I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
3
9
,
No
.
1
,
Ju
ly
2
0
2
5
,
p
p
.
585
~
5
9
1
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
:
1
0
.
1
1
5
9
1
/ijeecs.v
3
9
.i
1
.
pp
585
-
5
9
1
585
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs.ia
esco
r
e.
co
m
A
co
mpa
ct
s
tudy
o
n methodo
lo
g
ica
l insig
hts on na
v
i
g
a
tiona
l
sy
stems in v
ehicul
a
r t
ra
ff
ic
sy
stem
P
ra
t
hib
ha
T
him
m
a
pp
a
1,
2
,
M
a
y
uri K
un
du
1
1
S
c
h
o
o
l
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
R
e
v
a
U
n
i
v
e
r
si
t
y
,
B
e
n
g
a
l
u
r
u
,
I
n
d
i
a
2
D
e
p
a
r
t
me
n
t
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
G
o
v
e
r
n
me
n
t
E
n
g
i
n
e
e
r
i
n
g
C
o
l
l
e
g
e
,
R
a
ma
n
a
g
a
r
a
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
27
,
2
0
2
5
R
ev
is
ed
Mar
18
,
2
0
2
5
Acc
ep
ted
Mar
26
,
2
0
2
5
Na
v
ig
a
ti
o
n
sy
ste
m
h
a
s
witn
e
s
se
d
a
sig
n
ifi
c
a
n
t
i
n
c
lu
si
o
n
o
f
p
o
ten
ti
a
l
tec
h
n
o
l
o
g
ica
l
a
d
v
a
n
c
e
m
e
n
t
in
th
e
a
re
a
o
f
v
e
h
icu
lar
traffic
sy
ste
m
.
S
in
c
e
th
e
las
t
d
e
c
a
d
e
,
th
e
re
a
re
v
a
ri
o
u
s
e
v
o
l
u
ti
o
n
o
f
i
n
n
o
v
a
ti
v
e
tec
h
n
i
q
u
e
s
th
a
t
h
a
s
id
e
n
ti
fie
d
a
n
d
a
d
d
re
ss
e
d
so
m
e
se
rio
u
s
p
r
o
b
lem
to
wa
rd
s
v
e
h
ic
u
lar
n
a
v
ig
a
ti
o
n
sy
ste
m
.
Wi
th
a
p
r
o
g
re
ss
o
f
ti
m
e
,
a
rti
ficia
l
in
telli
g
e
n
c
e
(AI)
h
a
s
e
v
o
l
v
e
d
a
s
c
o
n
tri
b
u
t
o
ry
ro
le
m
o
d
e
l
t
o
wa
rd
s
o
p
ti
m
izin
g
th
e
p
e
rfo
rm
a
n
c
e
o
f
n
a
v
ig
a
ti
o
n
sy
ste
m
.
Ho
we
v
e
r,
stil
l
it
is
q
u
i
te
c
h
a
ll
e
n
g
i
n
g
t
o
a
c
q
u
ire
a
q
u
ick
s
n
a
p
sh
o
t
o
f
o
v
e
ra
ll
sta
n
d
o
f
a
ll
su
c
h
m
e
th
o
d
o
l
o
g
ies
a
n
d
it
s
e
ffe
c
ti
v
e
n
e
ss
.
He
n
c
e
,
th
is
p
a
p
e
r
p
re
se
n
ts
a
p
re
c
ise
,
c
o
m
p
a
c
t,
a
n
d
h
ig
h
l
y
c
risp
d
isc
u
ss
io
n
o
f
c
o
re
tax
o
n
o
m
ies
o
f
m
e
th
o
d
s
to
wa
r
d
s
imp
ro
v
in
g
n
a
v
i
g
a
ti
o
n
sy
ste
m
.
Th
e
p
a
p
e
r
a
lso
c
o
n
tri
b
u
tes
to
wa
r
d
s
h
ig
h
li
g
h
ti
n
g
t
h
e
ir
stre
n
g
th
a
n
d
we
a
k
n
e
ss
fo
ll
o
we
d
b
y
u
p
d
a
ted
re
se
a
rc
h
tren
d
t
o
u
n
d
e
rsta
n
d
th
e
tru
e
p
ict
u
re
.
F
i
n
a
ll
y
,
th
e
p
a
p
e
r
c
o
n
tri
b
u
tes
t
o
h
ig
h
li
g
h
t
t
h
e
c
rit
ica
l
trad
e
-
o
ff
a
n
d
g
a
p
s.
K
ey
w
o
r
d
s
:
Ar
tific
ial
in
tellig
en
ce
Me
th
o
d
o
lo
g
ies
Nav
ig
atio
n
T
r
af
f
ic
Veh
icu
lar
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Pra
th
ib
h
a
T
h
im
m
a
p
p
a
Sch
o
o
l o
f
C
o
m
p
u
ter
Scien
ce
a
n
d
E
n
g
in
ee
r
in
g
,
R
ev
a
Un
iv
er
s
ity
R
u
k
m
in
i K
n
o
wled
g
e
Par
k
,
Ye
lah
an
k
a,
Kattig
en
a
h
alli,
B
en
g
alu
r
u
,
Kar
n
atak
a
5
6
0
0
6
4
,
I
n
d
i
a
E
m
ail:
p
r
ath
ib
h
a
1
9
8
2
@
u
p
m
.
e
d
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
Nav
ig
atio
n
s
y
s
tem
is
s
p
ec
if
ically
d
is
cu
s
s
ed
with
r
esp
ec
t
to
v
eh
icu
lar
tr
a
f
f
ic
an
d
is
k
n
o
wn
to
o
f
f
e
r
a
s
y
s
tem
f
o
r
ass
i
s
tin
g
th
e
u
s
er
/v
eh
icle
f
o
r
tak
in
g
u
p
s
af
er
r
o
u
t
es,
co
n
g
esti
o
n
-
f
r
ee
tr
av
el
p
at
h
,
an
d
f
u
el
-
ef
f
icien
t
jo
u
r
n
ey
[
1
]
.
Dif
f
er
en
t
ty
p
es
o
f
tech
n
o
lo
g
ies
e.
g
.
,
r
ea
l
-
tim
e
d
ata
a
n
aly
tics
,
s
en
s
o
r
s
,
m
a
p
p
in
g
s
o
f
twar
e,
an
d
s
atellite
a
s
s
i
s
ted
r
o
u
tin
g
is
u
s
ed
at
p
r
esen
t
in
n
av
ig
atio
n
s
y
s
tem
d
esig
n
.
T
h
e
p
r
im
e
ap
p
li
ca
tio
n
o
f
n
av
i
g
atio
n
s
y
s
tem
in
v
eh
icu
lar
tr
a
f
f
ic
a
r
e
r
o
u
te
p
lan
n
in
g
,
m
a
n
ag
em
e
n
t
o
f
tr
af
f
ic
f
lo
w,
m
an
ag
em
en
t
o
f
au
t
o
n
o
m
o
u
s
v
eh
icles,
an
d
f
leet
m
an
ag
em
e
n
t.
T
h
e
s
ig
n
if
ican
ce
o
f
n
av
ig
a
tio
n
s
y
s
tem
in
v
eh
icu
lar
tr
af
f
i
c
ar
e
m
an
if
o
ld
.
A
n
ef
f
icien
t
n
av
ig
atio
n
s
y
s
tem
o
f
f
er
s
au
to
n
o
m
o
u
s
aler
t
s
y
s
tem
to
war
d
s
p
o
ten
tial
h
az
a
r
d
e
.
g
.
,
ad
v
er
s
e
wea
th
er
co
n
d
itio
n
,
tr
af
f
ic
jam
,
an
d
ac
c
id
en
ts
.
I
t
also
o
f
f
er
s
tim
e
ef
f
icien
cy
an
d
en
h
a
n
ce
d
u
s
er
ex
p
er
ien
ce
with
u
p
-
to
-
d
ate
m
ap
s
an
d
f
r
ien
d
l
y
u
s
er
-
in
ter
f
ac
es.
B
y
s
ig
n
if
ican
tly
co
n
tr
o
llin
g
a
n
d
m
i
n
im
izin
g
tr
af
f
ic
co
n
g
esti
o
n
,
p
o
ten
tial
ca
r
b
o
n
f
o
o
tp
r
i
n
ts
to
war
d
s
tr
an
s
p
o
r
tatio
n
is
r
ed
u
ce
d
b
y
ef
f
icien
t
n
av
ig
atio
n
s
y
s
tem
.
Ho
wev
er
,
th
er
e
ar
e
v
ar
io
u
s
ch
allen
g
es
en
c
o
u
n
ter
ed
b
y
n
av
ig
atio
n
s
y
s
tem
v
iz.
ac
cu
r
ac
y
o
f
r
ea
l
-
tim
e
d
ata,
lim
itatio
n
o
f
in
f
r
astru
ctu
r
e,
s
y
s
tem
in
teg
r
ati
o
n
,
r
is
k
o
f
cy
b
e
r
th
r
ea
ts
,
an
d
o
v
er
-
r
elian
ce
o
f
a
u
s
er
.
Su
ch
ch
allen
g
es h
av
e
b
ee
n
id
en
tifie
d
b
y
ad
v
a
n
ce
d
r
esear
ch
co
m
m
u
n
ity
wh
er
e
ar
tific
ial
in
tellig
en
ce
(
AI
)
is
lo
o
k
ed
u
p
o
n
as
a
b
etter
p
ath
o
f
s
o
lu
tio
n
to
war
d
s
im
p
r
o
v
i
n
g
v
eh
icu
lar
c
o
m
m
u
n
icatio
n
s
y
s
tem
[
2
]
.
AI
with
its
d
if
f
er
en
t
v
ar
ian
t
o
f
m
ac
h
in
e
an
d
d
ee
p
lear
n
i
n
g
alg
o
r
ith
m
s
h
a
s
b
ee
n
co
n
tr
ib
u
tin
g
to
war
d
s
v
ar
io
u
s
co
m
p
lex
wo
r
ld
p
r
o
b
lem
s
.
Su
ch
alg
o
r
ith
m
s
ar
e
eith
er
u
s
ed
as
s
tan
d
alo
n
e
way
,
o
r
in
e
n
s
em
b
led
way
,
o
r
in
h
y
b
r
id
way
a
n
d
th
ey
h
av
e
b
etter
ca
p
ab
ilit
y
to
war
d
s
ad
d
r
ess
in
g
v
ar
io
u
s
o
n
g
o
in
g
r
esear
ch
is
s
u
es r
elatin
g
to
n
av
i
g
atio
n
al
s
y
s
tem
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
1
,
Ju
ly
20
25
:
585
-
5
9
1
586
Var
io
u
s
r
elate
d
wo
r
k
h
as
b
ee
n
r
ev
iewe
d
in
th
is
p
r
o
ce
s
s
to
u
n
d
er
s
tan
d
th
e
ex
is
tin
g
tr
en
d
s
o
f
m
eth
o
d
s
.
T
h
e
wo
r
k
p
r
esen
ted
b
y
Statecz
n
y
et
a
l.
[
3
]
h
av
e
d
is
cu
s
s
ed
ab
o
u
t
d
if
f
er
en
t
ty
p
es
o
f
u
n
d
er
ly
in
g
ap
p
r
o
ac
h
o
f
v
eh
icle
n
av
i
g
atio
n
s
y
s
tem
.
L
i
et
a
l
.
[
4
]
h
av
e
p
r
esen
te
d
v
iv
id
d
is
cu
s
s
io
n
o
n
tech
n
o
lo
g
ies
r
elate
d
to
au
to
n
o
m
o
u
s
n
a
v
ig
atio
n
s
y
s
tem
with
a
s
p
ec
ial
f
o
cu
s
o
n
u
n
m
a
n
n
ed
v
eh
icles.
E
la
b
o
r
atio
n
to
war
d
s
d
ata
tr
an
s
m
is
s
io
n
m
eth
o
d
s
in
n
et
wo
r
k
tr
af
f
ic
a
n
d
its
p
o
s
s
ib
le
im
p
ac
t
o
n
n
a
v
ig
atio
n
s
y
s
t
em
is
s
tu
d
ied
b
y
Fes
ta
et
a
l.
[
5
]
.
J
eo
n
g
et
a
l.
[
6
]
d
is
cu
s
s
ed
v
ar
io
u
s
ex
is
tin
g
co
m
m
u
n
icatio
n
m
eth
o
d
s
as
well
as
n
etwo
r
k
in
g
tech
n
iq
u
es
to
war
d
s
v
eh
icu
la
r
co
m
m
u
n
icatio
n
th
at
is
n
ec
ess
ar
y
b
ac
k
b
o
n
e
o
f
an
y
n
av
ig
atio
n
s
y
s
tem
.
Kam
ath
et
a
l.
[
7
]
h
av
e
u
s
ed
d
ee
p
lear
n
i
n
g
-
b
ased
m
eth
o
d
s
t
o
war
d
s
im
p
r
o
v
in
g
t
h
e
k
n
o
wle
d
g
e
s
h
ar
i
n
g
p
r
o
ce
s
s
in
n
av
ig
atio
n
s
y
s
tem
.
T
h
e
r
esear
ch
p
r
o
b
lem
th
at
h
av
e
b
ee
n
n
o
ted
ar
e
as
f
o
llo
ws:
i)
ex
is
tin
g
r
ev
iew
p
a
p
er
s
ar
e
q
u
ite
b
r
o
ad
e
r
an
d
d
o
esn
’
t
n
ar
r
o
w
d
o
wn
to
u
n
d
er
s
tan
d
s
h
o
r
tco
m
i
n
g
s
o
f
e
x
is
tin
g
tech
n
iq
u
es
o
n
ac
t
u
ally
d
em
an
d
ed
n
av
ig
atio
n
s
y
s
tem
,
ii)
m
ajo
r
ity
o
f
cu
r
r
en
t
p
a
p
er
s
u
s
in
g
AI
r
ep
o
r
ts
o
f
f
in
al
co
n
clu
s
iv
e
a
cc
u
r
ac
y
o
u
tco
m
es
with
o
u
t
d
is
cu
s
s
in
g
th
e
m
eth
o
d
ad
o
p
ted
to
o
v
er
c
o
m
e
t
h
e
in
ter
n
al
lim
itatio
n
/co
n
s
tr
ain
ts
f
a
cto
r
s
its
elf
to
war
d
s
d
y
n
am
ic
tr
af
f
ic,
iii)
ir
r
es
p
ec
tiv
e
o
f
av
ailab
ilit
y
o
f
v
a
r
io
u
s
s
tu
d
y
ap
p
r
o
ac
h
,
s
till
th
e
tr
ad
e
-
o
f
f
f
ac
to
r
s
an
d
p
o
ten
tial g
ap
r
elatin
g
to
im
p
licatio
n
o
f
m
ac
h
in
e
lear
n
in
g
o
n
n
av
ig
atio
n
s
y
s
tem
is
n
o
t stu
d
i
ed
well
en
o
u
g
h
.
T
h
e
p
r
im
e
aim
o
f
th
e
s
tu
d
y
is
to
p
r
esen
t
an
in
s
ig
h
t
to
wa
r
d
s
ex
is
ti
n
g
f
o
r
m
o
f
r
esear
ch
m
eth
o
d
s
tar
g
etin
g
to
im
p
r
o
v
e
th
e
n
av
ig
atio
n
s
y
s
tem
u
s
ed
in
v
eh
icu
lar
n
etwo
r
k
s
.
T
h
e
v
alu
e
-
ad
d
ed
co
n
tr
ib
u
tio
n
o
f
s
tu
d
y
ar
e
as
f
o
llo
ws:
i)
th
e
s
tu
d
y
p
r
esen
ts
a
clea
r
-
c
u
t
b
r
ie
f
in
g
o
f
ex
is
tin
g
ap
p
r
o
ac
h
es
t
o
war
d
s
im
p
r
o
v
in
g
n
av
ig
atio
n
s
y
s
tem
,
ii)
d
if
f
er
en
t
tax
o
n
o
m
ies
to
war
d
s
cu
r
r
e
n
tly
tech
n
iq
u
es
h
av
e
b
ee
n
p
r
esen
ted
with
r
esp
ec
t
t
o
s
tr
en
g
th
an
d
wea
k
n
ess
,
iii)
e
x
p
lo
r
ato
r
y
s
tu
d
y
to
war
d
s
u
p
d
at
ed
r
esear
ch
tr
e
n
d
s
h
as
b
ee
n
ca
r
r
ied
o
u
t
t
o
d
is
cu
s
s
th
e
d
eg
r
ee
o
f
em
er
g
e
n
ce
o
f
m
eth
o
d
s
,
an
d
iv
)
ex
clu
s
iv
e
h
i
g
h
lig
h
ts
o
f
id
en
tifie
d
r
esear
c
h
g
ap
an
d
tr
ad
e
-
o
f
f
h
av
e
b
ee
n
d
is
cu
s
s
ed
.
2.
M
E
T
H
O
D
T
h
e
p
r
o
p
o
s
ed
r
ev
iew
wo
r
k
h
as
b
ee
n
ca
r
r
ied
o
u
t
co
n
s
id
er
in
g
a
r
esear
ch
m
eth
o
d
o
lo
g
y
s
h
o
wn
in
Fig
u
r
e
1
.
Acc
o
r
d
in
g
to
t
h
is
m
eth
o
d
o
l
o
g
y
,
t
h
e
in
itial
s
tep
is
to
war
d
s
ac
q
u
ir
in
g
p
r
im
ar
y
d
ata
f
r
o
m
v
ar
io
u
s
o
n
lin
e
tech
n
ical
ar
ch
i
v
es
u
s
in
g
k
e
y
wo
r
d
s
.
T
h
e
co
m
m
o
n
k
ey
wo
r
d
is
“n
av
i
g
atio
n
”
w
h
ich
is
s
ea
r
ch
ed
i
n
co
m
b
in
atio
n
with
v
ar
io
u
s
o
th
er
k
ey
wo
r
d
s
v
iz.
“v
eh
icu
la
r
s
y
s
t
em
”,
“d
ir
ec
tio
n
”,
“r
o
u
te
p
l
an
n
in
g
”,
a
n
d
“tr
af
f
ic
m
an
ag
em
en
t”.
T
h
e
p
r
im
ar
y
d
ata
ar
e
p
r
elim
in
ar
y
s
ca
n
n
ed
f
o
r
th
eir
titl
e,
ab
s
tr
ac
t,
an
d
co
n
tr
ib
u
tio
n
m
en
tio
n
ed
in
last
p
ar
t
o
f
in
tr
o
d
u
ctio
n
s
ec
tio
n
.
All
th
e
r
ed
u
n
d
an
t
ar
ticle
s
ar
e
elim
in
ated
f
o
llo
wed
b
y
s
ec
o
n
d
a
r
y
s
cr
ee
n
in
g
wh
er
e
th
e
s
h
o
r
tlis
ted
p
ap
er
s
ar
e
r
e
v
iewe
d
with
s
p
ec
ial
f
o
cu
s
o
n
its
alg
o
r
ith
m
ic
s
tep
s
,
im
p
lem
en
tatio
n
s
tr
ateg
ies,
ac
co
m
p
lis
h
ed
o
u
tco
m
es.
T
h
e
co
r
e
id
ea
is
to
war
d
s
u
n
d
er
s
tan
d
i
n
g
th
e
im
p
ac
t
o
f
ad
o
p
te
d
m
eth
o
d
o
l
o
g
ies
to
war
d
s
th
e
cl
aim
ed
s
tu
d
y
o
u
tco
m
es.
I
n
t
h
is
p
r
o
ce
s
s
,
th
e
s
tu
d
y
is
ca
r
r
i
ed
o
u
t
co
n
s
id
er
in
g
in
clu
s
io
n
an
d
ex
clu
s
io
n
cr
iter
ia
wh
ich
d
ef
in
es
th
e
r
u
leset
f
o
r
in
v
o
lv
em
en
t
an
d
s
h
o
r
tlis
tin
g
o
f
p
ap
e
r
s
.
T
h
e
in
clu
s
io
n
cr
iter
ia
f
o
r
th
is
s
tu
d
y
ar
e
all
r
esear
ch
jo
u
r
n
als
with
d
is
cr
ete
r
esu
lts
with
co
m
p
ar
is
o
n
,
d
e
f
in
itiv
e
h
ig
h
lig
h
ts
o
f
s
im
u
latio
n
r
esu
lts
,
an
d
clea
r
d
ef
i
n
itio
n
o
f
alg
o
r
ith
m
ic
s
tep
s
.
T
h
e
e
x
clu
s
io
n
c
r
iter
ia
f
o
r
th
is
s
tu
d
y
ar
e
p
ap
er
s
p
u
b
lis
h
ed
b
e
f
o
r
e
2
0
1
9
,
a
n
y
co
n
f
er
e
n
ce
p
ap
e
r
s
,
a
n
d
th
eo
r
etica
l
p
ap
er
s
o
r
p
ap
e
r
s
with
o
u
t
d
is
cr
ete
o
u
tco
m
es
o
r
ju
s
tific
atio
n
s
.
All
th
e
f
in
al
o
u
tco
m
es
ar
e
f
in
ally
r
ev
iewe
d
in
o
r
d
er
to
ar
r
iv
e
at
co
n
clu
s
io
n
in
f
o
r
m
atio
n
ab
o
u
t tr
ad
e
-
o
f
f
a
n
d
r
esear
ch
g
a
p
.
Fig
u
r
e
1
.
R
esear
ch
m
eth
o
d
f
o
r
s
tu
d
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
co
mp
a
ct
s
tu
d
y
o
n
meth
o
d
o
l
o
g
ica
l in
s
ig
h
ts
o
n
n
a
vig
a
tio
n
a
l sys
tem
s
in
…
(
P
r
a
th
ib
h
a
Th
i
mma
p
p
a
)
587
3.
RE
SU
L
T
S
T
h
is
s
ec
tio
n
p
r
esen
ts
d
is
cu
s
s
io
n
o
f
th
e
o
u
tco
m
es
ac
co
m
p
lis
h
ed
f
r
o
m
th
e
cu
r
r
e
n
t
r
ev
ie
w
wo
r
k
to
u
n
d
er
s
tan
d
its
s
tr
en
g
th
a
n
d
wea
k
n
ess
ass
o
ciate
d
with
its
im
p
lem
en
tatio
n
l
o
g
ic.
Fu
r
th
er
,
d
is
cu
s
s
io
n
o
f
r
esear
ch
tr
en
d
s
h
as
b
ee
n
ca
r
r
i
ed
o
u
t
th
at
o
f
f
er
s
m
o
r
e
clea
r
s
tan
ce
o
f
ex
is
tin
g
m
eth
o
d
o
lo
g
i
ca
l
ca
teg
o
r
y
as
wel
l
as
r
ea
ch
ab
ilty
o
f
s
o
lu
tio
n
to
war
d
s
cu
r
r
e
n
t
ad
d
r
ess
ed
p
r
o
b
lem
s
.
Fin
ally
,
th
is
s
ec
tio
n
d
is
cu
s
s
es
ab
o
u
t
th
e
id
en
tifie
d
tr
ad
e
-
o
f
f
a
n
d
g
ap
s
f
o
r
m
o
r
e
clea
r
v
is
u
alatio
n
o
f
th
e
r
ev
iew
f
in
d
i
n
g
s
.
3
.
1
.
Studies
t
o
wa
rds
na
v
ig
a
t
io
na
l sy
s
t
em
Ad
o
p
tio
n
o
f
g
lo
b
al
p
o
s
iti
o
n
in
g
s
y
s
tem
(
GPS)
is
witn
ess
ed
in
wo
r
k
o
f
A
s
lin
ez
h
ad
et
a
l.
[
8
]
wh
o
h
av
e
u
s
ed
n
eu
r
al
-
n
etwo
r
k
b
ased
er
r
o
r
c
o
m
p
en
s
atio
n
s
ch
em
e.
T
h
e
s
tu
d
y
u
s
es
Kalm
an
f
i
lter
(
KF)
to
war
d
s
lo
ca
lizatio
n
u
s
in
g
in
er
tial
an
d
GPS
-
b
ased
n
av
ig
atio
n
s
y
s
tem
.
T
h
e
s
ec
o
n
d
m
eth
o
d
o
o
g
y
p
o
te
n
tially
witn
ess
ed
in
cu
r
r
en
t
tim
e
is
r
elate
d
to
u
s
ag
e
o
f
v
is
io
n
-
b
ased
m
eth
o
d
s
in
n
av
ig
atio
n
as
n
o
ted
in
wo
r
k
o
f
Yu
e
et
a
l.
[
9
]
an
d
B
ald
o
n
i
et
a
l.
[
1
0
]
to
wa
r
d
s
au
to
n
o
m
o
u
s
v
eh
icle
in
n
av
ig
atio
n
.
T
h
e
s
tu
d
y
h
as
ass
ess
ed
th
e
v
eh
icu
lar
d
ir
ec
tio
n
alo
n
g
with
later
al
o
f
f
s
et
o
b
tain
ed
f
r
o
m
g
l
o
b
al
n
a
v
ig
atio
n
al
s
atellite
s
y
s
tem
(
G
NSS)
im
ag
es.
T
h
e
wo
r
k
o
f
L
atif
et
a
l.
[
1
1
]
h
a
v
e
u
s
ed
s
tan
d
ar
d
g
e
o
m
etr
ic
-
b
a
s
ed
tr
ac
k
in
g
alg
o
r
t
h
m
to
ev
al
u
ate
th
e
n
ec
ess
ar
y
s
teer
in
g
an
g
le
to
war
d
s
s
p
ec
if
ic
p
ath
in
n
av
ig
atio
n
.
T
h
e
th
ir
d
f
o
r
m
o
f
m
eth
o
d
o
lo
g
y
is
r
elate
d
to
r
o
u
te
p
lan
n
in
g
.
B
y
cr
ea
tin
g
a
n
a
v
ig
atio
n
al
m
e
th
o
d
o
lo
g
y
b
ased
o
n
th
e
ass
ess
m
en
t
o
f
r
e
ce
iv
ed
s
ig
n
al
s
tr
en
g
th
(
R
SS
)
,
Ah
m
ad
et
a
l.
[
1
2
]
h
av
e
tack
l
ed
th
e
lo
ca
lizatio
n
p
r
o
b
lem
.
C
r
am
er
r
a
o
lo
wer
b
o
u
n
d
(
C
R
L
B
)
is
u
s
ed
to
o
b
tain
a
clo
s
ed
-
f
o
r
m
ed
s
o
lu
tio
n
.
B
allar
d
in
i
et
a
l.
[
1
3
]
u
s
ed
th
e
h
id
d
en
Ma
r
k
o
v
m
o
d
e
l
(
HM
M)
to
f
r
am
e
t
h
e
f
o
u
n
d
at
io
n
o
f
a
d
r
iv
in
g
ass
is
tan
ce
s
y
s
t
em
,
d
em
o
n
s
tr
atin
g
th
e
im
p
ac
t
o
f
v
eh
icle
lo
ca
liza
tio
n
o
n
n
av
ig
atio
n
s
y
s
tem
s
.
T
h
e
g
o
al
o
f
th
e
wo
r
k
is
to
lo
c
ate
co
n
s
is
ten
t
lan
e
esti
m
a
tes
in
s
itu
atio
n
s
wh
er
e
th
e
q
u
ality
o
f
th
e
d
ata
is
n
o
t
o
p
tim
al.
I
n
a
co
n
tr
ib
u
tin
g
wo
r
k
,
C
ai
et
a
l.
[
1
4
]
in
tr
o
d
u
ce
d
a
u
n
iq
u
e
r
o
u
te
p
lan
n
in
g
s
y
s
tem
th
at
u
s
es
th
e
A*
a
lg
o
r
ith
m
to
f
in
d
in
s
ig
h
t
in
to
th
e
tr
af
f
ic
co
n
d
itio
n
at
co
o
r
d
in
ates.
A
p
ath
p
la
n
n
in
g
s
ch
em
e
h
as
b
ee
n
p
r
esen
ted
in
th
e
s
tu
d
y
,
wh
e
r
e
th
e
l
o
ca
tio
n
p
r
o
b
lem
is
r
eso
lv
ed
u
s
in
g
th
e
M
o
n
te
C
ar
lo
m
eth
o
d
a
n
d
th
e
n
av
i
g
atio
n
al
m
ap
p
in
g
p
er
f
o
r
m
an
ce
is
o
p
tim
ized
u
s
in
g
ex
ten
d
ed
Kalm
an
f
ilter
(
E
KF
)
.
An
au
to
n
o
m
o
u
s
n
a
v
ig
atio
n
s
y
s
tem
d
esig
n
ed
to
b
ec
o
m
e
i
n
d
ep
en
d
en
t
o
f
m
ap
ap
r
io
r
i
in
f
o
r
m
atio
n
wh
ile
n
av
ig
atin
g
in
in
ter
s
ec
tio
n
ar
ea
s
was
p
r
esen
ted
b
y
Or
t
et
a
l.
[
1
5
]
.
T
h
e
m
o
d
el
ca
n
ef
f
ec
tiv
ely
p
lan
its
tr
ajec
to
r
ies with
o
u
t th
e
u
s
e
o
f
an
e
x
ter
n
al
lo
ca
lizatio
n
s
y
s
tem
.
T
h
e
f
o
u
r
th
f
r
e
q
u
en
tly
witn
ess
ed
m
eth
o
d
o
lo
g
y
is
r
elate
d
t
o
ex
p
er
im
en
tal
m
o
d
ellin
g
.
A
s
im
p
lifie
d
n
av
ig
atio
n
s
y
s
tem
h
as
b
ee
n
f
r
am
ed
b
y
L
o
p
ez
et
a
l.
[
1
6
]
i
n
o
r
d
er
to
ad
d
r
ess
th
e
v
el
o
city
co
r
r
elatio
n
with
th
e
r
o
ad
'
s
cu
r
v
atu
r
e.
B
y
ac
q
u
ir
in
g
a
r
ef
er
en
ce
cu
r
v
atu
r
e
s
y
s
tem
an
d
av
o
id
i
n
g
co
llis
io
n
s
o
f
an
y
k
in
d
,
th
e
p
a
p
er
h
as
m
ad
e
a
c
o
n
tr
ib
u
tio
n
to
a
r
ea
c
tiv
e
co
n
tr
o
l
m
ec
h
an
is
m
.
A
n
o
v
el
n
av
ig
atio
n
s
y
s
tem
d
esig
n
h
as
b
ee
n
p
r
o
p
o
s
ed
b
y
Otak
i
et
a
l.
[
1
7
]
with
t
h
e
g
o
al
o
f
en
c
o
u
r
a
g
in
g
u
s
er
s
to
m
o
v
e
b
y
f
o
o
t.
T
h
e
n
o
n
-
s
h
o
r
test
r
o
u
te
-
b
ased
m
eth
o
d
an
d
o
t
h
er
m
u
lti
-
d
ay
n
av
i
g
atio
n
m
eth
o
d
s
h
av
e
b
ee
n
ex
a
m
in
ed
in
th
is
p
a
p
er
.
T
h
e
d
i
s
tr
ib
u
tio
n
o
f
s
p
ee
d
p
r
o
b
a
b
ilit
y
f
o
r
r
o
u
te
p
la
n
n
in
g
with
d
y
n
am
ic
attr
ib
u
tes
h
as
b
ee
n
ex
am
in
ed
b
y
Vitali
et
a
l.
[
1
8
]
.
I
n
ad
d
itio
n
to
ad
o
p
tin
g
a
n
au
to
tu
n
in
g
lib
r
a
r
y
with
f
lex
ib
le
d
y
n
am
icity
,
t
h
e
au
th
o
r
h
as
cr
ea
ted
a
p
r
o
b
ab
ilis
tic
m
o
d
el
to
s
o
lv
e
th
e
d
y
n
a
m
ic
r
o
u
tin
g
p
r
o
b
lem
.
A
n
av
ig
atio
n
s
y
s
tem
d
esig
n
e
d
s
p
ec
if
ically
f
o
r
b
lin
d
in
d
iv
i
d
u
als
was
p
r
esen
ted
b
y
W
an
g
et
a
l.
[
1
9
]
,
tak
i
n
g
in
to
ac
co
u
n
t
t
h
e
im
p
o
r
tan
ce
o
f
to
u
ch
-
s
en
s
itiv
e
s
p
atial
la
n
d
m
ar
k
s
.
T
h
e
s
tu
d
y
m
o
d
el
p
r
o
d
u
ce
s
a
m
a
p
m
atc
h
in
g
a
n
d
p
ath
p
lan
n
in
g
m
et
h
o
d
tailo
r
e
d
f
o
r
b
lin
d
u
s
er
s
th
at
tak
es
g
eo
m
etr
ic
co
n
s
tr
ain
ts
in
to
ac
co
u
n
t.
Dig
it
al
twin
s
h
av
e
b
ee
n
u
s
ed
b
y
W
an
g
et
a
l.
[
2
0
]
t
o
cr
ea
te
a
s
m
ar
t
m
o
b
ilit
y
-
b
ased
en
v
ir
o
n
m
en
t
th
at
will
m
ak
e
n
av
ig
atio
n
ea
s
ier
.
T
h
e
m
o
d
el'
s
ef
f
ec
tiv
e
n
a
v
ig
atio
n
s
y
s
tem
is
ev
alu
ated
th
r
o
u
g
h
s
im
u
latio
n
r
esear
ch
an
d
f
ield
t
esti
n
g
.
A
m
u
lti
-
ag
en
t sy
s
tem
f
o
r
a
co
s
t
-
ef
f
ec
tiv
e
c
o
llis
io
n
-
f
r
ee
p
ath
f
o
r
m
u
lati
o
n
h
as
b
ee
n
p
r
o
p
o
s
ed
b
y
Yao
et
a
l.
[
2
1
]
.
T
h
e
ap
p
r
o
ac
h
,
wh
ic
h
is
b
ased
o
n
a
n
av
ig
atio
n
al
m
ec
h
an
is
m
b
ased
o
n
s
o
cial
awa
r
en
ess
,
is
p
r
esen
ted
as a
p
ath
o
p
tim
izer
.
Fin
ally
,
m
ac
h
in
e
lear
n
in
g
m
eth
o
d
s
ar
e
an
o
th
e
r
p
r
o
m
i
n
en
t
m
eth
o
d
s
u
s
ed
to
wa
r
d
s
im
p
r
o
v
in
g
n
av
ig
atio
n
s
y
s
tem
.
B
y
co
m
b
i
n
in
g
th
e
A*
s
ea
r
ch
alg
o
r
ith
m
with
a
m
ac
h
in
e
lear
n
in
g
alg
o
r
ith
m
,
L
i
et
a
l.
[
2
2
]
h
av
e
s
o
lv
ed
th
e
n
av
ig
atio
n
al
is
s
u
es
r
elate
d
to
ca
r
s
th
at
u
s
e
elec
tr
ic
ch
ar
g
in
g
.
C
o
o
p
er
ativ
e
lo
ca
lizatio
n
with
E
KF
h
as
b
ee
n
u
s
ed
b
y
Oliv
er
o
s
an
d
Ash
r
af
iu
o
n
[
2
3
]
to
a
d
d
r
ess
m
u
lti
-
v
eh
icle
n
a
v
ig
atio
n
s
y
s
tem
s
an
d
th
eir
au
to
n
o
m
o
u
s
ch
allen
g
es.
Su
n
et
a
l.
[
2
4
]
ad
o
p
tio
n
o
f
m
ac
h
i
n
e
lear
n
in
g
f
o
r
in
er
tial
s
y
s
tem
-
b
ased
n
av
ig
atio
n
in
v
o
lv
es
u
s
in
g
E
KF
f
o
r
er
r
o
r
co
r
r
ec
tio
n
af
ter
m
ac
h
in
e
lear
n
in
g
is
u
s
ed
t
o
ca
p
t
u
r
e
th
r
ee
-
d
i
m
en
s
io
n
al
lan
d
m
ar
k
in
f
o
r
m
atio
n
.
C
h
en
et
a
l.
[
2
5
]
,
wh
ich
f
o
cu
s
es
o
n
m
ap
p
i
n
g
p
o
th
o
les,
h
ig
h
li
g
h
ts
th
at
o
b
s
tacle
d
etec
tio
n
is
an
o
th
er
c
r
u
cial
co
m
p
o
n
en
t
o
f
th
e
v
eh
icle
n
a
v
ig
atio
n
s
y
s
tem
.
T
h
e
m
o
d
el
em
p
lo
y
s
v
ib
r
atio
n
an
al
y
s
is
an
d
m
ac
h
in
e
lear
n
in
g
t
o
an
al
y
ze
a
laser
-
sc
an
n
ed
im
a
g
e
o
f
a
r
o
ad
.
A
d
e
ep
lear
n
in
g
-
b
ased
m
eth
o
d
f
o
r
cr
ea
tin
g
a
n
av
ig
atio
n
al
co
n
tr
o
ller
s
y
s
tem
tailo
r
ed
to
a
u
to
n
o
m
o
u
s
u
n
m
a
n
n
ed
v
e
h
icles
h
as
b
ee
n
p
r
esen
te
d
b
y
C
h
en
et
a
l.
[
2
6
]
.
B
y
co
m
b
in
in
g
d
ata
f
r
o
m
GNSS,
o
d
o
m
eter
,
an
d
in
er
tial sen
s
o
r
,
Du
et
a
l.
[
2
7
]
h
av
e
d
ev
elo
p
ed
a
n
o
v
el
n
a
v
ig
atio
n
al
s
ch
e
m
e.
I
n
co
m
p
ar
is
o
n
to
th
e
m
ajo
r
ity
o
f
s
ch
em
es
th
at
u
s
e
E
KF,
t
h
e
s
ch
em
e'
s
r
esu
lts
ar
e
s
u
p
er
io
r
b
ec
au
s
e
it
m
ak
es
u
s
e
o
f
lo
n
g
s
h
o
r
t
-
ter
m
m
e
m
o
r
y
(
L
STM
)
to
o
p
tim
ize
n
av
ig
atio
n
p
er
f
o
r
m
an
ce
.
Ma
n
ik
an
d
an
et
a
l.
[
2
8
]
co
n
d
u
ct
ad
d
itio
n
al
r
esear
ch
o
n
o
b
s
tacle
av
o
id
an
ce
s
y
s
tem
s
,
u
s
in
g
d
ee
p
lear
n
in
g
alg
o
r
ith
m
s
to
m
ak
e
d
ec
is
io
n
s
ab
o
u
t
s
teer
in
g
co
n
t
r
o
l
f
o
r
s
elf
-
d
r
iv
in
g
n
o
d
es.
Pap
ag
ian
n
i
s
et
a
l.
[
2
9
]
h
av
e
p
r
esen
ted
a
n
o
v
el
n
av
i
g
atio
n
al
m
o
d
el
th
at
in
co
r
p
o
r
ates
a
n
u
m
b
er
o
f
cr
itical
m
u
lti
-
a
ttri
b
u
tes
f
o
r
r
eso
u
r
ce
-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
1
,
Ju
ly
20
25
:
585
-
5
9
1
588
ef
f
icien
t
v
e
h
icle
n
av
i
g
atio
n
.
B
an
k
an
g
le,
r
o
a
d
in
clin
atio
n
,
an
d
v
eh
icle
v
elo
cities
with
later
al
-
lo
n
g
itu
d
in
al
p
er
s
p
ec
tiv
e
ar
e
th
e
ch
ar
ac
ter
is
tics
th
at
ar
e
u
s
ed
.
Neu
r
al
n
et
wo
r
k
s
ar
e
also
u
s
ed
in
th
e
m
o
d
el
to
o
p
tim
ize
th
is
esti
m
atio
n
te
ch
n
iq
u
e.
T
a
b
le
1
s
u
m
m
ar
izes th
e
ex
is
tin
g
s
tu
d
i
es to
war
d
s
n
av
ig
atio
n
s
y
s
tem
.
T
ab
le
1
.
Su
m
m
a
r
y
o
f
m
eth
o
d
o
lo
g
ies o
f
n
a
v
ig
atio
n
s
y
s
tem
A
u
t
h
o
r
s
M
e
t
h
o
d
A
d
v
a
n
t
a
g
e
s
Li
mi
t
a
t
i
o
n
s
[
8
]
G
P
S
-
b
a
se
d
n
a
v
i
g
a
t
i
o
n
-
M
a
x
i
mi
z
e
d
a
c
c
u
r
a
c
y
e
sp
e
c
i
a
l
l
y
i
n
o
u
t
d
o
o
r
.
-
P
e
r
f
o
r
ms
p
o
o
r
l
y
i
n
t
e
r
r
a
i
n
w
i
t
h
p
o
o
r
sat
e
l
l
i
t
e
v
i
s
i
b
i
l
i
t
y
-
U
p
-
to
-
d
a
t
e
r
o
u
t
i
n
g
d
u
e
t
o
r
e
a
l
-
t
i
me
d
a
t
a
-
P
r
o
n
e
t
o
i
n
t
e
r
f
e
r
e
n
c
e
d
u
e
t
o
t
a
l
l
e
r
st
r
u
c
t
u
r
e
s.
[
9
]
-
[
1
1
]
V
i
si
o
n
-
b
a
s
e
d
n
a
v
i
g
a
t
i
o
n
-
S
i
mp
l
e
r
i
n
t
e
r
p
r
e
t
a
t
i
o
n
o
f
r
e
a
l
t
r
a
f
f
i
c
c
o
n
d
i
t
i
o
n
s
.
-
C
o
m
p
u
t
a
t
i
o
n
a
l
l
y
e
x
p
e
n
s
i
v
e
,
d
e
ma
n
d
e
x
p
e
n
si
v
e
se
n
s
o
r
s.
-
Ea
si
l
y
d
e
t
e
c
t
a
n
y
o
b
s
t
a
c
l
e
s
-
I
n
f
l
u
e
n
c
e
d
b
y
e
x
t
r
e
me
c
o
n
d
i
t
i
o
n
s
o
f
w
e
a
t
h
e
r
[
1
2
]
-
[
1
5
]
R
o
u
t
e
p
l
a
n
n
i
n
g
-
O
f
f
e
r
s h
i
g
h
-
r
e
so
l
u
t
i
o
n
a
n
d
a
c
c
u
r
a
t
e
map
p
i
n
g
-
I
n
c
r
e
a
se
d
c
o
s
t
a
n
d
c
o
m
p
l
e
x
i
t
y
-
E
f
f
e
c
t
i
v
e
d
e
t
e
c
t
i
o
n
o
f
t
r
a
f
f
i
c
e
v
e
n
t
s
i
n
r
e
a
l
-
t
i
me
.
-
H
i
g
h
e
r
d
e
p
e
n
d
e
n
c
i
e
s
o
n
i
n
f
r
a
s
t
r
u
c
t
u
r
e
a
n
d
o
t
h
e
r
v
e
h
i
c
l
e
[
1
6
]
-
[
2
1
]
Ex
p
e
r
i
m
e
n
t
a
l
m
o
d
e
l
l
i
n
g
-
Ef
f
e
c
t
i
v
e
l
y
d
e
t
e
c
t
e
v
e
n
t
s
-
D
e
t
e
c
t
i
o
n
r
a
n
g
e
f
l
u
c
t
u
a
t
e
s
-
C
a
n
d
e
t
e
c
t
t
r
a
f
f
i
c
d
i
f
f
e
r
e
n
c
e
s.
-
Lo
w
e
r
q
u
a
l
i
t
y
o
f
t
r
a
f
f
i
c
d
a
t
a
-
W
o
r
k
s
w
e
l
l
i
n
a
l
l
t
r
a
f
f
i
c
c
o
n
d
i
t
i
o
n
-
D
e
ma
n
d
s
e
x
t
e
n
s
i
v
e
i
n
f
r
a
s
t
r
u
c
t
u
r
e
s
u
p
p
o
r
t
-
S
i
mp
l
i
f
i
e
d
d
e
t
e
c
t
i
o
n
a
n
d
t
r
a
c
k
i
n
g
p
e
r
f
o
r
m
a
n
c
e
-
C
a
n
o
n
l
y
d
e
t
e
c
t
i
n
sh
o
r
t
r
a
n
g
e
s
-
A
g
g
r
e
g
a
t
e
r
e
a
l
-
t
i
me
t
r
a
f
f
i
c
d
a
t
a
f
r
o
m
a
l
l
c
o
n
n
e
c
t
e
d
v
e
h
i
c
l
e
s
.
-
I
n
c
o
n
s
i
st
e
n
t
d
a
t
a
q
u
a
l
i
t
y
.
-
U
sefu
l
t
o
w
a
r
d
s a
d
v
e
r
se
t
r
a
f
f
i
c
e
v
e
n
t
s
-
Ex
t
e
n
s
i
v
e
p
r
i
v
a
c
y
c
o
n
c
e
r
n
s
-
F
a
c
i
l
i
t
a
t
e
s
d
a
t
a
e
x
c
h
a
n
g
e
i
n
r
e
a
l
-
t
i
m
e
-
H
i
g
h
l
y
d
e
p
e
n
d
e
n
t
o
n
i
n
f
r
a
s
t
r
u
c
t
u
r
e
-
En
h
a
n
c
e
d
t
r
a
f
f
i
c
f
l
o
w
a
n
d
s
u
p
p
o
r
t
s
c
o
l
l
a
b
o
r
a
t
i
v
e
d
e
c
i
s
i
o
n
-
ma
k
i
n
g
.
-
H
a
v
e
p
r
i
v
a
c
y
c
o
n
c
e
r
n
s
[
2
2
]
-
[
2
9
]
M
a
c
h
i
n
e
l
e
a
r
n
i
n
g
met
h
o
d
s
-
S
i
g
n
i
f
i
c
a
n
t
y
o
p
t
i
mi
z
e
r
o
u
t
i
n
g
,
e
n
h
a
n
c
e
s
n
a
v
i
g
a
t
i
o
n
u
si
n
g
t
r
a
f
f
i
c
p
a
t
t
e
r
n
s
o
f
r
e
a
l
-
t
i
me
-
D
e
man
d
s
i
n
t
e
n
s
i
v
e
c
o
m
p
u
t
a
t
i
o
n
a
l
r
e
so
u
r
c
e
s
,
h
i
g
h
e
r
d
e
p
e
n
d
e
n
c
y
o
n
v
o
l
u
mi
n
o
u
s
t
r
a
i
n
i
n
g
d
a
t
a
-
H
i
g
h
l
y
a
d
a
p
t
i
v
e
sy
st
e
ms
-
B
i
a
se
d
t
r
a
i
n
i
n
g
d
a
t
a
.
3
.
2
.
T
re
nd
a
na
ly
s
is
A
tr
en
d
to
war
d
s
p
u
b
licatio
n
s
o
f
th
e
r
esear
ch
wo
r
k
is
ca
r
r
ied
o
u
t
to
u
n
d
er
s
tan
d
v
a
r
io
u
s
ty
p
es
o
f
n
av
ig
atio
n
al
s
y
s
tem
b
ein
g
s
u
r
f
ac
ed
.
I
n
th
is
p
e
r
s
p
ec
tiv
e
th
er
e
ar
e
two
s
ch
e
m
es
b
ein
g
n
o
ted
wh
er
e
th
e
f
ir
s
t
s
ch
em
es
r
elate
s
to
AI
b
ased
a
p
p
r
o
ac
h
es
wh
ile
s
ec
o
n
d
s
ch
e
m
e
r
elate
s
to
n
o
n
-
AI
b
ased
ap
p
r
o
ac
h
es
ar
e
s
h
o
wn
in
Fig
u
r
e
2
.
Fig
u
r
e
2
(
a)
an
d
Fig
u
r
e
2
(
b
)
s
h
o
wca
s
es
ex
is
tin
g
p
u
b
licatio
n
s
o
n
AI
a
n
d
n
o
n
-
A
I
b
ased
ap
p
r
o
ac
h
es
u
n
d
er
tak
e
n
to
war
d
s
n
av
ig
atio
n
al
s
y
s
tem
r
esp
ec
tiv
ely
.
Fro
m
Fig
u
r
e
2
(
a)
,
it
is
n
o
ted
th
at
th
er
e
ar
e
o
n
ly
6
7
3
r
elev
an
t
p
u
b
licatio
n
s
i
n
p
r
esen
ce
o
f
8
2
8
8
r
esear
ch
p
a
p
er
s
u
s
in
g
AI
s
ch
e
m
es.
Acc
o
r
d
i
n
g
t
o
Fig
u
r
e
2
(
b
)
,
th
er
e
ar
e
2
0
6
0
r
elev
an
t
r
esear
ch
p
ap
er
s
in
p
r
esen
ce
o
f
6
,
7
6
9
t
o
tal
r
esear
ch
p
ap
er
s
r
elatin
g
to
n
o
n
-
AI
b
ased
ap
p
r
o
ac
h
es
to
war
d
s
n
av
ig
ati
o
n
al
s
tu
d
y
.
Fu
r
th
e
r
,
Fig
u
r
e
2
(
c)
s
h
o
ws
th
at
o
u
t
o
f
1
2
,
1
5
5
p
ap
e
r
s
,
th
er
e
ar
e
d
is
tin
ct
4
,
9
0
4
r
esear
c
h
p
ap
er
s
wh
o
h
as
ad
d
r
ess
ed
to
s
o
m
e
o
f
th
e
co
m
m
o
n
p
r
o
b
lem
s
r
ela
tin
g
to
tr
af
f
ic
-
p
r
o
n
e
is
s
u
es in
n
av
ig
atio
n
al
s
y
s
tem
.
3
.
3
.
T
ra
de
-
o
f
f
a
nd
g
a
p ident
if
ica
t
io
n
Af
ter
r
ev
iewin
g
th
e
cu
r
r
en
t
ap
p
r
o
ac
h
es
t
o
war
d
s
e
x
is
tin
g
s
tu
d
ied
v
ar
i
o
u
s
s
tr
en
g
th
as
well
as
lo
o
p
h
o
les
h
as
b
ee
n
witn
ess
ed
wh
ich
is
m
ain
ly
with
r
esp
ec
t
to
tr
ad
e
-
o
f
f
f
ac
to
r
s
.
W
ith
an
in
cr
ea
s
in
g
d
em
an
d
s
o
f
au
t
o
n
o
m
o
u
s
a
p
p
licatio
n
s
in
v
eh
icu
la
r
s
y
s
tem
,
it
is
n
ec
ess
ar
y
to
id
en
tif
y
s
u
c
h
tr
a
d
e
-
o
f
f
f
o
r
b
etter
ex
l
o
r
atio
n
to
war
d
s
f
u
tu
r
e
r
esear
ch
wo
r
k
.
Hen
ce
,
th
is
s
ec
tio
n
h
i
g
h
li
g
h
ts
all
th
e
s
ig
n
if
ica
n
t
tr
ad
e
-
o
f
f
as
well
as
th
e
p
o
ten
tial g
ap
i
d
en
tifie
d
f
r
o
m
c
u
r
r
en
t stu
d
y
:
a)
Ag
g
r
eg
atio
n
o
f
r
ea
l
-
tim
e
d
ata
an
d
co
m
p
lex
ity
-
T
r
ad
e
-
o
f
f
:
a
cc
u
r
ate
d
ec
is
io
n
-
m
ak
in
g
r
e
q
u
ir
es
r
ea
l
-
tim
e
d
ata
co
llectio
n
f
r
o
m
ca
m
er
as,
GPS,
tr
af
f
ic
s
en
s
o
r
s
,
an
d
o
th
er
s
o
u
r
ce
s
.
H
o
wev
er
,
it
is
c
o
m
p
u
tatio
n
ally
co
s
tly
to
p
r
o
ce
s
s
an
d
an
al
y
z
e
th
is
d
ata
in
r
ea
l
-
tim
e.
-
R
esear
ch
g
ap
:
f
in
d
in
g
a
b
alan
ce
b
etwe
en
co
m
p
u
tatio
n
al
ef
f
icien
cy
an
d
r
ea
l
-
tim
e
r
esp
o
n
s
iv
en
ess
is
s
till
d
if
f
icu
lt,
p
ar
ticu
lar
ly
as
th
e
am
o
u
n
t
o
f
d
ata
g
r
o
ws
d
u
e
t
o
th
e
u
s
e
o
f
i
n
ter
n
et
o
f
th
in
g
s
(
I
o
T
)
a
n
d
co
n
n
ec
ted
ca
r
tech
n
o
lo
g
ies.
b)
C
o
n
tr
o
llin
g
v
ia
ce
n
tr
alize
d
an
d
d
ec
en
tr
alize
d
wa
y
-
T
r
ad
e
-
o
f
f
:
c
o
o
r
d
in
atin
g
an
d
c
o
n
t
r
o
llin
g
t
r
af
f
ic
m
a
n
ag
em
en
t
d
ec
is
io
n
s
is
m
ad
e
s
im
p
ler
with
ce
n
tr
alize
d
s
y
s
tem
s
.
I
n
a
cr
is
is
,
th
ey
m
ig
h
t b
ec
o
m
e
o
v
er
b
u
r
d
e
n
ed
an
d
ex
p
er
ien
ce
s
in
g
le
p
o
in
ts
o
f
f
ailu
r
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
co
mp
a
ct
s
tu
d
y
o
n
meth
o
d
o
l
o
g
ica
l in
s
ig
h
ts
o
n
n
a
vig
a
tio
n
a
l sys
tem
s
in
…
(
P
r
a
th
ib
h
a
Th
i
mma
p
p
a
)
589
-
R
esear
ch
g
ap
:
a
lth
o
u
g
h
d
ec
e
n
tr
alize
d
s
y
s
tem
s
(
s
u
ch
as
v
eh
icle
-
to
-
v
eh
icle
o
r
v
e
h
icle
-
to
-
in
f
r
astru
ctu
r
e
co
m
m
u
n
icatio
n
)
m
ay
b
e
m
o
r
e
r
esil
ien
t
an
d
s
ca
lab
le,
th
ey
also
n
ee
d
in
tr
icate
co
o
r
d
i
n
atio
n
m
ec
h
an
is
m
s
an
d
m
ig
h
t n
o
t
b
e
as g
o
o
d
at
m
an
ag
in
g
u
n
f
o
r
eseen
in
cid
e
n
ts
o
r
tr
af
f
ic
d
is
r
u
p
tio
n
s
.
c)
Veh
icu
lar
au
to
n
o
m
y
a
n
d
in
f
r
a
s
tr
u
ctu
r
e
-
T
r
ad
e
-
o
f
f
:
t
h
e
im
p
lem
e
n
t
atio
n
o
f
s
m
ar
t
in
f
r
astru
ct
u
r
e
(
s
u
c
h
as
tr
af
f
ic
lig
h
ts
,
ca
m
er
as,
an
d
s
en
s
o
r
s
)
m
ay
h
av
e
an
im
p
ac
t
o
n
h
o
w
well
v
eh
icle
tr
af
f
ic
m
an
ag
em
e
n
t
s
y
s
tem
s
wo
r
k
.
B
u
t
p
u
ttin
g
s
u
ch
in
f
r
astru
ctu
r
e
in
p
lace
o
n
a
lar
g
e
s
ca
le
ca
n
b
e
co
s
tly
an
d
ch
allen
g
in
g
.
-
R
esear
ch
g
ap
:
th
e
d
ev
elo
p
m
e
n
t
o
f
au
to
n
o
m
o
u
s
v
eh
icles
r
aises
th
e
is
s
u
e
o
f
h
o
w
in
f
r
astru
ctu
r
e
o
u
g
h
t
to
ch
an
g
e.
Sh
o
u
ld
th
e
em
p
h
asis
b
e
o
n
en
ab
lin
g
v
e
h
icle
au
to
n
o
m
y
with
litt
le
d
ep
en
d
en
c
e
o
n
ex
ter
n
a
l
in
f
r
astru
ctu
r
e,
o
r
s
h
o
u
l
d
it
b
e
d
esig
n
ed
to
f
u
n
ctio
n
with
b
o
th
h
u
m
an
-
d
r
iv
en
a
n
d
au
to
n
o
m
o
u
s
v
e
h
icles?
T
h
e
s
o
lu
tio
n
is
s
till
u
n
k
n
o
wn
,
an
d
m
o
v
in
g
to
war
d
a
c
o
m
p
le
tely
au
to
n
o
m
o
u
s
s
y
s
tem
h
as
i
ts
o
wn
s
et
o
f
d
if
f
icu
lties
.
d)
T
r
af
f
ic
m
an
a
g
em
en
t
v
ia
d
y
n
a
m
ic
an
d
s
tatic
in
f
r
astru
ctu
r
e
-
T
r
ad
e
-
o
f
f
:
a
lo
t
o
f
cu
r
r
en
t
s
y
s
tem
s
ar
e
d
ep
en
d
en
t
o
n
f
ix
e
d
in
f
r
astru
ctu
r
e,
lik
e
tr
af
f
ic
lig
h
ts
an
d
s
en
s
o
r
s
,
wh
ich
ar
e
d
if
f
icu
lt
to
m
o
d
if
y
in
r
esp
o
n
s
e
to
ab
r
u
p
t
s
h
if
ts
in
tr
af
f
ic
p
atter
n
s
.
Ho
wev
er
,
d
y
n
a
m
ic,
f
lex
ib
le
s
y
s
tem
s
(
s
u
ch
as
r
ea
l
-
tim
e
tr
af
f
ic
r
er
o
u
tin
g
o
r
ad
ap
tiv
e
tr
af
f
i
c
s
ig
n
als)
n
ee
d
s
o
p
h
is
ticated
a
lg
o
r
ith
m
s
an
d
ca
n
b
e
m
o
r
e
co
s
tly
an
d
co
m
p
licated
to
im
p
lem
en
t.
-
R
esear
ch
g
ap
:
o
n
e
u
n
r
eso
lv
e
d
ch
all
en
g
e
is
cr
ea
tin
g
s
y
s
te
m
s
th
at
ca
n
s
wif
tly
an
d
ef
f
ic
ien
tly
ad
ju
s
t
to
tr
af
f
ic
co
n
d
itio
n
s
in
r
ea
l
tim
e
ac
r
o
s
s
ex
p
an
s
iv
e
u
r
b
an
en
v
ir
o
n
m
e
n
ts
with
o
u
t
n
ec
ess
itatin
g
co
n
tin
u
al
h
u
m
an
i
n
ter
v
en
tio
n
o
r
ca
u
s
in
g
n
etwo
r
k
in
s
tab
ilit
y
.
(
a)
(
b
)
(
c)
Fig
u
r
e
2
.
An
al
y
s
is
o
f
r
esear
ch
tr
en
d
;
(
a)
A
I
-
b
ased
a
p
p
r
o
ac
h
e
s
,
(
b
)
n
o
n
-
AI
b
ased
ap
p
r
o
ac
h
e
s
,
an
d
(
c)
a
d
d
r
ess
ed
r
esear
ch
p
r
o
b
le
m
s
4.
CO
NCLU
SI
O
N
T
h
is
cu
r
r
en
t
p
a
p
er
h
as
p
r
ese
n
ted
a
cr
is
p
d
is
cu
s
s
io
n
r
elate
d
to
t
h
e
cu
r
r
en
t
f
o
r
m
o
f
m
et
h
o
d
o
lo
g
ies
ad
o
p
ted
in
e
x
is
tin
g
s
y
s
tem
to
war
d
s
n
av
ig
atio
n
al
s
y
s
tem
.
T
h
e
co
n
tr
ib
u
tio
n
o
f
th
is
p
ap
er
is
as
f
o
llo
ws:
i)
th
e
s
tu
d
y
p
r
esen
ts
a
cr
is
p
in
s
ig
h
t
s
o
n
n
av
ig
atio
n
al
s
y
s
tem
m
eth
o
d
s
o
n
v
ar
io
u
s
tech
n
iq
u
es
with
r
esp
ec
t
to
th
eir
s
tr
en
g
th
an
d
wea
k
n
ess
,
ii)
th
e
d
is
cu
s
s
io
n
o
f
th
e
ad
o
p
ted
m
et
h
o
d
o
lo
g
ies
ar
e
ca
r
r
ied
o
u
t
wit
h
r
esp
ec
t
to
v
ar
i
o
u
s
ca
teg
o
r
ies
v
iz.
GPS
-
b
ased
n
a
v
ig
atio
n
,
v
is
io
n
-
b
ased
n
av
ig
at
io
n
,
r
o
u
te
p
la
n
n
in
g
,
e
x
p
er
im
e
n
tal
m
o
d
ellin
g
,
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
1
,
Ju
ly
20
25
:
585
-
5
9
1
590
m
ac
h
in
e
lear
n
in
g
m
eth
o
d
s
,
iii)
th
e
r
ev
iew
s
tu
d
y
h
as
also
ex
h
ib
ited
th
e
p
r
o
m
in
e
n
t
f
in
d
in
g
s
o
f
r
esear
ch
tr
en
d
s
to
s
h
o
wca
s
es
d
eg
r
ee
s
o
f
a
d
o
p
t
io
n
o
f
AI
a
n
d
n
o
n
-
AI
tec
h
n
iq
u
es
as
well
as
d
if
f
er
en
t
n
u
m
b
er
o
f
p
r
o
b
lem
s
b
ein
g
ad
d
r
ess
ed
,
iv
)
th
e
p
a
p
er
h
as
also
id
en
tifie
d
th
e
s
ig
n
if
ican
t
is
s
u
es
in
f
o
r
m
o
f
r
esear
ch
tr
ad
e
-
o
f
f
a
n
d
f
in
ally
ev
o
lv
ed
i
n
to
c
o
n
v
er
g
ed
h
ig
h
l
ig
h
ts
o
f
r
esear
c
h
g
a
p
.
T
h
e
f
u
tu
r
e
wo
r
k
will
b
e
ca
r
r
ied
o
u
t
in
th
e
d
ir
ec
tio
n
o
f
ad
d
r
ess
in
g
th
e
ab
o
v
e
-
m
e
n
tio
n
ed
r
esear
c
h
tr
a
d
e
-
o
f
f
a
n
d
m
ee
t
t
h
e
r
esear
c
h
g
a
p
.
Fo
r
th
i
s
p
u
r
p
o
s
e,
a
n
o
v
el
m
ac
h
in
e
lear
n
in
g
ap
p
r
o
ac
h
w
ill
b
e
d
e
v
elo
p
e
d
th
at
ca
n
o
f
f
er
o
p
tim
ized
a
n
aly
s
is
o
n
tr
af
f
ic
d
ata
w
h
ich
ca
n
f
u
r
th
er
f
ac
ilit
ate
au
to
n
o
m
o
u
s
n
av
ig
atio
n
s
y
s
tem
co
n
s
id
er
in
g
ex
ten
s
iv
e
g
eo
g
r
ap
h
ical
lo
ca
tio
n
with
o
u
t
m
u
ch
d
ep
e
n
d
e
n
cies o
n
in
f
r
astru
ctu
r
e
.
ACK
NO
WL
E
DG
E
M
E
NT
W
e
wi
s
h
to
co
n
f
ir
m
th
at
n
o
k
n
o
wn
co
n
f
licts
o
f
in
ter
est
ar
e
ass
o
ciate
d
wi
th
th
is
p
u
b
licati
o
n
an
d
all
th
e
au
th
o
r
s
h
av
e
co
n
tr
ib
u
ted
e
q
u
ally
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
Au
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Pra
th
ib
h
a
T
h
im
m
a
p
p
a
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Ma
y
u
r
i K
u
n
d
u
✓
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
DATA
AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
ata
th
at
s
u
p
p
o
r
t
th
e
f
i
n
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
av
aila
b
le
o
n
r
eq
u
est
f
r
o
m
th
e
co
r
r
esp
o
n
d
in
g
au
th
o
r
.
RE
F
E
R
E
NC
E
S
[
1
]
S
.
A
.
T
.
A
l
A
z
h
i
ma
,
D
.
L.
H
a
k
i
m
,
R
.
I
.
N
u
l
f
a
t
w
a
,
N
.
F
.
A
.
H
a
k
i
m
,
a
n
d
M
.
A
l
Q
i
b
t
i
y
a
,
“
C
u
mu
l
a
t
i
v
e
e
r
r
o
r
c
o
r
r
e
c
t
i
o
n
o
f
i
n
e
r
t
i
a
l
n
a
v
i
g
a
t
i
o
n
s
y
st
e
ms
u
s
i
n
g
LI
D
A
R
s
e
n
s
o
r
s
a
n
d
e
x
t
e
n
d
e
d
K
a
l
m
a
n
f
i
l
t
e
r
,
”
I
n
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
E
l
e
c
t
r
i
c
a
l
En
g
i
n
e
e
ri
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
(
I
J
EEC
S
)
,
v
o
l
.
3
4
,
n
o
.
2
,
p
.
8
7
8
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
e
c
s.v
3
4
.
i
2
.
p
p
8
7
8
-
887
.
[
2
]
I
.
K
a
ma
l
,
K
.
H
o
u
sn
i
,
a
n
d
M
.
Y
.
H
a
d
i
,
“
A
s
u
r
v
e
y
o
f
a
u
t
o
n
o
m
o
u
s
v
e
h
i
c
l
e
s
f
o
r
t
r
a
f
f
i
c
a
n
a
l
y
si
s,
”
I
n
d
o
n
e
s
i
a
n
J
o
u
rn
a
l
o
f
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
ri
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
(
I
J
EEC
S
)
,
v
o
l
.
3
3
,
n
o
.
2
,
p
p
.
1
0
1
6
–
1
0
2
9
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
e
c
s.
v
3
3
.
i
2
.
p
p
1
0
1
6
-
1
0
2
9
.
[
3
]
A
.
S
t
a
t
e
c
z
n
y
,
W
.
K
a
z
i
m
i
e
r
s
k
i
,
a
n
d
P
.
B
u
r
d
z
i
a
k
o
w
s
k
i
,
“
S
e
n
s
o
r
s
a
n
d
s
y
st
e
m
f
o
r
v
e
h
i
c
l
e
n
a
v
i
g
a
t
i
o
n
,
”
S
e
n
s
o
rs
(
B
a
s
e
l
)
,
v
o
l
.
2
2
,
n
o
.
5
,
p
.
1
7
2
3
,
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
2
0
5
1
7
2
3
.
[
4
]
X
.
Li
,
Q
.
Li
,
C
.
Y
i
n
,
a
n
d
J
.
Z
h
a
n
g
,
“
A
u
t
o
n
o
m
o
u
s
n
a
v
i
g
a
t
i
o
n
t
e
c
h
n
o
l
o
g
y
f
o
r
l
o
w
-
sp
e
e
d
s
ma
l
l
u
n
m
a
n
n
e
d
v
e
h
i
c
l
e
:
A
n
o
v
e
r
v
i
e
w
,
”
Wo
r
l
d
El
e
c
t
ri
c
V
e
h
.
J
.
,
v
o
l
.
1
3
,
n
o
.
9
,
p
.
1
6
5
,
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
w
e
v
j
1
3
0
9
0
1
6
5
.
[
5
]
A
.
F
e
st
a
,
P
.
G
o
a
t
i
n
,
a
n
d
F
.
V
i
c
i
n
i
,
“
N
a
v
i
g
a
t
i
o
n
s
y
st
e
m
-
b
a
se
d
r
o
u
t
i
n
g
st
r
a
t
e
g
i
e
s
i
n
t
r
a
f
f
i
c
f
l
o
w
s
o
n
n
e
t
w
o
r
k
s,
”
J
.
O
p
t
i
m
.
T
h
e
o
ry
Ap
p
l
.
,
v
o
l
.
1
9
8
,
n
o
.
3
,
p
p
.
9
3
0
–
9
5
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
0
9
5
7
-
0
2
3
-
0
2
2
5
0
-
z
.
[
6
]
J.
Jeo
n
g
e
t
a
l
.
,
“
A
c
o
mp
r
e
h
e
n
s
i
v
e
su
r
v
e
y
o
n
v
e
h
i
c
u
l
a
r
n
e
t
w
o
r
k
s
f
o
r
sm
a
r
t
r
o
a
d
s:
a
f
o
c
u
s
o
n
I
P
-
b
a
se
d
a
p
p
r
o
a
c
h
e
s
,
”
V
e
h
.
C
o
m
m
u
n
.
,
v
o
l
.
2
9
,
n
o
.
1
0
0
3
3
4
,
p
.
1
0
0
3
3
4
,
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
v
e
h
c
o
m.
2
0
2
1
.
1
0
0
3
3
4
.
[
7
]
N
.
K
a
m
a
t
h
B
e
t
a
l
.
,
“
TA
K
EN
:
a
t
r
a
f
f
i
c
k
n
o
w
l
e
d
g
e
-
b
a
se
d
n
a
v
i
g
a
t
i
o
n
s
y
s
t
e
m
f
o
r
c
o
n
n
e
c
t
e
d
a
n
d
a
u
t
o
n
o
m
o
u
s
v
e
h
i
c
l
e
s,”
S
e
n
s
o
rs
(
Ba
se
l
)
,
v
o
l
.
2
3
,
n
o
.
2
,
p
.
6
5
3
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s2
3
0
2
0
6
5
3
.
[
8
]
M
.
A
sl
i
n
e
z
h
a
d
,
A
.
M
a
l
e
k
i
j
a
v
a
n
,
a
n
d
P
.
A
b
b
a
si
,
“
A
N
N
-
a
ssi
s
t
e
d
r
o
b
u
s
t
G
P
S
/
I
N
S
i
n
f
o
r
mat
i
o
n
f
u
s
i
o
n
t
o
b
r
i
d
g
e
G
P
S
o
u
t
a
g
e
,
”
EU
RA
S
I
P
J
.
Wi
r
e
l
.
C
o
m
m
u
n
.
N
e
t
w
.
,
v
o
l
.
2
0
2
0
,
n
o
.
1
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
8
6
/
s
1
3
6
3
8
-
0
2
0
-
0
1
7
4
7
-
9
.
[
9
]
S
.
Y
u
e
,
L.
C
o
n
g
,
H
.
Q
i
n
,
B
.
Li
,
a
n
d
J.
Y
a
o
,
“
A
r
o
b
u
st
f
u
si
o
n
me
t
h
o
d
o
l
o
g
y
f
o
r
M
E
M
S
-
b
a
se
d
l
a
n
d
v
e
h
i
c
l
e
n
a
v
i
g
a
t
i
o
n
i
n
G
N
S
S
-
c
h
a
l
l
e
n
g
e
d
e
n
v
i
r
o
n
me
n
t
s,”
I
EEE
A
c
c
e
ss,
v
o
l
.
8
,
p
p
.
4
4
0
8
7
–
4
4
0
9
9
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss
.
2
0
2
0
.
2
9
7
7
4
7
4
.
[
1
0
]
S
.
B
a
l
d
o
n
i
,
F
.
B
a
t
t
i
st
i
,
M
.
B
r
i
z
z
i
,
a
n
d
A
.
N
e
r
i
,
“
G
N
S
S
-
i
m
a
g
i
n
g
d
a
t
a
f
u
si
o
n
f
o
r
i
n
t
e
g
r
i
t
y
e
n
h
a
n
c
e
m
e
n
t
i
n
a
u
t
o
n
o
m
o
u
s
v
e
h
i
c
l
e
s,”
I
EEE
T
ra
n
s.
Ae
r
o
s
p
.
El
e
c
t
r
o
n
.
S
y
s
t
.
,
v
o
l
.
5
8
,
n
o
.
5
,
p
p
.
4
6
9
0
–
4
7
0
4
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
t
a
e
s
.
2
0
2
2
.
3
1
6
5
7
7
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
co
mp
a
ct
s
tu
d
y
o
n
meth
o
d
o
l
o
g
ica
l in
s
ig
h
ts
o
n
n
a
vig
a
tio
n
a
l sys
tem
s
in
…
(
P
r
a
th
ib
h
a
Th
i
mma
p
p
a
)
591
[
1
1
]
S
.
La
t
i
f
,
T.
Li
n
d
b
ä
c
k
,
H
.
Li
d
e
s
k
o
g
,
a
n
d
M
.
K
a
r
l
b
e
r
g
,
“
O
u
t
d
o
o
r
t
e
s
t
s
o
f
a
u
t
o
n
o
mo
u
s
n
a
v
i
g
a
t
i
o
n
s
y
st
e
m
b
a
s
e
d
o
n
t
w
o
d
i
f
f
e
r
e
n
t
r
e
f
e
r
e
n
c
e
p
o
i
n
t
s
o
f
P
u
r
e
P
u
r
su
i
t
a
l
g
o
r
i
t
h
m
f
o
r
1
0
-
t
o
n
a
r
t
i
c
u
l
a
t
e
d
v
e
h
i
c
l
e
,
”
I
EEE
Ac
c
e
s
s,
v
o
l
.
1
2
,
p
p
.
8
4
1
3
–
8
4
2
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
s
s.
2
0
2
4
.
3
3
5
3
6
1
6
.
[
1
2
]
W
.
A
h
ma
d
,
G
.
H
u
s
n
a
i
n
,
S
.
A
h
me
d
,
F
.
A
a
d
i
l
,
a
n
d
S
.
Li
m
,
“
R
e
c
e
i
v
e
d
s
i
g
n
a
l
st
r
e
n
g
t
h
‐
b
a
se
d
l
o
c
a
l
i
z
a
t
i
o
n
f
o
r
v
e
h
i
c
l
e
d
i
st
a
n
c
e
e
st
i
mat
i
o
n
i
n
v
e
h
i
c
u
l
a
r
a
d
h
o
c
n
e
t
w
o
r
k
s (V
A
N
ETs)
,
”
J
o
u
rn
a
l
o
f
S
e
n
s
o
rs
,
v
o
l
.
2
0
2
3
,
n
o
.
1
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
3
/
7
8
2
6
9
9
2
.
[
1
3
]
A
.
L
.
B
a
l
l
a
r
d
i
n
i
e
t
a
l
.
,
“
A
n
e
g
o
-
L
a
n
e
e
s
t
i
m
a
t
i
o
n
me
t
h
o
d
w
i
t
h
se
n
s
o
r
f
a
i
l
u
r
e
m
o
d
e
l
i
n
g
,
”
I
EEE
A
c
c
e
ss
,
v
o
l
.
1
2
,
p
p
.
3
4
5
3
9
–
3
4
5
5
2
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss
.
2
0
2
4
.
3
3
6
4
6
1
2
.
[
1
4
]
Z.
C
a
i
,
X
.
C
u
i
,
X
.
S
u
,
Q
.
M
i
,
L.
G
u
o
,
a
n
d
Z
.
D
i
n
g
,
“
A
n
o
v
e
l
v
e
c
t
o
r
-
b
a
se
d
d
y
n
a
mi
c
p
a
t
h
p
l
a
n
n
i
n
g
me
t
h
o
d
i
n
u
r
b
a
n
r
o
a
d
n
e
t
w
o
r
k
,
”
I
EEE
A
c
c
e
ss,
v
o
l
.
8
,
p
p
.
9
0
4
6
–
9
0
6
0
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss
.
2
0
1
9
.
2
9
6
2
3
9
2
.
[
1
5
]
T.
O
r
t
e
t
a
l
.
,
“
M
a
p
Li
t
e
:
a
u
t
o
n
o
mo
u
s
i
n
t
e
r
sec
t
i
o
n
n
a
v
i
g
a
t
i
o
n
w
i
t
h
o
u
t
a
d
e
t
a
i
l
e
d
p
r
i
o
r
m
a
p
,
”
I
EEE
R
o
b
o
t
.
A
u
t
o
m
.
L
e
t
t
.
,
v
o
l
.
5
,
n
o
.
2
,
p
p
.
5
5
6
–
5
6
3
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
l
r
a
.
2
0
1
9
.
2
9
6
1
0
5
1
.
[
1
6
]
J.
L
o
p
e
z
,
P
.
S
a
n
c
h
e
z
-
V
i
l
a
r
i
n
o
,
R
.
S
a
n
z
,
a
n
d
E.
P
a
z
,
“
Ef
f
i
c
i
e
n
t
l
o
c
a
l
n
a
v
i
g
a
t
i
o
n
a
p
p
r
o
a
c
h
f
o
r
a
u
t
o
n
o
m
o
u
s
d
r
i
v
i
n
g
v
e
h
i
c
l
e
s,”
I
EEE
Ac
c
e
ss,
v
o
l
.
9
,
p
p
.
7
9
7
7
6
–
7
9
7
9
2
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss
.
2
0
2
1
.
3
0
8
4
8
0
7
.
[
1
7
]
K
.
O
t
a
k
i
,
T.
M
a
e
d
a
,
T.
Y
o
s
h
i
m
u
r
a
,
a
n
d
H
.
S
a
k
a
i
,
“
R
o
a
mi
n
g
n
a
v
i
g
a
t
i
o
n
:
d
i
v
e
r
se
c
o
n
s
t
r
a
i
n
e
d
p
a
t
h
s
u
s
i
n
g
h
e
u
r
i
st
i
c
sea
r
c
h
,
”
I
EE
E
Ac
c
e
ss,
v
o
l
.
1
1
,
p
p
.
7
5
6
1
7
–
7
5
6
2
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss.
2
0
2
3
.
3
2
9
5
8
3
0
.
[
1
8
]
E.
V
i
t
a
l
i
e
t
a
l
.
,
“
A
n
e
f
f
i
c
i
e
n
t
M
o
n
t
e
C
a
r
l
o
-
b
a
s
e
d
p
r
o
b
a
b
i
l
i
s
t
i
c
t
i
me
-
d
e
p
e
n
d
e
n
t
r
o
u
t
i
n
g
c
a
l
c
u
l
a
t
i
o
n
t
a
r
g
e
t
i
n
g
a
serv
e
r
-
si
d
e
c
a
r
n
a
v
i
g
a
t
i
o
n
s
y
st
e
m,
”
I
E
EE
T
r
a
n
sa
c
t
i
o
n
s
o
n
Em
e
r
g
i
n
g
T
o
p
i
c
s
i
n
C
o
m
p
u
t
i
n
g
,
v
o
l
.
9
,
n
o
.
2
,
p
p
.
1
0
0
6
–
1
0
1
9
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
t
e
t
c
.
2
0
1
9
.
2
9
1
9
8
0
1
.
[
1
9
]
M
.
W
a
n
g
,
A
.
D
o
mm
e
s,
V
.
R
e
n
a
u
d
i
n
,
a
n
d
N
.
Zh
u
,
“
A
n
a
l
y
s
i
s
o
f
s
p
a
t
i
a
l
l
a
n
d
mar
k
s
f
o
r
s
e
a
m
l
e
ss
u
r
b
a
n
n
a
v
i
g
a
t
i
o
n
o
f
v
i
s
u
a
l
l
y
i
mp
a
i
r
e
d
p
e
o
p
l
e
,
”
J
.
I
n
d
.
S
e
a
.
P
o
s.
N
a
v
.
,
v
o
l
.
1
,
p
p
.
9
3
–
1
0
3
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
j
i
s
p
i
n
.
2
0
2
3
.
3
3
3
3
8
5
2
.
[
2
0
]
K
.
W
a
n
g
e
t
a
l
.
,
“
S
m
a
r
t
m
o
b
i
l
i
t
y
d
i
g
i
t
a
l
t
w
i
n
b
a
se
d
a
u
t
o
mat
e
d
v
e
h
i
c
l
e
n
a
v
i
g
a
t
i
o
n
sy
s
t
e
m
:
a
p
r
o
o
f
o
f
c
o
n
c
e
p
t
,
”
I
EEE
T
r
a
n
s
.
I
n
t
e
l
l
.
Ve
h
.
,
v
o
l
.
9
,
n
o
.
3
,
p
p
.
4
3
4
8
–
4
3
6
1
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
t
i
v
.
2
0
2
4
.
3
3
6
8
1
0
9
.
[
2
1
]
C
.
Y
a
o
,
C
.
Li
u
,
M
.
L
i
u
,
a
n
d
Q
.
C
h
e
n
,
“
N
a
v
i
g
a
t
i
o
n
i
n
m
u
l
t
i
-
a
g
e
n
t
s
y
s
t
e
m
w
i
t
h
si
d
e
p
r
e
f
e
r
e
n
c
e
p
a
t
h
o
p
t
i
m
i
z
e
r
,
”
I
E
EE
Ac
c
e
ss,
v
o
l
.
9
,
p
p
.
1
1
3
9
4
4
–
1
1
3
9
5
3
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
s
s.
2
0
2
1
.
3
1
0
4
4
7
0
.
[
2
2
]
H
.
Li
,
J
.
C
h
e
n
,
C
.
Y
a
n
g
,
X
.
C
h
e
n
,
L
.
C
h
a
n
g
,
a
n
d
J.
Li
u
,
“
S
m
a
r
t
a
n
d
e
f
f
i
c
i
e
n
t
EV
c
h
a
r
g
i
n
g
n
a
v
i
g
a
t
i
o
n
s
c
h
e
me
i
n
v
e
h
i
c
u
l
a
r
e
d
g
e
c
o
m
p
u
t
i
n
g
n
e
t
w
o
r
k
s,”
J
.
C
l
o
u
d
C
o
m
p
u
t
.
A
d
v
.
S
y
st
.
A
p
p
l
.
,
v
o
l
.
1
2
,
n
o
.
1
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
8
6
/
s
1
3
6
7
7
-
023
-
0
0
5
4
7
-
y
.
[
2
3
]
J.
C
.
O
l
i
v
e
r
o
s
a
n
d
H
.
A
sh
r
a
f
i
u
o
n
,
“
M
u
l
t
i
-
v
e
h
i
c
l
e
n
a
v
i
g
a
t
i
o
n
u
si
n
g
c
o
o
p
e
r
a
t
i
v
e
l
o
c
a
l
i
z
a
t
i
o
n
,
”
E
l
e
c
t
r
o
n
i
c
s
(
B
a
s
e
l
)
,
v
o
l
.
1
2
,
n
o
.
2
4
,
p
.
4
9
4
5
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s1
2
2
4
4
9
4
5
.
[
2
4
]
Y
.
S
u
n
,
L
.
G
u
a
n
,
M
.
W
u
,
Y
.
G
a
o
,
a
n
d
Z.
C
h
a
n
g
,
“
V
e
h
i
c
u
l
a
r
n
a
v
i
g
a
t
i
o
n
b
a
s
e
d
o
n
t
h
e
f
u
si
o
n
o
f
3
D
-
R
I
S
S
a
n
d
mac
h
i
n
e
l
e
a
r
n
i
n
g
e
n
h
a
n
c
e
d
v
i
s
u
a
l
d
a
t
a
i
n
c
h
a
l
l
e
n
g
i
n
g
e
n
v
i
r
o
n
m
e
n
t
s,
”
E
l
e
c
t
r
o
n
i
c
s
(
Ba
se
l
)
,
v
o
l
.
9
,
n
o
.
1
,
p
.
1
9
3
,
2
0
2
0
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s
9
0
1
0
1
9
3
.
[
2
5
]
D
.
C
h
e
n
,
N
.
C
h
e
n
,
X
.
Zh
a
n
g
,
a
n
d
Y
.
G
u
a
n
,
“
R
e
a
l
-
t
i
me
r
o
a
d
p
o
t
h
o
l
e
ma
p
p
i
n
g
b
a
se
d
o
n
v
i
b
r
a
t
i
o
n
a
n
a
l
y
si
s
i
n
s
mart
c
i
t
y
,
”
I
EEE
J
.
S
e
l
.
T
o
p
.
A
p
p
l
.
E
a
rt
h
O
b
s.
Re
m
o
t
e
S
e
n
s
.
,
v
o
l
.
1
5
,
p
p
.
6
9
7
2
–
6
9
8
4
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
j
s
t
a
r
s.
2
0
2
2
.
3
2
0
0
1
4
7
.
[
2
6
]
L.
C
h
e
n
,
Y
.
L
i
u
,
P
.
D
o
n
g
,
J.
Li
a
n
g
,
a
n
d
A
.
W
a
n
g
,
“
A
n
i
n
t
e
l
l
i
g
e
n
t
n
a
v
i
g
a
t
i
o
n
c
o
n
t
r
o
l
a
p
p
r
o
a
c
h
f
o
r
a
u
t
o
n
o
m
o
u
s
u
n
m
a
n
n
e
d
v
e
h
i
c
l
e
s
v
i
a
d
e
e
p
l
e
a
r
n
i
n
g
-
e
n
h
a
n
c
e
d
v
i
s
u
a
l
S
LA
M
f
r
a
mew
o
r
k
,
”
I
E
EE
Ac
c
e
ss,
v
o
l
.
1
1
,
p
p
.
1
1
9
0
6
7
–
1
1
9
0
7
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
s
s.
2
0
2
3
.
3
3
2
6
7
5
4
.
[
2
7
]
S
.
D
u
,
S
.
Zh
a
n
g
,
a
n
d
X
.
G
a
n
,
“
A
h
y
b
r
i
d
f
u
s
i
o
n
s
t
r
a
t
e
g
y
f
o
r
t
h
e
l
a
n
d
v
e
h
i
c
l
e
n
a
v
i
g
a
t
i
o
n
u
si
n
g
M
EM
S
I
N
S
,
o
d
o
m
e
t
e
r
a
n
d
G
N
S
S
,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
8
,
p
p
.
1
5
2
5
1
2
–
1
5
2
5
2
2
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
ss.2
0
2
0
.
3
0
1
6
0
0
4
.
[
2
8
]
N
.
S
.
M
a
n
i
k
a
n
d
a
n
,
G
.
K
a
l
i
y
a
p
e
r
u
mal
,
a
n
d
Y
.
W
a
n
g
,
“
A
d
h
o
c
-
o
b
s
t
a
c
l
e
a
v
o
i
d
a
n
c
e
-
b
a
se
d
n
a
v
i
g
a
t
i
o
n
sy
st
e
m
u
si
n
g
d
e
e
p
r
e
i
n
f
o
r
c
e
me
n
t
l
e
a
r
n
i
n
g
f
o
r
se
l
f
-
d
r
i
v
i
n
g
v
e
h
i
c
l
e
s,”
I
EEE
A
c
c
e
s
s
,
v
o
l
.
1
1
,
p
p
.
9
2
2
8
5
–
9
2
2
9
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
a
c
c
e
s
s.
2
0
2
3
.
3
2
9
7
6
6
1
.
[
2
9
]
D
.
P
a
p
a
g
i
a
n
n
i
s,
E.
Tsi
o
u
mas
,
N
.
J
a
b
b
o
u
r
,
a
n
d
C
.
M
a
d
e
m
l
i
s
,
“
A
c
o
s
t
-
e
f
f
e
c
t
i
v
e
a
n
d
h
i
g
h
l
y
a
c
c
u
r
a
t
e
o
b
ser
v
e
r
f
o
r
t
h
e
r
e
a
l
-
t
i
me
e
st
i
mat
i
o
n
o
f
t
h
e
v
e
h
i
c
l
e
v
e
l
o
c
i
t
y
a
n
d
t
h
e
r
o
a
d
i
n
c
l
i
n
a
t
i
o
n
a
n
d
b
a
n
k
a
n
g
l
e
s,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
1
0
7
8
6
7
–
1
0
7
8
7
9
,
2
0
2
3
,
d
o
i:
1
0
.
1
1
0
9
/
a
c
c
e
s
s.
2
0
2
3
.
3
3
2
0
2
8
0
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Pra
th
ib
h
a
Th
i
m
m
a
p
p
a
re
c
e
iv
e
d
h
e
r
B.
E
fro
m
Ba
p
u
ji
In
st
it
u
te
o
f
En
g
in
e
e
rin
g
a
n
d
Tec
h
n
o
l
o
g
y
,
Da
v
a
n
g
e
re
,
Ka
rn
a
tak
a
in
2
0
0
4
a
n
d
M
.
Tec
h
fr
o
m
Un
iv
e
rsit
y
o
f
BD
T
Co
ll
e
g
e
o
f
En
g
in
e
e
ri
n
g
,
Da
v
a
n
g
e
re
,
Ka
rn
a
tak
a
in
2
0
0
7
.
In
2
0
0
7
s
h
e
wo
rk
e
d
a
s
a
lec
tu
re
r
i
n
G
M
In
stit
u
te o
f
Tec
h
n
o
l
o
g
y
,
Da
v
a
n
g
e
re
.
F
ro
m
2
0
0
8
t
o
2
0
1
1
wo
r
k
e
d
a
s a
lec
tu
re
r
in
RRCE,
Be
n
g
a
lu
r
u
,
Ka
rn
a
tak
a
.
F
ro
m
2
0
1
1
to
2
0
2
1
wo
r
k
e
d
a
s
a
n
a
ss
istan
t
p
ro
fe
ss
o
r
in
G
o
v
e
rn
m
e
n
t
S
KSJTI,
Be
n
g
a
lu
ru
.
C
u
rre
n
tl
y
wo
rk
in
g
a
s
a
n
a
ss
istan
t
p
ro
fe
ss
o
r
in
G
o
v
e
rn
m
e
n
t
En
g
i
n
e
e
rin
g
C
o
ll
e
g
e
,
Ra
m
a
n
a
g
a
ra
.
He
r
re
s
e
a
rc
h
a
re
a
is
v
e
h
icu
lar
a
d
-
h
o
c
n
e
two
r
k
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
p
ra
th
i
b
h
a
1
9
8
2
@
g
m
a
il
.
c
o
m
.
Ma
y
u
r
i
K
u
n
d
u
re
c
e
iv
e
d
h
e
r
B.
Tec
h
d
e
g
re
e
i
n
i
n
fo
rm
a
ti
o
n
tec
h
n
o
l
o
g
y
fr
o
m
Wes
t
Be
n
g
a
l
Un
i
v
e
rsity
o
f
Tec
h
n
o
lo
g
y
,
Wes
t
Be
n
g
a
l,
in
2
0
1
1
a
n
d
M
.
Tec
h
d
e
g
re
e
i
n
in
fo
rm
a
ti
o
n
tec
h
n
o
l
o
g
y
fr
o
m
In
d
ian
I
n
stit
u
te
o
f
E
n
g
i
n
e
e
rin
g
S
c
ien
c
e
a
n
d
Tec
h
n
o
lo
g
y
(fo
rm
e
rly
k
n
o
w
n
a
s
BES
U),
in
2
0
1
5
.
S
h
e
re
c
e
iv
e
d
h
e
r
P
h
.
D.
d
e
g
re
e
u
n
d
e
r
Visv
e
sv
a
ra
y
a
sc
h
e
m
e
in
c
o
m
p
u
ter
S
c
ien
c
e
a
n
d
En
g
i
n
e
e
rin
g
a
t
th
e
NIT
Aru
n
a
c
h
a
l
P
ra
d
e
sh
,
i
n
2
0
2
0
.
Cu
rre
n
tl
y
wo
r
k
i
n
g
a
s
a
n
As
sista
n
t
P
r
o
fe
ss
o
r
a
t
REVA
U
n
iv
e
rsity
i
n
th
e
S
c
h
o
o
l
o
f
Co
m
p
u
ter
S
c
ien
c
e
a
n
d
E
n
g
i
n
e
e
rin
g
.
He
r
m
a
in
re
se
a
rc
h
in
tere
st
is
wire
les
s
n
e
two
rk
in
g
,
a
rti
ficia
l
in
telli
g
e
n
c
e
a
n
d
m
a
c
h
in
e
lea
rn
in
g
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
k
u
n
d
u
.
m
a
y
u
ri@
g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.