC
M
SIG
GR
A
P
H
’
8
7
,
v
o
l 2
1
No
4
p
p
2
5
-
34
[6
]
R
as
h
ed
i
E
.
an
d
o
th
er
s
(
2
0
0
9
)
GSA
:
a
g
r
av
itat
io
n
al
s
ea
r
c
h
alg
o
r
ith
m
.
I
n
f
o
r
m
atio
n
s
cien
ce
s
1
7
9
(
1
3
)
:(
2232
-
2
2
4
8
.
2
0
0
9
)
[7
]
A
lb
er
t
Y
.
S.
L
a
m
an
d
Victo
r
O.
K.
L
i(
2
0
0
9
)
C
h
e
m
ical
-
R
ea
c
tio
n
-
I
n
s
p
ir
ed
Me
tah
eu
r
i
s
tic
f
o
r
o
p
tim
izatio
n
,
T
ec
h
n
ical
R
ep
o
r
t
TR
-
2009
-
0
0
3
,
Dep
t
o
f
E
lectr
ical
&
E
lectr
o
n
ic
E
n
g
in
ee
r
in
g
,
T
h
e
Un
i
v
er
s
it
y
o
f
Ho
n
g
Ko
n
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
5
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
1
1
9
–
1
2
6
126
[8
]
Y.
T
an
an
d
Y.
Z
h
u
(
2
0
1
0
)
“
Fire
w
o
r
k
s
al
g
o
r
it
h
m
f
o
r
o
p
tim
iz
atio
n
”,
A
d
v
a
n
ce
s
i
n
S
w
ar
m
I
n
te
lli
g
e
n
ce
.
L
N
C
S,
v
o
l.
6
1
4
5
,
p
p
.
3
5
5
-
3
6
4
[9
]
S.Z
h
en
g
,
J
.
A
.
,
a
n
d
Y.
T
an
,
(
2
0
1
3
)
“En
h
a
n
ce
d
fir
ewo
r
ks a
lg
o
r
ith
m
”,
in
P
r
o
c.
Of
t
h
e
2
0
1
3
4
I
E
E
E
C
o
n
g
r
es
s
o
n
E
v
o
lu
t
io
n
ar
y
C
o
m
p
u
tatio
n
(
C
E
C
2
0
1
3
)
,
p
p
.
2
0
6
9
-
2
0
7
7
[1
0
]
C
h
e
n
g
M
&
P
r
a
y
o
g
o
D.
(
2
0
1
4
)
S
y
m
b
io
tic
Or
g
a
n
i
s
m
s
s
ea
r
ch
:
A
n
e
w
m
eta
h
eu
r
i
s
tic
o
p
ti
m
iza
t
io
n
alg
o
r
ith
m
,
C
o
m
p
u
ter
s
a
n
d
Str
u
ctu
r
e
s
1
3
9
p
p
9
8
-
1
1
2
[1
1
]
I
zto
k
Fis
ter
J
r
an
d
o
th
er
s
(
2
0
1
3
)
A
B
r
ief
R
ev
ie
w
o
f
N
atu
r
e
-
i
n
s
p
ir
ed
A
l
g
o
r
ith
m
s
f
o
r
o
p
tim
iza
tio
n
,
E
L
E
KT
R
OT
E
HNI
SKI
VE
STNI
K
8
0
(
3
)
(
2
0
1
3
)
E
n
g
lis
h
ed
it
io
n
.
[1
2
]
Vee
n
u
Ma
n
g
at(
2
0
1
0
)
S
w
ar
m
I
n
telli
g
en
ce
B
ased
T
ec
h
n
iq
u
e
f
o
r
R
u
le
m
in
in
g
in
Me
d
ical
Do
m
ain
,
I
n
tern
a
tio
n
a
l
Jo
u
r
n
a
l o
f Co
mp
u
ter a
p
p
lica
tio
n
(
0
9
7
5
-
8
8
8
7
)
v
o
l 4
N0
1
,
J
u
l
y
2
0
1
0
[1
3
]
T
iag
o
So
u
s
a
an
d
o
th
er
s
(
2
0
0
4
)
P
ar
ticle
S
w
ar
m
b
ased
Data
Min
i
n
g
Alg
o
r
it
h
m
s
f
o
r
cla
s
s
i
f
icatio
n
task
s
,
P
ar
allel
C
o
m
p
u
ti
n
g
3
0
(
2
0
0
4
)
7
6
7
-
783
[1
4
]
Sad
o
llah
A
.
,
B
ah
r
ein
i
n
ej
ad
A
.
,
E
s
k
a
n
d
ar
H.
,
Ha
m
d
i
M.
(
2
0
1
3
)
Min
e
b
last
alg
o
r
ith
m
:
A
n
e
w
p
o
p
u
latio
n
b
ased
alg
o
r
ith
m
f
o
r
s
o
lv
i
n
g
co
n
s
tr
ai
n
ed
en
g
i
n
ee
r
i
n
g
o
p
ti
m
izatio
n
p
r
o
b
lem
s
,
A
p
p
lied
s
o
f
t
co
m
p
u
tin
g
1
3
p
p
2592
-
2
6
1
2
[1
5
]
Yan
g
X.
S.,
Deb
S
(
2
0
1
0
)
E
n
g
in
ee
r
in
g
o
p
ti
m
izatio
n
b
y
C
u
ck
o
o
s
ea
r
ch
,
I
n
t.
J
.
Ma
th
e
m
a
ti
ca
l
Mo
d
ellin
g
an
d
Nu
m
er
ical
o
p
ti
m
izat
io
n
,
1
(
4
)
: 3
3
0
-
343.
[1
6
]
C
u
p
ic
M,
Go
lu
b
M.
,
J
ak
o
b
o
v
ic
D(
2
0
0
9
)
E
xa
m
Timeta
b
lin
g
u
s
in
g
Gen
etic
a
lg
o
r
ith
m
,
P
r
o
ce
ed
in
g
o
f
I
T
I
2
0
0
9
3
1
I
n
t.
C
o
n
f
,
o
n
I
n
f
o
r
m
at
io
n
T
ec
h
n
o
lo
g
y
in
ter
f
ac
es
J
u
n
e
2
2
-
2
5
,
2
0
0
9
C
av
tat,
C
r
o
atia.
[1
7
]
H
y
b
r
id
Gen
etic
A
l
g
o
r
ith
m
an
d
T
A
B
U
Sear
ch
A
lg
o
r
it
h
m
to
s
o
lv
e
cla
s
s
T
im
e
T
ab
le
Sc
h
ed
u
li
n
g
P
r
o
b
lem
,
I
n
tern
a
tio
n
a
l
o
f
R
es
ea
r
ch
s
tu
d
ies
in
C
o
mp
u
ter
S
c
ien
ce
a
n
d
E
n
g
in
ee
r
in
g
(
I
JR
S
C
S
E
)
v
o
lu
m
e
1
,
is
s
u
e
4
,
Au
g
u
s
t
2
0
1
4
p
p
1
9
-
26
[1
8
]
E
d
m
u
n
d
K.
B
u
r
k
e
a
n
d
o
th
er
s
(
2
0
0
8
)
A
h
y
b
r
id
h
eu
r
i
s
tic
o
r
d
er
in
g
a
n
d
v
ar
iab
le
n
ei
g
h
b
o
u
r
h
o
o
d
s
ea
r
ch
f
o
r
th
e
n
u
r
s
e
r
o
s
ter
i
n
g
p
r
o
b
lem
,
E
u
r
o
p
ea
n
Jo
u
r
n
a
l
o
f O
p
e
r
a
tio
n
r
es
ea
r
ch
1
8
8
(
2
0
0
8
)
3
3
0
-
341
[1
9
]
Der
v
is
Kar
ab
o
g
a,
B
ah
r
i
y
e
Ak
a
y
(
2
0
0
9
)
,
C
o
m
p
ar
ati
v
e
s
t
u
d
y
o
f
A
r
ti
f
icia
l
B
ee
C
o
lo
n
y
A
lg
o
r
ith
m
,
A
p
p
lied
Ma
th
e
m
atics .
a
n
d
co
m
p
u
tatio
n
2
1
4
(
2
0
0
9
)
1
0
8
-
1
3
2
]
,
[2
0
]
Der
v
is
Kar
ab
o
g
a
&
B
ah
r
i
y
e
B
astu
r
k
(
2
0
0
7
)
A
p
o
w
er
f
u
l
an
d
ef
f
icie
n
t
al
g
o
r
ith
m
f
o
r
n
u
m
er
ical
f
u
n
ctio
n
o
p
tim
a
tizatio
n
:
ar
tif
icial
b
ee
co
lo
n
y
(
A
B
C
)
al
g
o
r
ith
m
,
J
.
Glo
b
o
p
tim
3
9
:4
5
9
-
4
7
1
Do
l
1
0
.
1
0
0
7
/s
1
0
8
9
8
-
007
-
9
1
4
9
-
X.
Evaluation Warning : The document was created with Spire.PDF for Python.