I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
39
,
No
.
1
,
J
u
l
y
2
0
2
5
,
p
p
.
7
1
0
~
7
1
9
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/ijeecs.v
39
.i
1
.
pp
7
1
0
-
7
1
9
710
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs.ia
esco
r
e.
co
m
An inno
v
a
tive im
a
g
e encr
y
ption sc
heme in
tegra
ting
cha
o
tic
ma
ps, DNA
enco
ding
and cellula
r
a
utom
a
ta
G
a
v
er
cha
nd
K
uk
a
ra
m
,
Ven
k
a
t
esa
n Ra
m
a
s
a
my
,
Ya
s
m
in
Abdu
l
D
e
p
a
r
t
me
n
t
o
f
M
a
t
h
e
m
a
t
i
c
s,
C
o
l
l
e
g
e
o
f
E
n
g
i
n
e
e
r
i
n
g
a
n
d
Te
c
h
n
o
l
o
g
y
,
S
R
M
I
n
st
i
t
u
t
e
o
f
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
K
a
t
t
a
n
k
u
l
a
t
h
u
r
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
29
,
2
0
2
4
R
ev
is
ed
Mar
14
,
2
0
2
5
Acc
ep
ted
Mar
26
,
2
0
2
5
In
t
h
e
c
u
rre
n
t
d
ig
it
a
l
e
ra
,
se
c
u
ri
n
g
ima
g
e
tran
sm
issio
n
is
c
ru
c
ial
to
e
n
su
re
d
a
ta
in
teg
rit
y
,
p
re
v
e
n
t
tam
p
e
ri
n
g
,
a
n
d
p
re
se
rv
e
c
o
n
fi
d
e
n
ti
a
li
t
y
a
s
ima
g
e
s
trav
e
rse
u
n
se
c
u
re
d
c
h
a
n
n
e
ls.
Th
i
s
p
a
p
e
r
p
re
se
n
ts
a
n
in
n
o
v
a
ti
v
e
e
n
c
ry
p
t
io
n
sc
h
e
m
e
th
a
t
sy
n
e
rg
ist
ica
ll
y
c
o
m
b
in
e
s
a
two
-
d
ime
n
sio
n
a
l
(
2
-
D
)
lo
g
isti
c
m
a
p
,
d
e
o
x
y
rib
o
n
u
c
leic
a
c
id
(
DNA
)
e
n
c
o
d
i
n
g
,
a
n
d
1
-
D
c
e
ll
u
lar
a
u
t
o
m
a
ta
(CA)
ru
les
to
sig
n
i
fica
n
tl
y
b
o
lster
e
n
c
ry
p
ti
o
n
ro
b
u
st
n
e
ss
.
Th
e
p
ro
p
o
s
e
d
m
o
d
e
l
in
it
iate
s
with
t
h
e
g
e
n
e
ra
ti
o
n
o
f
a
k
e
y
ima
g
e
v
ia
th
e
2
-
D
lo
g
i
stic
m
a
p
,
y
ield
i
n
g
in
tri
c
a
te
c
h
a
o
ti
c
se
q
u
e
n
c
e
s
th
a
t
fo
r
ti
fy
th
e
e
n
c
ry
p
ti
o
n
m
e
c
h
a
n
ism
.
DN
A
c
ry
p
to
g
ra
p
h
y
is
e
m
p
l
o
y
e
d
to
a
m
p
li
f
y
ra
n
d
o
m
n
e
ss
t
h
ro
u
g
h
d
iffu
si
o
n
p
ro
p
e
rti
e
s,
p
r
o
v
id
i
n
g
ro
b
u
st
d
e
fe
n
se
a
g
a
in
st
v
a
ri
o
u
s
c
ry
p
t
o
g
ra
p
h
i
c
a
tt
a
c
k
s.
Th
e
in
teg
ra
ti
o
n
o
f
1
-
D
CA
r
u
les
fu
rth
e
r
i
n
ten
sifies
e
n
c
ry
p
ti
o
n
c
o
m
p
lex
it
y
b
y
it
e
ra
ti
v
e
ly
p
r
o
c
e
ss
in
g
DN
A
-
e
n
c
o
d
e
d
se
q
u
e
n
c
e
s.
Ex
p
e
rime
n
t
a
l
re
su
lt
s
su
b
sta
n
ti
a
te
t
h
a
t
th
e
p
r
o
p
o
se
d
e
n
c
ry
p
ti
o
n
sc
h
e
m
e
d
e
m
o
n
stra
tes
e
x
c
e
p
ti
o
n
a
l
e
n
d
u
ra
n
c
e
a
g
a
i
n
st a v
a
st s
p
e
c
tru
m
o
f
a
tt
a
c
k
s,
a
ffir
m
in
g
it
s s
u
p
e
ri
o
r
se
c
u
rit
y
.
K
ey
w
o
r
d
s
:
C
ellu
lar
au
to
m
ata
C
h
ao
tic
m
ap
DNA
cr
y
p
to
g
r
a
p
h
y
I
m
ag
e
en
c
r
y
p
tio
n
Statis
t
ical
an
aly
s
is
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ven
k
atesan
R
am
asam
y
Dep
ar
tm
en
t o
f
Ma
th
em
atics,
C
o
lleg
e
o
f
E
n
g
i
n
ee
r
in
g
an
d
T
ec
h
n
o
lo
g
y
SR
M
I
n
s
titu
te
o
f
Scien
ce
an
d
T
ec
h
n
o
lo
g
y
Kattan
k
u
lath
u
r
6
0
3
2
0
3
,
T
am
il
Nad
u
,
I
n
d
ia
E
m
ail: v
en
k
ater
1
@
s
r
m
is
t.e
d
u
.
in
1.
I
NT
RO
D
UCT
I
O
N
I
n
th
e
d
ig
ital
ag
e,
s
ec
u
r
in
g
s
e
n
s
itiv
e
in
f
o
r
m
atio
n
tr
an
s
m
itte
d
o
v
er
th
e
in
ter
n
et
is
cr
itical,
esp
ec
ially
f
o
r
d
ig
ital
im
ag
es
th
at
ar
e
v
u
ln
er
ab
le
to
u
n
au
th
o
r
ized
ac
ce
s
s
.
T
h
e
r
is
k
o
f
in
ter
ce
p
tio
n
an
d
ex
p
lo
itatio
n
d
u
r
in
g
tr
an
s
m
is
s
io
n
u
n
d
er
s
co
r
es
th
e
n
ee
d
f
o
r
e
f
f
ec
tiv
e
im
ag
e
e
n
cr
y
p
tio
n
[
1
]
-
[
3
]
.
T
r
ad
itio
n
al
en
cr
y
p
tio
n
m
eth
o
d
s
s
u
ch
as
ad
v
an
ce
d
en
cr
y
p
tio
n
s
tan
d
ar
d
(
AE
S
)
,
d
ata
en
cr
y
p
ti
o
n
s
tan
d
ar
d
(
DE
S
)
,
an
d
R
iv
est
-
Sh
am
ir
-
Ad
lem
an
(
R
SA
)
o
f
ten
f
ail
to
m
ain
tain
c
r
itical
p
r
o
p
er
ties
o
f
en
c
r
y
p
ted
im
ag
es,
in
clu
d
i
n
g
lo
w
p
ix
e
l
c
o
r
r
elatio
n
an
d
h
i
g
h
r
an
d
o
m
n
ess
,
an
d
m
ay
n
o
t
f
u
lly
ad
d
r
ess
v
ar
io
u
s
s
ec
u
r
ity
th
r
ea
ts
an
d
r
o
b
u
s
tn
ess
r
eq
u
ir
em
e
n
ts
[
4
]
.
T
o
ad
d
r
ess
th
ese
lim
itatio
n
s
,
th
e
p
r
o
p
o
s
ed
r
esear
ch
in
tr
o
d
u
ce
s
a
n
o
v
el
en
cr
y
p
tio
n
s
ch
em
e
th
at
in
teg
r
ates
ch
ao
tic
m
ap
s
,
d
eo
x
y
r
ib
o
n
u
cleic
a
cid
(
DNA
)
cr
y
p
to
g
r
ap
h
y
,
an
d
ce
llu
lar
a
u
to
m
ata
(
C
A)
.
T
h
is
in
n
o
v
ativ
e
ap
p
r
o
ac
h
aim
s
to
s
ig
n
if
ican
tly
en
h
an
ce
th
e
r
o
b
u
s
tn
ess
an
d
ef
f
ec
tiv
en
ess
o
f
im
ag
e
en
cr
y
p
tio
n
,
a
d
d
r
ess
in
g
co
n
tem
p
o
r
a
r
y
s
ec
u
r
ity
ch
allen
g
es with
n
o
v
el
s
tr
ateg
i
es.
C
h
ao
s
th
eo
r
y
h
as
r
ec
en
tly
em
er
g
ed
as
a
p
o
wer
f
u
l
m
eth
o
d
f
o
r
s
ec
u
r
e
im
ag
e
en
c
r
y
p
tio
n
[
5
]
,
[
6
]
,
d
u
e
to
its
s
en
s
itiv
ity
to
in
itial
co
n
d
itio
n
s
,
d
eter
m
in
is
tic
b
eh
a
v
io
r
,
an
d
er
g
o
d
icity
[
7
]
.
T
h
ese
tr
aits
m
ak
e
ch
ao
s
-
b
ased
cr
y
p
to
s
y
s
tem
s
h
ig
h
ly
r
esis
tan
t
to
attac
k
s
.
Mu
lti
-
d
i
m
en
s
io
n
al
ch
ao
tic
m
a
p
s
ar
e
p
r
ef
er
r
e
d
f
o
r
th
eir
co
m
p
lex
ar
ch
itectu
r
es
an
d
n
u
m
er
o
u
s
p
ar
am
eter
s
,
wh
ich
en
h
a
n
ce
e
n
cr
y
p
ti
o
n
s
tr
en
g
t
h
b
y
c
o
m
p
licatin
g
p
r
ed
ictio
n
an
d
r
ev
er
s
e
-
en
g
in
ee
r
in
g
[
8
]
.
Ho
wev
er
,
th
is
in
cr
ea
s
ed
s
ec
u
r
ity
b
r
in
g
s
g
r
e
ater
co
m
p
u
tatio
n
al
co
m
p
lex
ity
,
r
eq
u
ir
in
g
a
b
alan
c
e
b
etwe
en
s
ec
u
r
ity
a
n
d
p
r
ac
t
ical
im
p
lem
en
tatio
n
.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
o
l
o
g
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
n
in
n
o
v
a
tive
ima
g
e
en
cryp
tio
n
s
ch
eme
in
teg
r
a
tin
g
c
h
a
o
tic
ma
p
s
,
DN
A
en
co
d
in
g
…
(
Ga
v
erch
a
n
d
K
u
ka
r
a
m
)
711
em
p
lo
y
s
th
e
two
-
d
im
en
s
io
n
al
(
2
-
D
)
lo
g
is
tic
m
ap
to
g
en
e
r
ate
h
ig
h
l
y
u
n
p
r
ed
ictab
le
s
eq
u
en
c
es
th
r
o
u
g
h
ch
ao
tic
d
y
n
am
ics,
s
ig
n
if
ican
tly
b
o
ls
ter
in
g
en
c
r
y
p
tio
n
r
o
b
u
s
tn
ess
an
d
r
esis
tin
g
u
n
au
t
h
o
r
ized
d
ec
r
y
p
tio
n
attem
p
ts
.
T
h
e
ad
v
en
t
o
f
DNA
co
m
p
u
tin
g
h
as
led
to
th
e
em
er
g
en
ce
o
f
DNA
cr
y
p
to
g
r
ap
h
y
,
u
tili
zin
g
DNA
f
o
r
in
f
o
r
m
atio
n
s
to
r
ag
e
an
d
b
io
lo
g
ical
tech
n
o
l
o
g
ies
f
o
r
its
im
p
lem
en
tatio
n
[
9
]
,
[
1
0
]
.
Ad
lem
an
’
s
1
9
9
4
e
x
p
er
im
e
n
t
laid
th
e
f
o
u
n
d
atio
n
f
o
r
th
is
ap
p
r
o
ac
h
,
m
a
r
k
in
g
a
p
iv
o
tal
ad
v
an
ce
m
en
t
in
in
f
o
r
m
atio
n
tech
n
o
lo
g
y
.
DNA
co
m
p
u
tin
g
'
s
ex
ce
p
tio
n
al
ca
p
a
b
ilit
ies,
in
clu
d
in
g
ex
te
n
s
iv
e
p
ar
allelis
m
,
v
ast
s
to
r
ag
e
p
o
ten
t
ial,
an
d
lo
w
e
n
er
g
y
co
n
s
u
m
p
tio
n
,
h
av
e
in
s
p
ir
ed
D
NA
-
b
ased
im
ag
e
en
cr
y
p
tio
n
m
eth
o
d
s
[
1
1
]
-
[
1
3
]
.
I
n
th
e
p
r
o
p
o
s
ed
s
ch
em
e,
DNA
cr
y
p
to
g
r
ap
h
y
b
o
ls
ter
s
en
cr
y
p
ti
o
n
b
y
lev
er
a
g
in
g
DNA'
s
h
ig
h
in
f
o
r
m
atio
n
d
en
s
ity
an
d
b
io
c
h
em
ical
co
m
p
lex
ity
,
s
ig
n
if
ican
tly
en
h
an
cin
g
r
an
d
o
m
n
ess
an
d
p
r
o
v
i
d
in
g
r
o
b
u
s
t
p
r
o
tectio
n
ag
ain
s
t
b
r
u
te
-
f
o
r
ce
an
d
s
tatis
tica
l
attac
k
s
.
I
n
th
e
1
9
5
0
s
,
J
o
h
n
v
o
n
Neu
m
an
n
an
d
Stan
is
law
Ulam
d
e
v
elo
p
ed
C
A
as
m
ath
em
atica
l
m
o
d
els
to
ex
p
lo
r
e
co
m
p
le
x
s
y
s
tem
s
th
r
o
u
g
h
s
im
p
le,
lo
ca
l
in
ter
ac
tio
n
s
.
Desp
ite
th
eir
s
im
p
licity
,
C
A
ex
h
ib
its
r
em
ar
k
ab
le
co
m
p
lex
ity
,
m
ak
in
g
th
em
e
f
f
ec
tiv
e
to
o
ls
f
o
r
s
im
u
latin
g
n
atu
r
al
p
r
o
c
ess
es
an
d
en
h
a
n
cin
g
cr
y
p
to
g
r
a
p
h
ic
s
ec
u
r
ity
[
1
4
]
.
J
in
et
a
l.
[
1
5
]
p
r
o
p
o
s
ed
an
im
ag
e
en
c
r
y
p
tio
n
s
ch
em
e
u
s
in
g
a
n
8
-
len
g
th
C
A
an
d
s
tate
attr
ac
to
r
s
,
ac
h
iev
in
g
ef
f
ec
tiv
e
co
n
f
u
s
io
n
an
d
d
if
f
u
s
io
n
with
m
in
i
m
al
co
m
p
u
tatio
n
al
r
eso
u
r
ce
s
.
C
A
h
as
b
ec
o
m
e
in
s
tr
u
m
en
tal
in
g
en
er
atin
g
r
an
d
o
m
s
eq
u
en
ce
s
f
o
r
im
ag
e
en
c
r
y
p
tio
n
,
with
two
p
r
im
ar
y
m
eth
o
d
s
:
o
n
e
u
s
es
C
A
to
p
r
o
d
u
ce
p
s
eu
d
o
-
r
an
d
o
m
n
u
m
b
er
s
,
wh
ile
t
h
e
o
t
h
er
e
n
cr
y
p
ts
im
ag
es
at
th
e
b
it
lev
el,
lev
er
ag
in
g
C
A'
s
ch
ao
tic
b
eh
av
io
r
[
1
6
]
.
I
n
th
e
p
r
o
p
o
s
ed
s
ch
em
e,
C
A
i
ter
ativ
ely
p
r
o
ce
s
s
es
DNA
-
en
co
d
ed
b
in
ar
y
s
eq
u
en
ce
s
,
am
p
lify
in
g
en
cr
y
p
tio
n
co
m
p
lex
ity
.
E
x
te
n
s
iv
e
r
esear
ch
c
o
n
tin
u
es
t
o
ad
v
an
ce
im
a
g
e
e
n
cr
y
p
ti
o
n
u
s
in
g
tech
n
i
q
u
es
lik
e
ch
ao
tic
s
y
s
tem
s
,
q
u
an
tu
m
l
o
g
i
s
tic
m
ap
s
,
DNA
co
m
p
u
tin
g
,
a
n
d
C
A.
T
h
e
s
u
b
s
eq
u
e
n
t
r
ev
ie
w
o
f
f
er
s
an
a
n
aly
s
is
o
f
in
n
o
v
ativ
e
ap
p
r
o
ac
h
es in
th
is
f
ield
.
L
i
et
a
l.
[
1
7
]
d
e
v
elo
p
e
d
an
en
cr
y
p
tio
n
m
eth
o
d
u
s
in
g
ch
a
o
tic
m
ap
s
an
d
C
A
to
en
h
an
c
e
s
ec
u
r
ity
th
r
o
u
g
h
d
if
f
u
s
io
n
,
p
e
r
m
u
tati
o
n
,
an
d
s
cr
am
b
lin
g
,
b
u
t
it
m
ay
s
u
f
f
er
f
r
o
m
h
ig
h
c
o
m
p
u
tatio
n
al
d
em
an
d
s
.
C
h
ai
et
a
l.
[
1
8
]
p
r
o
p
o
s
ed
a
s
c
h
em
e
in
teg
r
atin
g
a
m
e
m
r
is
tiv
e
h
y
p
er
c
h
ao
tic
s
y
s
tem
,
C
A,
a
n
d
DNA,
d
r
iv
en
b
y
th
e
p
lain
im
ag
e,
ac
h
iev
in
g
s
tr
o
n
g
s
ec
u
r
ity
with
d
y
n
am
ic
D
NA
en
co
d
in
g
a
n
d
b
lo
c
k
d
if
f
u
s
io
n
.
Ho
wev
er
,
its
d
ep
en
d
e
n
ce
o
n
u
n
iq
u
e
DNA
r
u
les
m
ay
lim
it
ad
a
p
tab
ilit
y
to
v
ar
io
u
s
im
a
g
e
ty
p
es.
Nan
d
i
e
t
a
l.
[
1
9
]
d
esig
n
ed
an
im
ag
e
en
cr
y
p
tio
n
m
eth
o
d
with
1
-
D
C
A
in
a
s
y
m
m
etr
ic
k
ey
f
r
am
ewo
r
k
,
lev
er
a
g
in
g
c
y
clic
p
r
o
p
er
ties
f
o
r
ef
f
icien
cy
,
th
o
u
g
h
its
s
im
p
licity
m
ig
h
t m
a
k
e
it v
u
l
n
er
ab
le
to
ad
v
an
ce
d
attac
k
s
.
Mo
n
d
al
et
a
l.
[2
0
]
d
ev
elo
p
ed
a
r
o
b
u
s
t
im
ag
e
en
cr
y
p
tio
n
m
e
th
o
d
u
s
in
g
a
ch
a
o
tic
s
k
ew
ten
t
m
ap
an
d
C
A,
en
s
u
r
in
g
s
ec
u
r
e
co
m
m
u
n
icatio
n
an
d
s
to
r
a
g
e
with
a
lar
g
e
k
ey
s
p
ac
e
an
d
ef
f
ec
ti
v
e
p
s
eu
d
o
-
r
an
d
o
m
s
eq
u
en
ce
s
.
Ho
wev
er
,
m
an
ag
i
n
g
ex
ten
s
iv
e
k
e
y
s
p
ac
es
an
d
k
e
y
m
an
ag
e
m
en
t
m
a
y
lim
it
i
ts
ef
f
ec
tiv
en
ess
.
Niy
at
et
a
l.
[2
1
]
cr
ea
ted
a
n
o
v
el
s
tr
ateg
y
co
m
b
i
n
in
g
DNA,
C
A,
an
d
ch
ao
tic
s
y
s
tem
s
f
o
r
p
ix
el
en
cr
y
p
tio
n
u
s
in
g
DNA
r
u
les,
XOR
o
p
er
atio
n
s
,
an
d
C
A
r
u
les.
Alth
o
u
g
h
it
p
r
o
v
id
es
a
s
u
b
s
tan
tial
k
ey
s
p
ac
e
an
d
lo
w
p
ix
el
co
r
r
elatio
n
,
its
co
m
p
lex
ity
m
ay
h
in
d
er
p
r
ac
tical
im
p
lem
en
tatio
n
.
L
iu
et
a
l.
[2
2
]
p
r
o
p
o
s
ed
an
ad
v
a
n
ce
d
en
cr
y
p
tio
n
s
ch
em
e
u
s
in
g
DN
A
en
co
d
in
g
an
d
c
h
ao
tic
m
a
p
s
f
o
r
p
ix
el
co
n
f
u
s
io
n
an
d
d
if
f
u
s
io
n
.
Desp
ite
its
s
tr
o
n
g
en
cr
y
p
tio
n
p
er
f
o
r
m
a
n
c
e
an
d
lar
g
e
k
e
y
s
p
ac
e,
p
r
ac
tical
im
p
lem
en
tatio
n
is
co
m
p
licated
b
y
m
u
ltip
le
tr
an
s
f
o
r
m
atio
n
s
.
L
i
et
a
l.
[2
3
]
p
r
o
p
o
s
ed
a
tech
n
i
q
u
e
u
s
i
n
g
a
5
-
D
m
u
lti
-
win
g
h
y
p
er
-
ch
ao
tic
s
y
s
tem
f
o
r
en
h
an
ce
d
s
ec
u
r
ity
th
r
o
u
g
h
p
ix
el
-
lev
el
an
d
b
it
-
lev
el
p
er
m
u
tatio
n
s
an
d
d
if
f
u
s
io
n
.
Ho
wev
er
,
r
elian
ce
o
n
h
y
p
er
-
ch
ao
tic
s
y
s
tem
s
an
d
p
er
m
u
ta
tio
n
s
m
ay
in
tr
o
d
u
ce
co
m
p
le
x
ities
an
d
lim
itatio
n
s
in
r
o
b
u
s
tn
ess
.
L
o
n
e
et
a
l.
[2
4
]
d
ev
elo
p
e
d
a
n
im
ag
e
e
n
cr
y
p
tio
n
p
r
o
ce
d
u
r
e
in
teg
r
atin
g
DNA
m
eth
o
d
s
with
th
r
ee
-
d
im
en
s
io
n
al
ch
a
o
s
m
ap
s
,
e
m
p
lo
y
in
g
c
o
m
p
lex
d
if
f
u
s
io
n
a
n
d
s
cr
am
b
lin
g
tech
n
iq
u
es.
I
t
d
e
m
o
n
s
tr
ates
s
u
p
er
io
r
en
cr
y
p
tio
n
p
er
f
o
r
m
an
ce
an
d
en
h
an
ce
d
k
e
y
s
en
s
itiv
ity
th
r
o
u
g
h
ex
ten
s
iv
e
v
alid
atio
n
.
Alk
h
o
n
ain
i
et
a
l.
[2
5
]
cr
ea
ted
a
tech
n
iq
u
e
co
m
b
in
i
n
g
two
-
way
c
h
ao
tic
m
ap
s
with
r
ev
er
s
ib
le
C
A,
im
p
r
o
v
i
n
g
k
ey
s
p
ac
e
an
d
s
en
s
itiv
ity
.
T
h
eir
ap
p
r
o
ac
h
u
s
es
s
p
atio
tem
p
o
r
al
ch
ao
s
f
o
r
p
ix
el
p
er
m
u
tatio
n
a
n
d
r
ev
e
r
s
ib
le
C
A
f
o
r
b
it
-
lev
el
m
o
d
if
icatio
n
,
s
h
o
win
g
s
tr
o
n
g
r
esis
tan
ce
to
v
ar
io
u
s
attac
k
s
.
Z
h
an
g
et
a
l.
[2
6
]
d
ev
elo
p
ed
an
en
c
r
y
p
tio
n
tech
n
iq
u
e
co
m
b
in
in
g
DNA
s
eq
u
en
ce
s
with
ch
ao
tic
m
ap
s
f
o
r
p
ix
el
d
if
f
u
s
io
n
a
n
d
co
n
f
u
s
io
n
th
r
o
u
g
h
iter
ativ
e
tr
an
s
f
o
r
m
atio
n
s
.
Desp
ite
its
ef
f
icac
y
,
th
e
m
eth
o
d
f
ac
es
ch
allen
g
es
d
u
e
to
co
m
p
le
x
ity
,
co
m
p
u
tatio
n
al
d
em
an
d
s
,
an
d
p
o
ten
tial
v
u
ln
er
ab
ilit
ies.
Sam
iu
llah
et
a
l.
[2
7
]
in
tr
o
d
u
ce
d
a
s
y
m
m
etr
ic
en
cr
y
p
tio
n
alg
o
r
ith
m
f
o
r
co
lo
r
im
ag
es
u
s
in
g
th
r
ee
ch
ao
tic
s
y
s
tem
s
,
a
s
ec
u
r
e
h
ash
alg
o
r
ith
m
,
an
d
a
DNA
s
eq
u
en
ce
-
b
ased
lin
ea
r
f
ee
d
b
ac
k
s
h
if
t
r
eg
is
ter
to
en
h
a
n
ce
d
if
f
u
s
io
n
an
d
co
n
f
u
s
io
n
.
T
h
e
p
r
ec
ed
in
g
an
al
y
s
is
ass
es
s
ed
th
e
p
r
o
s
an
d
co
n
s
o
f
im
ag
e
en
cr
y
p
tio
n
tech
n
iq
u
es
u
tili
zi
n
g
c
h
ao
tic
m
ap
s
,
C
A,
an
d
DNA
co
m
p
u
ti
n
g
.
E
x
is
tin
g
m
eth
o
d
s
f
ac
e
ch
a
llen
g
es
s
u
ch
as
s
u
s
ce
p
tib
ilit
y
t
o
s
tatis
tical
attac
k
s
,
h
ig
h
p
ix
el
co
r
r
elatio
n
,
lo
w
en
tr
o
p
y
,
in
ad
eq
u
ate
av
alan
ch
e
r
esis
tan
ce
,
lar
g
e
k
ey
s
p
ac
es,
wea
k
tr
an
s
m
is
s
io
n
s
ec
u
r
ity
,
an
d
in
s
u
f
f
icien
t
er
r
o
r
h
an
d
lin
g
.
T
h
is
p
ap
e
r
p
r
esen
ts
a
s
o
p
h
is
ticated
e
n
cr
y
p
tio
n
s
tr
ateg
y
in
teg
r
atin
g
a
2
-
D
lo
g
is
tic
m
ap
,
DNA
en
c
o
d
in
g
,
an
d
1
-
D
C
A
r
u
les
to
ad
d
r
ess
th
ese
lim
itatio
n
s
an
d
b
o
ls
ter
r
o
b
u
s
tn
ess
.
T
h
e
2
-
D
lo
g
is
tic
m
ap
s
tr
en
g
th
e
n
s
k
ey
im
ag
e
g
e
n
er
atio
n
with
co
m
p
lex
ch
a
o
tic
s
eq
u
en
ce
s
,
en
h
an
cin
g
e
n
cr
y
p
tio
n
ef
f
icac
y
.
DNA
c
r
y
p
t
o
g
r
ap
h
y
b
o
o
s
ts
r
an
d
o
m
n
ess
an
d
r
esis
t
s
s
tatis
tica
l
an
d
a
v
alan
ch
e
attac
k
s
.
Ad
d
itio
n
ally
,
1
-
D
C
A
r
u
les
in
c
r
ea
s
e
en
cr
y
p
tio
n
c
o
m
p
lex
ity
an
d
p
ix
el
d
is
p
ar
ity
,
m
ak
in
g
u
n
au
th
o
r
ize
d
d
ec
r
y
p
tio
n
m
o
r
e
d
if
f
icu
lt.
Fin
ally
,
er
r
o
r
c
o
r
r
ec
tio
n
is
im
p
lem
en
ted
th
r
o
u
g
h
f
o
r
war
d
er
r
o
r
co
r
r
ec
tio
n
(
FE
C
)
f
o
r
b
o
th
k
e
y
an
d
en
cr
y
p
ted
im
ag
es,
wh
ile
s
ec
u
r
ity
is
en
s
u
r
ed
v
ia
th
e
r
ec
eiv
er
'
s
p
u
b
lic
k
ey
,
g
u
a
r
an
teein
g
th
a
t
o
n
ly
th
e
in
ten
d
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
1
,
J
u
ly
20
25
:
7
1
0
-
7
1
9
712
r
ec
ip
ien
t
ca
n
d
ec
r
y
p
t
th
e
d
ata.
T
h
is
m
o
d
el
d
ir
ec
tly
m
itig
ates
s
u
s
ce
p
tib
ilit
y
to
s
tatis
tical
attac
k
s
an
d
h
ig
h
p
i
x
el
co
r
r
elatio
n
th
r
o
u
g
h
ch
a
o
tic
s
eq
u
en
ce
s
an
d
DNA
en
co
d
i
n
g
,
wh
ile
1
-
D
C
A
r
u
les
en
h
an
ce
en
tr
o
p
y
a
n
d
av
alan
ch
e
r
esis
tan
ce
.
Mo
r
eo
v
er
,
FEC
im
p
r
o
v
es
e
r
r
o
r
h
an
d
lin
g
,
an
d
s
ec
u
r
e
tr
a
n
s
m
is
s
io
n
is
en
s
u
r
ed
b
y
th
e
r
ec
eiv
er
'
s
p
u
b
lic
k
ey
.
T
h
i
s
p
a
p
e
r
i
s
s
t
r
u
c
t
u
r
e
d
as
f
o
l
l
o
w
s
:
se
c
ti
o
n
2
d
e
l
i
v
e
r
s
a
n
ex
t
e
n
s
i
v
e
r
e
v
i
e
w
o
f
c
h
a
o
s
t
h
eo
r
y
,
D
N
A
c
r
y
p
t
o
g
r
a
p
h
y
,
1
-
D
C
A
,
a
n
d
F
E
C
.
Se
c
t
i
o
n
3
d
e
l
i
n
e
a
t
es
t
h
e
p
r
o
p
o
s
e
d
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
m
e
t
h
o
d
o
l
o
g
y
a
n
d
a
s
s
o
ci
a
t
e
d
a
l
g
o
r
i
t
h
m
s
.
Se
c
t
i
o
n
4
o
f
f
e
r
s
a
t
h
o
r
o
u
g
h
e
v
a
l
u
a
t
i
o
n
a
n
d
a
n
a
l
y
s
i
s
o
f
t
h
e
o
u
t
c
o
m
es
d
e
r
i
v
e
d
f
r
o
m
t
h
e
p
r
o
p
o
s
e
d
s
c
h
e
m
e
.
S
ec
t
i
o
n
5
p
r
o
v
i
d
e
s
a
c
o
n
c
l
u
s
i
v
e
s
u
m
m
a
r
y
,
e
n
c
a
p
s
u
l
a
ti
n
g
t
h
e
c
o
r
e
c
o
n
t
r
i
b
u
t
i
o
n
s
o
f
t
h
e
s
t
u
d
y
.
2.
P
RE
L
I
M
I
NAR
I
E
S
2
.
1
.
Cha
o
t
ic
ma
ps
C
h
ao
s
th
eo
r
y
[
2
8
]
,
[
29
]
em
p
h
asizes
two
es
s
en
tial
p
r
o
p
er
ties
:
n
o
n
lin
ea
r
ity
an
d
d
y
n
am
ical
b
eh
av
io
r
.
I
n
th
e
lo
g
is
tic
m
ap
,
n
o
n
lin
ea
r
ity
ar
is
es
f
r
o
m
f
ee
d
b
ac
k
m
ec
h
an
is
m
s
,
wh
ile
d
y
n
am
ical
b
e
h
av
io
r
s
ig
n
if
ies
th
e
s
y
s
tem
'
s
ev
o
lu
tio
n
.
T
h
e
1
-
D
lo
g
is
tic
m
ap
,
ex
p
r
ess
ed
as
,
+
1
=
⋅
⋅
(
1
−
)
wh
er
e
∈
(
0
,
4
]
is
th
e
co
n
t
r
o
l
p
a
r
am
et
er
,
an
d
r
ep
r
esen
ts
th
e
s
y
s
tem
s
tate
at
iter
atio
n
.
W
h
ile
th
is
m
ap
g
en
er
ates
s
eq
u
en
ce
s
with
in
[
0
,
1
]
an
d
ex
h
ib
its
ch
ao
tic
b
eh
a
v
i
o
r
f
o
r
>
3
.
57
,
its
s
im
p
licity
lim
i
t
s
its
s
u
itab
ilit
y
f
o
r
cr
y
p
to
g
r
a
p
h
ic
a
p
p
licatio
n
s
r
eq
u
ir
i
n
g
g
r
ea
ter
c
o
m
p
lex
it
y.
T
h
e
2
-
D
lo
g
is
tic
m
ap
ad
d
r
ess
es
th
ese
lim
itat
io
n
s
b
y
in
tr
o
d
u
cin
g
ad
d
itio
n
al
co
m
p
lex
ity
v
ia
co
u
p
led
eq
u
atio
n
s
an
d
a
p
er
t
u
r
b
atio
n
f
ac
to
r
.
I
t is d
ef
in
e
d
b
y
:
{
+
1
}
=
⋅
⋅
(
1
−
)
+
0
{
+
1
}
=
⋅
⋅
(
1
−
)
+
0
i
n
th
e
2
-
D
lo
g
is
tic
m
ap
,
an
d
r
ep
r
esen
t
th
e
s
y
s
tem
'
s
s
tates
at
iter
atio
n
,
with
as
th
e
co
n
tr
o
l
p
ar
am
eter
an
d
0
f
u
n
ctio
n
i
n
g
as
a
p
er
tu
r
b
atio
n
f
ac
to
r
.
T
h
e
in
co
r
p
o
r
atio
n
o
f
,
alo
n
g
with
th
e
p
er
tu
r
b
atio
n
0
,
in
tr
o
d
u
ce
s
g
r
ea
ter
c
o
m
p
lex
i
ty
b
y
co
n
tin
u
ally
alter
in
g
th
e
tr
ajec
to
r
ies
o
f
b
o
th
v
a
r
iab
les,
p
r
ev
en
tin
g
s
tab
ilizatio
n
in
to
f
ix
ed
p
o
in
ts
o
r
p
er
i
o
d
ic
o
r
b
its
an
d
p
r
o
m
o
ti
n
g
ch
a
o
tic
b
eh
av
i
o
r
.
T
h
o
u
g
h
d
er
iv
e
d
f
r
o
m
th
e
1
-
D
m
o
d
el,
th
e
in
ter
ac
tio
n
b
etwe
en
th
e
two
d
im
en
s
io
n
s
an
d
th
e
p
er
tu
r
b
atio
n
f
ac
t
o
r
s
u
b
s
tan
tially
en
h
a
n
ce
s
th
e
s
y
s
tem
’
s
d
y
n
am
ical
p
r
o
p
er
ties
,
r
esu
ltin
g
in
m
o
r
e
in
tr
icate
a
n
d
u
n
p
r
e
d
ictab
le
b
eh
av
io
r
.
T
h
e
2
-
D
lo
g
is
tic
m
ap
ex
h
ib
its
b
if
u
r
ca
tio
n
p
atter
n
s
,
with
f
ix
ed
p
o
in
ts
f
o
r
∈
(
0
,
3
]
,
p
er
io
d
ic
attr
ac
to
r
s
f
o
r
∈
(
3
,
3
.
57
]
,
an
d
c
h
ao
s
f
o
r
>
3
.
57
.
Fig
u
r
e
1
d
e
p
ict
th
e
b
if
u
r
ca
tio
n
d
iag
r
am
o
f
2
-
D
lo
g
is
tic
m
ap
.
T
h
e
p
r
o
p
o
s
ed
s
ch
em
e
em
p
lo
y
s
=
3
.
999
f
o
r
s
ec
u
r
e
k
ey
im
ag
e
g
en
er
atio
n
,
lev
er
ag
in
g
its
in
cr
ea
s
ed
co
m
p
le
x
ity
an
d
ch
a
o
tic
ch
ar
ac
ter
is
tics
.
Fig
u
r
e
1
.
B
if
u
r
ca
tio
n
d
iag
r
am
f
o
r
2
-
D
lo
g
is
tic
m
ap
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
n
in
n
o
v
a
tive
ima
g
e
en
cryp
tio
n
s
ch
eme
in
teg
r
a
tin
g
c
h
a
o
tic
ma
p
s
,
DN
A
en
co
d
in
g
…
(
Ga
v
erch
a
n
d
K
u
ka
r
a
m
)
713
2
.
2
.
DNA
cr
y
pt
o
g
ra
ph
y
DNA
cr
y
p
to
g
r
ap
h
y
lev
er
ag
es
th
e
in
h
er
en
t p
r
o
p
er
ties
o
f
DNA
s
eq
u
en
ce
s
to
b
o
ls
ter
d
ata
s
e
cu
r
ity
[
3
0
]
,
[3
1
]
.
A
DNA
s
eq
u
en
ce
co
n
s
is
ts
o
f
f
o
u
r
n
u
cleic
ac
id
b
as
es,
ad
en
in
e
(
A)
,
g
u
an
in
e
(
G)
,
cy
to
s
in
e
(
C
)
,
an
d
th
y
m
in
e
(
T
)
.
I
n
DNA,
ad
en
in
e
b
o
n
d
s
with
th
y
m
in
e
(
A
-
T
)
,
wh
ile
g
u
an
i
n
e
b
o
n
d
s
with
cy
to
s
in
e
(
G
-
C
)
,
r
ef
lectin
g
a
co
m
p
lem
en
tar
y
r
e
latio
n
s
h
ip
an
alo
g
o
u
s
t
o
b
i
n
ar
y
d
ig
its
(
0
an
d
1
)
.
I
n
th
e
p
r
o
p
o
s
ed
s
ch
em
e,
b
i
n
ar
y
p
ix
el
v
alu
es
f
r
o
m
b
o
th
th
e
p
la
in
an
d
k
e
y
im
ag
es
ar
e
en
c
o
d
e
d
in
to
DNA
n
u
cleo
tid
es,
with
m
ap
p
in
g
s
d
e
f
in
ed
as:
0
0
to
A,
0
1
to
C
,
1
0
to
G,
an
d
1
1
t
o
T
.
T
h
e
f
u
s
io
n
o
f
th
ese
im
ag
es
is
ac
h
iev
e
d
u
s
in
g
th
e
XOR
tab
le
p
r
esen
ted
in
T
ab
le
1
,
r
esu
ltin
g
in
a
u
n
if
ied
im
a
g
e.
Utilizin
g
DNA
en
co
d
in
g
,
c
o
u
p
led
with
th
e
XOR
o
p
er
atio
n
,
in
tr
o
d
u
ce
s
a
h
ig
h
er
lev
el
o
f
c
o
m
p
l
ex
ity
an
d
o
b
f
u
s
ca
tio
n
,
e
n
h
an
cin
g
r
esis
tan
ce
to
cr
y
p
tan
aly
s
is
tech
n
iq
u
es.
T
h
is
m
eth
o
d
n
o
t
o
n
ly
d
iv
e
r
s
if
ies
th
e
en
co
d
in
g
ap
p
r
o
ac
h
b
u
t
also
s
tr
en
g
th
en
s
e
n
cr
y
p
tio
n
,
s
ig
n
if
ica
n
tly
b
o
ls
ter
in
g
r
esis
tan
ce
to
d
ec
r
y
p
tio
n
ef
f
o
r
ts
.
C
o
n
s
eq
u
en
tly
,
in
teg
r
atin
g
DNA
en
c
o
d
i
n
g
wit
h
XOR
s
ig
n
if
ican
tly
au
g
m
en
ts
s
ec
u
r
ity
,
r
o
b
u
s
tn
ess
,
an
d
t
h
e
o
v
er
all
in
te
g
r
ity
a
n
d
co
n
f
id
e
n
tiality
o
f
th
e
d
at
a
th
r
o
u
g
h
in
tr
icate
tr
an
s
f
o
r
m
atio
n
p
r
o
ce
s
s
es.
T
ab
le
1
.
DNA
XOR tab
le
XOR
A
(
0
0
)
C
(
0
1
)
G
(
1
0
)
T
(
1
1
)
A
(
0
0
)
A
C
G
T
C
(
0
1
)
C
A
T
G
G
(
1
0
)
G
T
A
C
T
(
1
1
)
T
G
C
A
2
.
3
.
Cellula
r
a
uto
m
a
t
a
C
A
a
r
e
m
a
t
h
e
m
a
ti
c
a
l
m
o
d
e
ls
d
i
s
t
i
n
g
u
is
h
e
d
b
y
d
i
s
c
r
e
t
e
,
q
u
a
n
t
i
z
e
d
t
i
m
e
,
s
ta
t
es
,
a
n
d
s
p
a
c
e
,
w
i
t
h
c
e
l
ls
o
r
g
a
n
i
z
e
d
i
n
a
r
e
g
u
l
a
r
,
f
i
n
i
t
e
l
a
t
t
ic
e
[
3
2
]
,
[
3
3
]
.
F
o
r
m
a
l
l
y
,
C
A
a
r
e
d
e
s
c
r
i
b
e
d
b
y
t
h
e
f
i
v
e
-
tu
p
l
e
(
,
,
,
,
)
,
w
h
e
r
e
i
s
t
h
e
l
a
t
ti
c
e
,
r
e
p
r
e
s
e
n
ts
t
h
e
f
i
n
i
te
s
et
o
f
s
t
at
e
s
,
d
e
n
o
t
e
s
t
h
e
n
e
i
g
h
b
o
r
s
,
i
s
t
h
e
t
r
a
n
s
i
ti
o
n
f
u
n
c
t
i
o
n
,
a
n
d
i
n
d
i
c
a
t
e
s
t
h
e
i
n
i
ti
a
l
s
t
a
te
.
I
n
e
l
e
m
e
n
t
a
r
y
C
A
,
o
r
1
-
D
C
A
,
c
e
l
ls
a
r
e
a
r
r
a
n
g
e
d
l
i
n
e
ar
l
y
,
w
i
t
h
e
a
c
h
c
e
ll
u
p
d
a
t
i
n
g
i
t
s
s
t
at
e
a
c
c
o
r
d
i
n
g
t
o
l
o
c
a
l
r
u
l
e
s
d
e
t
e
r
m
i
n
e
d
b
y
i
t
s
p
r
e
s
e
n
t
s
ta
t
e
a
n
d
t
h
e
s
t
a
t
es
o
f
i
t
s
n
e
i
g
h
b
o
r
i
n
g
c
e
l
l
s
.
E
v
e
r
y
c
e
l
l
h
a
s
tw
o
d
i
s
t
i
n
c
t
s
t
ate
s
(
0
o
r
1
)
,
r
e
s
u
l
t
s
i
n
2
3
=
8
u
n
i
q
u
e
n
e
i
g
h
b
o
r
h
o
o
d
c
o
n
f
i
g
u
r
a
t
i
o
n
s
a
n
d
2
8
=
256
d
i
s
t
i
n
ct
t
r
a
n
s
it
i
o
n
r
u
l
e
s
.
T
h
e
C
A
m
o
d
e
l
c
a
n
i
n
c
o
r
p
o
r
a
t
e
d
i
f
f
e
r
e
n
t
b
o
u
n
d
a
r
y
c
o
n
d
i
t
i
o
n
s
,
s
u
c
h
a
s
p
e
r
i
o
d
i
c
b
o
u
n
d
a
r
i
e
s
,
w
h
e
r
e
t
h
e
l
at
t
ic
e
ed
g
e
s
c
o
n
n
e
c
t
s
e
a
m
l
e
s
s
l
y
t
o
f
o
r
m
a
c
o
n
t
i
n
u
o
u
s
g
r
i
d
,
a
n
d
n
u
l
l
b
o
u
n
d
a
r
i
e
s
,
w
h
e
r
e
e
d
g
e
c
e
l
ls
a
r
e
f
i
x
e
d
t
o
s
i
m
p
l
i
f
y
b
o
u
n
d
a
r
y
i
n
t
e
r
a
c
t
i
o
n
s
.
T
h
e
t
r
a
n
s
i
ti
o
n
f
u
n
c
t
i
o
n
o
f
C
A
is
d
e
te
r
m
i
n
e
d
b
y
:
+
1
(
)
=
(
(
−
1
)
,
(
)
,
(
+
1
)
)
wh
er
e,
+
1
(
)
r
ep
r
esen
ts
th
e
s
tate
o
f
ce
ll
at
th
e
s
u
b
s
eq
u
en
t tim
e
s
tep
+
1
.
At
p
r
esen
t tim
e
s
tep
,
th
e
ce
ll
i
s
r
ep
r
esen
ted
b
y
(
)
,
wh
ile
(
−
1
)
an
d
(
+
1
)
co
r
r
esp
o
n
d
to
th
e
s
tates
o
f
th
e
n
eig
h
b
o
u
r
in
g
ce
lls
to
th
e
lef
t
an
d
r
ig
h
t
r
esp
ec
tiv
ely
.
I
n
th
e
p
r
o
p
o
s
ed
s
ch
em
e,
a
1
-
D
C
A
with
p
er
io
d
ic
b
o
u
n
d
ar
y
co
n
d
itio
n
s
i
s
u
tili
ze
d
to
p
r
o
ce
s
s
b
in
ar
y
v
alu
es
th
r
o
u
g
h
ei
g
h
t
s
p
ec
if
ic
r
u
les:
3
0
,
8
6
,
9
0
,
1
0
1
,
1
0
5
,
1
5
0
,
1
5
3
,
an
d
1
6
5
,
as
d
etailed
in
T
ab
le
2
.
T
h
ese
r
u
les
h
av
e
b
ee
n
d
em
o
n
s
tr
ated
to
en
h
an
ce
ess
en
tial
e
v
alu
ativ
e
m
etr
ics
s
u
ch
as
en
tr
o
p
y
,
p
ix
el
d
is
p
ar
ity
,
an
d
Dieh
ar
d
test
r
esu
lts
,
th
er
e
b
y
in
cr
ea
s
in
g
t
h
e
co
m
p
lex
ity
an
d
ch
ao
tic
n
atu
r
e
o
f
th
e
en
c
r
y
p
tio
n
p
r
o
ce
s
s
[
3
4
]
.
T
h
e
v
ar
ied
tr
a
n
s
itio
n
b
eh
a
v
io
r
s
o
f
th
ese
r
u
les
im
p
r
o
v
e
u
n
p
r
ed
ictab
ilit
y
an
d
d
i
f
f
u
s
io
n
,
w
h
ich
s
tr
en
g
th
en
s
th
e
s
y
s
tem
'
s
d
ef
en
s
e
ag
ain
s
t c
r
y
p
t
an
aly
tic
attac
k
s
.
T
ab
le
2
.
B
o
o
lean
ex
p
r
ess
io
n
o
f
C
A
r
u
les
No
R
u
l
e
Lo
g
i
c
a
l
o
p
e
r
a
t
i
o
n
s
1
30
+
1
(
)
=
(
−
1
)
+
[
(
)
∨
(
+
1
)
]
2
86
+
1
(
)
=
(
+
1
)
+
[
(
−
1
)
∨
(
)
]
3
90
+
1
(
)
=
(
−
1
)
+
(
+
1
)
4
1
0
1
+
1
(
)
=
[
(
−
1
)
∨
(
)
]
+
(
+
1
)
5
1
0
5
+
1
(
)
=
(
−
1
)
+
(
)
+
(
+
1
)
6
1
5
0
+
1
(
)
=
(
−
1
)
+
(
)
+
(
+
1
)
7
1
5
3
+
1
(
)
=
(
x
)
+
(
+
1
)
8
1
6
5
+
1
(
)
=
(
−
1
)
+
(
+
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
1
,
J
u
ly
20
25
:
7
1
0
-
7
1
9
714
2
.
4
.
F
o
rwa
rd
er
ro
r
c
o
rr
ec
t
i
o
n
FEC
[
3
5
]
,
[
3
6
]
is
a
r
o
b
u
s
t
er
r
o
r
co
n
tr
o
l
tech
n
iq
u
e
th
at
in
t
eg
r
ates
r
ed
u
n
d
a
n
t
er
r
o
r
-
co
r
r
e
ctin
g
co
d
es
in
to
tr
an
s
m
itted
d
ata,
allo
win
g
th
e
r
ec
eiv
er
to
d
etec
t
an
d
c
o
r
r
ec
t
er
r
o
r
s
with
o
u
t
r
etr
an
s
m
is
s
io
n
.
T
h
is
m
eth
o
d
en
h
an
ce
s
tr
an
s
m
is
s
io
n
r
eliab
ilit
y
b
y
m
in
im
izin
g
th
e
n
ee
d
f
o
r
r
ec
eiv
er
f
ee
d
b
ac
k
wh
i
le
p
r
eser
v
in
g
d
ata
in
teg
r
ity
in
h
ig
h
-
er
r
o
r
e
n
v
ir
o
n
m
en
ts
.
FEC
tech
n
iq
u
es
ar
e
class
if
ied
in
to
two
ca
teg
o
r
ies.
B
lo
ck
co
d
es,
wh
ich
p
ar
titi
o
n
d
ata
in
to
f
ix
e
d
-
s
ize
b
lo
ck
s
an
d
ad
d
r
ed
u
n
d
an
t
b
it
s
f
o
r
er
r
o
r
co
r
r
ec
tio
n
,
a
n
d
co
n
v
o
lu
tio
n
al
co
d
es
,
wh
ich
en
co
d
e
d
ata
s
tr
ea
m
s
u
s
in
g
m
em
o
r
y
-
b
ased
tech
n
iq
u
es.
I
n
th
e
p
r
o
p
o
s
ed
m
o
d
el,
R
ee
d
-
So
lo
m
o
n
co
d
es
f
r
o
m
b
lo
ck
co
d
es
ar
e
ap
p
lied
to
t
h
e
k
e
y
im
ag
e
an
d
en
cr
y
p
ted
im
ag
e
to
b
o
ls
ter
its
r
esil
ien
ce
ag
ain
s
t
er
r
o
r
s
.
T
h
es
e
co
d
es
ar
e
cr
u
cial
f
o
r
co
r
r
ec
ti
n
g
b
u
r
s
t
e
r
r
o
r
s
th
at
m
ay
ar
is
e
d
u
r
in
g
tr
a
n
s
m
is
s
io
n
o
r
s
to
r
ag
e,
th
er
e
b
y
en
s
u
r
i
n
g
t
h
e
in
teg
r
ity
o
f
th
e
k
ey
im
ag
e
.
B
y
p
r
o
tectin
g
th
e
k
ey
im
ag
e
f
r
o
m
p
o
ten
tial c
o
r
r
u
p
tio
n
,
R
ee
d
-
So
lo
m
o
n
co
d
es [
3
7
]
en
h
an
ce
th
e
r
eliab
ilit
y
o
f
b
o
th
en
cr
y
p
tio
n
a
n
d
d
ec
r
y
p
tio
n
p
r
o
ce
s
s
es,
as
in
a
cc
u
r
ac
ies
in
th
e
k
e
y
co
u
ld
je
o
p
ar
d
ize
t
h
e
s
y
s
tem
’
s
s
ec
u
r
ity
.
T
h
is
in
teg
r
atio
n
en
s
u
r
es a
r
o
b
u
s
t c
r
y
p
to
g
r
ap
h
ic
s
ch
em
e
b
y
m
ai
n
tain
in
g
th
e
ac
cu
r
ac
y
a
n
d
s
tab
ilit
y
o
f
th
e
k
ey
im
ag
e.
3.
P
RO
P
O
SE
D
M
E
T
H
O
D
T
h
is
s
ec
tio
n
elu
cid
ates
a
s
o
p
h
is
ticated
ap
p
r
o
ac
h
th
at
in
teg
r
a
tes
a
2
-
D
l
o
g
is
tic
m
ap
,
DNA
en
co
d
in
g
,
an
d
1
-
D
C
A
r
u
les
to
s
ig
n
i
f
ican
tly
b
o
ls
ter
im
ag
e
en
c
r
y
p
tio
n
.
T
h
e
m
o
d
el
is
co
m
p
r
i
s
ed
o
f
th
r
ee
co
r
e
co
m
p
o
n
en
ts
:
th
e
p
lain
im
ag
e,
a
k
ey
im
ag
e,
an
d
th
e
r
esu
lti
n
g
en
cr
y
p
ted
im
ag
e.
I
n
th
is
m
o
d
el,
th
e
o
r
ig
i
n
al
im
ag
e,
with
d
im
en
s
io
n
s
×
(
wh
er
e
an
d
m
ay
eith
er
b
e
eq
u
iv
al
en
t
o
r
d
is
tin
ct)
,
is
in
itially
p
r
o
ce
s
s
ed
to
g
en
er
ate
a
k
ey
im
ag
e
th
r
o
u
g
h
a
2
-
D
lo
g
is
tic
m
ap
.
T
h
e
k
ey
im
ag
e
is
th
en
tr
an
s
f
o
r
m
e
d
in
t
o
DNA
co
d
o
n
s
a
n
d
u
s
ed
to
s
cr
am
b
le
th
e
o
r
ig
in
al
im
ag
e
b
y
ex
p
lo
itin
g
th
e
co
n
f
u
s
io
n
p
r
o
p
e
r
ty
d
u
r
in
g
th
e
in
itia
l
p
h
ase.
T
o
f
u
r
th
e
r
in
ten
s
if
y
r
an
d
o
m
n
ess
an
d
s
ec
u
r
ity
,
1
-
D
C
A
r
u
les
ar
e
a
p
p
lie
d
to
iter
ate
th
e
im
ag
e
p
ix
els
d
u
r
in
g
th
e
e
n
cr
y
p
tio
n
p
r
o
ce
s
s
.
T
o
en
s
u
r
e
th
e
in
te
g
r
i
ty
o
f
b
o
t
h
th
e
k
ey
im
ag
e
an
d
th
e
en
cr
y
p
ted
im
ag
e
d
u
r
in
g
tr
an
s
m
is
s
io
n
,
R
ee
d
-
So
lo
m
o
n
c
o
d
es
ar
e
m
eticu
lo
u
s
ly
in
teg
r
ated
.
T
h
ese
co
d
es
e
f
f
ec
tiv
ely
d
etec
t
an
d
r
ec
tify
t
r
an
s
m
is
s
io
n
er
r
o
r
s
,
th
er
eb
y
s
af
eg
u
ar
d
in
g
th
e
d
ata’
s
r
eliab
ilit
y
.
Af
ter
R
ee
d
-
So
l
o
m
o
n
c
o
d
es
is
ap
p
l
ied
,
b
o
th
th
e
k
ey
im
ag
e
an
d
th
e
en
cr
y
p
ted
im
ag
e
ar
e
en
c
r
y
p
te
d
u
s
in
g
th
e
r
ec
eiv
er
’
s
p
u
b
lic
k
ey
,
en
s
u
r
in
g
r
o
b
u
s
t
co
n
f
id
e
n
tiality
th
r
o
u
g
h
o
u
t
th
e
tr
an
s
m
is
s
io
n
.
T
h
is
en
cr
y
p
tio
n
s
tr
ateg
y
g
u
a
r
an
tees
s
u
p
er
io
r
s
ec
u
r
ity
an
d
s
ig
n
if
ica
n
tly
en
h
an
ce
s
th
e
r
esil
ien
ce
o
f
t
h
e
p
r
o
p
o
s
ed
m
o
d
el
th
r
o
u
g
h
o
u
t th
e
p
r
o
ce
s
s
.
3
.
1
.
K
ey
g
ener
a
t
io
n pro
ce
s
s
T
h
e
k
ey
im
a
g
e
g
e
n
er
atio
n
p
r
o
ce
s
s
em
p
lo
y
s
b
o
th
t
h
e
SHA
-
2
5
6
h
ash
f
u
n
ctio
n
a
n
d
th
e
2
-
D
lo
g
is
tic
m
ap
to
en
s
u
r
e
r
o
b
u
s
t
s
ec
u
r
ity
th
r
o
u
g
h
o
u
t
[
3
8
]
.
B
y
lev
er
ag
in
g
th
e
cr
y
p
t
o
g
r
ap
h
ic
s
tr
en
g
th
o
f
SHA
-
2
5
6
an
d
t
h
e
u
n
p
r
e
d
ictab
ilit
y
o
f
ch
a
o
tic
s
y
s
tem
s
,
th
e
g
en
er
ated
k
ey
im
ag
e
is
o
b
f
u
s
ca
ted
an
d
p
r
o
tecte
d
a
g
ain
s
t u
n
au
th
o
r
ized
ac
ce
s
s
.
T
h
e
p
r
o
ce
s
s
co
m
m
e
n
c
es
with
a
p
lain
im
ag
e
o
f
d
im
e
n
s
io
n
s
×
.
T
h
e
SHA
-
2
5
6
h
ash
f
u
n
ctio
n
[
39
]
,
r
en
o
wn
ed
f
o
r
its
cr
y
p
to
g
r
a
p
h
ic
r
esil
ien
ce
an
d
c
o
n
s
is
ten
t
o
u
tp
u
t
s
ize,
is
ex
p
lo
ited
to
d
er
iv
e
a
2
5
6
-
b
it
h
ash
f
r
o
m
th
e
p
lain
im
a
g
e.
T
h
is
h
a
s
h
is
tr
an
s
m
u
ted
in
to
a
b
in
ar
y
s
tr
in
g
an
d
s
eg
m
en
ted
in
t
o
f
o
u
r
6
4
-
b
it
p
o
r
tio
n
s
,
d
en
o
ted
as
=
(
1
,
2
,
3
,
4
)
.
T
h
e
b
in
ar
y
s
tr
i
n
g
s
eg
m
en
ts
u
n
d
er
g
o
ad
d
itio
n
al
o
b
f
u
s
ca
tio
n
th
r
o
u
g
h
k
ey
ex
p
an
s
io
n
,
d
is
p
er
s
in
g
e
n
tr
o
p
y
ac
r
o
s
s
th
e
k
ey
im
ag
e
to
f
o
r
tify
its
r
an
d
o
m
n
ess
.
T
h
e
in
itial
p
ar
am
eter
s
f
o
r
th
e
2
-
D
lo
g
is
tic
m
ap
ar
e
d
eter
m
i
n
ed
as
f
o
llo
ws,
0
is
ac
q
u
ir
ed
b
y
co
n
v
er
tin
g
1
f
r
o
m
b
i
n
ar
y
t
o
d
ec
im
al
an
d
s
u
b
s
eq
u
en
tly
s
ca
lin
g
it
b
y
10
−
64
;
0
is
s
im
ilar
ly
d
er
iv
ed
f
r
o
m
2
an
d
0
is
ascer
tain
ed
as
th
e
m
ea
n
o
f
th
e
d
ec
im
al
co
n
v
er
s
io
n
s
o
f
3
an
d
4
,
also
s
ca
led
b
y
10
−
64
.
T
o
en
s
u
r
e
a
n
o
p
tim
ally
co
m
p
le
x
ch
ao
tic
s
e
q
u
e
n
ce
,
th
e
2
-
D
lo
g
is
tic
m
ap
is
iter
ate
d
u
p
to
[
(
×
)
13
+
10
]
tim
es.
T
h
is
d
y
n
am
ic
iter
atio
n
co
u
n
t,
b
ased
o
n
th
e
im
ag
e
s
ize,
b
alan
ce
s
ch
ao
tic
in
tr
icac
y
with
co
m
p
u
tatio
n
al
ef
f
icien
cy
.
T
h
e
r
esu
ltin
g
ch
ao
tic
s
eq
u
en
ce
is
m
ap
p
ed
to
p
ix
el
v
alu
es,
c
u
lm
in
atin
g
i
n
a
k
e
y
im
ag
e
th
at
p
r
e
cisely
alig
n
s
with
th
e
d
im
en
s
io
n
s
o
f
th
e
o
r
ig
in
al
im
ag
e.
T
h
is
k
ey
im
ag
e
is
p
iv
o
tal
to
th
e
en
cr
y
p
tio
n
p
r
o
ce
s
s
,
o
f
f
er
in
g
r
o
b
u
s
t
s
ec
u
r
ity
an
d
r
esil
ien
ce
ag
ain
s
t
attac
k
s
wh
ile
en
s
u
r
in
g
th
e
d
ata’
s
p
r
o
tectio
n
in
Alg
o
r
ith
m
1
.
Alg
o
r
ith
m
1
.
K
ey
im
ag
e
g
en
er
atio
n
Input:
Original Images
with dimensions
×
Output:
Key Image
with dimensions
×
1.
Consider the image
as input
2.
Compute SHA
-
256 hash
●
Hash =SHA
-
256
(
)
, where Hash is a 256
-
bit binary sequence
3.
Extract Hash Segments
●
=
(
1
,
2
,
3
,
4
)
, where
are the 64
-
bit segments of Hash
4.
Initialize 2
-
D Logistic Map Parameters
•
0
=
(
1
)
×
10
−
64
•
0
=
(
2
)
×
10
−
64
•
0
=
(
(
3
)
+
(
4
)
2
)
×
10
−
64
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
n
in
n
o
v
a
tive
ima
g
e
en
cryp
tio
n
s
ch
eme
in
teg
r
a
tin
g
c
h
a
o
tic
ma
p
s
,
DN
A
en
co
d
in
g
…
(
Ga
v
erch
a
n
d
K
u
ka
r
a
m
)
715
5.
Determine Iteration Count
•
To ensure chaotic behavior, the number of iterations
is
❖
=
[
(
×
)
13
]
+
10
6.
Iterate 2D Logistic Map
•
For
=
0
❖
+
1
=
⋅
⋅
(
1
−
)
+
0
❖
+
1
=
⋅
⋅
(
1
−
)
+
0
Where,
=
3
.
999
is the logistic map parameter and
0
is the perturbation factor
7.
Map Chaotic Sequence to pixel values
•
For pixel
(
,
)
❖
(
,
)
=
[
255
×
(
1
)
]
8.
Resultant key image
of size
×
3
.
2
.
E
ncry
ptio
n a
nd
decr
y
ptio
n
T
h
e
en
cr
y
p
tio
n
p
r
o
ce
d
u
r
e
in
it
iates
with
th
e
p
lain
im
ag
e
an
d
th
e
k
ey
im
ag
e
,
b
o
th
o
f
d
im
en
s
io
n
s
×
.
E
ac
h
p
ix
el
is
tr
a
n
s
f
o
r
m
e
d
in
to
b
in
a
r
y
s
eq
u
en
ce
s
an
d
,
wh
ich
a
r
e
th
e
n
en
c
o
d
ed
in
t
o
DNA
s
eq
u
en
ce
s
an
d
u
s
in
g
a
s
o
p
h
is
ticated
DNA
m
ap
p
in
g
.
T
h
is
en
co
d
in
g
p
r
o
ce
s
s
p
r
o
v
id
es
a
f
u
r
th
er
lev
el
o
f
co
m
p
lex
ity
a
n
d
r
a
n
d
o
m
n
ess
b
y
tr
an
s
latin
g
e
ac
h
2
-
b
it
b
in
ar
y
d
ata
in
to
n
u
cleo
tid
e
s
eq
u
en
ce
s
.
An
XOR
o
p
er
atio
n
is
s
u
b
s
eq
u
en
tly
p
er
f
o
r
m
ed
b
etwe
en
an
d
,
r
esu
ltin
g
in
th
e
f
u
s
ed
DNA
s
eq
u
en
ce
by
em
p
lo
y
in
g
th
e
XOR
tab
le
f
r
o
m
T
ab
le
1
,
w
h
ich
m
e
r
g
es
d
ata
f
r
o
m
b
o
th
im
ag
es
to
en
h
an
ce
s
ec
u
r
ity
.
T
h
e
s
eq
u
en
ce
is
th
en
d
ec
o
d
ed
b
ac
k
in
to
b
in
ar
y
f
o
r
m
as
an
d
p
ar
titi
o
n
ed
in
to
ei
g
h
t
s
eg
m
en
ts
.
E
ac
h
s
eg
m
en
t
u
n
d
er
g
o
es
p
r
o
ce
s
s
in
g
th
r
o
u
g
h
C
A
r
u
les
(
3
0
,
1
5
3
,
9
0
,
1
6
5
,
8
6
,
1
0
5
,
1
0
1
,
a
n
d
1
5
0
)
f
o
r
[
(
×
)
13
+
10
]
iter
atio
n
s
,
in
tr
o
d
u
ci
n
g
s
i
g
n
if
ican
t
co
m
p
lex
ity
an
d
ch
ao
ti
c
b
eh
a
v
io
r
th
at
s
tr
en
g
th
en
t
h
e
en
cr
y
p
tio
n
.
T
h
is
iter
ativ
e
C
A
p
r
o
ce
s
s
in
g
en
s
u
r
es
th
at
e
v
en
m
in
o
r
v
a
r
iatio
n
s
in
th
e
i
n
p
u
t
r
esu
lt
in
s
u
b
s
tan
tial
alter
atio
n
s
in
th
e
o
u
t
p
u
t,
th
u
s
en
h
an
cin
g
th
e
en
c
r
y
p
tio
n
’
s
r
o
b
u
s
tn
ess
.
Fin
ally
,
th
e
p
r
o
ce
s
s
ed
b
in
ar
y
s
eq
u
en
c
e
is
co
n
v
er
ted
b
ac
k
i
n
to
p
ix
el
v
alu
es,
r
esu
ltin
g
in
th
e
en
cr
y
p
ted
im
ag
e
with
d
im
en
s
io
n
s
×
.
T
o
r
ev
er
s
e
th
e
p
r
o
ce
s
s
,
th
e
e
n
cr
y
p
ted
im
a
g
e
is
d
ec
o
d
ed
b
y
ap
p
ly
i
n
g
th
e
in
v
er
s
e
C
A
r
u
les,
f
o
llo
wed
b
y
p
er
f
o
r
m
in
g
a
n
XOR
with
th
e
k
ey
im
ag
e
.
T
h
e
f
in
al
o
u
tp
u
t
is
th
en
d
ec
o
d
ed
f
r
o
m
DNA
s
eq
u
en
ce
s
b
ac
k
t
o
b
in
ar
y
f
o
r
m
,
ac
cu
r
ately
r
ec
o
n
s
tr
u
ctin
g
th
e
o
r
ig
i
n
al
im
ag
e
o
f
s
ize
×
.
T
h
is
m
u
lti
-
f
ac
ete
d
en
cr
y
p
tio
n
s
tr
ateg
y
co
m
p
r
is
in
g
b
i
n
ar
y
co
n
v
er
s
io
n
,
DNA
en
co
d
i
n
g
,
XO
R
o
p
er
atio
n
,
an
d
C
A
p
r
o
ce
s
s
in
g
en
s
u
r
es
a
h
ig
h
d
eg
r
ee
o
f
r
esil
ien
ce
an
d
s
ec
u
r
i
ty
in
Alg
o
r
ith
m
2
.
Fig
u
r
e
2
o
u
tlin
es th
e
wo
r
k
f
lo
w
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
.
Alg
o
r
ith
m
2
.
E
n
cr
y
p
tio
n
a
l
g
o
r
ith
m
Input:
Plain Image
with dimension
×
; Key Image
with dimension
×
Output:
Encrypted Image
with dimensions
×
1.
Consider the images
and
as input
2.
Convert each pixel in
and
to their binary representations
and
3.
Encode
and
into DNA sequences
and
4.
Comput
e the XOR operation of
and
to obtain
using Table 1
5.
Decode the DNA sequence
back to binary sequence
by inverse DNA encoding
6.
CA Processing
•
Divide
into eight segments
1
,
2
,
…
,
each containing
|
|
8
bits
•
Iterate
each
segment
1
through
8
us
in
g
CA
Ru
le
s
30
,
86
,
90
,
10
1,
10
5,
15
0,
15
3
an
d
165 respectively for
[
(
×
)
13
+
10
]
iterations.
•
Combine the processed segments to form the refined binary sequence
7.
Transform
into pixel values to generate the encrypted image
8.
Resultant encrypted image
of size
×
Fig
u
r
e
2
.
W
o
r
k
f
lo
w
o
f
th
e
p
r
o
p
o
s
ed
s
ch
em
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
1
,
J
u
ly
20
25
:
7
1
0
-
7
1
9
716
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
NS
T
h
is
s
ec
tio
n
o
u
tlin
es
a
s
er
ies
o
f
ex
p
er
im
e
n
ts
to
e
v
alu
ate
t
h
e
p
er
f
o
r
m
a
n
ce
m
etr
ics
o
f
t
h
e
p
r
o
p
o
s
ed
en
cr
y
p
tio
n
ap
p
r
o
ac
h
u
s
in
g
h
ig
h
-
r
eso
lu
tio
n
R
GB
im
ag
es.
T
h
r
ee
d
if
f
er
e
n
t
im
ag
es
wer
e
u
tili
ze
d
:
(
a)
L
en
a,
(
b
)
Air
p
lan
e,
a
n
d
(
c)
Sp
lash
,
ea
c
h
m
ea
s
u
r
in
g
5
1
2
×5
1
2
p
ix
els.
T
h
ese
im
ag
es
wer
e
s
o
u
r
ce
d
f
r
o
m
th
e
Un
iv
er
s
ity
o
f
W
ater
lo
o
I
m
ag
e
R
ep
o
s
ito
r
y
[
4
0
]
,
an
d
th
e
e
v
alu
atio
n
s
wer
e
co
n
d
u
cted
u
s
in
g
MA
T
L
AB
o
n
a
Dell
lap
to
p
eq
u
ip
p
e
d
with
a
1
2
th
-
g
en
er
atio
n
I
n
tel
C
o
r
e
i5
p
r
o
ce
s
s
o
r
an
d
a
1
2
8
GB
SS
D.
T
h
e
o
u
tc
o
m
es
o
f
th
e
ex
p
e
r
im
en
ts
will b
e
p
r
esen
ted
in
th
e
f
o
llo
w
in
g
s
ec
tio
n
s
.
a)
Statis
t
ical
an
aly
s
is
:
an
id
ea
l
e
n
cr
y
p
tio
n
m
et
h
o
d
s
h
o
u
ld
r
esis
t
s
tatis
t
ical
attac
k
s
b
y
m
ain
ta
in
in
g
a
n
e
v
en
d
is
tr
ib
u
tio
n
o
f
g
r
a
y
s
ca
le
v
alu
e
s
in
h
is
to
g
r
am
s
an
d
en
s
u
r
in
g
l
o
w
co
r
r
elatio
n
s
am
o
n
g
n
eig
h
b
o
r
in
g
p
ix
els.
T
ab
le
3
s
h
o
ws
th
at
th
e
e
n
cr
y
p
ted
im
ag
es
o
f
th
e
p
r
o
p
o
s
ed
s
ch
em
e
d
is
p
lay
s
m
o
o
th
e
r
an
d
m
o
r
e
e
v
en
l
y
d
is
tr
ib
u
ted
p
atter
n
s
,
en
h
an
cin
g
th
e
r
o
b
u
s
tn
ess
o
f
th
e
p
r
o
p
o
s
ed
tech
n
i
q
u
e,
an
d
T
ab
le
4
ass
ess
e
s
th
e
co
r
r
elatio
n
in
th
e
p
r
o
p
o
s
ed
m
o
d
el
b
y
r
a
n
d
o
m
l
y
co
n
s
id
er
i
n
g
3
,
0
0
0
p
air
s
o
f
n
ei
g
h
b
o
r
in
g
p
ix
els
in
th
e
en
cr
y
p
ted
im
a
g
es.
T
h
e
r
esu
l
ts
s
h
o
w
th
at
th
e
v
alu
es
ar
e
ap
p
r
o
x
im
ately
ze
r
o
,
in
d
icat
in
g
m
in
im
al
r
elatio
n
s
h
ip
b
etwe
en
th
e
p
lain
an
d
en
cr
y
p
ted
im
a
g
es a
n
d
d
e
m
o
n
s
tr
atin
g
th
e
m
o
d
el'
s
ef
f
ec
tiv
en
ess
.
b)
A
n
a
l
y
s
i
s
o
f
i
n
f
o
r
m
a
t
i
o
n
e
n
t
r
o
p
y
:
e
n
t
r
o
p
y
a
n
a
l
y
s
i
s
e
v
a
l
u
a
t
e
s
t
h
e
r
a
n
d
o
m
n
e
s
s
o
f
p
i
x
e
l
v
a
l
u
e
s
i
n
a
n
e
n
c
r
y
p
t
e
d
i
m
a
g
e
,
w
i
t
h
a
v
a
l
u
e
a
p
p
r
o
a
c
h
i
n
g
8
i
n
d
i
c
a
t
i
n
g
s
u
p
e
r
i
o
r
e
n
c
r
y
p
t
i
o
n
a
n
d
r
e
f
l
e
c
t
i
n
g
m
a
x
i
m
a
l
u
n
c
e
r
t
a
i
n
t
y
.
c)
An
aly
s
is
o
f
av
alan
ch
e
ef
f
ec
t:
t
h
e
av
alan
ch
e
ef
f
ec
t
i
n
im
ag
e
e
n
cr
y
p
tio
n
en
s
u
r
es
th
at
m
in
o
r
m
o
d
if
icatio
n
s
in
th
e
o
r
i
g
in
al
o
r
k
ey
im
ag
e
c
au
s
e
ex
ten
s
iv
e,
u
n
p
r
ed
ictab
le
ch
an
g
es
in
th
e
en
cr
y
p
ted
im
a
g
e,
en
h
a
n
cin
g
s
ec
u
r
ity
.
NPC
R
m
ea
s
u
r
es
th
e
p
r
o
p
o
r
tio
n
o
f
p
ix
el
c
h
an
g
es,
wh
ile
UACI
ev
alu
ates
th
e
m
ea
n
in
ten
s
ity
v
ar
iatio
n
b
etwe
en
two
cip
h
er
im
ag
es d
u
e
to
s
lig
h
t
m
o
d
if
icati
o
n
s
.
d)
An
aly
s
is
o
f
p
ix
el
d
is
p
ar
ity
:
p
ix
el
d
is
p
ar
ity
an
aly
s
is
ev
alu
ates
d
is
cr
ep
an
cies
b
etwe
en
p
lain
an
d
cip
h
e
r
im
ag
es,
wh
ich
is
cr
u
cial
f
o
r
ass
es
s
in
g
en
cr
y
p
tio
n
ef
f
icac
y
an
d
is
m
ea
s
u
r
ed
u
s
in
g
two
m
etr
ics:
m
ea
n
s
q
u
ar
ed
er
r
o
r
(
MSE
)
,
wh
ic
h
q
u
an
tifie
s
th
e
av
er
a
g
e
s
q
u
ar
e
d
d
if
f
er
e
n
ce
s
b
etwe
en
co
r
r
esp
o
n
d
in
g
p
ix
els,
an
d
p
ea
k
s
ig
n
al
-
to
-
n
o
is
e
r
atio
(
PS
NR
)
,
wh
ich
m
ea
s
u
r
es th
e
r
atio
o
f
th
e
o
p
tim
al
p
ix
el
v
alu
e
to
th
e
MSE
.
T
h
e
ev
alu
atio
n
s
f
o
r
test
s
2
to
4
,
en
co
m
p
ass
in
g
en
tr
o
p
y
,
NPC
R
,
UA
C
I
,
MSE
,
an
d
PS
NR
f
o
r
th
e
p
r
o
p
o
s
ed
m
o
d
el,
h
av
e
b
ee
n
r
i
g
o
r
o
u
s
ly
co
m
p
ar
ed
ag
ain
s
t
ex
is
tin
g
im
ag
e
en
c
r
y
p
tio
n
tech
n
iq
u
es,
as
d
etailed
in
T
ab
le
5
.
T
h
e
p
r
o
p
o
s
ed
m
o
d
el
ex
h
ib
its
ex
ce
p
tio
n
ally
h
ig
h
en
tr
o
p
y
,
in
d
icativ
e
o
f
r
o
b
u
s
t
en
c
r
y
p
tio
n
r
an
d
o
m
n
ess
,
wh
ile
its
UA
C
I
an
d
NPC
R
m
etr
ics
r
ef
lect
a
s
tr
o
n
g
av
alan
c
h
e
ef
f
ec
t.
Fu
r
th
e
r
m
o
r
e,
th
e
m
o
d
el'
s
MSE
an
d
PS
NR
v
alu
es
d
em
o
n
s
tr
ate
a
b
alan
ce
b
etwe
en
e
n
cr
y
p
tio
n
s
tr
en
g
th
an
d
m
in
i
m
al
d
eg
r
ad
atio
n
in
im
ag
e
q
u
ality
.
C
o
n
s
eq
u
en
tly
,
T
ab
le
5
h
ig
h
lig
h
ts
th
at
th
e
p
r
o
p
o
s
ed
s
ch
em
e
ex
ce
ls
ac
r
o
s
s
all
th
ese
m
etr
ics,
s
u
r
p
ass
in
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
o
th
er
m
o
d
els.
T
ab
le
3
.
His
to
g
r
am
a
n
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
s
ch
em
e
O
r
i
g
i
n
a
l
i
ma
g
e
s
En
c
r
y
p
t
e
d
i
ma
g
e
s
H
i
st
o
g
r
a
m
o
f
o
r
i
g
i
n
a
l
i
m
a
g
e
s
H
i
st
o
g
r
a
m
o
f
e
n
c
r
y
p
t
e
d
i
ma
g
e
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
n
in
n
o
v
a
tive
ima
g
e
en
cryp
tio
n
s
ch
eme
in
teg
r
a
tin
g
c
h
a
o
tic
ma
p
s
,
DN
A
en
co
d
in
g
…
(
Ga
v
erch
a
n
d
K
u
ka
r
a
m
)
717
T
ab
le
4
.
An
aly
s
is
o
f
c
o
r
r
elatio
n
co
ef
f
icien
t a
m
o
n
g
ad
jace
n
t
p
ix
els
I
mag
e
H
o
r
i
z
o
n
t
a
l
V
e
r
t
i
c
a
l
D
i
a
g
o
n
a
l
Le
n
a
0
.
0
0
6
3
0
.
0
0
5
1
-
0
.
0
0
0
5
A
i
r
p
l
a
n
e
0
.
0
0
1
7
-
0
.
0
0
2
4
0
.
0
0
0
9
S
p
l
a
sh
0
.
0
0
4
9
0
.
0
0
3
4
-
0
.
0
0
2
1
T
ab
le
5
.
C
o
m
p
a
r
ativ
e
an
aly
s
is
o
f
en
tr
o
p
y
,
NPC
R
,
UA
C
I
,
MSE
,
an
d
PS
NR
Te
st
I
mag
e
s
P
r
o
p
o
se
d
R
e
f
[
2
0
]
R
e
f
[
2
7
]
R
e
f
[
2
4
]
R
e
f
[
2
1
]
R
e
f
[
2
8
]
En
t
r
o
p
y
Le
n
a
7
.
9
9
8
7
7
.
9
8
5
8
7
.
9
8
7
5
7
.
8
4
5
7
7
.
9
9
6
4
7
.
9
9
1
3
A
i
r
p
l
a
n
e
7
.
9
9
9
1
7
.
9
7
0
2
7
.
9
7
3
6
7
.
7
9
6
5
7
.
9
9
7
9
7
.
9
9
3
5
S
p
l
a
sh
7
.
9
9
8
3
7
.
9
4
9
4
7
.
8
9
2
3
7
.
6
8
2
0
7
.
9
9
7
5
7
.
9
9
2
1
N
P
C
R
Le
n
a
9
9
.
5
2
8
5
9
7
.
5
2
6
1
9
8
.
2
7
3
1
9
9
.
2
1
9
7
9
8
.
5
3
2
6
9
8
.
4
6
6
3
A
i
r
p
l
a
n
e
9
9
.
3
6
9
4
9
6
.
4
8
6
2
9
9
.
1
5
6
4
9
8
.
0
3
8
2
9
8
.
9
2
5
8
9
9
.
1
4
3
5
S
p
l
a
sh
9
9
.
5
9
8
7
9
6
.
9
1
3
6
9
9
.
2
9
5
5
9
8
.
7
9
3
6
9
8
.
3
2
6
0
9
9
.
5
3
4
7
U
A
C
I
Le
n
a
3
7
.
7
9
5
6
3
4
.
9
3
5
1
2
9
.
4
7
3
8
3
3
.
9
3
7
5
3
6
.
5
7
8
9
3
4
.
6
4
5
3
A
i
r
p
l
a
n
e
3
6
.
8
3
6
3
3
5
.
2
6
7
3
3
2
.
7
9
5
7
3
9
.
9
8
2
4
3
5
.
8
2
2
1
3
4
.
8
2
3
5
S
p
l
a
sh
3
9
.
3
7
3
7
3
5
.
9
3
6
8
3
3
.
9
6
1
4
3
5
.
5
6
8
3
3
7
.
2
6
1
5
3
5
.
2
8
6
7
M
S
E
Le
n
a
9
0
.
9
5
8
4
.
9
1
8
7
.
3
7
8
9
.
1
2
8
8
.
2
8
8
7
.
2
6
A
i
r
p
l
a
n
e
9
5
.
7
8
8
9
.
3
8
9
4
.
9
1
9
2
.
4
8
9
1
.
7
9
8
6
.
3
3
S
p
l
a
sh
9
3
.
9
3
9
2
.
1
7
9
2
.
5
2
9
7
.
3
1
9
1
.
4
2
8
5
.
7
8
P
S
N
R
Le
n
a
3
4
.
5
8
2
7
.
3
8
3
3
.
7
2
3
0
.
2
2
2
8
.
5
4
2
9
.
3
7
A
i
r
p
l
a
n
e
3
3
.
9
3
3
2
.
1
7
2
8
.
3
5
2
9
.
9
3
2
6
.
3
0
3
1
.
8
4
S
p
l
a
sh
3
4
.
8
1
2
8
.
4
9
3
5
.
8
4
3
2
.
1
6
2
7
.
4
7
3
2
.
9
3
5.
CO
NCLU
SI
O
N
B
ased
o
n
th
e
ex
p
er
im
en
tal
r
e
s
u
lts
,
th
e
p
r
o
p
o
s
ed
s
ch
em
e
d
e
m
o
n
s
tr
ates
p
r
o
m
is
in
g
o
u
tco
m
es
th
r
o
u
g
h
th
e
in
teg
r
atio
n
o
f
DNA
cr
y
p
t
o
g
r
ap
h
y
,
a
2
-
D
lo
g
is
tic
m
ap
,
an
d
C
A
r
u
les
f
o
r
r
ea
l
-
tim
e
im
ag
e
en
cr
y
p
tio
n
an
d
d
ec
r
y
p
tio
n
.
T
h
e
an
al
y
s
is
o
f
t
h
r
ee
d
is
tin
ct
im
a
g
es
r
ev
ea
led
r
o
b
u
s
t
p
er
f
o
r
m
a
n
ce
ac
r
o
s
s
s
tatis
tical,
en
tr
o
p
y
,
av
alan
ch
e,
a
n
d
p
ix
el
d
is
p
ar
ity
m
etr
ics,
with
o
p
tim
al
e
n
tr
o
p
y
r
esu
lt
s
n
ea
r
7
.
9
9
,
an
av
er
a
g
e
NPC
R
o
f
9
9
.
4
9
,
UACI
o
f
3
8
.
0
0
,
PS
NR
o
f
2
5
.
5
7
,
a
n
d
MSE
o
f
8
1
.
5
8
,
u
n
d
er
s
co
r
in
g
its
s
tr
en
g
th
an
d
ef
f
ec
tiv
en
ess
.
T
o
e
n
s
u
r
e
d
ata
in
teg
r
ity
,
R
ee
d
-
So
lo
m
o
n
co
d
es
wer
e
ap
p
lied
to
b
o
th
t
h
e
k
ey
an
d
cip
h
e
r
i
m
ag
es,
p
r
e
v
en
tin
g
r
etr
an
s
m
is
s
io
n
an
d
m
ain
tain
in
g
co
n
f
id
en
tiality
th
r
o
u
g
h
e
n
cr
y
p
tio
n
u
s
in
g
th
e
r
ec
eiv
er
'
s
p
u
b
lic
k
ey
.
Ho
wev
er
,
wh
ile
th
e
p
r
o
p
o
s
ed
m
o
d
el
d
e
m
o
n
s
tr
ates
s
u
p
er
io
r
e
f
f
icac
y
i
n
en
cr
y
p
tin
g
R
GB
im
ag
es,
f
u
t
u
r
e
wo
r
k
will
aim
to
ad
ap
t
it
f
o
r
th
e
s
im
u
ltan
eo
u
s
en
cr
y
p
tio
n
o
f
m
u
ltip
le
im
ag
es
,
a
s
s
ess
i
ts
r
esil
ien
ce
ag
ain
s
t
n
o
is
e
p
er
tu
r
b
atio
n
s
,
an
d
in
teg
r
ate
q
u
an
t
u
m
cr
y
p
to
g
r
ap
h
y
t
o
f
u
r
th
er
e
n
h
an
ce
s
ec
u
r
ity
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
A
u
t
h
o
r
s
s
t
a
t
e
n
o
f
u
n
d
i
n
g
i
n
v
o
l
v
e
d
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Gav
er
ch
an
d
Ku
k
ar
a
m
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Ven
k
atesan
R
am
asam
y
✓
✓
✓
✓
✓
✓
✓
✓
✓
Yasm
in
Ab
d
u
l
✓
✓
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
ata
th
at
s
u
p
p
o
r
t
th
e
f
i
n
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
av
aila
b
le
f
r
o
m
th
e
co
r
r
esp
o
n
d
in
g
a
u
th
o
r
,
u
p
o
n
r
ea
s
o
n
ab
le
r
eq
u
est.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
1
,
J
u
ly
20
25
:
7
1
0
-
7
1
9
718
RE
F
E
R
E
NC
E
[
1
]
Y
.
W
a
n
g
,
Y
.
Z
h
a
o
,
Q
.
Z
h
o
u
,
a
n
d
Z.
Li
n
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
p
a
r
t
i
t
i
o
n
e
d
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
a
,
”
N
e
u
r
o
c
o
m
p
u
t
i
n
g
,
v
o
l
.
2
7
5
,
p
p
.
1
3
1
8
–
1
3
3
2
,
Ja
n
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
n
e
u
c
o
m.
2
0
1
7
.
0
9
.
0
6
8
.
[
2
]
U
.
H
a
y
a
t
a
n
d
N
.
A
.
A
z
a
m
,
“
A
n
o
v
e
l
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
s
c
h
e
me
b
a
se
d
o
n
a
n
e
l
l
i
p
t
i
c
c
u
r
v
e
,
”
S
i
g
n
a
l
Pr
o
c
e
ssi
n
g
,
v
o
l
.
1
5
5
,
p
p
.
3
9
1
–
4
0
2
,
F
e
b
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
s
i
g
p
r
o
.
2
0
1
8
.
1
0
.
0
1
1
.
[
3
]
M
.
K
a
u
r
a
n
d
V
.
K
u
m
a
r
,
“
A
c
o
mp
r
e
h
e
n
si
v
e
r
e
v
i
e
w
o
n
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
t
e
c
h
n
i
q
u
e
s,
”
Ar
c
h
i
v
e
s
o
f
C
o
m
p
u
t
a
t
i
o
n
a
l
Me
t
h
o
d
s
i
n
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
2
7
,
n
o
.
1
,
p
p
.
1
5
–
4
3
,
N
o
v
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
8
3
1
-
0
1
8
-
9
2
9
8
-
8.
[
4
]
X
.
W
a
n
g
,
L.
F
e
n
g
,
a
n
d
H
.
Z
h
a
o
,
“
F
a
st
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
s
e
d
o
n
p
a
r
a
l
l
e
l
c
o
mp
u
t
i
n
g
s
y
s
t
e
m,
”
I
n
f
o
r
m
a
t
i
o
n
S
c
i
e
n
c
e
s
,
v
o
l
.
4
8
6
,
p
p
.
3
4
0
–
3
5
8
,
J
u
n
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
n
s.
2
0
1
9
.
0
2
.
0
4
9
.
[
5
]
Y
.
Lu
o
,
R
.
Z
h
o
u
,
J
.
Li
u
,
S
.
Q
i
u
,
a
n
d
Y
.
C
a
o
,
“
A
n
e
f
f
i
c
i
e
n
t
a
n
d
s
e
l
f
-
a
d
a
p
t
i
n
g
c
o
l
o
u
r
-
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
s
e
d
o
n
c
h
a
o
s
a
n
d
i
n
t
e
r
a
c
t
i
o
n
s
a
m
o
n
g
mu
l
t
i
p
l
e
l
a
y
e
r
s,
”
Mu
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
7
7
,
n
o
.
2
0
,
p
p
.
2
6
1
9
1
–
2
6
2
1
7
,
M
a
r
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
4
2
-
018
-
5
8
4
4
-
5.
[
6
]
Y
.
Z
h
a
n
g
a
n
d
Y
.
T
a
n
g
,
“
A
p
l
a
i
n
t
e
x
t
-
r
e
l
a
t
e
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
s
e
d
o
n
c
h
a
o
s
,
”
M
u
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
7
7
,
n
o
.
6
,
p
p
.
6
6
4
7
–
6
6
6
9
,
A
p
r
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
4
2
-
017
-
4
5
7
7
-
1.
[
7
]
G
.
M
a
d
d
o
d
i
,
A
.
A
w
a
d
,
D
.
A
w
a
d
,
M
.
A
w
a
d
,
a
n
d
B
.
Le
e
,
“
A
n
e
w
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
se
d
o
n
h
e
t
e
r
o
g
e
n
e
o
u
s
c
h
a
o
t
i
c
n
e
u
r
a
l
n
e
t
w
o
r
k
g
e
n
e
r
a
t
o
r
a
n
d
DNA
e
n
c
o
d
i
n
g
,
”
M
u
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
7
7
,
n
o
.
1
9
,
p
p
.
2
4
7
0
1
–
2
4
7
2
5
,
F
e
b
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
4
2
-
018
-
5
6
6
9
-
2.
[
8
]
A
.
H
.
A
l
r
u
b
a
i
e
,
M
.
A
.
A
.
K
h
o
d
h
e
r
,
a
n
d
A
.
T.
A
b
d
u
l
a
mee
r
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
b
a
se
d
o
n
2
D
N
A
e
n
c
o
d
i
n
g
a
n
d
c
h
a
o
t
i
c
2
D
l
o
g
i
st
i
c
m
a
p
,
”
J
o
u
r
n
a
l
o
f
E
n
g
i
n
e
e
r
i
n
g
a
n
d
A
p
p
l
i
e
d
S
c
i
e
n
c
e
,
v
o
l
.
7
0
,
n
o
.
1
,
J
u
n
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
8
6
/
s4
4
1
4
7
-
0
2
3
-
0
0
2
2
8
-
2.
[
9
]
E.
Z
.
Z
e
f
r
e
h
,
“
A
n
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
s
c
h
e
me
b
a
se
d
o
n
a
h
y
b
r
i
d
m
o
d
e
l
o
f
D
N
A
c
o
m
p
u
t
i
n
g
,
c
h
a
o
t
i
c
sy
st
e
ms
a
n
d
h
a
s
h
f
u
n
c
t
i
o
n
s,
”
Mu
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
7
9
,
n
o
.
3
3
–
3
4
,
p
p
.
2
4
9
9
3
–
2
5
0
2
2
,
J
u
n
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
0
4
2
-
0
2
0
-
0
9
1
1
1
-
1.
[
1
0
]
P
.
T.
A
k
k
a
s
a
l
i
g
a
r
a
n
d
S
.
B
i
r
a
d
a
r
,
“
S
e
l
e
c
t
i
v
e
m
e
d
i
c
a
l
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
D
N
A
c
r
y
p
t
o
g
r
a
p
h
y
,
”
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
ri
t
y
J
o
u
r
n
a
l
a
G
l
o
b
a
l
P
e
rs
p
e
c
t
i
v
e
,
v
o
l
.
2
9
,
n
o
.
2
,
p
p
.
9
1
–
1
0
1
,
F
e
b
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
8
0
/
1
9
3
9
3
5
5
5
.
2
0
2
0
.
1
7
1
8
2
4
8
.
[
1
1
]
A
.
T
h
e
r
a
mb
a
n
a
n
d
R
.
V
.
R
a
v
i
,
C
o
l
o
u
r
i
m
a
g
e
e
n
c
ry
p
t
i
o
n
u
si
n
g
D
N
A
c
o
d
i
n
g
a
n
d
l
o
g
i
st
i
c
d
i
f
f
u
si
o
n
.
I
EEE
F
o
u
r
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
M
i
c
r
o
e
l
e
c
t
r
o
n
i
c
s,
S
i
g
n
a
l
s
a
n
d
S
y
st
e
ms (
I
C
M
S
S
)
,
2
0
2
1
.
D
o
i
:
1
0
.
1
1
0
9
/
i
c
mss
5
3
0
6
0
.
2
0
2
1
.
9
6
7
3
6
2
8
.
[
1
2
]
Q
.
Zh
a
n
g
,
L.
G
u
o
,
a
n
d
X
.
W
e
i
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
D
N
A
a
d
d
i
t
i
o
n
c
o
m
b
i
n
i
n
g
w
i
t
h
c
h
a
o
t
i
c
ma
p
s,
”
Ma
t
h
e
m
a
t
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
M
o
d
e
l
l
i
n
g
,
v
o
l
.
5
2
,
n
o
.
1
1
–
1
2
,
p
p
.
2
0
2
8
–
2
0
3
5
,
D
e
c
.
2
0
1
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
mc
m.
2
0
1
0
.
0
6
.
0
0
5
.
[
1
3
]
B
.
R
a
h
u
l
,
K
.
K
u
p
p
u
sa
my
,
a
n
d
A
.
S
e
n
t
h
i
l
r
a
j
a
n
,
“
D
y
n
a
m
i
c
D
N
A
c
r
y
p
t
o
g
r
a
p
h
y
-
b
a
s
e
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
sc
h
e
me
u
s
i
n
g
mu
l
t
i
p
l
e
c
h
a
o
t
i
c
ma
p
s
a
n
d
S
H
A
-
2
5
6
h
a
s
h
f
u
n
c
t
i
o
n
,
”
O
p
t
i
k
,
v
o
l
.
2
8
9
,
p
.
1
7
1
2
5
3
,
O
c
t
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
j
l
e
o
.
2
0
2
3
.
1
7
1
2
5
3
.
[
1
4
]
J.
-
l
.
B
e
u
c
h
a
t
a
n
d
J
.
O
.
H
a
e
n
n
i
,
“
V
o
n
N
e
u
ma
n
n
’
s 2
9
-
st
a
t
e
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
o
n
:
a
h
a
r
d
w
a
r
e
i
m
p
l
e
me
n
t
a
t
i
o
n
,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s o
n
Ed
u
c
a
t
i
o
n
,
v
o
l
.
4
3
,
n
o
.
3
,
p
p
.
3
0
0
–
3
0
8
,
J
a
n
.
2
0
0
0
,
d
o
i
:
1
0
.
1
1
0
9
/
1
3
.
8
6
5
2
0
5
.
[
1
5
]
J.
J
i
n
,
“
A
n
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
b
a
s
e
d
o
n
e
l
e
m
e
n
t
a
r
y
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
a
,
”
O
p
t
i
c
s
a
n
d
L
a
sers
i
n
E
n
g
i
n
e
e
ri
n
g
,
v
o
l
.
5
0
,
n
o
.
1
2
,
p
p
.
1
8
3
6
–
1
8
4
3
,
D
e
c
.
2
0
1
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
o
p
t
l
a
s
e
n
g
.
2
0
1
2
.
0
6
.
0
0
2
.
[
1
6
]
S
.
R
o
y
,
M
.
S
h
r
i
v
a
s
t
a
v
a
,
U
.
R
a
w
a
t
,
C
.
V
.
P
a
n
d
e
y
,
a
n
d
S
.
K
.
N
a
y
a
k
,
“
I
ESCA
:
a
n
e
f
f
i
c
i
e
n
t
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
sch
e
me
u
si
n
g
2
-
D
c
e
l
l
u
l
a
r
a
u
t
o
ma
t
a
,
”
J
o
u
rn
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
ri
t
y
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
6
1
,
p
.
1
0
2
9
1
9
,
S
e
p
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
i
sa.
2
0
2
1
.
1
0
2
9
1
9
.
[
1
7
]
L.
L
i
,
Y
.
L
u
o
,
S
.
Q
i
u
,
X
.
O
u
y
a
n
g
,
L.
C
a
o
,
a
n
d
S
.
Ta
n
g
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
c
h
a
o
t
i
c
m
a
p
a
n
d
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
a
,
”
M
u
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
8
1
,
n
o
.
2
8
,
p
p
.
4
0
7
5
5
–
4
0
7
7
3
,
M
a
y
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
4
2
-
0
2
2
-
1
2
6
2
1
-
9.
[
1
8
]
X
.
C
h
a
i
,
Z.
G
a
n
,
K
.
Y
a
n
g
,
Y
.
C
h
e
n
,
a
n
d
X
.
L
i
u
,
“
A
n
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
se
d
o
n
t
h
e
m
e
mr
i
s
t
i
v
e
h
y
p
e
r
c
h
a
o
t
i
c
s
y
s
t
e
m,
c
e
l
l
u
l
a
r
a
u
t
o
ma
t
a
a
n
d
D
N
A
se
q
u
e
n
c
e
o
p
e
r
a
t
i
o
n
s,
”
S
i
g
n
a
l
Pro
c
e
ss
i
n
g
I
m
a
g
e
C
o
m
m
u
n
i
c
a
t
i
o
n
,
v
o
l
.
5
2
,
p
p
.
6
–
1
9
,
M
a
r
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
ma
g
e
.
2
0
1
6
.
1
2
.
0
0
7
.
[
1
9
]
S
.
N
a
n
d
i
,
S
.
R
o
y
,
S
.
N
a
t
h
,
S
.
C
h
a
k
r
a
b
o
r
t
y
,
W
.
B
.
A
.
K
a
r
a
a
,
a
n
d
N
.
D
e
y
,
“
1
-
D
G
r
o
u
p
C
e
l
l
u
l
a
r
A
u
t
o
ma
t
a
b
a
s
e
d
I
mag
e
E
n
c
r
y
p
t
i
o
n
t
e
c
h
n
i
q
u
e
,
”
I
EE
E
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
ren
c
e
o
n
C
o
n
t
r
o
l
,
I
n
st
r
u
m
e
n
t
a
t
i
o
n
,
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
C
o
m
p
u
t
a
t
i
o
n
a
l
T
e
c
h
n
o
l
o
g
i
e
s
,
2
0
1
4
.
d
o
i
:
1
0
.
1
1
0
9
/
i
c
c
i
c
c
t
.
2
0
1
4
.
6
9
9
3
0
1
7
.
[
2
0
]
B
.
M
o
n
d
a
l
,
S
.
S
i
n
g
h
,
a
n
d
P
.
K
u
mar,
“
A
sec
u
r
e
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
sc
h
e
m
e
b
a
se
d
o
n
c
e
l
l
u
l
a
r
a
u
t
o
ma
t
a
a
n
d
c
h
a
o
t
i
c
sk
e
w
t
e
n
t
ma
p
,
”
J
o
u
rn
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
r
i
t
y
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
4
5
,
p
p
.
1
1
7
–
1
3
0
,
A
p
r
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
i
s
a
.
2
0
1
9
.
0
1
.
0
1
0
.
[
2
1
]
A
.
Y
.
N
i
y
a
t
,
R
.
M
.
H
.
H
e
i
,
a
n
d
M
.
V
.
Jah
a
n
,
“
C
h
a
o
s
-
b
a
s
e
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
u
s
i
n
g
a
h
y
b
r
i
d
c
e
l
l
u
l
a
r
a
u
t
o
mat
a
a
n
d
a
D
N
A
seq
u
e
n
c
e
,”
I
EE
E
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
g
re
ss
o
n
T
e
c
h
n
o
l
o
g
y
,
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
K
n
o
w
l
e
d
g
e
,
2
0
1
5
.
d
o
i
:
1
0
.
1
1
0
9
/
i
c
t
c
k
.
2
0
1
5
.
7
5
8
2
6
7
8
.
[
2
2
]
H
.
Li
u
,
X
.
W
a
n
g
,
a
n
d
A
.
K
a
d
i
r
,
“
I
ma
g
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
D
N
A
c
o
m
p
l
e
me
n
t
a
r
y
r
u
l
e
a
n
d
c
h
a
o
t
i
c
ma
p
s,
”
A
p
p
l
i
e
d
S
o
f
t
C
o
m
p
u
t
i
n
g
,
v
o
l
.
1
2
,
n
o
.
5
,
p
p
.
1
4
5
7
–
1
4
6
6
,
M
a
y
2
0
1
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
s
o
c
.
2
0
1
2
.
0
1
.
0
1
6
.
[
2
3
]
Y
.
Li
,
C
.
W
a
n
g
,
a
n
d
H
.
C
h
e
n
,
“
A
h
y
p
e
r
-
c
h
a
o
s
-
b
a
s
e
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
u
s
i
n
g
p
i
x
e
l
-
l
e
v
e
l
p
e
r
m
u
t
a
t
i
o
n
a
n
d
b
i
t
-
l
e
v
e
l
p
e
r
m
u
t
a
t
i
o
n
,
”
O
p
t
i
c
s
a
n
d
L
a
s
e
rs i
n
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
9
0
,
p
p
.
2
3
8
–
2
4
6
,
M
a
r
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
o
p
t
l
a
se
n
g
.
2
0
1
6
.
1
0
.
0
2
0
.
[
2
4
]
P
.
N
.
L
o
n
e
,
D
.
S
i
n
g
h
,
a
n
d
U
.
H
.
M
i
r
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
u
si
n
g
D
N
A
c
o
d
i
n
g
a
n
d
t
h
r
e
e
-
d
i
me
n
si
o
n
a
l
c
h
a
o
t
i
c
sy
s
t
e
ms,
”
M
u
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
8
1
,
n
o
.
4
,
p
p
.
5
6
6
9
–
5
6
9
3
,
D
e
c
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
1
0
4
2
-
021
-
1
1
8
0
2
-
2.
[
2
5
]
M
.
A
.
A
l
k
h
o
n
a
i
n
i
,
E
.
G
e
m
e
a
y
,
F
.
M
.
Z.
M
a
h
mo
o
d
,
M
.
A
y
a
r
i
,
F
.
A
.
A
l
e
n
i
z
i
,
a
n
d
S
.
Le
e
,
“
A
n
e
w
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
f
o
r
i
m
a
g
e
d
a
t
a
b
a
se
d
o
n
t
w
o
-
w
a
y
c
h
a
o
t
i
c
map
s
a
n
d
i
t
e
r
a
t
i
v
e
c
e
l
l
u
l
a
r
a
u
t
o
m
a
t
a
,
”
S
c
i
e
n
t
i
f
i
c
R
e
p
o
rt
s
,
v
o
l
.
1
4
,
n
o
.
1
,
Ju
l
.
2
0
2
4
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
98
-
024
-
6
4
7
4
1
-
x.
[
2
6
]
J.
Zh
a
n
g
,
D
.
F
a
n
g
,
a
n
d
H
.
R
e
n
,
“
I
mag
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
s
e
d
o
n
D
N
A
e
n
c
o
d
i
n
g
a
n
d
c
h
a
o
t
i
c
m
a
p
s
,
”
M
a
t
h
e
m
a
t
i
c
a
l
P
ro
b
l
e
m
s
i
n
En
g
i
n
e
e
r
i
n
g
,
v
o
l
.
2
0
1
4
,
p
p
.
1
–
1
0
,
J
a
n
.
2
0
1
4
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
1
4
/
9
1
7
1
4
7
.
[
2
7
]
M
.
S
a
mi
u
l
l
a
h
e
t
a
l
.
,
“
A
n
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
s
c
h
e
me
b
a
se
d
o
n
D
N
A
c
o
m
p
u
t
i
n
g
a
n
d
m
u
l
t
i
p
l
e
c
h
a
o
t
i
c
s
y
st
e
ms,
”
I
E
EE
A
c
c
e
s
s
,
v
o
l
.
8
,
p
p
.
2
5
6
5
0
–
2
5
6
6
3
,
Ja
n
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss.
2
0
2
0
.
2
9
7
0
9
8
1
.
[
2
8
]
L.
X
u
,
Z.
Li
,
J
.
L
i
,
a
n
d
W
.
H
u
a
,
“
A
n
o
v
e
l
b
i
t
-
l
e
v
e
l
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
se
d
o
n
c
h
a
o
t
i
c
m
a
p
s,
”
O
p
t
i
c
s
a
n
d
L
a
s
e
rs
i
n
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
7
8
,
p
p
.
1
7
–
2
5
,
M
a
r
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
o
p
t
l
a
se
n
g
.
2
0
1
5
.
0
9
.
0
0
7
.
[
2
9
]
H
.
T
a
b
t
i
e
t
a
l
.
,
“
N
o
v
e
l
c
r
y
p
t
o
s
y
s
t
e
m
i
n
t
e
g
r
a
t
i
n
g
t
h
e
V
i
g
e
n
e
r
e
c
i
p
h
e
r
a
n
d
o
n
e
F
e
i
st
e
l
r
o
u
n
d
f
o
r
c
o
l
o
r
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
(
I
J
EC
E)
,
v
o
l
.
1
4
,
n
o
.
5
,
5
7
0
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
4
i
5
.
p
p
5
7
0
1
-
5
7
1
4
[
3
0
]
S
.
P
a
u
l
,
P
.
D
a
s
g
u
p
t
a
,
P
.
N
a
sk
a
r
,
a
n
d
A
.
C
h
a
u
d
h
u
r
i
,
“
S
e
c
u
r
e
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
sc
h
e
m
e
b
a
se
d
o
n
D
N
A
e
n
c
o
d
i
n
g
a
n
d
c
h
a
o
t
i
c
map
,
”
Re
v
i
e
w
o
f
C
o
m
p
u
t
e
r
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
4
,
n
o
.
2
,
p
p
.
7
0
–
7
5
,
d
o
i
:
1
0
.
1
8
2
8
0
/
r
c
e
s.
0
4
0
2
0
6
.
[
3
1
]
J.
G
.
S
e
k
a
r
,
E.
P
e
r
i
y
a
t
h
a
mb
i
,
a
n
d
A
.
C
h
o
k
k
a
l
i
n
g
a
m
,
“
H
y
b
r
i
d
c
h
a
o
s
-
b
a
s
e
d
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
u
si
n
g
C
h
e
b
y
sh
e
v
c
h
a
o
t
i
c
map
w
i
t
h
d
e
o
x
y
r
i
b
o
n
u
c
l
e
i
c
a
c
i
d
se
q
u
e
n
c
e
a
n
d
i
t
s
p
e
r
f
o
r
ma
n
c
e
e
v
a
l
u
a
t
i
o
n
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
3
,
n
o
.
6
,
p
.
6
9
5
2
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
3
i
6
.
p
p
6
9
5
2
-
6
9
6
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
n
in
n
o
v
a
tive
ima
g
e
en
cryp
tio
n
s
ch
eme
in
teg
r
a
tin
g
c
h
a
o
tic
ma
p
s
,
DN
A
en
co
d
in
g
…
(
Ga
v
erch
a
n
d
K
u
ka
r
a
m
)
719
[
3
2
]
J.
K
a
r
i
,
“
Th
e
o
r
y
o
f
c
e
l
l
u
l
a
r
a
u
t
o
ma
t
a
:
A
s
u
r
v
e
y
,
”
T
h
e
o
re
t
i
c
a
l
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
3
3
4
,
n
o
.
1
–
3
,
p
p
.
3
–
3
3
,
A
p
r
.
2
0
0
5
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
t
c
s.
2
0
0
4
.
1
1
.
0
2
1
.
[
3
3
]
G
.
K
u
k
a
r
a
m
a
n
d
V
.
R
a
m
a
sam
y
,
“
A
n
o
v
e
l
a
p
p
r
o
a
c
h
o
f
1
-
D
c
e
l
l
u
l
a
r
a
u
t
o
mat
a
i
n
C
r
y
p
t
o
s
y
st
e
m,
”
M
a
t
h
e
m
a
t
i
c
a
l
M
o
d
e
l
l
i
n
g
a
n
d
En
g
i
n
e
e
ri
n
g
Pr
o
b
l
e
m
s
,
v
o
l
.
1
0
,
n
o
.
6
,
p
p
.
2
1
2
1
–
2
1
2
6
,
D
e
c
.
2
0
2
3
,
d
o
i
:
1
0
.
1
8
2
8
0
/
mm
e
p
.
1
0
0
6
2
3
.
[
3
4
]
F
.
S
e
r
e
d
y
n
sk
i
,
P
.
B
o
u
v
r
y
,
a
n
d
A
.
Y
.
Zo
m
a
y
a
,
“
C
e
l
l
u
l
a
r
a
u
t
o
ma
t
a
c
o
mp
u
t
a
t
i
o
n
s
a
n
d
s
e
c
r
e
t
k
e
y
c
r
y
p
t
o
g
r
a
p
h
y
,
”
P
a
ra
l
l
e
l
C
o
m
p
u
t
i
n
g
,
v
o
l
.
3
0
,
n
o
.
5
–
6
,
p
p
.
7
5
3
–
7
6
6
,
M
a
y
2
0
0
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
a
r
c
o
.
2
0
0
3
.
1
2
.
0
1
4
.
[
3
5
]
Z.
Y
u
a
n
a
n
d
X
.
Z
h
a
o
,
“
I
n
t
r
o
d
u
c
t
i
o
n
o
f
f
o
r
w
a
r
d
e
r
r
o
r
c
o
r
r
e
c
t
i
o
n
a
n
d
i
t
s
a
p
p
l
i
c
a
t
i
o
n
,
”
2
0
1
2
2
n
d
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
C
o
n
s
u
m
e
r E
l
e
c
t
r
o
n
i
c
s,
C
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d
N
e
t
w
o
rks
,
2
0
1
2
,
p
p
.
3
2
8
8
-
3
2
9
1
,
d
o
i
:
1
0
.
1
1
0
9
/
C
EC
N
e
t
.
2
0
1
2
.
6
2
0
1
9
0
4
.
[
3
6
]
S.
L.
S
.
N
a
r
a
y
a
n
a
n
,
B
.
C
.
D
.
D
e
v
a
p
p
a
,
K
.
P
a
w
a
r
,
S
.
J
a
i
n
,
a
n
d
A
.
V
.
R
.
M
u
r
t
h
y
,
“
I
mp
l
e
m
e
n
t
a
t
i
o
n
o
f
f
o
r
w
a
r
d
e
r
r
o
r
c
o
r
r
e
c
t
i
o
n
f
o
r
i
mp
r
o
v
e
d
p
e
r
f
o
r
m
a
n
c
e
o
f
f
r
e
e
sp
a
c
e
o
p
t
i
c
a
l
c
o
mm
u
n
i
c
a
t
i
o
n
c
h
a
n
n
e
l
i
n
a
d
v
e
r
se
a
t
m
o
s
p
h
e
r
i
c
c
o
n
d
i
t
i
o
n
s
,
”
R
e
su
l
t
s
i
n
O
p
t
i
c
s
,
v
o
l
.
1
6
,
2
0
2
4
,
1
0
0
6
8
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
r
i
o
.
2
0
2
4
.
1
0
0
6
8
9
.
[
3
7
]
T.
K
i
m
a
n
d
S
.
K
i
m,
“
Ef
f
i
c
i
e
n
t
t
r
a
n
s
mi
ssi
o
n
o
f
r
e
v
e
r
si
b
l
e
d
a
t
a
h
i
d
i
n
g
i
n
e
n
c
r
y
p
t
i
o
n
i
m
a
g
e
s
b
y
u
s
i
n
g
r
e
e
d
-
s
o
l
o
mo
n
c
o
d
e
s
,
”
2
0
1
5
3
rd
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
F
u
t
u
re
I
n
t
e
r
n
e
t
o
f
T
h
i
n
g
s
a
n
d
C
l
o
u
d
,
R
o
m
e
,
2
0
1
5
,
p
p
.
7
6
5
-
7
6
9
,
d
o
i
:
1
0
.
1
1
0
9
/
F
i
C
l
o
u
d
.
2
0
1
5
.
3
1
[
3
8
]
K
.
P
a
n
w
a
r
,
R
.
K
.
P
u
r
w
a
r
a
n
d
A
.
Ja
i
n
,
“
D
e
s
i
g
n
o
f
a
S
H
A
-
2
h
a
sh
b
a
se
d
i
m
a
g
e
e
n
c
r
y
p
t
i
o
n
sc
h
e
m
e
u
si
n
g
1
D
c
h
a
o
t
i
c
s
y
st
e
ms
a
n
d
D
N
A
seq
u
e
n
c
e
s,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
ren
c
e
o
n
C
o
m
p
u
t
i
n
g
,
Po
w
e
r
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
,
p
p
.
7
6
9
-
7
7
3
,
2
0
1
9
.
[
3
9
]
S
.
Zh
u
,
C
.
Zh
u
,
a
n
d
W
.
W
a
n
g
,
“
A
n
e
w
i
ma
g
e
e
n
c
r
y
p
t
i
o
n
a
l
g
o
r
i
t
h
m
b
a
s
e
d
o
n
c
h
a
o
s
a
n
d
se
c
u
r
e
h
a
sh
S
H
A
-
2
5
6
,
”
En
t
r
o
p
y
,
v
o
l
.
2
0
,
n
o
.
9
,
p
.
7
1
6
,
S
e
p
.
2
0
1
8
,
d
o
i
:
1
0
.
3
3
9
0
/
e
2
0
0
9
0
7
1
6
.
[
4
0
]
U
n
i
v
e
rsi
t
y
o
f
W
a
t
e
rl
o
o
,
I
m
a
g
e
Re
p
o
s
i
t
o
ry
.
[
O
n
l
i
n
e
]
.
A
v
a
i
l
a
b
l
e
:
h
t
t
p
s
:
/
/
l
i
n
k
s.u
w
a
t
e
r
l
o
o
.
c
a
/
R
e
p
o
si
t
o
r
y
.
h
t
m
l
.
(a
c
c
e
ssed
o
n
1
5
Ju
l
y
2
0
2
4
)
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
G
a
v
e
r
c
h
a
n
d
K
u
k
a
r
a
m
g
ra
d
u
a
ted
fro
m
th
e
De
p
a
rtme
n
t
o
f
M
a
t
h
e
m
a
ti
c
s
in
2
0
1
9
a
n
d
re
c
e
iv
e
d
m
a
ste
r'
s
d
e
g
re
e
in
m
a
th
e
m
a
ti
c
s
fro
m
S
RM
In
stit
u
te
o
f
S
c
ien
c
e
a
n
d
Tec
h
n
o
lo
g
y
in
2
0
2
1
.
Cu
rre
n
t
ly
h
e
p
u
rsu
i
n
g
h
is
P
h
.
D.
d
e
g
re
e
in
th
e
sa
m
e
in
s
ti
tu
ti
o
n
.
His
c
u
rre
n
t
a
re
a
o
f
re
se
a
rc
h
in
c
lu
d
e
s
a
u
t
o
m
a
ta
th
e
o
r
y
,
c
ry
p
to
g
ra
p
h
y
,
DN
A
c
o
m
p
u
ti
n
g
a
n
d
ima
g
e
p
r
o
c
e
ss
in
g
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
g
k
1
6
1
7
@s
rm
ist.
e
d
u
.
in
.
Ve
n
k
a
te
sa
n
Ra
m
a
s
a
m
y
wo
r
k
in
g
a
s
a
n
a
ss
istan
t
p
r
o
fe
ss
o
r
in
t
h
e
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s,
S
RM
In
sti
tu
te
o
f
S
c
ien
c
e
a
n
d
Tec
h
n
o
l
o
g
y
,
In
d
ia.
His
c
u
rre
n
t
a
re
a
o
f
re
se
a
rc
h
in
c
lu
d
e
s
fo
rm
a
l
lan
g
u
a
g
e
s
a
n
d
a
u
to
m
a
ta
th
e
o
r
y
,
a
l
g
e
b
ra
ic
a
u
t
o
m
a
ta
th
e
o
ry
,
ima
g
e
p
ro
c
e
ss
in
g
,
a
n
d
c
ry
p
to
g
ra
p
h
y
.
H
e
c
a
n
b
e
c
o
n
t
a
c
ted
a
t
e
m
a
il
:
v
e
n
k
a
ter1
@s
rm
ist.
e
d
u
.
i
n
.
Ya
sm
in
Abd
u
l
g
ra
d
u
a
ted
fr
o
m
th
e
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s
in
2
0
1
9
a
n
d
re
c
e
iv
e
d
m
a
ste
r'
s
d
e
g
re
e
in
m
a
th
e
m
a
ti
c
s
fro
m
S
RM
In
stit
u
te
o
f
S
c
ien
c
e
a
n
d
Tec
h
n
o
lo
g
y
i
n
2
0
2
1
.
Cu
rre
n
tl
y
sh
e
p
u
rsu
in
g
h
e
r
P
h
.
D
.
d
e
g
re
e
in
th
e
sa
m
e
in
sti
tu
ti
o
n
.
He
r
c
u
rre
n
t
a
re
a
o
f
re
se
a
rc
h
in
c
lu
d
e
s
a
u
to
m
a
ta
th
e
o
r
y
,
c
ry
p
to
g
ra
p
h
y
,
a
n
d
ima
g
e
p
ro
c
e
ss
in
g
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
y
a
5
8
0
5
@s
rm
ist.
e
d
u
.
i
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.