I
AE
S
I
nte
rna
t
io
na
l J
o
urna
l o
f
Art
if
icia
l In
t
ellig
ence
(
I
J
-
AI
)
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
,
p
p
.
113~
117
I
SS
N:
2252
-
8938
113
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
AI
O
pti
m
a
l
Place
m
e
nt
o
f
S
VC
Using
Fu
zz
y
and
Fire
fly Alg
o
rith
m
P.
Su
re
s
h B
a
bu
,
P
.
B
.
Chenn
a
ia
h
,
M.
Sree
ha
ri
De
p
a
rt
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
Co
m
p
u
ter E
n
g
in
e
e
rin
g
,
A
IT
S
Ra
ja
m
p
e
t
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
u
s
t
2
,
2
0
1
5
R
ev
i
s
ed
Oct
6
,
2
0
1
5
A
cc
ep
ted
No
v
1
2
,
2
0
1
5
V
o
l
tag
e
sta
b
il
it
y
is
m
a
jo
r
p
h
e
n
o
m
e
n
a
in
a
n
y
p
o
w
e
r
s
y
st
e
m
n
e
tw
o
rk
f
o
r
re
li
a
b
il
it
y
a
n
d
c
o
n
ti
n
u
it
y
o
p
e
ra
ti
o
n
.
Bu
t
th
e
t
ig
h
t
o
p
e
ra
ti
o
n
o
f
p
o
w
e
r
s
y
ste
m
d
u
e
t
o
o
v
e
rlo
a
d
in
g
o
r
f
a
u
lt
o
n
t
h
e
s
y
ste
m
w
h
ich
is
e
v
it
a
b
le
a
n
d
m
a
jo
r
th
re
a
t
to
t
h
e
p
o
w
e
r
s
y
ste
m
.
S
o
it
is
n
e
c
e
ss
a
r
y
to
m
a
in
tain
th
e
v
o
l
tag
e
s
w
it
h
in
th
e
c
o
n
stra
in
ts
a
t
th
e
o
v
e
rlo
a
d
i
n
g
c
o
n
d
it
io
n
s
a
lso
b
y
p
lac
in
g
o
f
S
t
a
ti
c
V
A
R
Co
m
p
e
n
sa
to
r
(S
V
C)
a
t
o
p
t
im
a
l
lo
c
a
ti
o
n
s
.
Ne
w
a
p
p
ro
a
c
h
e
s
a
re
u
s
e
d
to
f
in
d
th
e
p
lac
e
m
e
n
t
a
n
d
siz
e
o
f
th
e
S
V
C
a
t
d
if
f
e
re
n
t
lo
c
a
ti
o
n
s.
F
u
z
z
y
is
u
se
d
to
f
in
d
th
e
lo
c
a
ti
o
n
a
n
d
t
h
e
siz
e
o
f
th
e
S
V
C
is
f
in
e
d
b
y
th
e
F
iref
l
y
a
lg
o
rit
h
m
.
T
h
is
p
a
p
e
r
c
o
n
si
d
e
rs
d
if
f
e
re
n
t
lo
a
d
i
n
g
c
o
n
d
it
io
n
s
o
f
th
e
p
o
w
e
r
s
y
ste
m
n
e
tw
o
rk
(1
2
5
,
1
5
0
,
1
7
5
o
v
e
r
lo
a
d
i
n
g
c
o
n
d
it
i
o
n
s)
.
F
ro
m
th
e
re
su
lt
s
w
e
c
a
n
c
o
n
c
lu
d
e
th
a
t
t
h
e
p
o
w
e
r
lo
ss
e
s
a
re
re
d
u
c
e
d
a
n
d
th
e
v
o
lt
a
g
e
s
c
a
n
b
e
m
a
in
tain
e
d
w
it
h
in
th
e
li
m
it
s
.
IEE
E
1
4
b
u
s,
IEE
E
3
0
b
u
s
sy
ste
m
is
tak
e
n
f
o
r
th
e
im
p
le
m
e
n
ti
n
g
th
e
a
b
o
v
e
tec
h
n
iq
u
e
s.
K
ey
w
o
r
d
:
Fire
f
l
y
alg
o
r
it
h
m
Fu
zz
y
ap
p
r
o
ac
h
SVC
p
lace
m
en
t
Co
p
y
rig
h
t
©
2
0
1
5
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
P.
Su
r
esh
B
ab
u
,
Dep
ar
t
m
en
t o
f
E
lectr
ical
an
d
C
o
m
p
u
ter
E
n
g
in
ee
r
i
n
g
,
A
I
T
S R
aj
a
m
p
et
.
E
m
ail:
s
u
r
es
h
r
a
m
4
8
@
g
m
ail.
c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
u
n
p
r
ed
ictab
le
d
e
m
an
d
h
as
b
ee
n
ch
a
n
g
ed
t
h
e
i
n
d
iv
id
u
al
l
iv
i
n
g
i
n
th
e
r
ec
en
t
y
ea
r
s
w
it
h
th
e
d
ev
elo
p
m
en
t
o
f
tec
h
n
o
lo
g
ie
s
.
T
h
ese
co
n
s
id
er
atio
n
s
th
r
o
w
ca
u
tio
n
s
o
n
tr
an
s
m
i
s
s
io
n
s
y
s
te
m
a
g
ai
n
s
t
co
n
g
es
tio
n
,
li
n
e
lo
s
s
a
n
d
v
o
lta
g
e
in
s
tab
ilit
y
[
1
]
-
[
6
]
.
Ov
er
lo
ad
in
g
,
f
au
l
ts
a
n
d
th
e
s
h
o
r
tag
e
o
f
r
ea
ctiv
e
p
o
w
er
ar
e
th
e
m
ain
r
ea
s
o
n
s
f
o
r
v
o
lta
g
e
co
llap
s
e.
T
h
er
e
is
o
n
e
o
ld
m
et
h
o
d
f
o
r
to
o
v
er
co
m
e
t
h
e
s
e
p
r
o
b
lem
s
t
h
at
i
s
p
r
o
v
id
in
g
t
h
e
ad
d
itio
n
al
tr
a
n
s
m
is
s
io
n
l
in
e.
T
h
er
e
is
o
n
e
m
o
r
e
alter
n
ativ
e
ad
v
an
ce
d
tec
h
n
i
ca
l
s
o
lu
tio
n
t
h
at
is
F
A
C
T
S
co
n
tr
o
l
w
h
ic
h
is
u
s
ed
f
o
r
b
etter
co
n
tr
o
l
p
u
r
p
o
s
e
o
f
r
ea
ctiv
e
p
o
w
er
.
A
d
d
itio
n
all
y
F
A
C
T
S
ca
n
co
n
tr
o
l
th
e
li
n
e
p
ar
a
m
eter
s
s
u
c
h
as
v
o
ltag
e,
v
o
ltag
e
a
n
g
le
an
d
li
n
e
r
ea
ctan
ce
.
I
t
is
n
ec
e
s
s
ar
y
to
s
elec
t
th
e
m
o
s
t
f
av
o
r
ab
le
d
ev
ice
f
o
r
co
m
p
e
n
s
atio
n
a
n
d
p
lacin
g
it
o
p
ti
m
a
ll
y
i
n
l
iter
atu
r
e.
Fo
r
p
lace
m
en
t
o
f
SV
C
m
an
y
ap
p
r
o
ac
h
es
ar
e
u
s
ed
,
s
u
c
h
as
lo
s
s
s
e
n
s
it
iv
i
t
y
i
n
d
ex
i
n
[
2
]
-
[
3
]
,
w
h
er
e
it
is
p
lace
d
i
n
th
e
m
o
s
t
n
eg
at
iv
e
i
n
d
ex
.
An
ap
p
r
o
ac
h
is
u
s
ed
in
[
4
]
n
am
ed
as Vo
ltag
e
s
tab
ilit
y
i
n
d
ex
(
VSI
)
is
d
ef
in
ed
f
o
r
p
lace
m
e
n
t o
f
SVC
.
I
n
[
5
]
-
[
6
]
f
o
r
p
r
o
v
id
in
g
p
lace
m
e
n
t
g
en
e
t
ic
alg
o
r
ith
m
(
G
A
)
is
u
s
ed
.
I
n
t
h
is
p
ap
er
SVC
is
u
s
ed
f
o
r
s
h
u
n
t
co
m
p
en
s
atio
n
.
I
t
is
a
s
tat
ic
V
AR
Ge
n
er
ato
r
o
r
ab
s
o
r
b
er
co
n
n
ec
ted
in
s
h
u
n
t
w
h
o
s
e
o
u
tp
u
t
i
s
ad
j
u
s
t
ed
to
e
x
ch
a
n
g
e
i
n
d
u
cti
v
e
o
r
ca
p
ac
itiv
e
cu
r
r
en
t
s
o
as
to
p
r
o
v
id
e
v
o
ltag
e
s
u
p
p
o
r
t
o
n
l
y
an
d
it
ca
n
also
r
ed
u
ce
p
o
w
er
lo
s
s
e
s
w
h
e
n
in
s
talled
in
a
p
r
o
p
er
lo
ca
tio
n
.
B
est
o
p
ti
m
al
lo
ca
tio
n
s
ca
n
b
e
g
iv
e
n
b
y
t
h
e
F
u
zz
y
ap
p
r
o
ac
h
d
ep
en
d
in
g
o
n
t
h
e
o
b
j
ec
tiv
e
s
co
n
s
id
er
ed
,
an
d
Fire
f
l
y
tec
h
n
i
q
u
es
iter
ativ
e
l
y
o
p
ti
m
ize
t
h
e
s
izes
o
f
th
e
d
ev
ices
f
o
r
th
e
co
n
ce
r
n
ed
lo
ca
tio
n
s
.
A
MA
T
L
A
B
co
d
e
is
d
ev
elo
p
ed
f
o
r
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
an
d
ap
p
lied
to
I
E
E
E
1
4
,
3
0
b
u
s
s
y
s
te
m
a
n
d
t
h
e
r
esu
lt
s
ar
e
tab
u
lated
.
2.
M
O
DE
L
I
N
G
O
F
SVC
I
n
th
e
b
asic
f
o
r
m
o
f
SV
C
it
is
a
th
y
r
is
to
r
co
n
tr
o
lled
r
ea
cto
r
w
h
ic
h
is
co
m
b
in
a
tio
n
o
f
ca
p
ac
ito
r
co
n
n
ec
ted
p
ar
allel.
S
VC
r
ese
m
b
les
in
th
e
w
o
r
k
i
n
g
p
o
in
t
o
f
v
ie
w
a
s
a
v
ar
iab
le
r
ea
cto
r
w
h
ic
h
g
en
er
ate
s
o
r
ab
s
o
r
b
s
th
e
r
ea
cti
v
e
p
o
w
er
.
I
t
is
m
ai
n
l
y
u
s
ed
f
o
r
v
o
lta
g
e
r
e
g
u
la
tio
n
.
I
t
is
an
i
m
p
o
r
tan
t
co
m
p
o
n
en
t
to
v
o
lta
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
1
1
3
–
1
1
7
114
co
n
tr
o
l
p
lace
d
at
th
e
e
n
d
o
f
th
e
tr
a
n
s
m
i
s
s
io
n
t
h
e
SV
C
h
as
b
ee
n
co
n
s
id
er
ed
as
a
s
h
u
n
t
b
r
an
ch
w
it
h
a
co
m
p
e
n
s
ated
r
ea
cti
v
e
p
o
w
er
QSV
C
s
h
o
w
n
i
n
F
ig
u
r
e
1
s
et
b
y
av
a
ilab
le
i
n
d
u
cti
v
e
an
d
ca
p
ac
iti
v
e
s
u
s
ce
p
tan
ce
[
6
]
.
Fig
u
r
e
1
.
I
n
j
ec
tio
n
M
o
d
el
o
f
SVC
3.
F
I
NDIN
G
O
P
T
I
M
AL
L
O
C
AT
I
O
N
U
SI
N
G
F
U
Z
Z
Y
AP
P
RO
ACH
I
n
th
i
s
p
ap
er
f
u
zz
y
ap
p
r
o
ac
h
i
s
u
s
ed
f
o
r
o
p
ti
m
al
lo
ca
tio
n
o
f
SVC
o
n
lo
ad
b
u
s
es
[
7
]
,
t
w
o
o
b
j
ec
tiv
es
ar
e
co
n
s
id
er
ed
f
o
r
t
h
e
d
ev
elo
p
m
en
t o
f
f
u
zz
y
i.e
.
(
i)
r
ed
u
ci
n
g
r
ea
l p
o
w
er
lo
s
s
es
(
ii)
m
ai
n
tai
n
in
g
v
o
ltag
e
p
r
o
f
ile
w
it
h
i
n
t
h
e
allo
w
ab
le
li
m
its
(
0
.
9
p
.
u
–
1
.
1
p
.
u
)
.
Fo
r
w
r
iti
n
g
f
u
zz
y
r
u
le
s
t
w
o
i
n
p
u
ts
n
o
d
al
v
o
lta
g
e
(
p
.
u
)
an
d
P
o
w
er
lo
s
s
in
d
e
x
(
P
L
I
)
ar
e
tak
en
.
LR
i
=P
i
1
-
P
i
2
(
1
)
f
o
r
i =
1
to
n
u
m
b
er
o
f
lo
ad
b
u
s
es.
W
h
er
e,
L
R
–
L
o
s
s
R
ed
u
ctio
n
.
P
i
1
-
R
ea
l p
o
w
er
b
ef
o
r
e
co
m
p
e
n
s
atio
n
.
P
i
2
-
R
ea
l p
o
w
er
af
ter
co
m
p
e
n
s
atio
n
at
i
th
n
o
d
e.
Fig
u
r
e
2
.
Me
m
b
er
s
h
ip
F
u
n
ctio
n
P
lo
t
f
o
r
P
o
w
er
L
o
s
s
I
n
d
ex
(
P
L
I
)
T
h
e
L
R
in
p
u
t c
an
b
e
n
o
r
m
al
iz
ed
b
y
eq
u
atio
n
(
2
)
,
s
o
t
h
at
t
h
e
v
alu
e
s
w
i
ll b
e
b
et
w
ee
n
0
to
1
,
w
h
er
e
t
h
e
s
m
al
lest
as 0
an
d
t
h
e
lar
g
e
s
t n
u
m
b
er
h
a
v
i
n
g
a
v
al
u
e
o
f
1
.
PL
i
(
2
)
Fo
r
i =
1
to
n
u
m
b
er
o
f
lo
ad
b
u
s
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
Op
tima
l P
la
ce
men
t o
f S
V
C
Usi
n
g
F
u
z
z
y
a
n
d
F
ir
efly
A
lg
o
r
ith
m
(
P
.
S
u
r
esh
B
a
b
u
)
115
Fig
u
r
e
3
.
Me
m
b
er
s
h
ip
F
u
n
ctio
n
P
lo
t
f
o
r
No
d
al
Vo
ltag
es p
.
u
.
T
h
e
f
u
zz
y
r
u
les
ar
e
ta
k
en
f
r
o
m
[
8
]
.
T
h
e
o
u
tp
u
t
o
f
f
u
zz
y
g
i
v
es
th
e
s
u
i
tab
ilit
y
in
d
e
x
f
o
r
SVC
p
lace
m
en
t.
Ma
x
i
m
u
m
v
al
u
es
w
il
l b
e
p
r
o
m
is
in
g
lo
ca
tio
n
s
f
o
r
SVC
p
lace
m
e
n
t
.
Fig
u
r
e
4
.
Me
m
b
er
s
h
ip
F
u
n
ctio
n
P
lo
t f
o
r
SVC
S
u
itab
ilit
y
I
n
d
ex
4.
F
I
RE
F
L
Y
AL
G
O
R
I
T
H
M
Fire
f
l
y
Alg
o
r
it
h
m
(
F
A
)
w
as
d
ev
elo
p
ed
b
ased
o
n
n
atu
r
al
p
h
en
o
m
e
n
al
b
eh
a
v
io
r
o
f
th
e
f
ir
ef
l
y
b
y
w
h
ic
h
is
u
s
ed
f
o
r
s
o
lv
i
n
g
t
h
e
m
u
lti
m
o
d
al
o
p
ti
m
izatio
n
p
r
o
b
le
m
.
T
h
er
e
ar
e
a
b
o
u
t
th
o
u
s
a
n
d
s
o
f
f
ir
e
f
lies
w
h
er
e
th
e
f
las
h
es o
f
te
n
u
n
iq
u
e
o
n
a
p
ar
ticu
lar
f
ir
e
f
l
y
.
T
h
er
e
ar
e
th
r
ee
id
ea
l
r
u
les
ar
e
in
tr
o
d
u
ce
d
in
F
ir
ef
l
y
d
ev
el
o
p
m
e
n
t
t
h
o
s
e
ar
e
1
)
A
ll
t
h
e
f
ir
ef
lies
ar
e
g
en
d
er
-
f
r
ee
t
h
at
i
s
ev
er
y
f
ir
ef
l
y
w
ill
a
ttra
ct
t
h
e
o
th
er
f
i
r
ef
l
y
s
u
b
s
ta
n
ti
v
e
o
f
th
e
ir
s
ex
,
2
)
A
tt
r
ac
tiv
en
e
s
s
d
ep
en
d
o
n
th
eir
b
r
ig
h
tn
e
s
s
.
T
h
e
less
b
r
ig
h
t
o
n
e
w
i
ll
m
o
v
e
to
w
ar
d
s
t
h
e
b
r
ig
h
ter
o
n
e,
3
)
th
e
lan
d
s
ca
p
e
o
f
th
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
a
f
f
ec
ts
t
h
e
f
ir
e
f
l
y
b
r
ig
h
t
n
es
s
.
L
et
u
s
co
n
s
id
er
t
h
e
co
n
ti
n
u
o
u
s
co
n
s
tr
ai
n
ed
o
p
ti
m
izatio
n
p
r
o
b
le
m
w
h
er
e
th
e
tas
k
is
to
m
i
n
i
m
ize
co
s
t
f
u
n
ctio
n
f
(
x
)
.
Fire
f
l
y
al
g
o
r
ith
m
is
a
s
p
ee
d
il
y
co
n
v
er
g
in
g
al
g
o
r
ith
m
.
T
h
e
alg
o
r
ith
m
g
i
v
es
s
o
lu
tio
n
t
h
at
d
ep
en
d
s
o
n
t
h
e
s
elec
t
io
n
o
f
s
w
ar
m
s
ize,
m
ax
i
m
u
m
attr
a
ctiv
e
n
ess
v
al
u
e,
t
h
e
ab
s
o
r
p
tio
n
co
ef
f
icie
n
t
v
alu
e
a
n
d
th
e
iter
atio
n
li
m
it.
T
h
e
b
asic
s
tep
s
o
f
t
h
e
Fire
f
l
y
ca
n
b
e
s
u
m
m
ar
ized
as
th
e
p
s
eu
d
o
co
d
e
[
1
0
,
1
1
]
.
P
s
eu
d
o
co
d
e
o
f
Fire
f
l
y
A
l
g
o
r
ith
m
Ob
j
ec
tiv
e
f
u
n
ctio
n
f(
x
)
,
x
=
(
x
1
,
…,
x
d
)
T
Gen
er
ate
in
itial p
o
p
u
latio
n
o
f
f
ir
ef
lies
x
ii
(
i=1
,
2
…,
n
)
L
i
g
h
t in
te
n
s
it
y
I
ii
at
x
ii
is
d
eter
m
i
n
ed
b
y
f
(x
ii
)
Def
i
n
e
li
g
h
t a
b
s
o
r
p
tio
n
co
ef
f
i
cien
t γ
w
h
ile
(
t <
Ma
x
Ge
n
er
atio
n
)
f
o
r
ii =
1
: n
all
n
f
ir
ef
l
ies
f
o
r
jj
=
1
: ii
all
n
f
ir
ef
lie
s
if
(
I
jj
> I
ii
)
,
Mo
r
e
f
ir
ef
l
y
ii to
war
d
s
jj
in
d
-
d
i
m
en
s
io
n
;
e
n
d
if
A
ttra
ct
iv
e
n
es
s
v
ar
ie
s
w
it
h
d
is
t
an
ce
r
E
v
alu
a
te
n
e
w
s
o
l
u
tio
n
s
a
n
d
m
o
d
if
y
t
h
e
lig
h
t
i
n
te
n
s
it
y
en
d
f
o
r
jj
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8938
IJ
-
AI
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
1
1
3
–
1
1
7
116
en
d
f
o
r
ii
R
an
k
all
t
h
e
f
ir
e
f
lie
s
an
d
f
in
d
t
h
e
cu
r
r
en
t b
es
t f
ir
e
f
l
y
en
d
w
h
ile
P
o
s
t p
r
o
ce
s
s
r
esu
lts
an
d
v
is
u
al
izatio
n
5.
RE
SU
L
T
S
T
h
e
an
al
y
ze
d
ap
p
r
o
ac
h
is
u
s
e
d
f
o
r
SVC
p
lace
m
e
n
t b
y
t
h
e
o
b
j
ec
tiv
es
co
n
s
id
er
ed
,
an
d
is
p
l
ac
ed
o
n
th
e
n
o
d
e
h
av
i
n
g
m
a
x
i
m
u
m
lo
s
s
r
e
d
u
ctio
n
an
d
p
o
o
r
v
o
ltag
e
p
r
o
f
i
le
w
h
ic
h
is
d
is
c
u
s
s
ed
.
5
.
1
.
Resul
t
s
o
f
1
4
bu
s
s
y
s
t
e
m
IEEE
1
4
b
u
s
s
y
s
te
m
[
1
2
-
1
3
]
co
n
tain
s
5
g
en
er
ato
r
b
u
s
e
s
(
b
u
s
n
u
m
b
er
s
:
1
,
2
,
3
,
6
an
d
8
,
9
lo
ad
b
u
s
es
(
b
u
s
n
u
m
b
er
s
:
4
,
5
,
7
,
9
,
1
0
,
1
1
,
1
2
,
1
3
an
d
1
4
)
an
d
2
0
tr
an
s
m
is
s
io
n
lin
e
s
.
T
h
e
lo
ad
is
i
n
cr
ea
s
ed
b
y
1
2
5
,
1
5
0
an
d
1
7
5
%.
Op
tim
al
lo
ca
tio
n
o
n
lo
ad
b
u
s
es,
r
atin
g
o
f
SVC
an
d
r
ea
l
p
o
w
er
lo
s
s
e
s
af
ter
SVC
p
lace
m
e
n
t
f
o
r
d
if
f
er
e
n
t
lo
ad
s
ce
n
ar
io
u
s
i
n
g
Fire
f
l
y
p
o
ti
m
izatio
n
ar
e
s
h
o
wn
in
T
ab
le
1
.
Vo
ltag
es
o
f
1
4
b
u
s
s
y
s
te
m
f
o
r
1
7
5
%
l
o
ad
in
g
s
h
o
w
n
i
n
tab
le
2
.
T
ab
le
1
.
R
esu
lt f
o
r
1
4
B
u
s
S
y
s
te
m
.
L
o
a
d
i
n
g
c
o
n
d
i
t
i
o
n
L
o
ss
e
s w
i
t
h
o
u
t
S
V
C
S
V
C
L
o
c
F
i
r
e
f
l
y
a
l
g
o
r
i
t
h
m
R
a
t
i
n
g
o
f
S
V
C
L
o
ss
e
s w
i
t
h
S
V
C
N
o
r
mal
l
o
a
d
i
n
g
1
3
.
3
9
3
5
,
1
4
5
.
5
5
6
6
.
9
5
2
1
3
.
3
3
3
1
2
5
%
l
o
a
d
i
n
g
2
2
.
6
3
6
5
,
1
4
3
6
.
9
3
1
0
.
0
8
2
2
.
1
0
1
1
5
0
%
l
o
a
d
i
n
g
3
5
.
0
1
1
5
,
1
4
6
6
.
9
7
1
3
.
0
9
3
3
.
7
6
9
1
7
5
%
l
o
a
d
i
n
g
5
1
.
2
9
5
9
,
1
4
5
8
.
5
8
1
5
.
9
4
4
9
.
4
9
5
T
ab
le
2
.
Vo
ltag
es o
f
1
4
B
u
s
Sy
s
te
m
f
o
r
1
7
5
% L
o
ad
in
g
B
u
s
n
o
:
V
o
l
t
a
g
e
s (p
.
u
)
B
e
f
o
r
e
S
V
C
A
f
t
e
r
S
V
C
1
1
.
0
6
0
0
1
.
0
6
0
0
2
0
.
9
9
5
0
1
.
0
0
5
0
3
0
.
9
6
0
0
0
.
9
6
0
0
4
0
.
9
4
4
8
0
.
9
7
2
9
5
0
.
9
5
1
4
0
.
9
7
5
6
6
1
.
0
2
0
0
1
.
0
6
0
0
7
0
.
9
8
5
1
1
.
0
5
6
5
8
1
.
0
4
0
0
1
.
0
9
0
0
9
0
.
9
6
5
1
1
.
0
7
2
0
10
0
.
9
6
0
6
1
.
0
5
6
8
11
0
.
9
8
3
3
1
.
0
5
2
3
12
0
.
9
8
9
8
1
.
0
3
9
3
13
0
.
9
7
8
5
1
.
0
3
5
1
14
0
.
9
3
5
8
1
.
0
4
7
7
5
.
2
.
Resul
t
s
o
f
3
0
bu
s
s
y
s
t
e
m
IEEE
3
0
b
u
s
s
y
s
te
m
[
1
2
]
co
n
t
ain
s
6
g
en
er
ato
r
b
u
s
es
(
b
u
s
n
u
m
b
er
s
:
1
,
2
,
5
,
8
,
1
1
,
an
d
1
3
)
,
2
4
lo
ad
b
u
s
es
(
b
u
s
n
u
m
b
er
s
:
3
,
4
,
6
,
7
,
9
,
1
0
,
1
2
,
1
4
,
1
5
,
1
6
,
1
7
,
1
8
,
1
9
,
2
0
,
2
1
,
2
2
,
2
3
,
2
4
,
2
5
,
2
6
,
2
7
,
2
8
,
2
9
an
d
3
0
)
an
d
4
1
tr
an
s
m
is
s
io
n
li
n
es.
T
h
e
lo
ad
is
in
cr
ea
s
ed
b
y
1
2
5
,
1
5
0
a
n
d
1
7
5
%.
Op
ti
m
al
lo
ca
tio
n
o
n
lo
ad
b
u
s
es,
r
ati
n
g
o
f
SVC
a
n
d
r
ea
l
p
o
w
er
lo
s
s
es
af
ter
SV
C
p
lace
m
e
n
t
f
o
r
d
if
f
er
e
n
t
lo
ad
s
ce
n
ar
io
u
s
i
n
g
FA
ar
e
s
h
o
w
n
i
n
T
ab
le
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
-
AI
I
SS
N:
2252
-
8938
Op
tima
l P
la
ce
men
t o
f S
V
C
Usi
n
g
F
u
z
z
y
a
n
d
F
ir
efly
A
lg
o
r
ith
m
(
P
.
S
u
r
esh
B
a
b
u
)
117
T
ab
le
3
.
R
esu
lt
f
o
r
3
0
B
u
s
S
y
s
te
m
L
o
a
d
i
n
g
c
o
n
d
i
t
i
o
n
L
o
ss
e
s w
i
t
h
o
u
t
S
V
C
S
V
C
L
o
c
.
F
i
r
e
f
l
y
a
l
g
o
r
i
t
h
m
R
a
t
i
n
g
of
S
V
C
L
o
ss
e
s w
i
t
h
S
V
C
N
o
r
mal
l
o
a
d
i
n
g
1
7
.
5
2
8
2
6
.
3
0
.
7
3
.
1
4
2
7
3
.
3
8
2
6
1
2
.
7
3
1
0
1
7
.
4
0
5
7
1
2
5
%
l
o
a
d
i
n
g
2
9
.
8
5
0
3
0
.
7.
26
5
.
8
7
1
0
3
2
.
7
9
7
7
4
.
9
5
2
7
2
9
.
.
9
1
2
1
5
0
%
l
o
a
d
i
n
g
4
6
.
9
4
2
2
4
.
3
0
.
26
1
7
.
0
2
6
6
6
.
9
7
3
0
4
.
5
2
4
5
4
5
.
4
1
7
5
1
7
5
%
l
o
a
d
i
n
g
6
8
.
9
6
2
2
4
.
2
1
.
30
2
2
.
3
1
7
7
6
3
.
7
5
5
2
1
4
.
4
7
3
6
6
5
.
8
7
5
6
6.
CO
NCLU
SI
O
N
A
t
w
o
-
f
o
ld
ap
p
r
o
ac
h
is
u
s
ed
i
n
th
i
s
p
ap
er
f
o
r
f
in
d
in
g
s
izes
o
f
SVC
d
ev
ice
s
an
d
o
p
ti
m
al
lo
ca
tio
n
s
is
p
r
esen
ted
.
Fu
zz
y
ap
p
r
o
ac
h
is
u
s
ed
f
o
r
o
p
ti
m
al
lo
ca
tio
n
s
a
n
d
s
izes
ar
e
o
b
tain
ed
th
r
o
u
g
h
F
A
m
et
h
o
d
f
o
r
th
eir
o
p
tim
a
l
r
atin
g
v
al
u
es
ar
e
ca
l
cu
lated
.
Fro
m
r
es
u
lt
s
it
i
s
o
b
s
er
v
ed
th
at
f
o
r
all
o
v
er
lo
ad
s
i.e
.
,
1
2
5
%,
1
5
0
%
an
d
1
7
5
%
o
f
n
o
r
m
al
lo
ad
in
g
,
th
e
v
o
lta
g
e
p
r
o
f
ile
o
f
t
h
e
s
y
s
te
m
is
i
n
cr
ea
s
ed
an
d
m
a
in
tai
n
ed
w
it
h
in
th
e
s
p
ec
if
ied
li
m
it
s
,
an
d
th
e
r
ea
l p
o
w
er
lo
s
s
e
s
ar
e
also
r
ed
u
ce
d
.
RE
F
E
R
E
NC
E
S
[1
]
Us
h
a
su
re
n
d
ra
,
S
S
P
a
rt
h
a
sa
ra
th
y
.
Co
n
g
e
stio
n
m
a
n
a
g
e
m
e
n
t
in
d
e
re
g
u
late
d
p
o
w
e
r
se
c
to
r
u
sin
g
f
u
z
z
y
b
a
s
e
d
o
p
ti
m
a
l
lo
c
a
ti
o
n
tec
h
n
i
q
u
e
f
o
r
se
ries
F
A
CT
S
d
e
v
ice
s.
J
o
u
rn
a
l
o
f
El
e
c
tric
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
Res
e
a
rc
h
,
2
0
1
2
;
4
(1
):
12
-
20
.
[2
]
M
rin
a
l
Ra
n
ja
n
,
B
V
e
d
ik
.
O
p
ti
m
a
l
lo
c
a
ti
o
n
s
o
f
F
A
CT
S
d
e
v
ic
e
s
in
a
P
o
w
e
r
s
y
ste
m
b
y
m
e
a
n
s
if
S
e
n
sit
iv
it
y
A
n
a
l
y
sis.
J
o
u
rn
a
l
i
n
T
re
n
d
s in
El
e
c
trica
l
a
n
d
Co
m
p
u
ti
n
g
En
g
in
e
e
rin
g
,
T
ECE
.
2
0
1
1
;
1
(
1
):
1
-
9
.
[3
]
G
S
w
a
p
n
a
,
J
S
rin
iv
a
sa
Ra
o
,
J
Am
a
rn
a
th
.
S
e
n
siti
v
it
y
a
p
p
ro
a
c
h
e
s to
i
m
p
ro
v
e
tran
s
f
e
r
c
a
p
a
b
il
it
y
th
ro
u
g
h
o
p
ti
m
a
l
[4
]
P
lac
e
m
e
n
to
f
T
CS
C,
S
V
C.
In
ter
n
a
ti
o
n
a
l
j
o
u
r
n
a
l
o
f
a
d
v
a
n
c
e
s in
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
Ju
ly
2
0
1
2
,
[5
]
Kira
n
k
u
m
a
r
K,
N
S
u
re
sh
.
En
h
a
n
c
e
m
e
n
t
o
f
v
o
lt
a
g
e
sta
b
il
it
y
th
ro
u
g
h
o
p
t
im
a
l
p
lac
e
m
e
n
t
o
f
F
A
C
TS
c
o
n
tro
ll
e
rs
i
n
p
o
w
e
r
s
y
ste
m
.
Ame
ric
a
n
jo
u
rn
a
l
o
f
su
st
a
in
a
b
le
c
it
ies
a
n
d
so
c
iety
,
2
0
1
2
;
1
.
[6
]
M
a
ro
u
a
n
i
I,
G
u
e
si
T
,
Ha
d
i
A
b
d
u
ll
a
h
H
,
O
u
a
li
A
.
Op
ti
m
a
l
l
o
c
a
ti
o
n
s
o
f
mu
lt
it
y
p
e
f
a
c
ts
d
e
v
ice
s
fo
r
mu
lt
ip
l
e
c
o
n
ti
n
g
e
n
c
ies
u
sin
g
g
e
n
e
ti
c
a
l
g
o
rith
ms
.
IEE
E
8
t
h
In
tern
a
ti
o
n
a
l
m
u
lt
i
-
c
o
n
f
e
re
n
c
e
o
n
s
y
st
e
m
s,
si
g
n
a
ls
a
n
d
d
e
v
ice
s,
2
0
1
1
.
[7
]
S
S
u
re
n
d
re
Re
d
d
y
,
M
S
a
il
a
ja
Ku
m
a
ri,
M
S
y
d
u
lu
.
C
o
n
g
e
stio
n
M
a
n
a
g
e
m
e
n
t
in
De
re
g
u
late
d
p
o
w
e
r
S
y
ste
m
b
y
Op
ti
m
a
l
Ch
o
ice
a
n
d
a
ll
o
c
a
ti
o
n
o
f
F
A
C
T
S
Co
n
tro
ll
e
rs
u
sin
g
M
u
lt
i
-
O
b
jec
ti
v
e
GA
.
IEE
E
9
7
8
-
1
-
4
2
4
4
-
6
5
4
7
7
/1
0
/2
0
1
0
.
[8
]
A
K
Ch
a
k
ra
b
o
rt
y
,
S
M
a
ju
m
d
a
r
.
A
c
ti
v
e
L
in
e
F
lo
w
Co
n
tro
l
o
f
p
o
w
e
r
S
y
ste
m
Ne
t
w
o
rk
w
it
h
F
A
C
T
S
De
v
ice
s
o
f
c
h
o
ice
u
sin
g
s
o
f
t
c
o
m
p
u
ti
n
g
tec
h
n
iq
u
e
.
In
ter
n
a
ti
o
n
a
l
j
o
u
r
n
a
l
o
f
c
o
mp
u
ti
n
g
a
p
p
li
c
a
ti
o
n
s,
2
0
1
1
;
25
(
9
).
[9
]
X
S
Ya
n
g
.
F
iref
ly
a
l
g
o
rit
h
m
s
f
o
r
m
u
lt
im
o
d
a
l
o
p
ti
m
iza
ti
o
n
.
S
t
o
c
h
a
stic
A
l
g
o
rit
h
m
s:
F
o
u
n
d
a
ti
o
n
a
n
d
A
p
p
li
c
a
ti
o
n
s
S
AG
A
,
2
0
0
9
;
5
7
9
2
:
1
6
9
-
1
7
8
.
[1
0
]
X
S
Ya
n
g
.
F
iref
l
y
a
l
g
o
rit
h
m
,
Le
v
y
f
li
g
h
ts
a
n
d
g
lo
b
a
l
o
p
ti
m
iza
ti
o
n
.
I
n
Re
se
a
rc
h
a
n
d
De
v
e
lo
p
m
e
n
t
in
In
telli
g
e
n
t
S
y
st
e
m
s X
XV
I
,
2
0
1
0
:
2
0
9
–
2
1
8
,
S
p
rin
g
e
r
,
L
o
n
d
o
n
,
UK
.
[1
1
]
XS
Ya
n
g
.
Na
t
u
re
-
In
sp
ire
d
M
e
ta
-
He
u
risti
c
A
lg
o
rit
h
m
s,
L
u
n
iv
e
r
P
r
e
ss
,
Be
c
k
in
g
to
n
,
UK
,
2
0
0
8
.
[1
2
]
S
L
u
k
a
sik
,
S
Zak
.
Fi
re
fl
y
a
l
g
o
rith
m
fo
r
c
o
n
-
ti
n
u
o
u
s
c
o
n
stra
i
n
e
d
o
p
ti
miz
a
ti
o
n
ta
sk
s
.
I
n
P
r
o
c
e
e
d
in
g
s
o
f
th
e
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Co
m
p
u
ter
a
n
d
Co
m
p
u
tatio
n
a
l
In
tel
li
g
e
n
c
e
(
IC
CCI
’0
9
),
2
0
0
9
:
9
7
–
1
0
6
,
S
p
ri
n
g
e
r,
W
ro
c
l
a
w
,
P
o
lan
d
.
[1
3
]
h
tt
p
:
//
ww
w
.
e
e
.
w
a
sh
in
g
to
n
.
e
d
u
/
re
se
a
rc
h
/p
stc
a
/.
[1
4
]
Op
ti
m
a
l
P
lac
e
m
e
n
t
o
f
S
V
C
Us
i
n
g
F
u
z
z
y
a
n
d
P
S
O
A
lg
o
rit
h
m
.
K
d
h
a
n
u
n
jay
a
b
a
b
u
,
M
Da
m
o
d
a
r
re
d
d
y
1
P
G
S
tu
d
e
n
t,
De
p
a
rtme
n
t
o
f
E.
E.
E.
,
S
.
V.
Un
i
v
e
rsit
y
,
T
iru
p
a
ti
,
A
n
d
h
ra
P
ra
d
e
s
h
,
I
n
d
ia.
2
A
ss
o
c
iate
P
r
o
f
e
ss
o
r,
De
p
a
rtm
e
n
t
o
f
E.
E.
E.
,
S
.
V
.
Un
iv
e
rsity
,
T
iru
p
a
ti
,
A
n
d
h
ra
P
ra
d
e
sh
,
I
n
d
ia
Evaluation Warning : The document was created with Spire.PDF for Python.