I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
wer
E
lect
ro
nics
a
nd
Driv
e
S
y
s
t
em
(
I
J
P
E
DS)
Vo
l.
16
,
No
.
2
,
J
u
n
e
20
25
,
p
p
.
891
~
9
0
6
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/ijp
ed
s
.
v
16
.i
2
.
p
p
8
9
1
-
906
891
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
p
e
d
s
.
ia
esco
r
e.
co
m
Ev
a
lua
tion o
f
a
fu
zzy
-
ba
sed slidi
ng
mo
de contro
l st
ra
tegy
for a
DC
-
D
C
buc
k con
v
erte
r
Q
ua
n Vinh Ng
uy
en,
H
uu
-
T
o
a
n T
ra
n,
Lo
n
g
Th
a
n
g
Ma
i
F
a
c
u
l
t
y
o
f
E
l
e
c
t
r
o
n
i
c
Te
c
h
n
o
l
o
g
y
,
I
n
d
u
st
r
i
a
l
U
n
i
v
e
r
si
t
y
o
f
H
o
C
h
i
M
i
n
h
C
i
t
y
,
H
o
C
h
i
M
i
n
h
C
i
t
y
,
V
i
e
t
n
a
m
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
2
5
,
2
0
2
4
R
ev
is
ed
Ap
r
8
,
2
0
2
5
Acc
ep
ted
Ma
y
6
,
2
0
2
5
DC
-
DC
c
o
n
v
e
rters
o
p
e
ra
te
a
s
se
m
ico
n
d
u
c
to
r
p
o
we
r
d
e
v
ice
s
in
wh
ich
tran
sfo
rm
e
rs
su
c
h
a
s
b
u
c
k
c
o
n
v
e
rters
o
ften
c
a
u
se
n
o
n
li
n
e
a
r
c
h
a
ra
c
teristics
to
th
e
c
o
n
v
e
rter,
wh
il
e
t
h
e
o
u
tp
u
t
v
o
lt
a
g
e
o
f
th
e
c
o
n
v
e
rter
a
ffe
c
ted
b
y
d
y
n
a
m
ic
in
p
u
t
v
o
lt
a
g
e
a
n
d
l
o
a
d
c
h
a
n
g
e
.
Th
is
p
a
p
e
r
p
re
se
n
ts
a
sli
d
in
g
m
o
d
e
c
o
n
tro
l
stra
teg
y
u
sin
g
a
fu
z
z
y
o
b
se
rv
e
r
t
o
p
ro
v
id
e
a
su
sta
i
n
a
b
le
re
sp
o
n
se
a
n
d
h
ig
h
p
e
rfo
rm
a
n
c
e
fo
r
b
u
c
k
c
o
n
v
e
rter
s
a
ffe
c
ted
b
y
u
n
c
e
rtain
ti
e
s
su
c
h
a
s
in
p
u
t
v
o
lt
a
g
e
a
n
d
re
sista
n
c
e
lo
a
d
.
T
h
e
c
o
n
tr
o
l
stra
teg
y
i
n
c
lu
d
e
s
two
fe
e
d
b
a
c
k
lo
o
p
s
i
n
wh
ic
h
a
n
e
x
tern
a
l
c
o
n
tro
l
lo
o
p
fo
rc
e
s
t
h
e
o
u
tp
u
t
v
o
lt
a
g
e
t
o
trac
k
t
h
e
se
t
v
o
lt
a
g
e
,
a
n
d
th
e
o
u
t
p
u
t
o
f
t
h
e
e
x
tern
a
l
c
o
n
t
ro
l
l
o
o
p
is
a
d
a
p
ted
a
s
a
slid
in
g
su
rfa
c
e
to
c
o
n
tro
l
th
e
c
u
rre
n
t
th
r
o
u
g
h
t
h
e
in
d
u
c
to
r
t
o
trac
k
t
h
e
se
t
c
u
rre
n
t,
c
a
ll
e
d
th
e
i
n
tern
a
l
c
o
n
tr
o
l
l
o
o
p
.
De
sig
n
a
n
a
ly
sis,
c
o
n
tro
l
law
a
n
d
Ly
a
p
u
n
o
v
sta
b
il
it
y
o
f
t
h
e
c
o
n
tr
o
l
stra
teg
y
a
re
il
lu
stra
ted
.
T
h
e
sim
u
latio
n
is
d
e
v
e
lo
p
e
d
o
n
th
e
M
ATLAB
-
S
imu
li
n
k
p
latfo
rm
,
th
e
re
su
lt
s
a
re
re
-
e
v
a
lu
a
ted
e
x
p
e
rime
n
tally
b
a
se
d
o
n
th
e
se
lf
-
b
u
il
t
p
ro
t
o
t
y
p
e
o
f
DC
-
D
C
b
u
c
k
c
o
n
v
e
rter.
Th
e
sim
u
late
d
a
n
d
e
x
p
e
rime
n
tal
r
e
su
lt
s
h
a
v
e
s
h
o
we
d
th
a
t
th
e
o
u
tp
u
t
v
o
lt
a
g
e
a
n
d
c
u
rre
n
t
o
f
t
h
e
b
u
c
k
c
o
n
v
e
rte
r
h
a
v
e
trac
k
e
d
t
h
e
se
t
p
o
i
n
ts
fr
o
m
lo
w
to
h
ig
h
v
a
lu
e
s
d
e
sp
it
e
su
d
d
e
n
c
h
a
n
g
e
s
in
l
o
a
d
a
s
we
ll
a
s
i
n
in
p
u
t
v
o
lt
a
g
e
in
th
e
p
re
se
n
c
e
o
f
n
o
ise
.
T
h
e
c
o
m
p
a
ti
b
il
it
y
in
d
e
x
n
o
rm
a
li
z
e
d
ro
o
t
m
e
a
n
sq
u
a
re
e
rro
r
o
f
t
h
e
m
e
a
su
re
d
v
o
lt
a
g
e
a
n
d
c
u
rre
n
t
u
sin
g
t
h
e
p
r
o
p
o
se
d
a
lg
o
rit
h
m
is
[9
6
.
3
4
%
±1
.
0
2
%
,
9
5
.
0
9
%
±3
.
0
4
%
]
h
ig
h
e
r
th
a
n
t
h
a
t
u
si
n
g
t
h
e
p
r
o
p
o
rti
o
n
a
l
in
teg
ra
l
(
PI
)
a
lg
o
rit
h
m
wh
ic
h
is
[
9
5
.
9
4
%
±
3
.
0
1
%
,
8
5
.
7
2
%
±
3
.
9
5
%
]
i
n
t
h
e
p
re
se
n
c
e
o
f
v
a
ry
in
g
p
a
ra
m
e
ters
.
K
ey
w
o
r
d
s
:
C
o
n
v
er
ter
DC
-
DC
b
u
ck
Fu
zz
y
lo
g
ic
MA
T
L
AB
-
Simu
lin
k
Sli
d
in
g
m
o
d
e
c
o
n
tr
o
l
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Hu
u
-
T
o
an
T
r
an
Facu
lty
o
f
E
lectr
o
n
ic
T
ec
h
n
o
l
o
g
y
,
I
n
d
u
s
tr
ial
Un
iv
er
s
ity
o
f
Ho
C
h
i M
in
h
C
ity
Ho
C
h
i M
in
h
C
ity
,
Vietn
am
E
m
ail: tr
an
h
u
u
t
o
an
@
iu
h
.
ed
u
.
v
n
1.
I
NT
RO
D
UCT
I
O
N
V
o
l
t
a
g
e
c
o
n
t
r
o
l
a
n
d
c
u
r
r
e
n
t
c
o
n
t
r
o
l
a
r
e
t
w
o
c
o
m
m
o
n
l
y
u
s
e
d
m
e
t
h
o
d
s
t
o
c
o
n
t
r
o
l
D
C
-
D
C
c
o
n
v
e
r
t
e
r
s
[
1
]
,
[
2
]
.
V
o
l
t
a
g
e
c
o
n
t
r
o
l
h
a
s
a
s
i
g
n
i
f
i
c
a
n
t
a
b
i
l
i
t
y
t
o
r
e
j
e
c
t
n
o
i
s
e
y
e
t
h
a
s
s
l
o
w
t
i
m
e
-
r
e
s
p
o
n
s
e
w
h
i
l
e
,
a
s
a
t
r
a
d
e
-
o
f
f
,
c
u
r
r
e
n
t
c
o
n
t
r
o
l
i
s
a
f
a
s
t
t
r
a
n
s
i
e
n
t
r
e
s
p
o
n
s
e
m
e
t
h
o
d
y
e
t
m
o
r
e
c
o
m
p
l
i
c
a
t
e
d
t
h
a
n
t
h
e
v
o
l
t
a
g
e
c
o
n
t
r
o
l
.
C
l
a
s
s
i
c
a
l
p
r
o
p
o
r
t
i
o
n
a
l
i
n
t
e
g
r
a
l
(
PI
)
c
o
n
t
r
o
l
l
e
r
s
u
s
i
n
g
c
a
r
r
i
e
r
w
a
v
e
a
n
d
h
y
s
t
e
r
e
t
i
c
c
o
n
t
r
o
l
l
e
r
s
a
r
e
m
o
s
t
c
o
m
m
o
n
l
y
u
t
i
l
i
z
e
d
f
o
r
DC
-
D
C
c
o
n
v
e
r
t
e
r
s
[
3
]
,
[
4
]
.
C
l
a
s
s
i
c
a
l
c
o
n
t
r
o
l
l
e
r
s
a
r
e
s
i
m
p
l
y
i
m
p
l
e
m
e
n
t
e
d
b
u
t
a
f
f
e
c
t
e
d
b
y
t
h
e
i
n
f
l
u
e
n
c
e
s
o
f
u
n
c
e
r
t
a
i
n
p
a
r
a
m
e
t
e
r
s
e
x
i
s
t
i
n
g
i
n
t
h
e
c
o
n
v
e
r
t
e
r
,
t
h
u
s
,
a
r
e
n
o
t
v
e
r
y
e
f
f
e
c
t
i
v
e
i
n
a
c
h
i
e
v
i
n
g
t
h
e
d
e
s
i
r
e
d
p
e
r
f
o
r
m
a
n
c
e
[
5
]
,
[
6
]
.
T
h
e
c
o
n
t
r
o
l
l
e
r
s
o
f
a
D
C
-
D
C
c
o
n
v
e
r
t
e
r
h
a
v
e
t
o
t
a
k
e
i
n
t
o
a
c
c
o
u
n
t
n
o
n
l
i
n
e
a
r
i
t
i
e
s
a
n
d
p
a
r
a
m
e
t
e
r
v
a
r
i
a
t
i
o
n
s
o
f
t
h
e
c
o
n
v
e
r
t
e
r
i
n
o
r
d
e
r
t
o
g
u
a
r
a
n
t
e
e
g
l
o
b
a
l
s
t
a
b
i
l
i
t
y
a
n
d
p
r
o
v
i
d
e
f
a
s
t
t
i
m
e
-
r
e
s
p
o
n
s
e
u
n
d
e
r
a
l
l
c
o
n
d
i
t
i
o
n
s
[
7
]
,
[
8
]
.
I
n
o
r
d
e
r
t
o
i
m
p
r
o
v
e
t
h
e
c
o
n
t
r
o
l
p
e
r
f
o
r
m
a
n
c
e
o
f
t
h
e
c
la
s
s
i
ca
l
c
o
n
t
r
o
l
le
r
s
,
a
r
t
i
f
i
c
i
al
n
e
u
r
a
l
n
e
t
w
o
r
k
s
(
A
N
N
)
i
s
t
r
a
i
n
e
d
u
s
i
n
g
a
p
p
r
o
x
i
m
a
t
i
o
n
d
y
n
a
m
i
c
p
r
o
g
r
a
m
m
i
n
g
(
A
D
P
)
t
o
al
l
o
w
o
p
ti
m
a
l c
o
n
t
r
o
l
w
it
h
t
h
e
i
n
p
u
ts
o
f
e
r
r
o
r
s
i
g
n
a
ls
a
n
d
i
n
t
e
g
r
a
ls
o
f
t
h
e
e
r
r
o
r
s
i
g
n
a
ls
[
9
]
,
[
1
0
]
.
O
p
t
i
m
i
z
at
i
o
n
al
g
o
r
i
t
h
m
s
s
u
c
h
a
s
p
a
r
t
i
c
le
s
w
a
r
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
2
,
J
u
n
e
20
25
:
8
9
1
-
9
0
6
892
o
p
t
i
m
i
z
a
ti
o
n
(
P
S
O
)
a
r
e
u
t
i
li
z
ed
t
o
s
e
l
e
c
t
P
I
p
a
r
a
m
e
t
e
r
s
a
n
d
t
o
a
d
d
r
e
s
s
t
h
e
w
i
nd
-
u
p
i
s
s
u
e
o
f
t
h
e
b
u
c
k
c
o
n
v
e
r
t
e
r
c
o
n
t
r
o
l
[
1
1
]
,
[
1
2
]
.
I
n
o
r
d
e
r
t
o
g
e
n
e
r
a
t
e
t
h
e
d
e
s
i
r
e
d
v
o
l
t
a
g
e
w
i
t
h
h
i
g
h
r
o
b
u
s
t
n
e
s
s
t
o
l
o
a
d
d
i
s
t
u
r
b
a
n
c
e
s
,
a
p
a
r
a
m
e
t
r
i
c
f
u
n
c
t
i
o
n
a
p
p
r
o
x
i
m
at
o
r
i
s
p
r
o
p
o
s
e
d
t
o
p
r
o
v
i
d
e
o
p
t
im
a
l
s
wi
t
c
h
i
n
g
f
o
r
t
h
e
c
o
n
v
e
r
t
er
[
1
3
]
.
A
n
o
n
l
i
n
e
a
r
c
o
n
t
r
o
l
t
e
c
h
n
i
q
u
e
d
e
r
i
v
e
d
f
r
o
m
t
h
e
c
o
n
c
e
p
t
o
f
v
a
r
i
a
b
l
e
s
t
r
u
c
t
u
r
e
c
o
n
t
r
o
l
c
a
l
le
d
s
li
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
(
S
M
C
)
w
h
i
c
h
h
a
s
t
h
e
a
d
v
a
n
t
a
g
e
s
o
f
s
i
m
p
le
i
m
p
le
m
e
n
t
a
ti
o
n
,
r
o
b
u
s
t
s
t
a
b
i
l
it
y
a
n
d
f
as
t
t
i
m
e
-
r
es
p
o
n
s
e
[
1
4
]
.
SM
C
is
a
d
o
p
t
e
d
f
o
r
D
C
-
D
C
b
u
c
k
c
o
n
v
e
r
t
e
r
t
o
p
r
o
v
i
d
e
a
s
t
a
b
l
e
c
o
n
s
t
a
n
t
o
u
t
p
u
t
v
o
l
t
a
g
e
t
h
a
t
c
o
u
n
t
e
r
a
c
ts
t
h
e
e
f
f
e
c
t
o
f
u
n
c
e
r
t
a
i
n
t
i
es
s
u
c
h
as
i
n
p
u
t
v
o
l
t
a
g
e
a
n
d
r
es
is
t
a
n
ce
l
o
a
d
[
1
5
]
.
T
h
e
c
h
a
t
t
e
r
i
n
g
p
h
e
n
o
m
e
n
a
a
r
e
u
n
e
x
p
e
c
t
ed
o
s
c
i
ll
a
t
i
o
n
s
o
f
f
i
n
i
t
e
a
m
p
l
i
t
u
d
e
a
n
d
f
r
e
q
u
e
n
c
y
d
u
e
t
o
t
h
e
p
r
e
s
e
n
c
e
o
f
u
n
-
m
o
d
e
l
e
d
d
y
n
a
m
i
c
s
o
r
d
i
s
c
r
e
te
-
t
i
m
e
i
m
p
l
e
m
e
n
t
a
ti
o
n
[
1
6
]
.
I
n
o
r
d
e
r
t
o
i
m
p
r
o
v
e
t
h
e
p
e
r
f
o
r
m
a
n
c
e
o
f
S
M
C
,
e
q
u
i
v
a
l
e
n
t
c
o
n
t
r
o
l
an
d
b
o
u
n
d
a
r
y
l
a
y
e
r
a
p
p
r
o
a
c
h
c
o
n
t
r
o
l
a
r
e
p
r
o
p
o
s
e
d
t
o
r
e
d
u
c
e
n
o
i
s
e
y
e
t
c
a
n
n
o
t
r
e
d
u
c
e
c
h
a
t
t
e
r
i
n
g
p
h
e
n
o
m
e
n
a
d
u
e
t
o
t
h
e
i
r
f
i
n
i
t
e
n
u
m
b
e
r
o
f
o
u
t
p
u
t
v
a
l
u
e
s
.
T
h
e
a
p
p
r
o
a
c
h
o
f
b
o
u
n
d
a
r
y
l
a
y
e
r
a
s
y
m
p
t
o
t
e
e
n
c
o
u
n
t
e
r
e
d
i
n
r
e
a
c
h
in
g
t
h
e
s
l
i
d
i
n
g
m
o
d
e
d
u
e
t
o
r
e
p
l
a
c
i
n
g
t
h
e
d
is
c
o
n
t
i
n
u
o
u
s
f
u
n
c
t
i
o
n
s
i
g
n
(
.
)
w
it
h
t
h
e
c
o
n
t
i
n
u
o
u
s
s
a
t
u
r
at
i
o
n
f
u
n
c
t
i
o
n
S
at
(
.
)
[
1
7
]
-
[
2
0
]
.
A
f
u
z
z
y
s
et
is
a
m
at
h
e
m
atic
al
s
o
f
t
-
co
m
p
u
ti
n
g
m
o
d
e
l
c
o
n
s
tr
u
ct
e
d
b
y
h
e
u
r
is
tic
i
n
f
o
r
m
a
tio
n
f
r
o
m
h
u
m
an
r
e
aso
n
i
n
g
p
r
o
c
ess
th
a
t
p
r
o
v
i
d
es
an
ef
f
i
cie
n
t
m
et
h
o
d
o
lo
g
y
f
o
r
im
p
l
em
en
ti
n
g
a
h
u
m
a
n
’
s
h
eu
r
is
tic
k
n
o
w
le
d
g
e
a
b
o
u
t
h
o
w
t
o
o
b
s
e
r
v
e,
i
d
e
n
t
if
y
,
a
n
d
c
o
n
t
r
o
l
a
s
y
s
tem
[
2
1
]
,
[
2
2
]
.
T
h
e
f
u
z
zy
c
o
n
t
r
o
lle
r
c
o
m
m
o
n
l
y
o
p
e
r
at
ed
as
a
s
u
p
e
r
v
is
o
r
,
a
g
ai
n
s
c
h
ed
u
l
in
g
,
a
n
a
d
a
p
t
iv
e
r
e
g
u
lat
o
r
,
o
r
a
r
o
b
u
s
t
s
t
a
b
il
ity
t
e
r
m
[
2
3
]
-
[
2
5
]
.
An
a
ly
tic
al
m
et
h
o
d
s
a
r
e
n
o
t
a
m
e
n
a
b
l
e
t
o
n
o
n
l
in
ea
r
,
ti
m
e
-
v
ar
y
i
n
g
,
o
r
u
n
k
n
o
w
n
i
n
f
in
ite
-
d
im
e
n
s
i
o
n
al
s
y
s
te
m
s
wh
i
ch
a
r
e
ab
le
t
o
b
e
h
a
n
d
le
d
u
s
i
n
g
f
u
zz
y
c
o
n
t
r
o
lle
r
s
[
2
6
]
-
[
3
0
]
.
I
n
t
h
is
p
ap
e
r
,
a
n
ew
f
u
zz
y
-
b
as
ed
s
li
d
i
n
g
m
o
d
e
co
n
t
r
o
l
s
t
r
ate
g
y
(
FS
MCS
)
f
o
r
t
h
e
DC
-
DC
b
u
c
k
co
n
v
e
r
t
er
is
p
r
o
p
o
s
e
d
t
o
r
ed
u
ce
th
e
e
f
f
ec
ts
o
f
c
h
at
te
r
i
n
g
p
h
e
n
o
m
e
n
a
a
n
d
u
n
c
er
t
ai
n
ti
es.
T
h
e
c
o
m
b
i
n
ati
o
n
of
t
h
e
s
li
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
(
SMC
)
a
n
d
f
u
zz
y
l
o
g
ic
p
r
o
v
i
d
es
a
s
ig
n
i
f
ic
a
n
t
s
o
l
u
t
io
n
as
a
s
u
p
e
r
v
is
o
r
t
o
tu
n
e
t
h
e
s
l
id
in
g
m
o
d
e
o
u
t
p
u
t.
I
n
FS
MCS
,
t
h
e
f
u
zz
y
s
y
s
te
m
is
u
t
iliz
e
d
t
o
esti
m
at
e
t
h
e
u
p
p
er
li
m
i
ts
o
f
n
o
is
e
a
n
d
u
n
ce
r
t
ai
n
ti
es
to
r
e
d
u
ce
t
h
e
c
h
a
tte
r
i
n
g
b
e
h
av
io
r
.
T
h
e
a
d
v
a
n
ta
g
e
o
f
FS
MCS
is
t
h
at
t
h
e
c
o
n
tr
o
l
law
is
n
o
t
d
i
r
ec
tl
y
e
x
t
r
a
cte
d
f
r
o
m
th
e
m
a
th
em
ati
ca
l
m
o
d
el
o
f
t
h
e
c
o
n
t
r
o
ll
ed
s
y
s
t
em
[
3
1
]
-
[
3
4
]
.
T
h
e
m
o
d
el
o
f
b
u
c
k
co
n
v
e
r
te
r
s
a
f
f
ec
t
ed
b
y
u
n
ce
r
ta
in
t
ies
s
u
c
h
as
in
p
u
t
v
o
lt
a
g
e
a
n
d
l
o
ad
r
esis
t
an
ce
is
s
h
o
wn
.
T
h
e
s
l
id
in
g
c
o
n
tr
o
l
la
w
a
n
d
t
h
e
f
u
z
zy
o
b
s
e
r
v
e
r
ar
e
d
esig
n
ed
t
o
p
r
o
v
i
d
e
a
s
u
s
ta
in
a
b
l
e
r
esp
o
n
s
e
a
n
d
h
i
g
h
p
e
r
f
o
r
m
a
n
c
e
f
o
r
t
h
e
b
u
ck
c
o
n
v
e
r
t
er
s
.
T
h
e
FS
MCS
is
c
o
m
p
o
s
e
d
o
f
e
x
t
er
n
a
l
a
n
d
i
n
t
er
n
al
co
n
t
r
o
l
l
o
o
p
s
.
T
h
e
ex
t
e
r
n
al
c
o
n
t
r
o
l
l
o
o
p
is
t
o
f
o
r
ce
t
h
e
o
u
t
p
u
t
v
o
lta
g
e
to
tr
ac
k
t
h
e
s
et
v
o
lt
ag
e
w
h
e
n
t
h
e
o
u
t
p
u
t
o
f
t
h
e
e
x
te
r
n
a
l
co
n
t
r
o
l
lo
o
p
is
ad
ap
te
d
as
a
s
li
d
i
n
g
s
u
r
f
ac
e
t
o
c
o
n
tr
o
l
t
h
e
c
u
r
r
e
n
t
t
h
r
o
u
g
h
t
h
e
i
n
d
u
ct
o
r
t
o
o
b
tai
n
t
h
e
s
et
c
u
r
r
e
n
t
.
A
f
u
zz
y
s
u
p
e
r
v
is
o
r
is
p
r
o
p
o
s
e
d
f
o
r
t
h
e
s
l
id
in
g
s
u
r
f
a
ce
t
o
g
e
n
e
r
a
te
PW
M
p
u
ls
es
t
h
a
t
h
a
v
e
ef
f
ic
ie
n
t
d
u
t
y
c
y
cl
es
f
o
r
th
e
b
u
c
k
co
n
v
e
r
t
er
'
s
s
w
itc
h
t
o
p
r
o
v
id
e
a
s
t
ab
le
,
c
o
n
s
t
an
t
o
u
t
p
u
t
v
o
l
ta
g
e
.
St
a
b
ili
ty
a
n
a
ly
s
is
o
f
th
e
co
n
t
r
o
l
s
y
s
te
m
is
p
r
o
v
ed
u
s
i
n
g
L
y
a
p
u
n
o
v
t
h
e
o
r
y
.
T
h
e
p
r
o
p
o
s
ed
s
t
r
a
te
g
y
was
ev
al
u
at
e
d
o
n
b
o
t
h
s
im
u
l
ate
d
an
d
ex
p
e
r
i
m
e
n
t
al
p
l
at
f
o
r
m
s
u
s
i
n
g
MA
T
L
AB
Si
m
u
li
n
k
a
n
d
3
2
0
F
2
8
3
7
9
DSP
C
a
r
d
.
T
h
e
s
i
m
u
la
t
ed
a
n
d
e
x
p
e
r
im
e
n
ta
l
r
es
u
lts
h
a
v
e
s
h
o
w
n
t
h
at
t
h
e
o
u
tp
u
t
v
o
l
ta
g
e
a
n
d
c
u
r
r
en
t
o
f
th
e
b
u
ck
c
o
n
v
e
r
t
er
h
a
v
e
t
r
a
ck
e
d
t
h
e
s
e
t
p
o
i
n
ts
f
r
o
m
lo
w
t
o
h
i
g
h
v
al
u
es
d
es
p
it
e
s
u
d
d
e
n
c
h
a
n
g
es
i
n
l
o
ad
as
w
ell
as
in
i
n
p
u
t
v
o
lta
g
e
i
n
t
h
e
p
r
ese
n
c
e
o
f
n
o
is
e
.
T
h
e
r
em
ain
d
er
o
f
th
is
p
ap
e
r
is
o
r
g
an
ized
as
f
o
llo
ws
:
i)
Fir
s
tly
,
a
m
ath
em
atica
l
m
o
d
el
f
o
r
DC
–
DC
co
n
v
er
ter
is
p
r
esen
ted
,
an
d
t
h
e
d
esig
n
o
f
th
e
FS
MCS
co
n
tr
o
l
law
is
d
r
awn
;
ii)
Su
b
s
eq
u
e
n
tly
,
we
d
is
cu
s
s
h
o
w
th
e
f
u
zz
y
is
d
esig
n
ed
an
d
th
e
co
n
tr
o
lled
s
y
s
tem
is
s
tab
le
;
an
d
iii)
Fin
ally
,
s
i
m
u
latio
n
s
a
n
d
e
x
p
er
im
e
n
ts
ar
e
im
p
lem
en
ted
to
v
alid
ate
th
e
f
e
asib
ilit
y
o
f
th
e
p
r
o
p
o
s
ed
FS
M
C
S
.
2.
F
UZ
Z
Y
-
B
AS
E
D
S
L
I
D
I
NG
M
O
DE
CO
N
T
RO
L
ST
R
AT
E
G
Y
(
F
SM
C
S)
F
O
R
T
H
E
D
C
-
DC
B
UCK
CO
NVER
T
E
R
I
n
th
is
s
ec
tio
n
,
th
e
s
o
lid
DC
-
DC
b
u
ck
co
n
v
e
r
ter
m
o
d
el
is
p
r
esen
ted
to
p
r
o
d
u
ce
th
e
c
o
n
tr
o
l
law
p
r
in
cip
le.
T
h
e
p
r
o
p
o
s
ed
f
u
zz
y
-
b
ased
s
lid
in
g
m
o
d
e
c
o
n
tr
o
l
s
tr
ateg
y
in
clu
d
es
two
f
ee
d
b
ac
k
lo
o
p
s
in
wh
ich
an
ex
ter
n
al
co
n
tr
o
l
l
o
o
p
f
o
r
ce
s
t
h
e
o
u
tp
u
t
v
o
ltag
e
to
t
r
ac
k
th
e
s
et
v
o
ltag
e,
an
d
th
e
o
u
tp
u
t
o
f
th
e
ex
ter
n
al
co
n
t
r
o
l
lo
o
p
is
ad
a
p
ted
as
a
s
lid
in
g
s
u
r
f
ac
e
to
co
n
tr
o
l
th
e
cu
r
r
e
n
t
th
r
o
u
g
h
th
e
i
n
d
u
cto
r
to
tr
ac
k
t
h
e
s
et
cu
r
r
en
t.
Desig
n
an
aly
s
is
,
co
n
tr
o
l la
w
,
an
d
L
y
a
p
u
n
o
v
s
tab
ilit
y
o
f
th
e
co
n
tr
o
l stra
teg
y
ar
e
illu
s
tr
ated
.
2
.
1
.
DC
-
DC
bu
ck
co
nv
er
t
er
m
o
del
Fig
u
r
e
1
s
h
o
ws
a
tr
ad
itio
n
al
DC
-
DC
b
u
ck
co
n
v
e
r
ter
s
ch
e
m
atic
in
wh
ich
th
e
o
u
t
p
u
t
v
o
ltag
e
o
f
th
e
co
n
v
er
ter
is
lo
wer
th
an
th
e
in
p
u
t
s
u
p
p
ly
v
o
ltag
e
.
T
h
is
is
ac
h
iev
ed
b
y
p
er
io
d
ically
o
p
en
in
g
an
d
clo
s
in
g
th
e
s
witch
in
g
elem
en
t
in
th
e
p
o
wer
s
witch
in
g
c
ir
cu
it.
W
h
e
n
th
e
s
witch
is
in
th
e
ON
p
o
s
itio
n
,
th
e
cir
cu
it
is
co
n
n
ec
ted
to
th
e
i
n
p
u
t
s
o
u
r
ce
cr
ea
tes
an
o
u
tp
u
t
v
o
ltag
e
ac
r
o
s
s
th
e
lo
ad
r
esis
to
r
.
I
f
th
e
s
w
itch
is
tu
r
n
e
d
to
th
e
OFF
p
o
s
it
io
n
,
th
e
v
o
ltag
e
ac
r
o
s
s
th
e
ca
p
ac
ito
r
will
d
is
ch
ar
g
e
th
r
o
u
g
h
th
e
lo
ad
.
T
h
e
s
witch
p
o
s
itio
n
co
n
tr
o
ls
th
e
o
u
tp
u
t
v
o
ltag
e
wh
ich
ca
n
b
e
m
ain
tain
ed
at
a
d
e
s
ir
ed
lev
el
b
elo
w
th
e
in
p
u
t su
p
p
ly
v
o
ltag
e
.
T
h
e
B
u
ck
co
n
v
er
ter
ca
n
b
e
d
e
s
cr
ib
ed
b
y
t
h
e
f
o
llo
win
g
d
if
f
e
r
en
tial e
q
u
atio
n
s
:
{
(
)
=
(
)
−
(
)
(
)
=
(
)
−
(
)
(
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
va
lu
a
tio
n
o
f a
fu
z
z
y
-
b
a
s
ed
s
lid
in
g
mo
d
e
co
n
tr
o
l str
a
teg
y
fo
r
a
DC
-
DC
b
u
ck
…
(
Qu
a
n
V
in
h
N
g
u
ye
n
)
893
wh
er
e
(
)
is
th
e
d
is
co
n
tin
u
o
u
s
co
n
tr
o
l
in
p
u
t,
(
)
is
th
e
cu
r
r
en
t
p
ass
in
g
th
r
o
u
g
h
th
e
in
d
u
cto
r
,
th
e
co
n
tr
o
l
o
b
jectiv
e
is
s
u
ch
t
h
at
th
e
v
o
l
tag
e
o
n
th
e
lo
a
d
(
)
f
o
llo
ws
th
e
s
ettin
g
v
o
ltag
e
∗
in
th
e
p
r
esen
ce
o
f
th
e
u
n
ce
r
tain
ties
in
th
e
r
esis
tan
ce
lo
ad
an
d
in
p
u
t v
o
ltag
e
.
T
h
e
(
1
)
ca
n
b
e
co
n
v
er
ted
in
t
o
s
tate
s
p
ac
e
f
o
r
m
as
(
2
)
.
[
1
(
)
2
(
)
]
=
[
0
1
−
1
1
]
[
1
(
)
2
(
)
]
+
[
0
−
]
(
)
+
[
0
0
∗
(
)
]
(
2
)
T
h
e
co
n
tr
o
l in
p
u
t a
n
d
s
tate
s
p
ac
e
v
ar
iab
les ar
e
g
iv
en
as (
3
)
,
(
4
)
,
an
d
(
5
)
.
(
)
=
{
1
,
ℎ
=
0
,
ℎ
=
(
3
)
1
(
)
=
∗
(
)
−
(
)
(
4
)
2
(
)
=
1
(
)
=
∗
(
)
−
(
)
(
5
)
Fig
u
r
e
1
.
DC
-
DC
b
u
ck
c
o
n
v
e
r
ter
2
.
2
.
F
SM
CS desig
n
A
n
ew
f
u
zz
y
-
b
ased
s
lid
in
g
m
o
d
e
co
n
t
r
o
l
s
tr
ateg
y
in
clu
d
i
n
g
t
wo
f
ee
d
b
a
ck
lo
o
p
s
is
p
r
o
p
o
s
e
d
in
wh
ic
h
an
ex
ter
n
al
c
o
n
tr
o
l
lo
o
p
to
f
o
r
ce
th
e
o
u
t
p
u
t
v
o
ltag
e
to
tr
ac
k
th
e
s
et
v
o
ltag
e,
a
n
d
th
e
o
u
t
p
u
t
o
f
th
e
ex
ter
n
al
co
n
tr
o
l
l
o
o
p
is
ad
ap
ted
as
a
s
lid
in
g
s
u
r
f
ac
e
to
co
n
tr
o
l
th
e
cu
r
r
en
t
th
r
o
u
g
h
th
e
in
d
u
ct
o
r
to
tr
ac
k
th
e
s
et
c
u
r
r
en
t,
ca
lled
th
e
in
ter
n
al
c
o
n
tr
o
l
lo
o
p
,
as
d
ep
icted
in
Fig
u
r
e
2
.
T
h
e
co
n
tr
o
l
law
(
)
will
ch
an
g
e
t
h
e
d
u
ty
c
y
cle,
in
wh
ich
th
e
o
u
te
r
lo
o
p
co
n
tr
o
ller
g
iv
e
n
b
y
(
6
)
f
o
r
ce
s
th
e
v
o
ltag
e
o
n
th
e
lo
a
d
(
)
tr
ac
k
s
t
o
th
e
s
ettin
g
v
o
lta
g
e
∗
(
)
.
On
th
e
o
t
h
er
h
a
n
d
,
t
h
e
in
n
e
r
lo
o
p
c
o
n
tr
o
ller
y
ield
s
th
e
in
p
u
t
lo
ad
cu
r
r
en
t
(
)
th
at
tr
ac
k
s
th
e
cu
r
r
en
t
s
ettin
g
∗
(
)
to
r
ed
u
ce
co
n
s
u
m
p
tio
n
f
o
r
th
e
co
n
v
er
ter
.
∗
(
)
=
(
0
∗
(
)
−
0
(
)
)
+
∫
(
0
∗
(
)
−
0
(
)
)
(
6
)
Fig
u
r
e
2
.
Diag
r
a
m
o
f
th
e
p
r
o
p
o
s
ed
FS
MCS
f
o
r
a
b
u
ck
co
n
v
e
r
ter
T
h
e
p
u
ls
e
wid
th
m
o
d
u
latio
n
(
PW
M
)
o
b
tain
ed
b
y
c
o
m
p
ar
i
n
g
th
e
co
n
tr
o
l
law
(
)
with
th
e
tr
ian
g
u
lar
ca
r
r
ier
wav
e
(
)
.
T
h
e
d
u
ty
cy
cle
co
ef
f
icien
t
N
is
ca
lcu
lated
as
(
7
)
,
d
ef
in
in
g
th
e
s
witch
in
g
f
r
e
q
u
en
cy
as
s
h
o
wn
in
(
8
)
.
=
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
2
,
J
u
n
e
20
25
:
8
9
1
-
9
0
6
894
=
1
=
1
+
(
8
)
2
.
3
.
SM
C
des
ig
n
C
o
n
s
id
er
in
g
an
au
t
o
n
o
m
s
y
s
tem
with
in
p
u
t
s
ig
n
al
(
)
=
[
1
(
)
,
2
(
)
,
.
.
.
,
(
)
]
,
u
n
ce
r
tai
n
ty
an
d
n
o
is
e
co
m
p
o
n
en
ts
(
,
(
)
,
(
)
)
is
d
escr
ib
ed
b
y
a
s
tate
s
p
ac
e
f
o
r
m
as
(
9
)
:
(
)
=
(
,
(
)
,
(
)
,
)
,
(
9
)
wh
er
e
∈
is
th
e
s
tate
v
ec
to
r
,
(
.
)
∈
is
th
e
v
ec
to
r
o
f
co
n
tin
u
o
u
s
f
u
n
ct
io
n
s
an
d
∈
is
th
e
co
n
tr
o
l
in
p
u
t v
ec
to
r
.
A
s
m
o
o
t
h
cu
r
v
ed
s
u
r
f
ac
e
ca
lled
a
s
lid
in
g
s
u
r
f
ac
e
is
d
escr
ib
ed
as
(
1
0
)
.
(
)
=
1
(
)
=
1
(
∗
−
)
,
1
>
0
(
1
0
)
T
h
e
f
u
n
ctio
n
o
f
th
e
s
lid
in
g
co
n
tr
o
l
is
to
d
eter
m
in
e
th
e
co
n
tr
o
l
law
(
)
to
b
r
in
g
th
e
s
y
s
tem
(
9
)
to
war
d
s
th
e
s
lid
in
g
s
u
r
f
ac
e
(
1
0
)
an
d
to
r
e
tain
it
o
n
th
e
s
u
r
f
ac
e,
th
at
is
,
s
o
th
at
th
e
s
tate
v
ec
to
r
(
)
tr
ac
k
s
to
a
d
esire
d
tr
ajec
to
r
y
∗
(
)
g
iv
en
b
y
(
6
)
.
T
h
e
d
er
iv
ativ
e
o
f
th
e
s
lid
in
g
s
u
r
f
ac
e
ac
co
r
d
in
g
to
th
e
class
ical
p
r
o
p
o
r
tio
n
ality
law
is
(
1
1
)
.
=
−
(
)
,
>
0
(
1
1
)
T
h
e
s
ig
n
f
u
n
ctio
n
(
.
)
h
as th
e
f
o
r
m
u
la
g
iv
en
in
(
1
2
)
.
(
)
=
{
−
1
,
if
<
0
0
,
if
=
0
1
,
if
>
0
(
1
2
)
A
p
o
s
itiv
e
f
u
n
ctio
n
is
ch
o
s
en
as
(
1
3
)
:
=
1
2
(
1
3
)
to
en
s
u
r
e
th
at
t
h
e
s
tate
tr
ajec
to
r
y
ap
p
r
o
ac
h
es
an
d
s
lid
es
o
n
t
h
e
s
lid
in
g
s
u
r
f
ac
e,
th
e
s
tab
ilit
y
co
n
d
itio
n
(
1
4
)
h
as
to
b
e
s
atis
f
ied
as
(
1
4
)
.
=
•
≤
0
(
1
4
)
Af
ter
s
u
b
s
titu
tin
g
(
1
1
)
in
to
(
1
4
)
,
th
e
L
y
ap
u
n
o
v
s
tab
ili
ty
is
o
b
tain
ed
:
=
−
(
)
=
−
|
|
≤
0
(
1
5
)
wh
er
e
is
a
p
o
s
itiv
e
co
n
s
tan
t
t
h
at
en
s
u
r
es
th
e
s
y
s
tem
's
tr
ajec
to
r
y
ap
p
r
o
ac
h
es
th
e
s
lid
in
g
s
u
r
f
ac
e
in
a
f
in
ite
tim
e.
T
h
is
is
al
s
o
a
s
u
f
f
icien
t
co
n
d
itio
n
f
o
r
th
e
co
n
t
r
o
l
s
ig
n
al
to
b
r
in
g
th
e
s
y
s
tem
'
s
s
tate
t
r
ajec
to
r
y
(
)
b
ac
k
to
th
e
s
lid
in
g
s
u
r
f
ac
e
.
Su
b
s
titu
tin
g
(
6
)
,
(
1
0
)
in
to
(
1
4
)
,
th
e
s
tab
ilit
y
co
n
d
itio
n
f
o
r
th
e
DC
-
DC
b
u
ck
co
n
v
e
r
ter
is
o
b
tain
ed
s
u
ch
th
at
th
e
f
o
llo
win
g
in
e
q
u
a
lity
h
o
ld
s
:
(
)
≤
(
1
6
)
th
er
ef
o
r
e
,
f
o
r
a
DC
-
DC
b
u
ck
co
n
v
er
ter
,
th
e
o
u
tp
u
t
v
o
ltag
e
m
u
s
t
b
e
less
th
an
th
e
s
u
p
p
l
y
v
o
ltag
e
to
ass
u
r
e
a
s
lid
in
g
co
n
tr
o
l im
p
lem
en
tatio
n
.
2
.
4
.
F
uzzy
o
bs
er
v
er
des
ig
n
I
n
r
ea
lity
,
th
e
id
ea
l
s
ig
n
f
u
n
c
tio
n
d
ef
i
n
ed
b
y
(
1
2
)
d
o
es
n
o
t
ex
is
t,
in
s
tead
th
e
f
o
llo
win
g
f
u
n
ctio
n
is
s
ig
n
if
ican
tly
u
tili
ze
d
:
(
)
=
{
−
1
,
if
<
−
,
if
|
|
≤
1
,
if
>
(
1
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
va
lu
a
tio
n
o
f a
fu
z
z
y
-
b
a
s
ed
s
lid
in
g
mo
d
e
co
n
tr
o
l str
a
teg
y
fo
r
a
DC
-
DC
b
u
ck
…
(
Qu
a
n
V
in
h
N
g
u
ye
n
)
895
T
h
is
ch
o
ice
ca
u
s
es
th
e
ch
att
er
in
g
p
h
e
n
o
m
en
a
in
th
e
s
y
s
t
em
,
wh
er
e
th
e
f
u
n
ctio
n
m
u
s
t
ch
an
g
e
s
ig
n
with
ex
tr
em
ely
h
ig
h
f
r
e
q
u
en
c
y
to
k
ee
p
(
)
o
n
th
e
s
lid
in
g
s
u
r
f
ac
e
(
)
=
0
.
T
h
e
s
lid
in
g
m
o
d
e
co
n
tr
o
l
p
r
i
n
cip
le
is
s
h
o
wn
in
Fig
u
r
e
3
,
wh
er
e
(
)
=
0
r
ep
r
esen
ts
th
e
s
lid
in
g
s
u
r
f
ac
e
an
d
1
(
)
,
2
(
)
ar
e
th
e
v
o
ltag
e
(
o
r
cu
r
r
e
n
t)
er
r
o
r
an
d
its
d
er
iv
ativ
e,
r
esp
ec
tiv
ely
.
T
h
e
s
lid
in
g
lin
e
d
iv
id
es
th
e
p
h
ase
p
lan
e
in
to
two
r
eg
io
n
s
wh
o
’
s
ea
ch
o
n
e
is
id
en
tifie
d
b
y
a
s
witch
in
g
s
tate.
W
h
en
th
e
tr
ajec
to
r
y
r
ea
ch
es th
e
s
y
s
tem
'
s
eq
u
ilib
r
iu
m
p
o
in
t,
t
h
e
s
y
s
tem
is
s
tab
le
[
2
5
]
.
I
f
th
e
d
elay
r
an
g
e
ar
o
u
n
d
th
e
s
lid
in
g
lin
e
is
ze
r
o
th
en
th
e
s
y
s
tem
is
o
p
er
ated
with
id
ea
l
s
li
d
in
g
m
o
d
e
co
n
tr
o
l
as
s
h
o
wn
in
Fig
u
r
e
3
(
a)
.
Ho
wev
er
,
in
p
r
ac
tical
ter
m
s
th
is
id
ea
l
co
n
tr
o
l
is
n
o
t
ac
h
iev
ab
le.
T
h
e
r
ef
o
r
e
,
th
e
ac
tu
al
s
lid
in
g
m
o
d
e
co
n
tr
o
l
o
p
er
atio
n
is
th
at
th
e
n
o
n
-
id
e
al
d
elay
r
a
n
g
e
h
as
a
f
in
ite
s
wi
tch
in
g
f
r
eq
u
e
n
cy
as
s
h
o
wn
in
Fig
u
r
e
3
(
b
)
.
T
o
m
in
i
m
ize
th
e
ch
atter
in
g
b
e
h
av
io
r
a
n
d
in
cr
ea
s
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
s
lid
in
g
m
o
d
e
co
n
tr
o
ller
,
a
f
u
zz
y
o
b
s
er
v
er
is
p
r
o
p
o
s
ed
to
ad
ju
s
t
th
e
d
elay
r
an
g
e
o
f
th
e
s
lid
in
g
s
u
r
f
ac
e
a
s
d
esire
d
in
wh
ich
f
u
n
ctio
n
=
(
)
will b
e
ap
p
r
o
x
im
ate
d
b
y
th
e
f
u
zz
y
s
y
s
tem
ca
lled
̂
.
(
a)
(
b
)
Fig
u
r
e
3
.
Ph
ase
p
lo
t
f
o
r
s
lid
in
g
m
o
d
e
co
n
tr
o
l
:
(
a)
id
ea
l SM
c
o
n
tr
o
l a
n
d
(
b
)
ac
tu
al
SM
co
n
tr
o
l
Fu
zz
y
lo
g
ic
is
a
th
e
o
r
y
o
f
f
u
zz
y
s
ets
b
ased
o
n
a
lin
g
u
is
tic
d
escr
ip
tio
n
r
at
h
er
th
a
n
a
m
a
th
em
atica
l
m
o
d
el
o
f
a
s
y
s
tem
.
T
h
is
lo
g
i
c
p
r
o
v
id
es
an
e
f
f
icien
t
to
o
l
t
o
ap
p
l
y
h
e
u
r
is
tic
k
n
o
wled
g
e
o
f
an
ex
p
e
r
ien
ce
d
o
p
er
ato
r
o
r
a
n
ex
p
e
r
t
to
co
n
tr
o
l
th
e
s
y
s
tem
with
n
o
n
-
m
o
d
e
l
p
r
o
b
lem
s
.
I
n
th
e
p
r
o
p
o
s
ed
f
u
zz
y
-
b
ased
s
lid
in
g
m
o
d
e
c
o
n
tr
o
l
s
tr
ateg
y
,
th
e
f
u
z
zy
p
lay
s
a
r
o
le
as
a
s
u
p
er
v
is
o
r
to
tu
n
e
th
e
d
u
t
y
c
y
cle
co
ef
f
icien
t
N
b
ased
o
n
th
e
o
b
s
er
v
atio
n
o
f
th
e
s
lid
in
g
m
o
d
e
o
u
tp
u
t.
T
h
e
in
p
u
t sig
n
als o
f
th
e
p
r
o
p
o
s
ed
f
u
zz
y
-
b
ased
r
eg
u
lato
r
ar
e
t
h
e
o
u
tp
u
ts
o
f
th
e
o
u
ter
lo
o
p
c
o
n
tr
o
ller
:
=
[
(
)
(
)
]
(
1
8
)
wh
er
e
(
)
=
∗
(
)
−
(
)
is
th
e
cu
r
r
en
t
er
r
o
r
b
e
twee
n
th
e
d
esire
d
cu
r
r
e
n
t
∗
(
)
an
d
th
e
m
ea
s
u
r
ed
cu
r
r
en
t
(
)
.
T
h
e
in
p
u
ts
=
[
(
)
(
)
]
ar
e
n
o
r
m
al
ized
w
ith
in
[
−
1
1
]
b
y
s
ca
lin
g
f
ac
to
r
s
,
,
r
esp
ec
tiv
ely
.
is
ch
o
s
en
as
{
1
/
|
|
|
|
|
|
|
|
}
an
d
is
s
et
eq
u
al
to
{
1
/
|
|
|
|
|
|
|
|
}
.
A
s
ca
lin
g
f
ac
to
r
is
also
ad
d
ed
f
o
r
f
u
zz
y
o
u
tp
u
t to
o
b
tain
a
n
ac
tu
al
d
u
ty
cy
cle.
(
)
=
e
−
(
+
6
24
)
2
;
(
)
=
e
−
(
+
12
24
)
2
;
(
)
=
e
−
(
/
24
)
2
;
(
)
=
e
−
(
−
/
12
/
24
)
2
;
(
)
=
e
−
(
−
/
6
/
24
)
2
(
1
9
)
T
h
e
d
esig
n
ed
f
u
zz
y
s
y
s
tem
co
n
s
is
ts
o
f
a
f
u
zz
if
icatio
n
s
tag
e,
a
r
u
le
-
b
ased
i
n
f
er
en
ce
m
ec
h
an
is
m
an
d
a
d
ef
u
zz
if
icatio
n
s
tag
e
[
2
6
]
.
Fiv
e
Gau
s
s
ian
m
em
b
er
s
h
ip
f
u
n
ctio
n
s
ar
e
d
ef
in
ed
{
n
eg
ati
v
e
m
ed
iu
m
(
NM
)
,
n
eg
ativ
e
s
m
all
(
NS)
,
ze
r
o
(
Z
O)
,
p
o
s
itiv
e
s
m
all
(
PS
)
,
p
o
s
itiv
e
m
ed
iu
m
(
PM)
}
f
o
r
ea
c
h
i
n
p
u
t
v
ar
iab
le
wh
ile
f
iv
e
Gau
s
s
ian
m
em
b
er
s
h
ip
f
u
n
ctio
n
s
ar
e
s
im
ilar
ly
d
ef
in
ed
f
o
r
th
e
o
u
tp
u
t
v
ar
iab
le.
T
h
e
(
1
9
)
ex
p
r
ess
es
th
e
p
ar
am
eter
ized
Gau
s
s
ian
m
em
b
er
s
h
ip
f
u
n
ctio
n
f
o
r
th
e
f
u
zz
y
d
esig
n
.
T
h
e
f
u
z
zy
r
u
le
b
ase
is
in
f
er
r
ed
b
ased
o
n
lin
g
u
is
tic
v
a
lu
es
o
f
th
e
in
p
u
t
v
ar
iab
les
,
as
d
e
s
cr
ib
ed
in
T
ab
le
1
.
T
h
e
r
u
les
ar
e
i
d
en
t
if
ied
b
ased
o
n
th
e
f
o
llo
win
g
f
u
n
ctio
n
al
ch
ar
ac
ter
is
tics
an
d
an
aly
s
es
f
o
r
t
h
e
co
n
v
er
ter
co
n
tr
o
l p
er
f
o
r
m
a
n
ce
:
˗
I
n
ca
s
es
wh
er
e
th
e
co
n
v
e
r
ter
o
u
tp
u
t
is
s
ig
n
if
ican
tly
d
ev
iate
d
f
r
o
m
t
h
e
s
et
p
o
in
t
v
alu
e,
t
h
e
d
u
ty
cy
cle
m
u
s
t b
e
lar
g
e
to
b
r
in
g
th
e
o
u
tp
u
t to
th
e
s
et
p
o
in
t
q
u
ick
ly
.
˗
I
f
th
e
co
n
v
er
ter
o
u
t
p
u
t
tr
e
n
d
s
g
r
ad
u
ally
t
o
war
d
th
e
s
et
p
o
i
n
t
v
alu
e,
th
e
d
u
t
y
cy
cle
ch
an
g
es
s
h
o
u
ld
b
e
in
s
ig
n
if
ican
t c
o
m
p
a
r
ed
to
its
c
u
r
r
en
t
v
alu
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
2
,
J
u
n
e
20
25
:
8
9
1
-
9
0
6
896
˗
I
n
ca
s
es
wh
er
e
th
e
co
n
v
e
r
ter
o
u
tp
u
t
is
to
war
d
th
e
s
et
p
o
i
n
t
v
alu
e
with
h
ig
h
v
elo
city
,
th
e
d
u
ty
cy
cle
N
s
h
o
u
ld
n
o
t b
e
ch
a
n
g
ed
to
av
o
id
th
e
o
v
er
s
h
o
o
t
p
h
en
o
m
en
o
n
.
˗
I
f
th
e
co
n
v
er
ter
o
u
tp
u
t r
ea
ch
es
th
e
s
et
p
o
in
t v
alu
e
s
tab
ly
,
d
u
ty
cy
cle
s
h
o
u
ld
n
o
t b
e
ch
a
n
g
e
d
.
˗
I
n
c
a
s
e
s
t
h
e
c
o
n
v
e
r
t
e
r
o
u
t
p
u
t
i
s
h
i
g
h
e
r
t
h
a
n
t
h
e
s
e
t
p
o
i
n
t
,
t
h
e
c
h
a
n
g
e
s
i
g
n
o
f
h
a
s
t
o
b
e
n
e
g
a
t
i
v
e
a
n
d
v
i
c
e
v
e
r
s
a
.
T
h
e
ce
n
ter
o
f
g
r
a
v
ity
m
eth
o
d
was
u
tili
ze
d
f
o
r
d
ef
u
zz
if
icatio
n
as
m
en
tio
n
ed
i
n
(
2
0
)
,
wh
e
r
e
S
=
{y
Є
Y|
μ
R
(
y
)
>
0
}
is
th
e
s
p
ec
if
ied
d
o
m
ain
o
f
t
h
e
f
u
zz
y
s
et
μ
R
(
y
)
.
=
∫
(
)
∫
(
)
(
2
0
)
T
h
e
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
u
r
f
a
c
e
o
f
f
u
z
z
y
m
o
d
e
l
s
h
o
w
n
i
n
F
i
g
u
r
e
4
d
e
m
o
n
s
t
r
a
t
e
s
t
h
e
e
f
f
e
c
t
s
o
f
(
)
a
n
d
(
)
/
o
n
t
h
e
o
u
t
p
u
t
o
f
t
h
e
f
u
z
z
y
s
y
s
t
e
m
.
T
h
e
o
u
t
p
u
t
i
n
c
r
e
a
s
e
s
r
a
p
i
d
l
y
w
h
e
n
(
)
i
n
c
r
e
a
s
e
s
f
r
o
m
−
1
t
o
+
1
.
I
n
c
a
s
e
s
w
h
e
r
e
(
)
/
i
n
c
r
e
a
s
e
s
f
r
o
m
−
1
t
o
+
1
,
t
h
e
o
u
t
p
u
t
i
s
c
o
r
r
e
s
p
o
n
d
i
n
g
l
y
r
e
d
u
c
e
d
.
T
h
e
r
e
f
o
r
e
,
t
h
e
e
r
r
o
r
(
)
a
n
d
i
t
s
d
e
r
i
v
a
t
e
(
)
/
w
i
l
l
a
f
f
e
c
t
t
h
e
c
o
n
t
r
o
l
p
e
r
f
o
r
m
a
n
c
e
f
o
r
t
h
e
c
o
n
v
e
r
t
e
r
o
v
e
r
t
h
e
e
n
t
i
r
e
o
p
e
r
a
t
i
n
g
r
a
n
g
e
.
T
a
b
le 1
.
F
u
z
z
y
ru
le
b
a
se
fo
r
F
S
M
CS
d
e
|
e
NM
NS
ZO
PS
PM
NM
NM
NM
NM
NS
ZO
NS
NM
NM
NS
ZO
PS
ZO
NM
NS
ZO
PS
PM
PS
NS
ZO
PS
PM
PM
PM
ZO
PS
PM
PM
PM
Fig
u
r
e
4
.
Su
r
f
ac
e
v
iew
o
f
th
e
d
esig
n
ed
f
u
zz
y
s
y
s
tem
3.
E
VA
L
UA
T
I
O
N
O
F
T
H
E
P
RO
P
O
SE
D
AL
G
O
R
I
T
H
M
I
N
SI
M
UL
A
T
I
O
N
A
ND
E
XP
E
RI
M
E
NT
I
n
th
is
wo
r
k
,
a
p
r
elim
in
ar
y
ev
alu
atio
n
o
f
th
e
c
o
m
b
in
e
d
f
u
zz
y
-
s
lid
in
g
ap
p
r
o
ac
h
h
as
b
ee
n
p
er
f
o
r
m
e
d
o
n
b
o
th
s
im
u
lated
an
d
r
ea
l
s
y
s
tem
s
.
T
h
e
s
im
u
lated
m
o
d
els
h
av
e
b
ee
n
r
e
-
e
v
alu
ated
o
n
o
u
r
cu
s
to
m
-
b
u
ilt
r
ea
l
-
tim
e
s
y
s
tem
.
Simu
latio
n
s
an
d
ex
p
er
im
en
ts
wer
e
p
er
f
o
r
m
e
d
o
n
MA
T
L
AB
/
Simu
lin
k
with
s
am
p
lin
g
tim
e,
th
e
co
n
v
er
ter
p
ar
am
eter
s
ar
e
g
iv
e
n
in
T
ab
le
2
.
T
ab
le
2
.
Simu
lated
an
d
ex
p
er
i
m
en
tal
p
ar
am
eter
s
o
f
th
e
co
n
v
er
ter
P
a
r
a
me
t
e
r
s
V
a
l
u
e
s
P
a
r
a
me
t
e
r
s
V
a
l
u
e
s
9
0
(
V
)
,
0
.
5
,
2
0
∗
5
0
(
V
)
ax
1
0
(
V
)
,
,
1
0
0
(
μH
)
,
6
8
0
(
μF)
,
1
0
(
Ω
)
1
0
(
μs)
1
0
(
K
H
z
)
3
.
1
.
Sim
ula
t
i
o
n r
esu
lt
s
Fig
u
r
e
2
also
s
h
o
ws
th
e
co
r
r
esp
o
n
d
in
g
Simu
lin
k
d
ia
g
r
am
o
f
th
e
DC
-
DC
b
u
ck
co
n
v
er
t
er
co
n
tr
o
l
u
s
in
g
FS
MC
S
with
th
e
s
am
p
li
n
g
tim
e
=
10
.
T
h
e
co
n
tr
o
l
g
o
al
is
t
o
im
p
lem
en
t
th
e
s
lid
in
g
m
o
d
e
co
n
tr
o
l
alg
o
r
ith
m
with
a
f
u
zz
y
o
b
s
e
r
v
er
th
at
id
en
tifie
s
th
e
ch
an
g
es
in
th
e
f
u
n
ctio
n
=
(
)
to
r
e
d
u
c
e
th
e
ch
atter
in
g
b
eh
a
v
io
r
an
d
to
i
m
p
r
o
v
e
th
e
r
o
b
u
s
tn
ess
o
f
th
e
co
n
tr
o
ller
in
th
e
ca
s
es
o
f
lo
ad
ch
an
g
e
an
d
h
ig
h
d
y
n
am
ic
p
e
r
f
o
r
m
an
ce
(
e.
g
.
,
r
is
in
g
r
esp
o
n
s
e
-
tim
e
an
d
o
v
e
r
s
h
o
o
t,
lim
ited
o
u
tp
u
t
h
ar
m
o
n
ic,
an
d
s
o
o
n
)
.
T
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
va
lu
a
tio
n
o
f a
fu
z
z
y
-
b
a
s
ed
s
lid
in
g
mo
d
e
co
n
tr
o
l str
a
teg
y
fo
r
a
DC
-
DC
b
u
ck
…
(
Qu
a
n
V
in
h
N
g
u
ye
n
)
897
co
n
tr
o
l
s
tr
ateg
y
is
d
em
o
n
s
tr
ated
in
th
e
p
r
esen
ce
o
f
in
p
u
t
v
o
l
tag
e
ch
an
g
es
an
d
r
an
d
o
m
d
is
tr
ib
u
tio
n
n
o
is
e
(
)
.
T
h
e
p
er
f
o
r
m
an
ce
o
f
th
e
DC
-
DC
b
u
ck
co
n
v
er
ter
co
n
tr
o
l is v
alid
ated
u
n
d
er
f
o
u
r
d
if
f
er
en
t c
o
n
d
itio
n
s
,
wh
ich
ar
e
in
s
tan
tan
eo
u
s
ch
an
g
e
at
th
e
i
n
itial
co
n
d
itio
n
,
c
h
an
g
e
i
n
th
e
s
u
p
p
ly
v
o
ltag
e
,
ch
an
g
e
in
R
L
lo
ad
s
,
an
d
u
n
p
r
e
d
ictab
le
ch
an
g
es
in
u
n
ce
r
tain
ties
o
f
th
e
co
n
v
er
ter
cir
c
u
it.
T
h
e
s
im
u
latio
n
r
esu
lts
p
r
esen
t
th
e
co
n
tr
o
l
r
esp
o
n
s
e
o
f
th
e
o
u
tp
u
t
v
o
ltag
e
an
d
cu
r
r
en
t
th
r
o
u
g
h
th
e
in
d
u
cto
r
L
f
o
r
b
o
th
th
e
FS
M
C
S
co
n
tr
o
l
an
d
PI
c
o
n
tr
o
l
ca
s
es
wh
en
th
e
q
u
an
titi
es
∗
,
,
a
n
d
ch
an
g
e
s
u
d
d
en
ly
.
I
n
all
s
im
u
lated
a
n
d
ex
p
er
im
e
n
tal
r
esu
lts
,
th
e
b
lac
k
lin
e
is
th
e
DC
p
o
wer
s
u
p
p
ly
,
th
e
d
ash
ed
r
ed
lin
es
ar
e
th
e
s
et
v
alu
es
∗
,
∗
an
d
th
e
s
o
lid
b
lu
e
lin
es
ar
e
t
h
e
m
ea
s
u
r
ed
v
alu
es
,
.
T
o
q
u
a
n
titativ
ely
co
m
p
ar
e
b
etwe
en
th
e
class
ica
l
PI
co
n
tr
o
l
an
d
th
e
p
r
o
p
o
s
ed
FS
MC
S,
th
e
p
e
r
f
o
r
m
an
ce
in
d
ex
n
o
r
m
alize
d
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
(
NR
MSE
)
,
is
d
ef
in
ed
as
(
2
1
)
.
T
h
e
NR
MS
E
r
ep
r
esen
ts
th
e
d
eg
r
ee
o
f
co
m
p
atib
ilit
y
b
etwe
en
th
e
s
ettin
g
s
ig
n
al
∗
an
d
t
h
e
m
ea
s
u
r
ed
s
ig
n
al
in
wh
ich
m
ea
n
(
y
)
is
th
e
av
er
ag
e
v
alu
e
o
f
.
=
100
(
1
−
‖
∗
−
‖
‖
∗
−
(
∗
)
‖
)
(
2
1
)
Fig
u
r
e
5
(
a
)
p
r
esen
ts
th
e
co
n
tr
o
l
r
esp
o
n
s
e
u
s
in
g
FS
MCS
in
ca
s
e
th
e
v
o
ltag
e
=
90
s
h
o
ws
th
at
th
e
m
ea
s
u
r
ed
v
o
ltag
e
an
d
t
h
e
m
ea
s
u
r
ed
c
u
r
r
en
t
en
s
u
r
e
t
r
ac
k
in
g
p
e
r
f
o
r
m
an
ce
to
th
e
s
et
v
a
lu
es
∗
an
d
∗
with
v
ar
io
u
s
lev
els.
B
ec
au
s
e
th
e
av
er
ag
e
v
alu
e
o
f
cu
r
r
en
t
th
r
o
u
g
h
th
e
ca
p
ac
ito
r
C
is
ze
r
o
,
th
e
h
ig
h
est
v
alu
e
o
f
cu
r
r
en
t
=
=
5
.
Ho
wev
er
,
as
s
ee
n
in
Fig
u
r
e
5
(
b
)
,
th
e
cu
r
r
en
t
is
i
n
s
tan
tan
eo
u
s
ly
o
v
er
s
h
o
o
ts
at
th
e
in
itial
co
n
d
itio
n
with
PI
co
n
tr
o
l.
Mo
r
e
o
v
er
,
th
e
co
m
p
atib
ilit
y
lev
el
o
f
th
e
m
ea
s
u
r
ed
v
o
ltag
e
an
d
cu
r
r
e
n
t
u
s
in
g
th
e
FS
MCS
alg
o
r
ith
m
is
NR
MSE
=
[
9
6
.
3
4
%,
9
2
.
0
5
%]
h
ig
h
e
r
th
a
n
th
at
u
s
in
g
th
e
PI
a
lg
o
r
ith
m
,
wh
ich
is
NR
MSE
=
[
9
5
.
9
4
%,
8
8
.
9
9
%].
Fig
u
r
e
6
s
h
o
ws
s
im
u
latio
n
r
e
s
u
lts
wh
en
a
s
u
d
d
en
ch
an
g
e
i
n
v
o
ltag
e
f
r
o
m
90
V
to
6
0
V
is
f
ed
at
0
.
5
s
ec
o
n
d
s
.
As
e
x
p
ec
te
d
,
v
o
l
ta
g
e
a
n
d
c
u
r
r
e
n
t
wit
h
FS
MCS
co
n
t
r
o
l
,
t
r
a
ck
th
e
s
etti
n
g
v
a
lu
es
∗
an
d
∗
th
a
t
ar
e
n
o
t
af
f
ec
t
ed
b
y
t
h
e
c
h
a
n
g
e
(
Fi
g
u
r
e
6
(
a
)
)
c
o
m
p
ar
e
d
t
o
t
h
e
P
I
c
o
n
t
r
o
l
(
F
ig
u
r
e
6
(
b
)
)
.
T
h
e
cu
r
r
e
n
t
d
o
es
n
o
t
ch
an
g
e
b
ec
au
s
e
t
h
e
o
u
t
p
u
t
v
o
lta
g
e
d
o
es
n
o
t
c
h
a
n
g
e
an
d
h
a
s
t
h
e
h
i
g
h
es
t
v
al
u
e
∗
=
∗
=
5
.
T
h
e
P
I
c
o
n
tr
o
l
r
es
u
lt
,
as
s
h
o
wn
i
n
Fi
g
u
r
e
6
(
b
)
s
h
o
ws
a
v
o
lta
g
e
d
r
o
p
o
f
ab
o
u
t
3
V
a
n
d
a
c
u
r
r
e
n
t
o
v
e
r
s
h
o
o
t
o
f
0
.
7
A
b
ef
o
r
e
r
et
u
r
n
i
n
g
t
o
eq
u
i
li
b
r
i
u
m
af
te
r
a
p
e
r
i
o
d
o
f
0
.
1
s
ec
o
n
d
s
.
T
h
e
c
o
m
p
ati
b
il
it
y
l
ev
el
o
f
th
e
m
e
as
u
r
e
d
v
o
lta
g
e
a
n
d
m
ea
s
u
r
e
d
th
e
c
u
r
r
e
n
t
u
s
in
g
t
h
e
FS
MCS
al
g
o
r
i
th
m
is
NR
M
SE
=
[
9
6
.
4
2
%,
9
3
.
4
8
%
]
h
i
g
h
e
r
t
h
a
n
in
t
h
e
ca
s
e
u
s
i
n
g
t
h
e
P
I
al
g
o
r
i
th
m
,
w
h
i
ch
is
NR
MSE
=
[
9
5
.
8
8
%,
8
5
.
7
2
%].
Fi
g
u
r
e
7
s
h
o
ws
s
im
u
l
ati
o
n
r
es
u
l
ts
w
h
e
n
t
h
e
lo
a
d
s
u
d
d
e
n
l
y
ch
a
n
g
es
f
r
o
m
1
0
Ω
to
5
Ω
u
n
d
e
r
t
h
e
co
n
d
it
io
n
=
90
at
3
.
5
s
e
c
o
n
d
s
.
D
es
p
it
e
t
h
e
s
u
d
d
e
n
ch
an
g
e
o
f
,
t
h
e
p
r
o
p
o
s
e
d
c
o
n
t
r
o
lle
r
s
til
l
f
o
r
ce
s
t
h
e
m
ea
s
u
r
e
d
v
o
lt
ag
e
a
n
d
c
u
r
r
e
n
t
to
t
r
a
c
k
th
e
s
etti
n
g
v
al
u
es
∗
an
d
∗
in
wh
ic
h
t
h
e
v
o
l
tag
e
d
r
o
p
s
a
b
o
u
t
5
V
in
a
n
i
n
s
i
g
n
if
ic
an
t
ti
m
e
t
h
e
n
r
e
tu
r
n
s
to
t
h
e
i
n
iti
all
y
s
tab
le
s
t
ate
.
F
o
r
P
I
c
o
n
tr
o
l
,
t
h
e
o
v
e
r
s
h
o
o
t
o
f
th
e
m
ea
s
u
r
e
d
c
u
r
r
en
t
ar
o
s
e
at
i
n
s
ta
n
ts
t
h
at
∗
c
h
a
n
g
es
r
a
p
i
d
l
y
.
T
h
is
d
e
m
o
n
s
t
r
a
te
d
t
h
at
t
h
e
c
h
a
n
g
es o
f
p
a
r
a
m
et
e
r
s
a
r
e
y
et
c
o
n
d
u
ct
ed
b
y
a
s
i
m
p
le
P
I
c
o
n
t
r
o
ll
er
.
Si
m
il
a
r
l
y
,
to
t
h
e
ca
s
e
o
f
t
h
e
v
o
l
ta
g
e
ch
a
n
g
e
,
t
h
e
c
o
m
p
ati
b
il
it
y
l
ev
el
o
f
an
d
u
s
in
g
t
h
e
FS
MCS
al
g
o
r
it
h
m
is
NR
MSE
=
[
9
5
.
8
2
%
,
9
3
.
9
7
%
]
h
i
g
h
e
r
th
a
n
in
t
h
e
ca
s
e
u
s
i
n
g
PI
a
lg
o
r
it
h
m
,
wh
i
ch
is
NR
MS
E
=
[
9
5
.
4
4
%,
9
1
.
9
2
%]
.
(
a)
(
b
)
Fig
u
r
e
5
.
C
o
n
tr
o
l r
esp
o
n
s
e
V
o
an
d
I
L
in
t
h
e
ca
s
e
V
in
=
9
0
V
:
(
a)
FS
M
co
n
tr
o
l a
n
d
(
b
)
PI
co
n
tr
o
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
2
,
J
u
n
e
20
25
:
8
9
1
-
9
0
6
898
(
a)
(
b
)
Fig
u
r
e
6
.
C
o
n
tr
o
l r
esp
o
n
s
e
V
o
an
d
I
L
in
t
h
e
ca
s
e
V
in
ch
an
g
e
d
at
0
.
5
s
ec
o
n
d
s
:
(
a)
FS
M
co
n
tr
o
l a
n
d
(
b
)
PI
co
n
tr
o
l
(
a)
(
b
)
Fig
u
r
e
7
.
C
o
n
t
r
o
l
r
es
p
o
n
s
e
V
o
an
d
I
L
i
n
t
h
e
c
ase
R
L
ch
a
n
g
e
d
at
3
.
5
s
e
c
o
n
d
s
:
(
a
)
FS
M
co
n
t
r
o
l a
n
d
(
b
)
P
I
co
n
tr
o
l
I
n
th
e
ca
s
e
wh
en
,
∗
,
an
d
ch
an
g
e
s
im
u
ltan
eo
u
s
ly
,
Fig
u
r
e
8
s
h
o
ws
th
at
th
e
m
ea
s
u
r
ed
v
o
lta
g
e
an
d
cu
r
r
en
t
s
till
to
tr
ac
k
th
e
s
ettin
g
v
alu
es
with
m
u
ch
h
ig
h
er
-
q
u
ality
c
o
n
tr
o
l
p
er
f
o
r
m
an
c
e.
T
h
e
FS
MCS
co
n
tr
o
ller
is
n
o
t
s
ig
n
if
ican
tly
af
f
ec
ted
,
wh
ile
th
e
PI
co
n
tr
o
ller
is
s
till
v
er
y
s
en
s
it
iv
e
to
p
ar
am
eter
v
ar
iatio
n
s
,
i
n
wh
ich
th
e
o
v
e
r
s
h
o
o
t
o
f
th
e
m
ea
s
u
r
ed
cu
r
r
e
n
t
s
ig
n
if
ican
tly
ar
o
s
e
at
in
s
tan
ts
th
at
∗
ch
an
g
e
s
r
ap
id
ly
.
T
h
e
co
m
p
atib
ilit
y
lev
el
o
f
an
d
u
s
in
g
th
e
FS
MC
alg
o
r
ith
m
is
N
R
MSE
=
[
9
5
.
8
8
%,
9
4
.
9
8
%]
h
ig
h
er
th
an
in
th
e
ca
s
e
u
s
in
g
PI
alg
o
r
ith
m
is
NR
MSE
=
[
9
5
.
3
7
%,
8
9
.
6
7
%].
Fig
u
r
e
9
s
h
o
ws
s
im
u
latio
n
r
e
s
u
lts
wh
en
a
n
o
is
e
(
)
is
f
ed
in
to
alo
n
g
with
c
h
an
g
es
in
∗
an
d
.
As
ex
p
ec
ted
,
th
e
m
ea
s
u
r
e
d
v
o
ltag
e
an
d
cu
r
r
e
n
t
with
FS
MCS
co
n
tr
o
l
tr
ac
k
th
e
s
ettin
g
v
a
lu
es
∗
an
d
∗
th
at
a
r
e
n
o
t
a
f
f
ec
ted
b
y
n
o
is
e
(
Fig
u
r
e
9
(
a)
)
co
m
p
ar
ed
to
th
e
PI
co
n
tr
o
l
(
Fig
u
r
e
9
(
b
)
)
.
T
h
e
co
m
p
atib
ilit
y
lev
el
o
f
an
d
u
s
in
g
th
e
FS
MC
S a
lg
o
r
ith
m
is
NR
MSE
=
[
9
5
.
9
2
%,
9
5
.
0
9
%]
s
till
h
ig
h
er
th
a
n
th
e
ca
s
e
u
s
in
g
PI
alg
o
r
ith
m
is
NR
MSE
=
[
9
2
.
3
9
%,
8
9
.
6
4
%]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
E
va
lu
a
tio
n
o
f a
fu
z
z
y
-
b
a
s
ed
s
lid
in
g
mo
d
e
co
n
tr
o
l str
a
teg
y
fo
r
a
DC
-
DC
b
u
ck
…
(
Qu
a
n
V
in
h
N
g
u
ye
n
)
899
(
a)
(
b
)
Fig
u
r
e
8
.
C
o
n
tr
o
l r
esp
o
n
s
e
V
o
an
d
I
L
in
t
h
e
ca
s
e
wh
er
e
V
in
an
d
R
L
ar
e
b
o
th
c
h
an
g
e
d
:
(
a)
FS
M
co
n
tr
o
l a
n
d
(
b
)
PI
co
n
tr
o
l
(
a)
(
b
)
Fig
u
r
e
9
.
C
o
n
tr
o
l r
esp
o
n
s
es V
o
an
d
I
L
in
th
e
ca
s
e
n
o
is
e
d
is
tr
i
b
u
tio
n
(
)
is
f
ed
:
(
a)
FS
M
co
n
tr
o
l a
n
d
(
b
)
PI
co
n
tr
o
l
Fig
u
r
e
1
0
s
h
o
ws
=
•
≤
0
d
esp
ite
th
e
s
u
d
d
en
ch
a
n
g
es
o
f
∗
,
,
an
d
in
th
e
p
r
esen
ce
o
f
t
h
e
n
o
is
e.
T
h
e
FS
MC
S
alg
o
r
ith
m
s
atis
f
ie
s
th
e
L
y
ap
u
n
o
v
s
tab
ilit
y
co
n
d
itio
n
(
1
4
)
,
s
o
th
e
s
tab
ilit
y
o
f
th
e
b
u
ck
co
n
v
er
ter
ag
ai
n
s
t
s
u
ch
d
is
tu
r
b
an
ce
s
is
g
u
ar
an
teed
.
Simu
latio
n
r
esu
lts
d
em
o
n
s
tr
ated
th
at
th
e
p
r
o
p
o
s
ed
FS
MCS
alg
o
r
ith
m
is
an
ad
v
an
ce
d
co
n
tr
o
l
m
eth
o
d
f
o
r
th
e
DC
-
DC
b
u
ck
co
n
v
er
ter
,
th
e
o
u
tp
u
t
v
o
ltag
e
o
f
th
e
b
u
c
k
co
n
v
er
ter
h
as
tr
ac
k
ed
v
ar
io
u
s
s
ettin
g
p
o
in
ts
d
esp
ite
s
u
d
d
e
n
ch
an
g
es
in
th
e
s
o
u
r
ce
in
p
u
t,
lo
ad
as
well
as
th
e
p
r
esen
ce
o
f
n
o
is
e.
T
h
e
im
p
r
o
v
ed
c
o
n
tr
o
l
q
u
ality
in
d
ex
es
in
clu
d
e
r
ap
id
r
ec
o
v
e
r
y
tim
e
in
th
e
p
r
esen
ce
o
f
v
ar
y
in
g
p
ar
am
eter
s
,
i
n
s
ig
n
if
ic
an
t
s
tead
y
-
s
tate
er
r
o
r
,
s
m
all
o
v
er
s
h
o
o
t,
a
n
d
h
ig
h
d
eg
r
ee
o
f
co
m
p
atib
ilit
y
o
f
th
e
m
ea
s
u
r
ed
v
o
ltag
e
an
d
cu
r
r
e
n
t
co
m
p
ar
e
d
to
th
e
class
ical
PI
co
n
tr
o
ller
.
T
a
b
le
3
p
r
esen
ts
a
s
u
m
m
ar
y
co
m
p
ar
is
o
n
o
f
co
m
p
atib
ilit
y
o
f
th
e
m
ea
s
u
r
ed
v
o
ltag
e
an
d
cu
r
r
en
t
b
etwe
en
FS
MCS
an
d
PI
c
o
n
tr
o
l
alg
o
r
ith
m
s
wh
ich
s
h
o
ws th
at
t
h
e
FS
MCS
i
s
m
o
r
e
p
er
f
o
r
m
an
ce
ef
f
icien
t w
ith
h
ig
h
er
NR
MSE
co
ef
f
icien
ts
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
2
,
J
u
n
e
20
25
:
8
9
1
-
9
0
6
900
(
a)
(
b
)
Fig
u
r
e
1
0
.
R
esp
o
n
s
e
o
f
L
y
a
p
u
n
o
v
s
tab
ilit
y
co
n
d
itio
n
in
t
h
e
c
ase
n
o
is
e
d
(
t
)
is
f
ed
:
(
a)
r
an
d
o
m
n
o
is
e
d
is
tr
ib
u
tio
n
(
)
an
d
(
b
)
p
er
f
o
r
m
a
n
ce
=
•
≤
0
T
ab
le
3
.
T
h
e
co
m
p
a
r
is
o
n
o
f
NR
MSE
co
ef
f
icien
ts
V
i
n,
V
*
o
,
a
n
d
R
L
F
S
M
C
PI
V
i
n
=
9
0
V
[
9
6
.
3
4
%
,
9
2
.
0
5
%]
[
9
5
.
9
4
%
,
8
8
.
9
9
%]
C
h
a
n
g
e
i
n
V
in
[
9
6
.
4
2
%
,
9
3
.
4
8
%]
[
9
5
.
8
8
%
,
8
5
.
7
2
%]
C
h
a
n
g
e
i
n
R
L
[
9
5
.
8
2
%
,
9
3
.
9
7
%]
[
9
5
.
4
4
%
,
9
1
.
9
2
%]
C
h
a
n
g
e
V
i
n
,
R
L
[
9
5
.
8
8
%
,
9
4
.
9
8
%]
[
9
5
.
3
7
%
,
8
9
.
6
7
%]
C
h
a
n
g
e
i
n
d
(
t
)
[
9
5
.
9
2
%
,
9
5
.
0
9
%]
[
9
5
.
3
9
%
,
8
9
.
6
4
%]
3
.
2
.
E
x
perim
ent
a
l r
esu
lt
s
I
n
th
is
wo
r
k
,
a
r
ea
l
-
tim
e
ex
p
er
im
en
tal
m
o
d
el
is
b
u
ilt
f
o
r
a
DC
-
D
C
b
u
ck
co
n
v
er
ter
cir
cu
it
with
s
am
p
lin
g
tim
e
T
s
=
1
0
μ
s
as
d
ep
icted
in
Fig
u
r
e
1
1
.
T
h
e
a
r
ch
itectu
r
e
o
f
th
e
e
x
p
er
im
e
n
tal
s
etu
p
in
clu
d
es
a
cu
s
to
m
-
b
u
ilt
DC
-
DC
b
u
ck
co
n
v
er
ter
,
an
o
s
cillato
r
an
d
a
L
C
D
Mo
n
ito
r
f
o
r
s
ig
n
al
m
ea
s
u
r
em
en
t
an
d
v
is
u
al
f
ee
d
b
ac
k
,
an
u
s
er
in
ter
f
ac
e
an
d
co
n
tr
o
l
p
r
o
g
r
am
with
MA
T
L
AB
/S
im
u
lin
k
o
n
a
P
C
.
T
h
e
DC
-
DC
b
u
ck
co
n
v
er
ter
cir
c
u
it
co
m
m
u
n
icat
es
with
th
e
co
n
tr
o
l
ce
n
ter
v
ia
a
PC
I
ca
r
d
to
p
r
o
v
id
e
an
u
n
d
er
s
tan
d
a
b
le
an
d
co
n
s
is
ten
t
b
eh
av
io
r
an
d
co
m
f
o
r
tab
le
d
ata
v
is
u
aliza
tio
n
.
T
h
e
ev
alu
atio
n
s
wer
e
ca
r
r
ied
o
u
t
at
Facu
lty
o
f
E
lectr
o
n
ics
T
ec
h
n
o
lo
g
y
(
FET
)
with
th
e
ap
p
r
o
v
al
o
f
I
n
d
u
s
tr
ial
Un
iv
er
s
ity
o
f
Ho
C
h
i
Min
h
C
ity
.
T
h
e
m
o
d
el
p
ar
am
eter
s
ar
e
also
g
iv
en
in
T
ab
le
2
.
T
h
e
co
n
tr
o
l
p
r
o
g
r
am
is
im
p
lem
en
te
d
o
n
MA
T
L
AB
/S
im
u
lin
k
w
h
ich
t
h
e
ex
p
er
im
en
tal
r
esp
o
n
s
e
o
f
th
e
co
n
v
er
ter
is
co
llected
o
n
a
co
m
p
u
ter
v
ia
DSP
ca
r
d
3
2
0
F2
8
3
7
9
an
d
th
e
s
ettin
g
v
o
ltag
e
∗
is
ad
ju
s
ted
b
y
a
1
KΩ
f
in
e
-
tu
n
i
n
g
p
o
ten
tio
m
eter
.
Fig
u
r
e
1
2
p
r
esen
ts
th
e
ex
p
er
i
m
en
tal
co
n
tr
o
l
r
esp
o
n
s
e
u
s
in
g
FS
MC
S
in
ca
s
e
th
e
v
o
ltag
e
=
90
s
h
o
ws
th
at
th
e
m
ea
s
u
r
e
d
v
o
ltag
e
an
d
th
e
m
ea
s
u
r
ed
cu
r
r
en
t
tr
a
ck
t
o
th
e
s
ettin
g
v
alu
es
∗
an
d
∗
with
h
ig
h
q
u
ality
p
er
f
o
r
m
an
ce
.
Fo
r
PI
co
n
tr
o
l,
th
e
c
u
r
r
en
t
is
i
n
s
tan
tan
eo
u
s
ly
o
v
e
r
s
h
o
o
t
at
i
n
itial
co
n
d
itio
n
as
s
ee
n
in
Fig
u
r
e
9
(
b
)
.
T
h
e
co
m
p
atib
ilit
y
lev
el
o
f
th
e
m
ea
s
u
r
ed
v
o
ltag
e
an
d
cu
r
r
en
t
u
s
in
g
th
e
FS
MCS
alg
o
r
ith
m
is
NR
MSE
=
[
9
5
.
7
2
%,
9
0
.
9
9
%]
h
ig
h
er
th
an
th
at
u
s
in
g
th
e
PI
alg
o
r
ith
m
wh
ich
is
NR
MSE
=
[
9
5
.
2
1
%,
8
4
.
2
2
%].
Fig
u
r
e
1
1
.
T
h
e
e
x
p
er
im
en
tal
s
etu
p
u
s
ed
in
t
h
is
p
ap
er
was d
e
v
elo
p
ed
at
t
h
e
I
n
d
u
s
tr
ial
Un
iv
er
s
ity
o
f
Ho
C
h
i
Min
h
C
ity
:
1
)
a
cu
s
to
m
-
b
u
ilt
DC
-
DC
b
u
ck
co
n
v
er
ter
,
2
)
Os
cillato
r
f
o
r
s
ig
n
al
m
ea
s
u
r
em
en
t
,
3
)
L
C
D
Mo
n
ito
r
f
o
r
v
is
u
al
f
ee
d
b
ac
k
,
4
)
u
s
er
in
t
er
f
ac
e
an
d
C
o
n
tr
o
l p
r
o
g
r
am
,
5
)
PC
with
MA
T
L
AB
/
Simu
lin
k
f
o
r
co
n
tr
o
l
&
d
ata
ac
q
u
is
itio
n
,
an
d
6
)
t
esti
n
g
-
b
en
ch
Evaluation Warning : The document was created with Spire.PDF for Python.