I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
39
,
No
.
2
,
A
u
g
u
s
t
2
0
2
5
,
p
p
.
1
053
~
1
0
6
2
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/ijeecs.v
39
.i
2
.
p
p
1
0
5
3
-
1
0
6
2
1053
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs.ia
esco
r
e.
co
m
Adv
a
ncements
a
n
d challeng
es in
de
ep learning
techni
ques for
lung
disea
se dia
g
no
sis
L
a
x
m
i Ba
g
a
l
k
o
t
,
K
ela
pa
t
i
D
e
p
a
r
t
me
n
t
o
f
C
o
mp
u
t
e
r
S
c
i
e
n
c
e
a
n
d
A
p
p
l
i
c
a
t
i
o
n
,
S
h
r
i
J
a
g
d
i
sh
p
r
a
s
a
d
Jh
a
b
a
r
mal
Ti
b
r
e
w
a
l
a
U
n
i
v
e
r
si
t
y
,
V
i
d
y
a
n
a
g
r
i
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
5
,
2024
R
ev
is
ed
Mar
19
,
2
0
2
5
Acc
ep
ted
J
u
l
1
,
2
0
2
5
Th
is
st
u
d
y
e
x
p
l
o
re
s
t
h
e
a
p
p
li
c
a
ti
o
n
o
f
d
e
e
p
lea
rn
in
g
(DL)
tec
h
n
iq
u
e
s
i
n
d
iag
n
o
sin
g
l
u
n
g
d
ise
a
se
s
u
sin
g
sc
re
e
n
in
g
m
e
th
o
d
s
su
c
h
a
s
Ch
e
st
X
-
Ra
y
s
(CXRs
)
a
n
d
c
o
m
p
u
ted
-
to
m
o
g
ra
p
h
y
(CT)
sc
a
n
s.
Th
e
m
o
ti
v
a
ti
o
n
fo
r
t
h
is
re
se
a
rc
h
ste
m
s
fro
m
th
e
n
e
e
d
fo
r
a
d
v
a
n
c
e
d
d
iag
n
o
stic
to
o
ls
i
n
h
e
a
lt
h
c
a
re
,
with
DL
sh
o
win
g
sig
n
ifi
c
a
n
t
p
o
ten
ti
a
l
i
n
m
e
d
ica
l
ima
g
e
a
n
a
ly
si
s.
De
sp
it
e
a
d
v
a
n
c
e
m
e
n
ts,
c
h
a
ll
e
n
g
e
s
su
c
h
a
s
h
ig
h
c
o
sts
o
f
CT
sc
a
n
s,
p
ro
c
e
s
sin
g
ti
m
e
c
o
n
stra
in
ts,
ima
g
e
n
o
ise
,
a
n
d
v
a
ri
a
b
il
it
y
p
e
rsist.
T
o
a
d
d
re
ss
th
e
se
i
ss
u
e
s,
th
e
stu
d
y
c
o
n
d
u
c
ts
a
t
h
o
r
o
u
g
h
l
it
e
ra
tu
re
su
rv
e
y
to
id
e
n
t
ify
d
iv
e
rse
p
re
p
ro
c
e
ss
in
g
tec
h
n
iq
u
e
s,
d
e
tec
ti
o
n
a
l
g
o
ri
th
m
s
,
a
n
d
c
las
sifica
ti
o
n
m
o
d
e
ls
d
e
sig
n
e
d
f
o
r
CXR
a
n
a
ly
sis.
In
c
o
n
c
lu
si
o
n
,
th
i
s
wo
rk
c
o
n
tri
b
u
tes
to
th
e
a
d
v
a
n
c
e
m
e
n
t
o
f
m
e
d
ica
l
ima
g
in
g
tec
h
n
o
lo
g
ie
s
b
y
o
ffe
ri
n
g
in
n
o
v
a
ti
v
e
so
lu
ti
o
n
s,
a
c
k
n
o
wle
d
g
in
g
e
x
isti
n
g
l
i
m
it
a
ti
o
n
s,
a
n
d
a
d
d
re
ss
in
g
t
h
e
c
h
a
ll
e
n
g
e
s
in
lu
n
g
d
ise
a
se
d
iag
n
o
sis.
F
u
t
u
re
re
se
a
rc
h
sh
o
u
l
d
f
o
c
u
s
o
n
fu
r
th
e
r
re
fi
n
in
g
t
h
e
se
tec
h
n
iq
u
e
s a
n
d
e
x
p
l
o
rin
g
t
h
e
ir
a
p
p
li
c
a
ti
o
n
in
b
r
o
a
d
e
r
c
li
n
ica
l
se
tt
in
g
s.
K
ey
w
o
r
d
s
:
C
h
est X
-
r
ay
s
C
las
s
if
icatio
n
C
o
s
t m
itig
atio
n
Dee
p
lear
n
in
g
Dete
ctio
n
L
u
n
g
d
is
ea
s
es
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
L
ax
m
i Bag
alk
o
t
Dep
ar
tm
en
t o
f
C
o
m
p
u
ter
Scie
n
ce
an
d
Ap
p
licatio
n
,
Sh
r
i Jag
d
is
h
p
r
asad
J
h
ab
ar
m
al
T
ib
r
ewa
la
Un
iv
er
s
ity
Vid
y
an
ag
r
i,
J
h
u
n
jh
u
n
u
B
is
au
R
o
ad
,
C
h
u
d
ela,
Dis
tr
ict
-
J
h
u
n
j
h
u
n
u
,
R
ajasth
an
,
3
3
3
0
1
0
,
I
n
d
ia
E
m
ail: la
x
m
ib
ag
alk
o
t
2
1
@
g
m
a
il.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
g
lo
b
al
e
p
id
em
ic
o
f
C
O
VI
D
-
1
9
h
as
u
n
d
o
u
b
ted
ly
h
a
d
an
en
o
r
m
o
u
s
ef
f
ec
t
o
n
i
n
d
iv
id
u
als
wo
r
ld
wid
e,
b
r
i
n
g
in
g
ab
o
u
t
m
ajo
r
ch
an
g
es
to
th
eir
way
o
f
life
,
em
p
lo
y
m
e
n
t,
an
d
s
o
cial
in
ter
ac
tio
n
s
.
I
n
th
e
p
ast
f
ew
y
ea
r
s
,
th
e
r
e
h
a
v
e
b
e
en
a
lo
t
m
o
r
e
d
ea
th
s
,
wh
ich
is
o
n
e
o
f
th
e
wo
r
s
t
ef
f
ec
ts
b
e
ca
u
s
e
o
f
th
e
g
lo
b
al
ep
id
em
ic
[
1
]
.
SAR
S
-
C
o
V
-
2
,
a
co
r
o
n
a
v
ir
u
s
,
is
r
esp
o
n
s
ib
le
f
o
r
C
OVI
D
-
1
9
[
2
]
,
h
as
led
t
o
a
s
u
r
g
e
in
m
o
r
tality
r
ates
[
3
]
,
o
v
er
wh
elm
in
g
h
ea
lt
h
ca
r
e
s
y
s
tem
s
an
d
p
o
s
in
g
u
n
p
r
ec
ed
en
ted
c
h
allen
g
es
to
p
u
b
li
c
h
ea
lth
wo
r
ld
wid
e
[
4
]
.
Ap
ar
t
f
r
o
m
its
im
m
ed
iate
ef
f
ec
ts
,
a
n
u
m
b
er
o
f
ch
r
o
n
ic
i
s
s
u
es,
p
r
im
ar
ily
p
er
tain
i
n
g
to
th
e
air
way
s
y
s
tem
,
h
av
e
b
ee
n
lin
k
ed
t
o
C
OVI
D
-
1
9
[
5
]
.
Am
o
n
g
th
e
m
y
r
ia
d
c
o
m
p
licatio
n
s
,
lu
n
g
d
is
ea
s
es
h
av
e
em
er
g
ed
as
a
p
r
o
m
in
e
n
t c
o
n
ce
r
n
[
6
]
.
T
h
e
r
e
ar
e
th
r
ee
p
r
im
ar
y
ca
teg
o
r
ies o
f
lu
n
g
d
is
ea
s
es: lu
n
g
cir
cu
latio
n
,
air
way
,
an
d
lu
n
g
tis
s
u
e.
E
ac
h
o
f
t
h
ese
k
in
d
s
o
f
co
n
d
itio
n
s
h
as
its
o
w
n
u
n
iq
u
e
f
ea
tu
r
es
an
d
th
e
r
ap
eu
tic
o
p
ti
o
n
s
th
at
n
ee
d
to
b
e
co
n
s
id
er
ed
wh
en
m
a
n
ag
in
g
p
atien
ts
[
7
]
.
Ma
n
y
d
if
f
e
r
en
t
k
in
d
s
o
f
illn
ess
es
g
o
u
n
d
er
th
e
u
m
b
r
ella
ter
m
“r
esp
ir
ato
r
y
d
is
ea
s
es,”
an
d
t
h
ey
all
h
a
v
e
th
e
p
o
ten
tial
to
s
ev
er
ely
a
f
f
ec
t
lu
n
g
f
u
n
ctio
n
an
d
g
en
er
al
h
ea
lth
.
Am
o
n
g
th
e
m
o
s
t
co
m
m
o
n
co
n
d
itio
n
s
af
f
ec
tin
g
th
e
air
way
s
ar
e
ch
r
o
n
ic
-
o
b
s
tr
u
ctiv
e
p
u
lm
o
n
ar
y
-
d
is
ea
s
e
(
C
OPD)
,
asth
m
a,
atele
ctasi
s
,
b
r
o
n
c
h
io
liti
s
,
b
r
o
n
c
h
iecta
s
is
(
in
clu
d
in
g
c
y
s
tic
-
f
ib
r
o
s
is
)
,
an
d
ca
r
d
io
m
eg
al
y
[
8
]
,
[
9
]
.
T
h
ese
d
is
ea
s
es
f
r
eq
u
en
tly
ex
h
ib
it
ch
ar
ac
ter
is
tics
o
f
air
way
in
f
lam
m
atio
n
o
r
o
b
s
tr
u
ct
io
n
,
r
esu
ltin
g
in
th
e
m
an
if
estatio
n
o
f
s
y
m
p
t
o
m
s
s
u
ch
as
wh
ee
zi
n
g
,
b
r
ea
th
i
n
g
d
if
f
icu
lties
an
d
co
u
g
h
.
Fu
r
th
er
m
o
r
e,
lu
n
g
tis
s
u
e
d
is
ea
s
es
lik
e
p
u
lm
o
n
ar
y
f
i
b
r
o
s
is
,
lu
n
g
ca
n
ce
r
,
an
d
e
f
f
u
s
io
n
p
r
im
ar
ily
af
f
ec
t
th
e
s
tr
u
ct
u
r
e
an
d
f
u
n
ctio
n
o
f
lu
n
g
tis
s
u
es,
im
p
air
in
g
th
eir
ab
ilit
y
to
ex
ch
a
n
g
e
o
x
y
g
en
an
d
c
ar
b
o
n
d
io
x
id
e
e
f
f
icien
tly
[
8
]
,
[
9
]
.
Ad
d
itio
n
ally
,
lu
n
g
cir
cu
latio
n
d
is
ea
s
es
s
u
ch
as
p
n
eu
m
o
n
ia,
p
n
eu
m
o
th
o
r
ax
,
lo
wer
-
r
esp
ir
ato
r
y
tr
ac
t
-
in
f
ec
tio
n
s
(
L
R
T
I
)
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
0
5
3
-
1
062
1054
u
p
p
er
-
r
esp
ir
ato
r
y
tr
ac
t
-
in
f
ec
ti
o
n
s
(
UR
T
I
)
,
an
d
co
m
p
licatio
n
s
lin
k
ed
with
C
OVI
D
-
1
9
ca
n
d
ir
ec
tly
im
p
ac
t
b
lo
o
d
f
lo
w
an
d
o
x
y
g
en
atio
n
i
n
th
e
lu
n
g
s
,
f
u
r
th
er
ex
ac
er
b
atin
g
r
esp
ir
at
o
r
y
d
is
tr
ess
an
d
in
c
r
ea
s
in
g
th
e
r
is
k
o
f
co
m
p
licatio
n
s
[
8
]
,
[
9
]
.
T
h
e
s
e
d
iv
er
s
e
r
esp
ir
ato
r
y
d
is
ea
s
es
p
r
esen
t
u
n
iq
u
e
c
h
allen
g
es
in
d
iag
n
o
s
is
,
m
an
ag
em
en
t,
a
n
d
tr
ea
tm
en
t,
h
ig
h
lig
h
tin
g
th
e
cr
itical
im
p
o
r
tan
ce
o
f
co
m
p
r
eh
en
s
iv
e
h
ea
lth
c
ar
e
ap
p
r
o
ac
h
es a
n
d
o
n
g
o
in
g
r
esear
ch
to
im
p
r
o
v
e
o
u
tco
m
es f
o
r
a
f
f
ec
ted
in
d
iv
id
u
a
ls
.
Mo
r
eo
v
er
,
tr
a
d
itio
n
al
m
et
h
o
d
s
f
o
r
d
etec
tin
g
r
esp
ir
at
o
r
y
d
is
ea
s
es
h
av
e
lo
n
g
r
elied
o
n
im
ag
in
g
ap
p
r
o
ac
h
es
lik
e
C
h
est
X
-
r
ay
(
C
XR
)
[
1
0
]
a
n
d
c
o
m
p
u
ted
-
to
m
o
g
r
ap
h
y
(
C
T
)
s
ca
n
s
[
1
1
]
.
T
h
e
af
o
r
em
en
t
io
n
ed
m
o
d
alities
p
r
o
v
id
e
s
ig
n
if
ica
n
t
co
n
tr
ib
u
tio
n
s
in
ter
m
s
o
f
u
n
d
er
s
tan
d
i
n
g
th
e
an
at
o
m
ical
an
d
p
h
y
s
io
lo
g
ical
asp
ec
ts
o
f
th
e
lu
n
g
s
,
h
elp
i
n
g
h
ea
lth
ca
r
e
p
r
o
f
ess
io
n
als
id
en
ti
f
y
ab
n
o
r
m
alities
,
ass
ess
d
is
ea
s
e
p
r
o
g
r
ess
io
n
,
a
n
d
g
u
id
e
tr
ea
tm
e
n
t
d
ec
is
io
n
s
.
C
XR
p
r
o
v
id
es
a
two
-
d
i
m
en
s
io
n
al
v
iew
o
f
th
e
ch
est,
h
ig
h
lig
h
tin
g
ar
ea
s
o
f
o
p
ac
ity
o
r
c
o
n
s
o
lid
atio
n
th
at
m
ay
i
n
d
i
ca
te
in
f
ec
tio
n
s
,
tu
m
o
u
r
s
,
o
r
o
t
h
er
p
u
lm
o
n
ar
y
co
n
d
itio
n
s
[
1
2
]
.
C
T
s
ca
n
s
,
o
n
th
e
o
th
er
h
an
d
,
o
f
f
er
a
m
o
r
e
d
et
ailed
an
d
th
r
ee
-
d
im
en
s
io
n
al
p
er
s
p
ec
tiv
e,
en
ab
li
n
g
th
e
v
is
u
aliza
tio
n
o
f
s
u
b
tle
ab
n
o
r
m
alities
an
d
p
r
o
v
id
i
n
g
a
clea
r
er
ass
ess
m
en
t
o
f
lu
n
g
tis
s
u
e
an
d
s
u
r
r
o
u
n
d
in
g
s
tr
u
ct
u
r
es
[
1
3
]
.
Du
r
in
g
th
e
C
OVI
D
-
1
9
p
an
d
em
ic,
i
n
n
o
v
ativ
e
ap
p
r
o
ac
h
es to
r
esp
ir
ato
r
y
d
is
ea
s
e
d
etec
tio
n
h
av
e
em
er
g
e
d
,
in
clu
d
in
g
th
e
u
s
e
o
f
s
aliv
a
-
b
ased
test
s
[
1
4
]
.
Sa
liv
a
test
in
g
h
as
g
ain
ed
tr
ac
tio
n
as
a
n
o
n
-
in
v
asiv
e
an
d
co
n
v
en
ien
t
m
eth
o
d
f
o
r
d
iag
n
o
s
in
g
r
esp
ir
at
o
r
y
in
f
ec
tio
n
s
,
in
clu
d
in
g
C
OVI
D
-
1
9
.
I
t
o
f
f
er
s
s
ev
er
al
ad
v
a
n
tag
es
s
u
ch
as
ea
s
e
o
f
co
llectio
n
,
r
e
d
u
ce
d
r
is
k
o
f
ex
p
o
s
u
r
e
f
o
r
h
ea
lth
ca
r
e
wo
r
k
er
s
,
an
d
p
o
ten
tial
f
o
r
lar
g
e
-
s
ca
le
test
in
g
in
itiativ
es.
Mo
r
eo
v
er
,
ad
v
an
ce
m
e
n
ts
in
s
en
s
o
r
tech
n
o
lo
g
y
h
a
v
e
r
ev
o
lu
tio
n
ized
th
e
d
etec
tio
n
an
d
m
o
n
ito
r
i
n
g
o
f
r
esp
ir
ato
r
y
d
is
ea
s
es
[
1
5
]
.
Sen
s
o
r
s
,
r
an
g
in
g
f
r
o
m
wea
r
ab
le
d
ev
ices
to
p
o
r
tab
le
d
iag
n
o
s
tic
to
o
ls
,
ca
n
ca
p
tu
r
e
r
ea
l
-
tim
e
d
ata
o
n
l
u
n
g
f
u
n
ctio
n
,
b
r
ea
th
in
g
p
atter
n
s
,
o
x
y
g
e
n
s
atu
r
atio
n
lev
els,
an
d
b
io
m
ar
k
er
s
in
d
icativ
e
o
f
r
esp
ir
ato
r
y
h
ea
lth
o
r
d
is
ea
s
e
[
1
6
]
.
T
h
ese
s
en
s
o
r
s
u
tili
ze
v
ar
io
u
s
p
r
in
cip
les
s
u
ch
as
s
p
ec
tr
o
s
co
p
y
,
im
p
ed
an
ce
m
ea
s
u
r
em
en
t,
an
d
g
as
s
en
s
in
g
to
p
r
o
v
id
e
ac
c
u
r
ate
an
d
tim
el
y
in
f
o
r
m
atio
n
,
em
p
o
wer
i
n
g
h
ea
lth
ca
r
e
p
r
o
v
id
er
s
with
v
alu
ab
le
in
s
ig
h
ts
f
o
r
ea
r
ly
in
ter
v
en
tio
n
an
d
p
er
s
o
n
ali
ze
d
tr
ea
tm
en
t
s
tr
ateg
ies
[
1
7
]
.
T
h
e
in
teg
r
atio
n
o
f
th
ese
in
n
o
v
ativ
e
ap
p
r
o
ac
h
es
alo
n
g
s
id
e
tr
ad
itio
n
al
m
eth
o
d
s
lik
e
C
XR
an
d
C
T
s
ca
n
s
m
ar
k
s
a
s
ig
n
if
ican
t
m
iles
to
n
e
in
r
esp
ir
ato
r
y
d
is
ea
s
e
m
an
ag
em
en
t,
o
f
f
er
in
g
a
c
o
m
p
r
eh
e
n
s
iv
e
an
d
m
u
ltid
im
e
n
s
io
n
al
ap
p
r
o
ac
h
to
d
iag
n
o
s
is
,
m
o
n
ito
r
in
g
,
a
n
d
th
e
r
ap
eu
tic
in
ter
v
e
n
tio
n
s
.
T
h
e
p
a
s
t
f
ew
y
e
a
r
s
h
a
v
e
wi
t
n
es
s
e
d
a
n
o
t
i
c
e
a
b
l
e
i
n
cl
i
n
a
ti
o
n
r
e
g
a
r
d
i
n
g
t
h
e
a
d
o
p
t
i
o
n
o
f
m
a
c
h
in
e
l
e
a
r
n
i
n
g
(
M
L
)
a
n
d
d
e
e
p
l
e
a
r
n
i
n
g
(
D
L
)
m
e
t
h
o
d
o
l
o
g
i
e
s
f
o
r
t
h
e
p
u
r
p
o
s
e
o
f
l
u
n
g
p
r
e
d
i
ct
i
o
n
a
n
d
cl
a
s
s
i
f
i
c
a
ti
o
n
w
it
h
i
n
t
h
e
d
o
m
a
i
n
o
f
r
e
s
p
i
r
at
o
r
y
d
is
e
a
s
e
s
[
1
8
]
-
[
2
0
]
.
T
h
i
s
s
h
i
f
t
t
o
w
a
r
d
s
co
m
p
u
t
a
t
i
o
n
a
l
m
et
h
o
d
s
h
as
e
n
ab
l
e
d
r
e
s
ea
r
c
h
e
r
s
a
nd
h
e
a
l
t
h
c
a
r
e
p
r
o
f
es
s
i
o
n
a
l
s
t
o
le
v
e
r
a
g
e
l
a
r
g
e
d
at
a
s
e
ts
a
n
d
co
m
p
l
e
x
a
l
g
o
r
i
t
h
m
s
f
o
r
e
n
h
a
n
c
i
n
g
a
c
c
u
r
a
c
y
a
n
d
e
f
f
e
c
t
i
v
e
n
es
s
o
f
d
i
a
g
n
o
s
i
s
a
n
d
p
r
o
g
n
o
s
i
s
.
F
i
g
u
r
e
1
i
l
l
u
s
t
r
at
e
s
t
h
e
c
o
m
p
r
e
h
e
n
s
i
v
e
p
r
o
c
e
s
s
o
f
l
u
n
g
p
r
e
d
i
c
t
i
o
n
a
n
d
c
l
a
s
s
i
f
ic
a
t
i
o
n
,
e
m
p
h
a
s
i
zi
n
g
t
h
e
c
r
u
c
i
a
l
s
t
e
p
s
i
n
v
o
l
v
e
d
.
T
h
e
w
o
r
k
f
l
o
w
t
y
p
i
c
al
l
y
b
e
g
i
n
s
w
i
th
p
r
e
p
r
o
c
e
s
s
i
n
g
t
h
e
d
a
t
a
,
w
h
e
t
h
e
r
i
t
’
s
s
t
a
ti
s
t
i
c
a
l
d
a
t
a
o
r
i
m
a
g
e
s
,
t
o
c
l
e
a
n
a
n
d
p
r
e
p
a
r
e
i
t
f
o
r
a
n
a
l
y
s
i
s
.
F
o
ll
o
w
in
g
t
h
e
i
n
i
t
i
a
l
d
a
t
a
c
o
l
l
e
c
t
i
o
n
,
a
s
e
r
i
e
s
o
f
f
e
a
t
u
r
e
s
a
r
e
o
b
t
a
i
n
e
d
f
r
o
m
t
h
e
d
a
t
a
s
e
t
.
T
h
e
s
e
f
e
a
t
u
r
e
s
p
l
a
y
a
c
r
u
c
i
a
l
r
o
l
e
i
n
v
a
r
i
o
u
s
c
l
a
s
s
i
f
i
c
a
t
i
o
n
a
n
d
p
r
e
d
i
c
t
i
o
n
t
a
s
k
s
.
T
h
e
s
e
f
e
a
t
u
r
e
s
m
a
y
i
n
c
l
u
d
e
p
h
y
s
i
o
l
o
g
i
c
a
l
p
a
r
a
m
e
t
e
r
s
,
i
m
a
g
i
n
g
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,
o
r
b
i
o
m
a
r
k
e
r
s
r
e
l
e
v
a
n
t
t
o
l
u
n
g
h
e
a
l
t
h
a
n
d
d
i
s
e
a
s
e
.
M
L
a
n
d
D
L
m
o
d
e
l
s
t
h
e
n
u
t
i
l
i
z
e
t
h
e
s
e
f
e
a
t
u
r
e
s
t
o
m
a
k
e
p
r
e
d
i
c
t
i
o
n
s
,
c
l
a
s
s
i
f
y
l
u
n
g
c
o
n
d
i
t
i
o
n
s
,
a
n
d
p
r
o
v
i
d
e
v
a
l
u
a
b
l
e
i
n
s
i
g
h
t
s
f
o
r
p
a
t
i
e
n
t
m
a
n
a
g
e
m
e
n
t
a
n
d
t
r
e
a
t
m
e
n
t
p
l
a
n
n
i
n
g
.
Fig
u
r
e
1
.
Ov
e
r
all
p
r
o
ce
s
s
o
f
l
u
n
g
p
r
e
d
ictio
n
an
d
class
if
icatio
n
T
h
i
s
w
o
r
k
d
e
l
v
e
s
i
n
t
o
a
c
o
m
p
r
e
h
e
n
s
i
v
e
s
t
u
d
y
o
f
v
a
r
i
o
u
s
p
r
e
p
r
o
c
e
s
s
i
n
g
a
p
p
r
o
a
c
h
e
s
,
d
e
t
ec
t
i
o
n
,
a
n
d
c
l
a
s
s
i
f
ic
a
t
i
o
n
m
et
h
o
d
s
e
m
p
l
o
y
e
d
i
n
t
h
e
d
o
m
a
i
n
o
f
r
e
s
p
i
r
at
o
r
y
d
i
s
e
as
e
d
et
e
c
ti
o
n
.
I
t
c
r
i
t
ic
a
l
l
y
e
x
a
m
i
n
e
s
t
h
e
s
t
r
a
t
e
g
i
e
s
u
t
i
li
z
e
d
i
n
e
x
is
ti
n
g
s
t
u
d
i
es
,
h
i
g
h
l
i
g
h
ti
n
g
t
h
e
d
i
v
e
r
s
i
t
y
i
n
p
r
e
p
r
o
c
e
s
s
i
n
g
t
ec
h
n
i
q
u
e
s
,
d
e
t
e
ct
i
o
n
a
l
g
o
r
i
t
h
m
s
,
a
n
d
c
l
as
s
i
f
i
c
a
ti
o
n
m
e
t
h
o
d
o
l
o
g
i
e
s
.
F
u
r
t
h
e
r
m
o
r
e
,
t
h
i
s
w
o
r
k
m
e
t
i
c
u
l
o
u
s
l
y
i
d
en
t
i
f
i
e
s
t
h
e
d
a
ta
s
et
s
u
t
i
l
i
z
e
d
a
c
r
o
s
s
d
i
f
f
e
r
e
n
t
s
t
u
d
i
es,
s
h
e
d
d
i
n
g
li
g
h
t
o
n
t
h
e
v
a
r
i
a
b
ili
t
y
a
n
d
a
v
ai
l
a
b
i
li
t
y
o
f
d
at
a
s
o
u
r
c
e
s
i
n
t
h
is
d
o
m
a
i
n
.
I
m
p
o
r
t
a
n
t
l
y
,
t
h
is
s
t
u
d
y
g
o
e
s
b
ey
o
n
d
m
e
r
e
d
o
c
u
m
e
n
t
a
t
i
o
n
a
n
d
a
n
a
l
y
s
is
b
y
i
d
e
n
ti
f
y
i
n
g
t
h
e
li
m
it
a
t
i
o
n
s
,
i
s
s
u
es
,
a
n
d
c
h
a
l
l
e
n
g
e
s
p
r
e
v
a
l
e
n
t
i
n
t
h
e
e
x
i
s
t
i
n
g
l
it
e
r
a
t
u
r
e
.
H
o
w
e
v
e
r
,
t
h
is
w
o
r
k
d
o
e
s
n
’
t
m
e
r
e
l
y
s
t
o
p
a
t
i
d
e
n
t
i
f
y
i
n
g
p
r
o
b
l
e
m
s
b
u
t
a
l
s
o
p
r
o
p
o
s
es
p
o
t
e
n
t
i
al
s
o
l
u
t
i
o
n
s
t
o
a
d
d
r
e
s
s
t
h
es
e
c
h
a
l
l
e
n
g
e
s
.
B
y
o
f
f
e
r
i
n
g
i
n
s
i
g
h
ts
i
n
t
o
e
f
f
e
c
ti
v
e
p
r
e
p
r
o
c
e
s
s
i
n
g
te
c
h
n
i
q
u
e
s
,
a
d
v
a
n
c
e
d
d
e
t
e
c
t
i
o
n
al
g
o
r
i
t
h
m
s
,
a
n
d
r
o
b
u
s
t
c
l
ass
i
f
i
c
at
i
o
n
s
t
r
a
t
e
g
ie
s
,
t
h
i
s
w
o
r
k
a
i
m
s
to
c
o
n
t
r
i
b
u
t
e
s
i
g
n
i
f
i
c
a
n
tl
y
t
o
t
h
e
o
n
g
o
i
n
g
e
f
f
o
r
t
s
i
n
e
n
h
a
n
c
i
n
g
r
e
s
p
i
r
a
t
o
r
y
d
is
e
as
e
d
e
te
c
t
i
o
n
a
n
d
m
a
n
a
g
e
m
e
n
t
.
I
t
s
c
o
n
t
r
i
b
u
t
i
o
n
s
l
i
e
i
n
b
r
i
d
g
i
n
g
t
h
e
g
a
p
b
e
t
we
e
n
r
es
e
a
r
c
h
f
i
n
d
i
n
g
s
a
n
d
p
r
a
ct
i
c
al
i
m
p
le
m
e
n
t
a
ti
o
n
,
p
a
v
i
n
g
t
h
e
w
a
y
f
o
r
m
o
r
e
a
c
c
u
r
a
t
e
,
e
f
f
i
ci
e
n
t
,
a
n
d
a
cc
e
s
s
i
b
l
e
s
o
l
u
t
i
o
n
s
f
o
r
r
e
s
p
i
r
at
o
r
y
d
i
s
e
as
e
d
i
a
g
n
o
s
is
a
n
d
p
r
o
g
n
o
s
is
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
d
va
n
ce
men
ts
a
n
d
ch
a
llen
g
es
in
d
ee
p
le
a
r
n
in
g
tech
n
iq
u
es f
o
r
lu
n
g
d
is
ea
s
e
d
ia
g
n
o
s
is
(
La
x
mi
B
a
g
a
lko
t
)
1055
I
n
th
is
m
an
u
s
cr
ip
t,
in
s
ec
ti
o
n
2
,
th
e
liter
atu
r
e
s
u
r
v
e
y
is
d
is
cu
s
s
ed
wh
er
e
th
e
p
r
ep
r
o
ce
s
s
in
g
ap
p
r
o
ac
h
es,
d
etec
tio
n
a
n
d
cla
s
s
if
icatio
n
ap
p
r
o
ac
h
es
f
o
r
r
es
p
ir
ato
r
y
d
is
ea
s
e
d
etec
tio
n
is
d
is
cu
s
s
ed
.
Als
o
,
th
e
d
atasets
u
s
ed
in
th
is
wo
r
k
ar
e
d
is
cu
s
s
ed
.
Fu
r
th
er
,
i
n
s
ec
tio
n
3
,
th
e
lim
itatio
n
o
f
th
e
e
x
is
tin
g
wo
r
k
is
d
is
cu
s
s
ed
.
I
n
s
ec
tio
n
4
,
th
e
is
s
u
es
an
d
ch
allen
g
es
f
ac
ed
b
y
th
e
e
x
is
tin
g
wo
r
k
s
ar
e
d
is
cu
s
s
ed
.
Fin
ally
,
in
s
ec
tio
n
5
,
th
e
p
o
s
s
ib
le
s
o
lu
tio
n
s
ar
e
d
is
cu
s
s
ed
an
d
i
n
s
ec
tio
n
6
,
t
h
e
co
n
cl
u
s
io
n
o
f
t
h
e
wo
r
k
is
p
r
esen
ted
.
2.
L
I
T
E
R
AT
U
RE
SU
RVE
Y
I
n
t
h
is
s
ec
tio
n
,
th
is
wo
r
k
d
elv
es
in
to
th
e
i
n
tr
icate
wo
r
ld
o
f
p
r
e
p
r
o
ce
s
s
in
g
,
d
ete
ctio
n
,
an
d
class
if
icatio
n
ap
p
r
o
ac
h
es
u
tili
ze
d
in
th
e
r
ea
lm
o
f
r
esp
ir
ato
r
y
d
is
ea
s
e
d
etec
tio
n
.
T
h
ese
p
r
o
c
ess
es
ar
e
p
iv
o
tal
i
n
ex
tr
ac
tin
g
m
ea
n
in
g
f
u
l
i
n
s
ig
h
ts
f
r
o
m
m
ed
ical
d
ata,
p
ar
ti
cu
lar
ly
in
th
e
c
o
n
tex
t
o
f
r
esp
ir
ato
r
y
h
ea
lth
.
T
h
e
o
b
jectiv
e
is
n
o
t
o
n
ly
to
id
en
tify
r
esp
ir
ato
r
y
d
is
ea
s
es
ac
cu
r
ately
b
u
t
also
to
s
tr
ea
m
lin
e
th
e
an
aly
s
is
o
f
m
ed
ical
im
ag
es,
s
o
u
n
d
d
ata,
an
d
o
th
er
r
ele
v
an
t
in
f
o
r
m
atio
n
.
Hen
ce
,
in
th
e
n
ex
t
s
ec
tio
n
th
e
p
r
ep
r
o
ce
s
s
in
g
ap
p
r
o
ac
h
es p
r
esen
ted
b
y
ex
is
tin
g
wo
r
k
s
ar
e
d
is
cu
s
s
ed
.
2
.
1
.
P
re
pro
ce
s
s
ing
a
pp
ro
a
c
hes
T
h
i
s
s
e
c
ti
o
n
d
e
l
v
es
i
n
t
o
a
c
o
m
p
r
e
h
e
n
s
i
v
e
d
is
c
u
s
s
i
o
n
o
n
t
h
e
v
a
r
i
o
u
s
e
x
is
ti
n
g
p
r
e
p
r
o
c
e
s
s
i
n
g
ap
p
r
o
a
c
h
e
s
e
m
p
l
o
y
e
d
i
n
t
h
e
d
o
m
a
i
n
o
f
r
e
s
p
i
r
a
t
o
r
y
d
i
s
e
a
s
e
d
e
t
ec
t
i
o
n
u
s
i
n
g
i
m
a
g
i
n
g
t
e
c
h
n
i
q
u
e
s
.
P
r
e
p
r
o
c
e
s
s
i
n
g
i
s
a
n
e
s
s
e
n
t
i
al
s
t
e
p
w
it
h
i
n
t
h
e
d
a
t
a
e
v
a
l
u
at
i
o
n
o
r
c
l
a
s
s
i
f
i
c
a
ti
o
n
m
e
t
h
o
d
a
s
i
t
s
i
g
n
i
f
i
c
a
n
t
l
y
c
o
n
t
r
i
b
u
t
es
t
o
i
m
p
r
o
v
i
n
g
t
h
e
o
v
e
r
a
l
l
q
u
a
l
i
t
y
,
a
c
c
u
r
a
c
y
,
a
n
d
t
r
u
s
t
w
o
r
t
h
i
n
e
s
s
o
f
d
a
t
a
.
T
h
e
m
a
i
n
o
b
j
e
c
t
i
v
e
o
f
p
r
e
p
r
o
c
e
s
s
i
n
g
a
i
m
s
t
o
t
r
a
n
s
f
o
r
m
t
h
e
i
n
i
t
i
al
i
n
p
u
t
d
a
t
a
i
n
t
o
a
f
o
r
m
a
t
w
h
ic
h
i
s
w
el
l
-
s
u
i
t
e
d
a
n
d
o
p
t
i
m
a
l
f
o
r
t
h
e
f
o
l
l
o
w
i
n
g
p
r
o
c
e
s
s
i
n
g
s
t
a
g
es
,
l
i
k
e
e
x
t
r
a
c
t
i
o
n
o
f
f
e
a
t
u
r
e
s
,
d
e
t
e
c
ti
o
n
,
a
n
d
cl
a
s
s
i
f
i
c
a
t
i
o
n
.
O
n
e
o
f
t
h
e
c
o
m
m
o
n
p
r
e
p
r
o
c
e
s
s
i
n
g
a
p
p
r
o
a
c
h
e
s
d
i
s
c
u
s
s
e
d
i
n
t
h
i
s
s
e
c
t
i
o
n
i
n
v
o
l
v
e
s
i
m
a
g
e
e
n
h
a
n
c
e
m
e
n
t
t
e
c
h
n
i
q
u
e
s
.
T
h
e
o
b
j
e
ct
i
v
e
o
f
t
h
e
s
e
a
p
p
r
o
a
c
h
e
s
w
as
t
o
en
h
a
n
c
e
t
h
e
v
i
s
u
a
l
a
p
p
e
a
r
a
n
c
e
o
f
C
XR
i
m
a
g
e
s
th
r
o
u
g
h
t
h
e
m
o
d
i
f
i
c
a
ti
o
n
o
f
co
n
t
r
a
s
t
,
b
r
i
g
h
t
n
e
s
s
,
a
n
d
c
l
a
r
ity
p
a
r
a
m
e
t
e
r
s
.
T
h
is
m
o
d
i
f
i
c
a
t
i
o
n
l
e
a
d
s
t
o
a
s
i
g
n
i
f
i
c
a
n
t
i
m
p
r
o
v
e
m
e
n
t
i
n
t
h
e
o
v
e
r
a
l
l
v
is
i
b
i
li
t
y
o
f
a
n
at
o
m
ic
a
l
s
t
r
u
c
t
u
r
es
a
n
d
a
b
n
o
r
m
a
l
i
t
i
es
p
r
es
e
n
t
i
n
t
h
e
im
a
g
e
s
.
I
m
a
g
e
e
n
h
a
n
c
e
m
e
n
t
p
la
y
s
a
v
i
t
a
l
r
o
l
e
i
n
e
n
s
u
r
i
n
g
t
h
a
t
s
u
b
tl
e
d
et
a
i
ls
a
n
d
i
m
p
o
r
t
a
n
t
f
e
a
t
u
r
e
s
r
el
e
v
a
n
t
to
r
e
s
p
i
r
a
t
o
r
y
d
i
s
e
as
es
a
r
e
c
le
a
r
l
y
v
i
s
i
b
le
a
n
d
d
i
s
t
i
n
g
u
is
h
a
b
l
e
.
A
d
d
i
t
i
o
n
a
ll
y
,
p
r
e
p
r
o
c
e
s
s
i
n
g
m
e
t
h
o
d
s
m
a
y
a
ls
o
i
n
c
l
u
d
e
n
o
i
s
e
r
e
d
u
c
t
i
o
n
t
e
c
h
n
i
q
u
e
s
t
o
m
i
t
i
g
a
te
t
h
e
i
m
p
a
c
t
o
f
n
o
i
s
e
a
n
d
a
r
t
i
f
a
c
ts
p
r
e
s
e
n
t
i
n
t
h
e
i
m
a
g
es
.
N
o
is
e
,
s
u
c
h
a
s
r
a
n
d
o
m
v
a
r
i
a
t
i
o
n
s
i
n
p
ix
e
l
i
n
t
e
n
s
it
y
,
c
a
n
d
i
s
t
o
r
t
i
m
a
g
e
q
u
a
l
i
t
y
a
n
d
i
n
t
e
r
f
e
r
e
w
i
t
h
t
h
e
a
c
c
u
r
a
c
y
o
f
d
i
s
e
as
e
d
e
t
e
c
t
i
o
n
a
l
g
o
r
i
t
h
m
s
.
F
il
t
e
r
i
n
g
o
r
s
m
o
o
t
h
i
n
g
t
e
c
h
n
i
q
u
e
s
a
r
e
c
o
m
m
o
n
l
y
u
s
e
d
i
n
p
r
e
p
r
o
c
e
s
s
i
n
g
p
r
o
c
e
s
s
e
s
t
o
d
e
cr
e
a
s
e
n
o
i
s
e
a
n
d
i
n
c
r
e
a
s
e
t
h
e
s
ig
n
a
l
-
to
-
n
o
i
s
e
r
a
t
i
o
(
S
NR
)
o
f
i
m
a
g
e
s
.
T
h
e
d
i
f
f
e
r
e
n
t
w
o
r
k
s
a
l
o
n
g
w
it
h
t
h
e
i
r
f
o
c
u
s
,
d
a
t
a
s
et
u
s
e
d
a
n
d
d
a
t
as
et
t
y
p
e
is
g
i
v
e
n
i
n
T
a
b
l
e
1
.
T
ab
le
1
.
E
x
is
tin
g
p
r
ep
r
o
ce
s
s
in
g
ap
p
r
o
ac
h
es
Ref
Y
e
a
r
F
o
c
u
s
D
a
t
a
s
e
t
u
s
e
d
D
a
t
a
s
e
t
t
y
p
e
[
2
1
]
2
0
2
0
P
r
e
p
r
o
c
e
ss
i
n
g
o
f
C
X
R
i
ma
g
e
s
u
t
i
l
i
z
i
n
g
e
n
h
a
n
c
e
me
n
t
t
e
c
h
n
i
q
u
e
s.
7
9
b
a
se
l
i
n
e
C
X
R
i
m
a
g
e
s
a
c
q
u
i
r
e
d
f
r
o
m
h
o
s
p
i
t
a
l
,
s
t
a
n
d
a
r
d
d
a
t
a
se
t
[
2
2
]
f
o
r
e
v
a
l
u
a
t
i
o
n
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
d
a
t
a
s
e
t
:
v
i
r
a
l
,
b
a
c
t
e
r
i
a
l
,
f
u
n
g
a
l
,
l
i
p
o
i
d
,
u
n
k
n
o
w
n
c
l
a
sses
.
I
mag
e
d
a
t
a
se
t
.
[
2
3
]
2
0
2
1
P
r
e
p
r
o
c
e
ss
i
n
g
o
n
C
X
R
u
si
n
g
D
L
C
O
V
I
D
-
D
B
[
2
4
]
,
C
O
V
I
D
-
19
[
2
5
]
,
C
O
V
I
D
-
19
-
A
R
[
2
6
]
,
N
I
H
C
X
R
[
2
7
]
,
P
n
e
u
mo
n
i
a
C
X
R
[
2
8
]
B
i
n
a
r
y
a
n
d
m
u
l
t
i
c
l
a
ssi
f
i
c
a
t
i
o
n
:
C
O
V
I
D
d
a
t
a
s
e
t
s
(
p
n
e
u
m
o
n
i
a
,
n
o
r
mal
)
,
N
I
H
C
X
R
(
p
n
e
u
mo
n
i
a
,
n
o
r
m
a
l
,
o
t
h
e
r
s)
,
p
n
e
u
m
o
n
i
a
C
X
R
(
n
o
r
mal
,
v
i
r
a
l
p
n
e
u
mo
n
i
a
,
b
a
c
t
e
r
i
a
l
p
n
e
u
mo
n
i
a
)
.
I
mag
e
d
a
t
a
se
t
.
[
2
9
]
2
0
2
1
P
r
e
p
r
o
c
e
ss
i
n
g
m
e
t
h
o
d
s
f
o
r
C
O
V
I
D
-
1
9
C
X
R
s
1
8
,
4
7
9
C
X
R
s (
8
,
8
5
1
n
o
r
ma
l
,
6
,
0
1
2
n
o
n
-
C
O
V
I
D
i
n
f
e
c
t
e
d
,
3
,
6
1
6
C
O
V
I
D
-
i
n
f
e
c
t
e
d
)
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
n
o
r
m
a
l
,
n
o
n
-
C
O
V
I
D
,
C
O
V
I
D
i
n
d
i
v
i
d
u
a
l
s.
I
mag
e
d
a
t
a
s
e
t
.
[
3
0
]
2
0
2
2
P
r
e
p
r
o
c
e
ss
i
n
g
m
e
t
h
o
d
s
f
o
r
C
X
R
s
D
a
t
a
s
e
t
f
r
o
m [
3
1
]
w
i
t
h
6
,
9
3
9
C
X
R
s
i
ma
g
e
s
(
C
O
V
I
D
,
n
o
r
m
a
l
,
p
n
e
u
mo
n
i
a
c
l
a
ss
e
s)
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
C
O
V
I
D
p
a
t
i
e
n
t
s,
n
o
r
m
a
l
,
p
n
e
u
mo
n
i
a
.
I
mag
e
d
a
t
a
s
e
t
.
[
3
2
]
2
0
2
2
P
r
e
p
r
o
c
e
ss
i
n
g
o
f
l
u
n
g
X
-
r
a
y
i
m
a
g
e
s
6
,
1
6
8
f
r
o
n
t
a
l
-
v
i
e
w
c
h
e
st
r
a
d
i
o
g
r
a
p
h
s
f
r
o
m f
i
v
e
s
o
u
r
c
e
s
[
3
3
]
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
t
u
b
e
r
c
u
l
o
s
i
s (T
B
)
a
n
d
n
o
n
-
TB
.
I
mag
e
d
a
t
a
s
e
t
.
[
3
4
]
2
0
2
2
P
r
e
p
r
o
c
e
ss
i
n
g
o
f
C
X
R
f
o
r
i
d
e
n
t
i
f
i
c
a
t
i
o
n
o
f
p
n
e
u
mo
n
i
a
Tw
o
d
a
t
a
s
e
t
s
:
[
3
5
]
(
b
a
c
t
e
r
i
a
l
p
n
e
u
mo
n
i
a
,
h
e
a
l
t
h
y
,
v
i
r
a
l
p
n
e
u
mo
n
i
a
)
a
n
d
[
2
9
]
(
C
O
V
I
D
-
19)
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
b
a
c
t
e
r
i
a
l
p
n
e
u
m
o
n
i
a
,
v
i
r
a
l
p
n
e
u
mo
n
i
a
,
h
e
a
l
t
h
y
;
C
O
V
I
D
-
1
9
,
v
i
r
u
s,
b
a
c
t
e
r
i
a
,
n
o
r
m
a
l
.
I
mag
e
d
a
t
a
set
.
[
3
6
]
2
0
2
3
P
r
o
v
i
d
e
b
e
t
t
e
r
q
u
a
l
i
t
y
o
f
C
X
R
i
ma
g
e
s
C
h
e
st
-
1
4
d
a
t
a
set
[
3
7
]
-
[
4
0
]
w
i
t
h
2
0
,
0
0
0
i
ma
g
e
s
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
c
a
r
d
i
o
m
e
g
a
l
y
,
a
t
e
l
e
c
t
a
s
i
s,
i
n
f
i
l
t
r
a
t
i
o
n
,
e
f
f
u
s
i
o
n
,
i
n
f
i
l
t
r
a
t
i
o
n
,
p
n
e
u
mo
n
i
a
,
mass
n
o
d
u
l
e
,
p
n
e
u
mo
t
h
o
r
a
x
.
I
mag
e
d
a
t
a
s
e
t
.
[
4
1
]
2
0
2
3
P
r
o
v
i
d
i
n
g
b
e
t
t
e
r
e
n
h
a
n
c
e
d
C
X
R
s fo
r
c
l
a
ss
i
f
i
e
r
C
X
R
1
4
[
4
0
]
d
a
t
a
se
t
w
i
t
h
1
1
2
,
1
2
0
X
-
r
a
y
i
m
a
g
e
s
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
c
a
r
d
i
o
m
e
g
a
l
y
,
a
t
e
l
e
c
t
a
s
i
s,
i
n
f
i
l
t
r
a
t
i
o
n
,
e
f
f
u
s
i
o
n
,
i
n
f
i
l
t
r
a
t
i
o
n
,
p
n
e
u
mo
n
i
a
,
mass
n
o
d
u
l
e
,
p
n
e
u
mo
t
h
o
r
a
x
.
I
mag
e
d
a
t
a
s
e
t
.
[
4
2
]
2
0
2
3
P
r
o
c
e
ss
i
n
g
o
f
C
X
R
s
1
1
,
6
5
2
C
X
R
s fr
o
m
o
n
e
h
o
s
p
i
t
a
l
,
3
,
3
5
8
f
r
o
m a
n
o
t
h
e
r
h
o
s
p
i
t
a
l
(
C
R
,
D
R
i
m
a
g
e
s)
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
c
a
r
d
i
o
m
e
g
a
l
y
,
a
t
e
l
e
c
t
a
s
i
s,
i
n
f
i
l
t
r
a
t
i
o
n
,
e
f
f
u
s
i
o
n
,
i
n
f
i
l
t
r
a
t
i
o
n
,
p
n
e
u
mo
n
i
a
,
mass
n
o
d
u
l
e
,
p
n
e
u
mo
t
h
o
r
a
x
.
I
mag
e
d
a
t
a
s
e
t
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
0
5
3
-
1
062
1056
2
.
2
.
Det
ec
t
io
n a
nd
cla
s
s
if
ica
t
io
n o
f
re
s
pira
t
o
ry
dis
ea
s
es
T
h
is
s
ec
tio
n
d
elv
es
in
to
a
c
o
m
p
r
eh
en
s
iv
e
d
is
cu
s
s
io
n
o
n
t
h
e
d
etec
tio
n
an
d
class
if
icatio
n
ap
p
r
o
ac
h
es
em
p
lo
y
ed
i
n
th
e
r
ea
lm
o
f
r
es
p
ir
ato
r
y
d
is
ea
s
es.
Dete
ctin
g
a
n
d
ac
cu
r
ately
class
if
y
in
g
r
esp
ir
ato
r
y
d
is
ea
s
es
is
cr
u
cial
f
o
r
tim
ely
d
iag
n
o
s
is
,
ef
f
ec
tiv
e
tr
ea
tm
en
t
p
lan
n
i
n
g
,
a
n
d
im
p
r
o
v
ed
p
atien
t
o
u
tco
m
es.
Var
io
u
s
m
eth
o
d
o
l
o
g
ies
an
d
tech
n
iq
u
es
h
av
e
b
ee
n
d
e
v
elo
p
e
d
an
d
u
ti
lized
to
ad
d
r
ess
th
e
co
m
p
lex
it
ies
an
d
ch
allen
g
es
ass
o
ciate
d
with
r
esp
ir
ato
r
y
d
i
s
ea
s
e
d
etec
tio
n
an
d
class
if
icat
io
n
.
On
e
o
f
th
e
p
r
im
a
r
y
ap
p
r
o
ac
h
es
d
is
cu
s
s
ed
in
th
is
s
ec
tio
n
in
v
o
lv
es
th
e
u
s
e
o
f
ML
an
d
DL
alg
o
r
ith
m
s
f
o
r
im
ag
e
-
b
ased
d
etec
tio
n
an
d
cl
ass
if
icatio
n
.
T
h
ese
alg
o
r
ith
m
s
ar
e
tr
ain
ed
o
n
lar
g
e
d
atasets
o
f
C
XR
im
ag
es,
C
T
s
ca
n
s
,
o
r
o
th
er
im
ag
in
g
m
o
d
ali
ties
to
lear
n
p
atter
n
s
an
d
f
ea
tu
r
es
in
d
ica
tiv
e
o
f
s
p
ec
if
ic
r
esp
ir
ato
r
y
co
n
d
itio
n
s
.
Fo
r
i
n
s
tan
ce
,
C
NNs
h
av
e
s
h
o
wn
r
em
ar
k
ab
le
s
u
cc
ess
in
au
to
m
atica
lly
d
etec
tin
g
ab
n
o
r
m
aliti
es,
lesi
o
n
s
,
o
r
ch
a
r
ac
ter
is
tic
p
atter
n
s
ass
o
ciate
d
with
d
is
ea
s
es
lik
e
p
n
e
u
m
o
n
ia,
lu
n
g
ca
n
ce
r
,
o
r
p
n
eu
m
o
t
h
o
r
a
x
in
m
ed
ical
im
ag
es.
Fu
r
th
er
m
o
r
e,
s
tatis
tical
an
d
d
ata
-
d
r
iv
e
n
ap
p
r
o
ac
h
es
ar
e
al
s
o
ex
p
lo
r
ed
f
o
r
d
etec
tin
g
r
esp
ir
ato
r
y
d
is
ea
s
es
u
s
in
g
n
o
n
-
im
ag
in
g
d
ata
s
u
ch
as
d
em
o
g
r
a
p
h
ic
in
f
o
r
m
atio
n
,
cli
n
ical
p
ar
am
eter
s
,
an
d
b
io
m
ar
k
er
s
.
T
h
ese
ap
p
r
o
ac
h
e
s
o
f
ten
in
v
o
lv
e
th
e
u
s
e
o
f
s
tatis
t
ical
m
o
d
els,
ML
alg
o
r
ith
m
s
,
an
d
p
r
e
d
ictiv
e
an
aly
tics
to
an
aly
s
e
an
d
in
ter
p
r
et
d
ata
p
a
tter
n
s
,
id
en
tify
r
is
k
f
ac
to
r
s
,
an
d
p
r
ed
ict
d
is
ea
s
e
o
u
tco
m
es.
Mo
r
eo
v
er
,
h
y
b
r
id
ap
p
r
o
ac
h
es
co
m
b
in
i
n
g
im
a
g
in
g
an
d
n
o
n
-
im
ag
in
g
d
ata
ar
e
g
ain
i
n
g
t
r
ac
tio
n
f
o
r
m
o
r
e
co
m
p
r
eh
en
s
iv
e
a
n
d
ac
c
u
r
ate
d
is
ea
s
e
d
etec
tio
n
an
d
cl
ass
if
icatio
n
.
B
y
in
teg
r
atin
g
m
u
ltip
le
d
ata
s
o
u
r
ce
s
an
d
lev
e
r
ag
in
g
ad
v
an
ce
d
an
aly
tics
tech
n
iq
u
es,
s
u
c
h
as
f
ea
tu
r
e
s
elec
tio
n
,
en
s
em
b
le
le
ar
n
in
g
,
an
d
h
y
b
r
i
d
m
o
d
els,
r
esear
ch
er
s
an
d
h
ea
lth
ca
r
e
p
r
o
f
ess
io
n
als
ca
n
en
h
an
ce
th
e
s
en
s
itiv
ity
,
s
p
ec
if
icity
,
an
d
o
v
e
r
all
p
er
f
o
r
m
an
ce
o
f
r
esp
ir
ato
r
y
d
is
ea
s
e
d
etec
tio
n
s
y
s
tem
s
.
Ad
d
itio
n
ally
,
t
h
e
ad
o
p
tio
n
o
f
AI
tech
n
o
l
o
g
ies,
in
clu
d
in
g
n
atu
r
al
-
lan
g
u
ag
e
-
p
r
o
ce
s
s
in
g
(
NL
P)
f
o
r
a
n
aly
s
in
g
clin
ical
n
o
tes,
elec
tr
o
n
ic
-
h
ea
l
th
-
r
ec
o
r
d
s
(
E
HR
s
)
,
an
d
m
ed
ical
r
e
p
o
r
ts
,
h
as
f
u
r
th
er
en
r
ich
e
d
th
e
ca
p
a
b
ilit
ies
o
f
r
esp
ir
ato
r
y
d
is
ea
s
e
d
etec
tio
n
an
d
class
if
icatio
n
.
O
v
e
r
a
l
l
,
t
h
i
s
s
e
ct
i
o
n
p
r
o
v
i
d
e
s
a
c
o
m
p
r
e
h
e
n
s
i
v
e
e
x
p
l
o
r
a
t
i
o
n
o
f
t
h
e
d
i
v
e
r
s
e
m
e
t
h
o
d
o
l
o
g
i
es
,
a
l
g
o
r
it
h
m
s
,
a
n
d
t
e
c
h
n
o
l
o
g
i
e
s
u
t
il
i
z
e
d
f
o
r
d
e
t
e
c
ti
n
g
a
n
d
c
l
a
s
s
i
f
y
i
n
g
r
e
s
p
i
r
a
t
o
r
y
d
i
s
e
a
s
e
s
.
B
y
l
e
v
e
r
a
g
i
n
g
a
d
v
a
n
c
e
d
c
o
m
p
u
t
a
t
i
o
n
a
l
t
e
c
h
n
i
q
u
e
s
,
d
a
t
a
-
d
r
i
v
e
n
i
n
s
i
g
h
ts
,
a
n
d
i
n
t
e
r
d
i
s
ci
p
l
i
n
a
r
y
a
p
p
r
o
a
c
h
e
s
,
t
h
e
f
i
e
l
d
c
o
n
t
i
n
u
es
t
o
m
a
k
e
s
i
g
n
i
f
i
c
a
n
t
s
t
r
i
d
es
i
n
i
m
p
r
o
v
i
n
g
d
i
a
g
n
o
s
ti
c
a
cc
u
r
ac
y
,
p
a
t
i
e
n
t
c
a
r
e
,
a
n
d
p
u
b
l
i
c
h
e
al
t
h
o
u
t
c
o
m
es
r
e
l
at
e
d
t
o
r
e
s
p
i
r
a
to
r
y
c
o
n
d
i
t
i
o
n
s
.
T
h
e
s
u
m
m
a
r
y
o
f
e
x
i
s
ti
n
g
d
e
t
e
c
ti
o
n
a
n
d
c
l
a
s
s
i
f
i
ca
t
i
o
n
a
p
p
r
o
a
c
h
e
s
is
g
i
v
e
n
i
n
T
a
b
l
e
2
[
4
3
]
,
[
4
4
]
.
T
ab
le
2
.
E
x
is
tin
g
d
etec
tio
n
a
n
d
class
if
icatio
n
ap
p
r
o
ac
h
es
Ref
Y
e
a
r
F
o
c
u
s
D
a
t
a
s
e
t
u
s
e
d
Ty
p
e
[
4
5
]
2
0
2
0
C
O
P
D
d
e
t
e
c
t
i
o
n
u
s
i
n
g
sal
i
v
a
d
a
t
a
se
t
S
a
l
i
v
a
sam
p
l
e
s fr
o
m
3
1
9
i
n
d
i
v
i
d
u
a
l
s
d
i
v
i
d
e
d
i
n
t
o
h
e
a
l
t
h
y
a
n
d
C
O
P
D
,
d
e
m
o
g
r
a
p
h
i
c
i
n
f
o
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
h
e
a
l
t
h
y
a
n
d
C
O
P
D
p
a
t
i
e
n
t
s.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
(
a
g
e
,
g
e
n
d
e
r
,
sm
o
k
i
n
g
,
c
l
a
ss
e
s)
.
[
4
6
]
2
0
2
3
C
l
a
s
si
f
i
c
a
t
i
o
n
o
f
P
n
e
u
mo
t
h
o
r
a
x
u
s
i
n
g
C
X
R
s
i
ma
g
e
s
K
a
g
g
l
e
C
X
R
s DI
C
O
M
i
ma
g
e
s
(
1
2
,
0
8
9
i
m
a
g
e
s)
[
4
7
]
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
n
o
r
m
a
l
a
n
d
p
n
e
u
mo
t
h
o
r
a
x
p
a
t
i
e
n
t
s.
I
mag
e
d
a
t
a
se
t
.
[
4
8
]
2
0
2
3
D
e
t
e
c
t
i
o
n
o
f
l
u
n
g
c
a
n
c
e
r
f
r
o
m sa
l
i
v
a
sam
p
l
e
s
Ex
a
s
e
n
s
d
a
t
a
se
t
w
i
t
h
C
O
P
D
,
h
e
a
l
t
h
y
,
a
st
h
m
a
,
a
n
d
i
n
f
e
c
t
e
d
p
a
t
i
e
n
t
s
[
4
9
]
M
u
l
t
i
c
l
a
ss
c
l
a
ssi
f
i
c
a
t
i
o
n
:
C
O
P
D
,
h
e
a
l
t
h
y
,
a
s
t
h
ma,
i
n
f
e
c
t
e
d
.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
(
a
g
e
,
g
e
n
d
e
r
,
sm
o
k
i
n
g
,
c
l
a
ss
e
s)
.
[
5
0
]
2
0
2
3
D
e
t
e
c
t
i
o
n
o
f
l
u
n
g
t
u
m
o
r
u
si
n
g
C
T
sc
a
n
s
LI
D
C
-
I
D
R
I
[
5
1
]
,
S
i
mb
a
l
u
n
g
d
a
t
a
se
t
[
5
2
]
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
n
o
r
m
a
l
a
n
d
l
u
n
g
l
e
s
i
o
n
.
D
I
C
O
M
C
T
s
c
a
n
i
ma
g
e
d
a
t
a
set
.
[
5
3
]
2
0
2
3
C
l
a
s
si
f
i
c
a
t
i
o
n
o
f
l
u
n
g
d
i
s
e
a
se
u
si
n
g
C
X
R
i
ma
g
e
s
N
I
H
C
X
R
[
4
4
]
,
I
U
-
X
r
a
y
[
5
4
]
,
M
I
M
I
C
C
X
R
d
a
t
a
s
e
t
[
5
5
]
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
n
o
r
m
a
l
a
n
d
d
i
se
a
se
d
p
a
t
i
e
n
t
.
I
mag
e
a
n
d
r
e
p
o
r
t
d
a
t
a
se
t
.
[
5
6
]
2
0
2
3
C
l
a
s
si
f
i
c
a
t
i
o
n
o
f
d
i
f
f
e
r
e
n
t
c
h
e
st
d
i
sea
s
e
s
u
si
n
g
C
X
R
i
ma
g
e
s
V
a
r
i
o
u
s s
o
u
r
c
e
s
d
a
t
a
se
t
w
i
t
h
C
X
R
i
ma
g
e
s
M
u
l
t
i
c
l
a
ss
c
l
a
ssi
f
i
c
a
t
i
o
n
:
l
u
n
g
c
a
n
c
e
r
,
a
t
e
l
e
c
t
a
si
s
,
c
o
n
so
l
i
d
a
t
i
o
n
l
u
n
g
,
t
u
b
e
r
c
u
l
o
si
s,
p
n
e
u
mo
t
h
o
r
a
x
,
e
d
e
ma,
p
n
e
u
m
o
n
i
a
,
p
l
e
u
r
a
l
t
h
i
c
k
e
n
i
n
g
,
n
o
r
ma
l
u
si
n
g
C
X
R
.
I
mag
e
d
a
t
a
s
e
t
.
[
5
7
]
2
0
2
3
C
l
a
s
si
f
i
c
a
t
i
o
n
o
f
p
n
e
u
mo
n
i
a
a
n
d
n
o
r
m
a
l
p
a
t
i
e
n
t
s
u
si
n
g
C
X
R
C
X
R
d
a
t
a
s
e
t
w
i
t
h
C
O
V
I
D
-
19,
n
o
r
m
a
l
,
p
n
e
u
m
o
n
i
a
sa
mp
l
e
s
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
p
n
e
u
m
o
n
i
a
o
r
n
o
r
mal
.
I
mag
e
d
a
t
a
se
t
.
[
5
8
]
2
0
2
4
D
e
t
e
c
t
i
o
n
o
f
l
u
n
g
a
b
n
o
r
m
a
l
i
t
y
u
si
n
g
c
h
e
st
C
T
sca
n
a
n
d
C
X
R
s
c
a
n
C
X
R
a
n
d
C
T
sca
n
d
a
t
a
s
e
t
s
[
5
9
]
,
[
6
0
]
M
u
l
t
i
c
l
a
ss
c
l
a
ssi
f
i
c
a
t
i
o
n
:
l
u
n
g
o
p
a
c
i
t
y
,
n
o
r
ma
l
,
v
i
r
a
l
p
n
e
u
mo
n
i
a
a
n
d
C
O
V
I
D
-
1
9
,
n
o
r
mal
,
v
i
r
a
l
p
n
e
u
mo
n
i
a
.
I
mag
e
d
a
t
a
s
e
t
.
[
6
1
]
2
0
2
3
C
l
a
s
si
f
i
c
a
t
i
o
n
a
n
d
l
o
c
a
l
i
z
a
t
i
o
n
o
f
l
u
n
g
d
i
s
e
a
se
f
r
o
m C
X
R
C
O
V
I
D
-
1
9
r
a
d
i
o
g
r
a
p
h
y
d
a
t
a
set
[
6
2
]
M
u
l
t
i
c
l
a
ss
c
l
a
ssi
f
i
c
a
t
i
o
n
:
n
o
r
ma
l
,
l
u
n
g
o
p
a
c
i
t
y
,
p
n
e
u
mo
n
i
a
.
I
mag
e
d
a
t
a
s
e
t
.
[
6
3
]
2
0
2
3
D
e
t
e
c
t
i
o
n
o
f
l
u
n
g
d
i
se
a
se
u
si
n
g
e
l
e
c
t
r
o
c
a
r
d
i
o
g
r
a
m
(
EC
G
)
d
a
t
a
set
EC
G
d
a
t
a
se
t
w
i
t
h
C
O
P
D
a
n
d
h
e
a
l
t
h
y
c
l
a
ss
e
s
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
C
O
P
D
a
n
d
h
e
a
l
t
h
y
.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
.
[
6
4
]
2
0
2
3
D
e
t
e
c
t
i
o
n
o
f
l
u
n
g
c
h
r
o
n
i
c
d
i
s
e
a
se
u
si
n
g
d
i
f
f
e
r
e
n
t
k
i
n
d
s
o
f
d
a
t
a
se
t
s
I
C
B
H
I
l
u
n
g
so
u
n
d
d
a
t
a
b
a
se
[
6
5
]
,
W
B
C
D
[
6
6
]
, Z
-
A
l
i
z
a
d
e
h
s
a
n
i
[
6
7
]
,
E
x
a
se
n
s,
D
i
a
b
e
t
e
s
d
a
t
a
se
t
s
[
6
8
]
M
u
l
t
i
c
l
a
ss
i
f
i
c
a
t
i
o
n
(
I
C
B
H
I
)
,
b
i
n
a
r
y
c
l
a
ssi
f
i
c
a
t
i
o
n
(
W
B
C
D
,
Z
-
A
l
i
z
a
d
e
h
sa
n
i
,
E
x
a
se
n
s,
D
i
a
b
e
t
e
s)
.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
s
.
[
6
9
]
2
0
2
3
D
e
t
e
c
t
i
o
n
o
f
l
u
n
g
d
i
se
a
se
u
si
n
g
c
a
n
c
e
r
t
i
ss
u
e
s
i
m
a
g
e
s
LC
2
5
0
0
0
d
a
t
a
s
e
t
w
i
t
h
c
a
n
c
e
r
t
i
ss
u
e
i
ma
g
e
s
[
7
0
]
B
i
n
a
r
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
c
a
n
c
e
r
o
u
s
o
r
n
o
n
-
c
a
n
c
e
r
o
u
s
i
ma
g
e
s.
I
mag
e
d
a
t
a
set
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
d
va
n
ce
men
ts
a
n
d
ch
a
llen
g
es
in
d
ee
p
le
a
r
n
in
g
tech
n
iq
u
es f
o
r
lu
n
g
d
is
ea
s
e
d
ia
g
n
o
s
is
(
La
x
mi
B
a
g
a
lko
t
)
1057
2
.
3
.
Da
t
a
s
et
s
I
n
th
e
p
r
ec
ed
i
n
g
liter
atu
r
e
s
u
r
v
ey
,
a
v
ar
iety
o
f
d
atasets
wer
e
u
tili
ze
d
to
in
v
esti
g
ate
d
if
f
er
en
t
asp
ec
ts
o
f
r
esp
ir
ato
r
y
d
is
ea
s
es
an
d
th
eir
d
etec
tio
n
/class
if
icatio
n
m
eth
o
d
o
lo
g
ies.
T
h
ese
d
atasets
p
l
ay
a
cr
u
cial
r
o
le
in
tr
ain
in
g
an
d
e
v
alu
atin
g
ML
m
o
d
els,
DL
alg
o
r
ith
m
s
,
an
d
s
tatis
tical
ap
p
r
o
ac
h
es.
E
ac
h
d
a
taset
h
as
its
u
n
iq
u
e
ch
ar
ac
ter
is
tics
,
s
u
c
h
as
th
e
ty
p
e
o
f
d
ata
it
co
n
tain
s
,
th
e
n
u
m
b
er
o
f
s
am
p
les,
an
d
th
e
cla
s
s
es
o
r
ca
teg
o
r
ies
r
ep
r
esen
ted
.
T
h
e
d
atasets
u
s
ed
in
th
e
s
u
r
v
ey
e
n
co
m
p
ass
a
r
an
g
e
o
f
m
o
d
alities
,
in
clu
d
in
g
C
XR
im
ag
es,
C
T
s
ca
n
im
ag
es,
s
o
u
n
d
d
ata,
an
d
s
tatis
tical
d
ata
d
er
iv
ed
f
r
o
m
s
aliv
a
s
am
p
les
o
r
p
atien
t
r
ec
o
r
d
s
.
T
h
e
co
m
p
lete
s
u
m
m
ar
y
o
f
th
e
d
atasets
is
p
r
o
v
id
ed
in
T
a
b
le
3
.
T
ab
le
3
.
Su
m
m
a
r
y
o
f
d
at
asets
u
s
ed
in
th
e
p
r
ev
io
u
s
wo
r
k
D
a
t
a
s
e
t
n
a
me
D
e
scri
p
t
i
o
n
Ty
p
e
S
o
u
r
c
e
H
o
sp
i
t
a
l
C
X
R
C
o
l
l
e
c
t
e
d
f
r
o
m
a
h
o
s
p
i
t
a
l
h
a
v
i
n
g
7
9
b
a
s
e
l
i
n
e
C
X
R
s
f
r
o
m
v
a
r
i
o
u
s
i
n
d
i
v
i
d
u
a
l
s.
I
mag
e
d
a
t
a
se
t
[
2
2
]
C
O
V
I
D
-
DB
Th
i
s
d
a
t
a
se
t
c
o
n
si
s
t
s
o
f
1
2
3
f
r
o
n
t
a
l
v
i
e
w
C
X
R
s
.
I
mag
e
d
a
t
a
se
t
[
2
4
]
C
O
V
I
D
-
19
C
o
l
l
e
c
t
e
d
f
r
o
m
v
a
r
i
o
u
s
so
u
r
c
e
s
.
I
mag
e
d
a
t
a
se
t
[
2
5
]
C
O
V
I
D
-
19
-
AR
C
o
n
si
s
t
s
d
a
t
a
o
f
1
0
5
i
n
d
i
v
i
d
u
a
l
s
h
a
v
i
n
g
3
1
9
3
5
D
I
C
O
M
i
ma
g
e
s
(
C
T
,
D
X
,
C
R
)
.
A
l
s
o
,
a
c
l
i
n
i
c
a
l
d
a
t
a
i
s
p
r
o
v
i
d
e
d
.
I
mag
e
d
a
t
a
se
t
[
2
6
]
N
I
H
C
X
R
s
Th
e
d
a
t
a
set
c
o
m
p
r
i
ses
o
f
1
0
8
9
4
8
f
r
o
n
t
a
l
v
i
e
w
C
X
R
s
o
f
3
2
7
1
7
i
n
d
i
v
i
d
u
a
l
s.
I
mag
e
d
a
t
a
se
t
[
2
7
]
P
n
e
u
mo
n
i
a
C
X
R
s
Th
e
d
a
t
a
se
t
c
o
n
si
s
t
s
o
f
5
,
2
3
2
C
X
R
s,
i
n
c
l
u
d
i
n
g
3
,
8
8
3
c
h
a
r
a
c
t
e
r
i
z
e
d
a
s
d
e
p
i
c
t
i
n
g
p
n
e
u
m
o
n
i
a
(
2
,
5
3
8
b
a
c
t
e
r
i
a
l
a
n
d
1
,
3
4
5
v
i
r
a
l
)
a
n
d
1
,
3
4
9
n
o
r
m
a
l
,
f
r
o
m
a
t
o
t
a
l
o
f
5
,
8
5
6
p
a
t
i
e
n
t
s.
I
mag
e
d
a
t
a
se
t
[
2
8
]
C
O
V
Q
U
Th
i
s
d
a
t
a
s
e
t
c
o
n
si
s
t
s
o
f
1
8
,
4
7
9
C
X
R
i
ma
g
e
s
w
i
t
h
8
8
5
1
n
o
r
ma
l
,
6
0
1
2
n
o
n
-
C
O
V
I
D
l
u
n
g
i
n
f
e
c
t
i
o
n
s,
a
n
d
3
6
1
6
C
O
V
I
D
-
1
9
C
X
R
i
m
a
g
e
s
.
I
mag
e
d
a
t
a
se
t
[
2
9
]
K
a
g
g
l
e
d
a
t
a
se
t
Th
i
s
d
a
t
a
c
o
n
si
st
s
o
f
6
9
3
9
C
X
R
i
ma
g
e
s
c
o
l
l
e
c
t
e
d
f
r
o
m
v
a
r
i
o
u
s
so
u
r
c
e
s
.
I
mag
e
d
a
t
a
se
t
[
3
1
]
C
h
e
st
r
a
d
i
o
g
r
a
p
h
s
Th
e
e
n
t
i
r
e
d
a
t
a
se
t
c
o
n
t
a
i
n
s
6
,
1
6
8
f
r
o
n
t
a
l
-
v
i
e
w
c
h
e
st
r
a
d
i
o
g
r
a
p
h
s
o
b
t
a
i
n
e
d
f
r
o
m f
i
v
e
d
i
f
f
e
r
e
n
t
s
o
u
r
c
e
s
.
I
mag
e
d
a
t
a
se
t
[
3
2
]
R
S
N
A
p
n
e
u
m
o
n
i
a
d
a
t
a
se
t
Th
i
s
d
a
t
a
s
e
t
c
o
n
si
s
t
s
o
f
3
0
0
0
0
f
r
o
n
t
a
l
C
X
R
s
f
r
o
m
1
1
2
0
0
0
N
I
H
d
a
t
a
se
t
a
n
d
C
X
R
8
d
a
t
a
se
t
.
I
mag
e
d
a
t
a
se
t
[
3
4
]
Q
u
a
l
i
t
y
a
ss
u
r
a
n
c
e
d
a
t
a
set
Th
i
s
d
a
t
a
se
t
c
o
n
s
i
st
s
o
f
2
9
1
2
0
C
X
R
i
ma
g
e
s
t
a
k
e
n
f
r
o
m
C
X
R
-
1
4
a
n
d
f
r
o
m v
a
r
i
o
u
s
c
l
i
n
i
c
a
l
s
o
u
r
c
e
s
.
I
mag
e
d
a
t
a
se
t
[
3
6
]
C
X
R
-
1
4
d
a
t
a
s
e
t
C
X
R
-
1
4
i
s
a
me
d
i
c
a
l
i
m
a
g
i
n
g
d
a
t
a
set
w
h
i
c
h
c
o
m
p
r
i
ses
1
1
2
,
1
2
0
f
r
o
n
t
a
l
-
v
i
e
w
C
X
R
i
ma
g
e
s
o
f
3
0
,
8
0
5
(
c
o
l
l
e
c
t
e
d
f
r
o
m
t
h
e
y
e
a
r
o
f
1
9
9
2
t
o
2
0
1
5
)
u
n
i
q
u
e
p
a
t
i
e
n
t
s
.
I
mag
e
d
a
t
a
se
t
[
4
0
]
C
R
,
D
R
i
ma
g
e
s
d
a
t
a
se
t
Th
i
s
d
a
t
a
se
t
c
o
n
si
s
t
s
o
f
m
o
r
e
t
h
a
n
2
0
0
0
+
C
X
R
s
t
a
k
e
n
f
r
o
m
v
a
r
i
o
u
s
so
u
r
c
e
s
.
I
mag
e
d
a
t
a
se
t
[
4
2
]
S
a
l
i
v
a
d
a
t
a
se
t
S
a
l
i
v
a
s
a
mp
l
e
s
c
o
l
l
e
c
t
e
d
f
r
o
m
3
1
9
i
n
d
i
v
i
d
u
a
l
s
,
d
i
v
i
d
e
d
i
n
t
o
h
e
a
l
t
h
y
a
n
d
C
O
P
D
p
a
t
i
e
n
t
s
,
i
n
c
l
u
d
e
s
d
e
m
o
g
r
a
p
h
i
c
i
n
f
o
.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
[
4
5
]
K
a
g
g
l
e
C
X
R
i
ma
g
e
s
D
i
g
i
t
a
l
I
mag
i
n
g
a
n
d
C
o
mm
u
n
i
c
a
t
i
o
n
s
i
n
M
e
d
i
c
i
n
e
(
D
I
C
O
M
)
i
m
a
g
e
s
f
r
o
m
K
a
g
g
l
e
,
u
se
d
f
o
r
p
n
e
u
m
o
t
h
o
r
a
x
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
I
mag
e
d
a
t
a
se
t
[
4
6
]
Ex
a
s
e
n
s
d
a
t
a
se
t
D
a
t
a
s
e
t
c
o
n
t
a
i
n
i
n
g
sa
l
i
v
a
sam
p
l
e
s
f
r
o
m
3
9
9
i
n
d
i
v
i
d
u
a
l
s,
i
n
c
l
u
d
i
n
g
C
O
P
D
,
h
e
a
l
t
h
y
,
a
st
h
ma
,
a
n
d
i
n
f
e
c
t
e
d
p
a
t
i
e
n
t
s
.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
[
4
8
]
Lu
n
g
i
m
a
g
e
d
a
t
a
b
a
s
e
c
o
n
so
r
t
i
u
m
(
LI
D
C
-
I
D
R
I
)
C
T
sc
a
n
i
ma
g
e
s
f
r
o
m
1
,
0
1
8
l
o
w
-
d
o
s
e
l
u
n
g
C
Ts,
u
se
d
f
o
r
l
u
n
g
l
e
s
i
o
n
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
D
I
C
O
M
C
T
s
c
a
n
i
ma
g
e
d
a
t
a
se
t
[
5
0
]
N
I
H
C
X
R
d
a
t
a
se
t
La
r
g
e
c
o
l
l
e
c
t
i
o
n
o
f
1
1
2
,
1
2
0
X
-
r
a
y
i
mag
e
s
w
i
t
h
d
i
s
e
a
s
e
l
a
b
e
l
s
f
r
o
m
3
0
,
8
0
5
p
a
t
i
e
n
t
s,
u
se
d
f
o
r
l
u
n
g
d
i
se
a
se
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
I
mag
e
a
n
d
r
e
p
o
r
t
d
a
t
a
se
t
[
5
3
]
V
a
r
i
o
u
s s
o
u
r
c
e
s
C
X
R
i
ma
g
e
s
D
a
t
a
s
e
t
f
r
o
m
mu
l
t
i
p
l
e
s
o
u
r
c
e
s
c
o
n
t
a
i
n
i
n
g
C
X
R
i
ma
g
e
s,
u
s
e
d
f
o
r
c
l
a
ss
i
f
y
i
n
g
d
i
f
f
e
r
e
n
t
c
h
e
st
d
i
se
a
ses
.
I
mag
e
d
a
t
a
se
t
[
5
6
]
C
O
V
I
D
-
1
9
r
a
d
i
o
g
r
a
p
h
y
d
a
t
a
se
t
D
a
t
a
s
e
t
w
i
t
h
2
1
,
1
6
5
C
X
R
i
ma
g
e
s
,
i
n
c
l
u
d
i
n
g
n
o
r
ma
l
,
l
u
n
g
o
p
a
c
i
t
y
,
p
n
e
u
mo
n
i
a
c
a
ses
,
u
se
d
f
o
r
l
u
n
g
d
i
se
a
s
e
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
I
mag
e
d
a
t
a
se
t
[
6
1
]
EC
G
d
a
t
a
se
t
D
a
t
a
s
e
t
w
i
t
h
e
l
e
c
t
r
o
c
a
r
d
i
o
g
r
a
m
d
a
t
a
f
r
o
m
1
2
p
a
t
i
e
n
t
s,
u
se
d
f
o
r
C
O
P
D
d
e
t
e
c
t
i
o
n
.
S
t
a
t
i
st
i
c
a
l
d
a
t
a
s
e
t
[
6
3
]
I
C
B
H
I
l
u
n
g
so
u
n
d
d
a
t
a
b
a
se
S
o
u
n
d
d
a
t
a
se
t
w
i
t
h
c
l
a
sses
l
i
k
e
C
O
P
D
,
a
st
h
ma
,
b
r
o
n
c
h
i
o
l
i
t
i
s,
u
se
d
f
o
r
l
u
n
g
s
o
u
n
d
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
S
o
u
n
d
d
a
t
a
se
t
[
6
4
]
LC
2
5
0
0
0
d
a
t
a
s
e
t
D
a
t
a
s
e
t
w
i
t
h
2
5
,
0
0
0
i
ma
g
e
s
o
f
c
a
n
c
e
r
t
i
ss
u
e
i
n
t
h
e
l
u
n
g
s
a
n
d
c
o
l
o
n
,
u
se
d
f
o
r
l
u
n
g
c
a
n
c
e
r
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
I
mag
e
d
a
t
a
se
t
[
6
9
]
O
p
e
n
I
C
X
R
d
a
t
a
se
t
D
a
t
a
s
e
t
w
i
t
h
d
i
v
e
r
se
C
X
R
i
ma
g
e
s
,
u
s
e
d
f
o
r
c
l
a
ssi
f
y
i
n
g
d
i
f
f
e
r
e
n
t
l
u
n
g
d
i
s
e
a
se
s
.
I
mag
e
d
a
t
a
se
t
[
7
1
]
3.
F
I
NDING
S
I
n
th
is
s
ec
tio
n
,
we
aim
t
o
h
i
g
h
lig
h
t
th
e
lim
itatio
n
s
o
b
s
er
v
e
d
in
t
h
e
p
r
ev
io
u
s
wo
r
k
s
d
is
cu
s
s
ed
in
th
e
liter
atu
r
e.
T
h
ese
lim
itatio
n
s
en
co
m
p
ass
v
ar
io
u
s
asp
ec
ts
o
f
m
ed
ical
im
ag
e
p
r
o
ce
s
s
in
g
an
d
an
aly
s
is
,
wh
ich
ar
e
cr
u
cial
to
ad
d
r
ess
f
o
r
th
e
ad
v
an
ce
m
en
t
a
n
d
a
p
p
licab
ilit
y
o
f
ML
an
d
DL
m
o
d
els
in
h
ea
lth
ca
r
e
s
ettin
g
s
.
T
h
e
co
m
p
lete
s
u
m
m
ar
y
is
g
iv
en
in
T
ab
le
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
0
5
3
-
1
062
1058
T
ab
le
4
.
L
im
itatio
n
s
o
f
p
r
e
v
io
u
s
ap
p
r
o
ac
h
es
Ref
Li
mi
t
a
t
i
o
n
s wi
t
h
r
e
s
p
e
c
t
t
o
c
o
st
,
s
p
e
e
d
a
n
d
p
r
o
c
e
ss
i
n
g
[
2
1
]
H
i
g
h
c
o
st
o
f
i
mp
l
e
me
n
t
a
t
i
o
n
d
u
e
t
o
c
o
mp
l
e
x
p
r
e
p
r
o
c
e
ss
i
n
g
t
e
c
h
n
i
q
u
e
s
l
i
k
e
F
A
B
EM
D
a
n
d
C
LA
H
E.
P
r
o
c
e
ssi
n
g
sp
e
e
d
may
b
e
sl
o
w
e
r
d
u
e
t
o
t
h
e
i
n
t
e
n
si
v
e
p
r
e
p
r
o
c
e
ss
i
n
g
.
P
e
r
f
o
r
ma
n
c
e
m
a
y
v
a
r
y
d
e
p
e
n
d
i
n
g
o
n
t
h
e
d
a
t
a
s
e
t
u
se
d
,
e
s
p
e
c
i
a
l
l
y
i
f
i
t
l
a
c
k
s
d
i
v
e
r
si
t
y
.
[
2
3
]
I
mp
l
e
me
n
t
a
t
i
o
n
c
o
s
t
m
a
y
b
e
m
o
d
e
r
a
t
e
d
u
e
t
o
i
ma
g
e
r
e
si
z
i
n
g
me
t
h
o
d
s.
S
p
e
e
d
c
o
u
l
d
b
e
a
f
f
e
c
t
e
d
sl
i
g
h
t
l
y
d
u
r
i
n
g
i
ma
g
e
p
r
e
p
r
o
c
e
ssi
n
g
.
P
e
r
f
o
r
ma
n
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
d
i
v
e
r
s
i
t
y
o
f
t
h
e
d
a
t
a
s
e
t
u
s
e
d
f
o
r
t
r
a
i
n
i
n
g
.
[
2
9
]
I
mp
l
e
me
n
t
a
t
i
o
n
c
o
st
c
a
n
b
e
m
o
d
e
r
a
t
e
,
b
u
t
u
s
i
n
g
m
u
l
t
i
p
l
e
i
ma
g
e
e
n
h
a
n
c
e
me
n
t
t
e
c
h
n
i
q
u
e
s
mi
g
h
t
i
n
c
r
e
a
se
c
o
mp
u
t
a
t
i
o
n
a
l
e
x
p
e
n
ses
.
S
p
e
e
d
m
i
g
h
t
b
e
a
f
f
e
c
t
e
d
b
y
t
h
e
p
r
o
c
e
ssi
n
g
c
o
m
p
l
e
x
i
t
y
o
f
e
n
h
a
n
c
e
me
n
t
t
e
c
h
n
i
q
u
e
s.
P
e
r
f
o
r
ma
n
c
e
d
e
p
e
n
d
s
o
n
t
h
e
e
f
f
i
c
a
c
y
o
f
t
h
e
c
h
o
se
n
e
n
h
a
n
c
e
m
e
n
t
met
h
o
d
s a
n
d
t
h
e
d
i
v
e
r
si
t
y
o
f
t
h
e
d
a
t
a
se
t
.
[
3
0
]
M
o
d
e
r
a
t
e
i
m
p
l
e
me
n
t
a
t
i
o
n
c
o
st
f
o
r
M
L
-
b
a
s
e
d
c
l
a
s
si
f
i
c
a
t
i
o
n
m
e
t
h
o
d
s
.
S
p
e
e
d
c
a
n
b
e
f
a
s
t
d
e
p
e
n
d
i
n
g
o
n
t
h
e
a
l
g
o
r
i
t
h
m
u
se
d
f
o
r
p
r
e
-
p
r
o
c
e
ss
i
n
g
.
P
e
r
f
o
r
m
a
n
c
e
h
i
g
h
l
y
d
e
p
e
n
d
e
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
s
i
z
e
o
f
t
h
e
t
r
a
i
n
i
n
g
d
a
t
a
se
t
.
[
3
2
]
I
mp
l
e
me
n
t
a
t
i
o
n
c
o
s
t
c
a
n
b
e
m
o
d
e
r
a
t
e
f
o
r
l
u
n
g
B
C
ET
a
n
d
a
u
g
me
n
t
a
t
i
o
n
me
t
h
o
d
s.
S
p
e
e
d
m
i
g
h
t
b
e
s
l
i
g
h
t
l
y
s
l
o
w
e
r
d
u
e
t
o
t
h
e
p
r
e
p
r
o
c
e
ssi
n
g
st
e
p
s.
P
e
r
f
o
r
ma
n
c
e
may
v
a
r
y
b
a
se
d
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
v
a
r
i
e
t
y
o
f
t
h
e
d
a
t
a
u
se
d
f
o
r
e
v
a
l
u
a
t
i
o
n
.
[
3
4
]
H
i
g
h
c
o
st
f
o
r
m
u
l
t
i
-
c
h
a
n
n
e
l
-
b
a
se
d
i
mag
e
p
r
o
c
e
s
si
n
g
a
n
d
d
e
e
p
n
e
u
r
a
l
n
e
t
w
o
r
k
i
m
p
l
e
me
n
t
a
t
i
o
n
.
S
p
e
e
d
ma
y
v
a
r
y
d
e
p
e
n
d
i
n
g
o
n
t
h
e
c
o
m
p
l
e
x
i
t
y
o
f
i
ma
g
e
p
r
o
c
e
ss
i
n
g
a
l
g
o
r
i
t
h
ms
.
P
e
r
f
o
r
ma
n
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
q
u
a
n
t
i
t
y
o
f
a
n
n
o
t
a
t
e
d
C
X
R
i
ma
g
e
s.
[
3
6
]
I
mp
l
e
me
n
t
a
t
i
o
n
c
o
s
t
c
o
u
l
d
b
e
h
i
g
h
f
o
r
D
L
-
b
a
s
e
d
q
u
a
l
i
t
y
a
ssu
r
a
n
c
e
s
y
st
e
ms.
S
p
e
e
d
m
i
g
h
t
b
e
i
m
p
a
c
t
e
d
b
y
t
h
e
c
o
m
p
u
t
a
t
i
o
n
a
l
r
e
q
u
i
r
e
m
e
n
t
s
o
f
D
L
m
o
d
e
l
s
.
P
e
r
f
o
r
m
a
n
c
e
c
a
n
b
e
e
x
c
e
l
l
e
n
t
f
o
r
i
m
a
g
e
c
o
r
r
e
c
t
i
o
n
t
a
sk
s
b
u
t
ma
y
v
a
r
y
f
o
r
r
e
g
r
e
ss
i
o
n
-
b
a
se
d
c
o
r
r
e
c
t
i
o
n
s.
[
4
1
]
H
i
g
h
c
o
s
t
f
o
r
i
m
p
l
e
me
n
t
i
n
g
D
L
m
o
d
e
l
s
a
n
d
p
r
e
-
p
r
o
c
e
ssi
n
g
t
e
c
h
n
i
q
u
e
s
l
i
k
e
C
LA
H
E.
S
p
e
e
d
ma
y
b
e
s
l
o
w
e
r
d
u
e
t
o
t
h
e
c
o
m
p
l
e
x
i
t
y
o
f
D
L
a
r
c
h
i
t
e
c
t
u
r
e
s.
P
e
r
f
o
r
man
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
d
i
v
e
r
si
t
y
o
f
t
h
e
t
r
a
i
n
i
n
g
d
a
t
a
.
[
4
2
]
M
o
d
e
r
a
t
e
i
m
p
l
e
me
n
t
a
t
i
o
n
c
o
st
f
o
r
A
I
mo
d
e
l
d
e
v
e
l
o
p
me
n
t
.
S
p
e
e
d
c
a
n
b
e
f
a
st
,
e
s
p
e
c
i
a
l
l
y
w
i
t
h
e
f
f
i
c
i
e
n
t
i
ma
g
e
p
r
o
c
e
ss
i
n
g
p
i
p
e
l
i
n
e
s
.
P
e
r
f
o
r
ma
n
c
e
ma
y
v
a
r
y
b
a
se
d
o
n
t
h
e
d
a
t
a
se
t
u
se
d
a
n
d
t
h
e
mo
d
e
l
’
s
g
e
n
e
r
a
l
i
z
a
t
i
o
n
c
a
p
a
b
i
l
i
t
i
e
s
.
[
4
3
]
H
i
g
h
c
o
s
t
f
o
r
d
e
v
e
l
o
p
i
n
g
c
u
s
t
o
m
D
L
f
r
a
mew
o
r
k
s
f
o
r
mu
l
t
i
-
c
l
a
ss
d
i
a
g
n
o
s
i
s.
S
p
e
e
d
m
a
y
v
a
r
y
d
e
p
e
n
d
i
n
g
o
n
t
h
e
c
o
m
p
l
e
x
i
t
y
o
f
D
L
a
r
c
h
i
t
e
c
t
u
r
e
s.
P
e
r
f
o
r
ma
n
c
e
h
i
g
h
l
y
d
e
p
e
n
d
e
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
d
i
v
e
r
si
t
y
o
f
t
h
e
d
a
t
a
s
e
t
u
s
e
d
f
o
r
t
r
a
i
n
i
n
g
.
[
4
5
]
M
o
d
e
r
a
t
e
c
o
s
t
f
o
r
M
L
i
m
p
l
e
me
n
t
a
t
i
o
n
o
n
s
a
l
i
v
a
d
a
t
a
b
u
t
h
i
g
h
c
o
s
t
i
f
i
n
t
e
g
r
a
t
e
d
i
n
t
o
n
e
u
r
o
m
o
r
p
h
i
c
c
h
i
p
s.
S
p
e
e
d
c
a
n
b
e
f
a
st
f
o
r
M
L
a
l
g
o
r
i
t
h
ms.
P
e
r
f
o
r
ma
n
c
e
d
e
p
e
n
d
s
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
r
e
p
r
e
se
n
t
a
t
i
v
e
n
e
ss
o
f
t
h
e
s
a
l
i
v
a
d
a
t
a
se
t
.
[
4
6
]
H
i
g
h
c
o
st
f
o
r
d
e
v
e
l
o
p
i
n
g
a
n
d
t
r
a
i
n
i
n
g
s
c
r
a
t
c
h
C
N
N
a
r
c
h
i
t
e
c
t
u
r
e
s.
S
p
e
e
d
may
v
a
r
y
b
a
s
e
d
o
n
t
h
e
c
o
mp
l
e
x
i
t
y
o
f
C
N
N
mo
d
e
l
s
.
P
e
r
f
o
r
ma
n
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
d
i
v
e
r
s
i
t
y
o
f
t
h
e
d
a
t
a
s
e
t
u
se
d
f
o
r
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
[
4
8
]
H
i
g
h
c
o
s
t
f
o
r
I
o
T
-
e
n
a
b
l
e
d
h
e
a
l
t
h
c
a
r
e
m
o
n
i
t
o
r
i
n
g
a
n
d
D
L
mo
d
e
l
o
p
t
i
mi
z
a
t
i
o
n
.
S
p
e
e
d
c
a
n
b
e
sl
o
w
e
r
d
u
e
t
o
d
a
t
a
p
r
o
c
e
ss
i
n
g
a
n
d
o
p
t
i
mi
z
a
t
i
o
n
.
P
e
r
f
o
r
man
c
e
d
e
p
e
n
d
s
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
f
e
a
t
u
r
e
sel
e
c
t
i
o
n
a
n
d
m
o
d
e
l
t
r
a
i
n
i
n
g
.
[
5
0
]
H
i
g
h
c
o
s
t
f
o
r
d
e
v
e
l
o
p
i
n
g
a
n
d
o
p
t
i
mi
z
i
n
g
l
u
n
g
t
u
mo
r
d
e
t
e
c
t
i
o
n
a
l
g
o
r
i
t
h
ms
.
S
p
e
e
d
ma
y
v
a
r
y
d
e
p
e
n
d
i
n
g
o
n
t
h
e
c
o
m
p
l
e
x
i
t
y
o
f
f
e
a
t
u
r
e
f
u
si
o
n
mo
d
u
l
e
s.
P
e
r
f
o
r
m
a
n
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
l
u
n
g
t
u
m
o
r
l
o
c
a
l
i
z
a
t
i
o
n
a
n
d
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
[
5
3
]
H
i
g
h
c
o
s
t
f
o
r
d
e
v
e
l
o
p
i
n
g
g
r
a
p
h
n
e
u
r
a
l
n
e
t
w
o
r
k
-
b
a
se
d
d
i
se
a
se
c
o
-
o
c
c
u
r
r
e
n
c
e
m
a
t
r
i
c
e
s
.
S
p
e
e
d
c
a
n
b
e
sl
o
w
e
r
d
u
e
t
o
g
r
a
p
h
-
b
a
s
e
d
c
o
mp
u
t
a
t
i
o
n
s
.
P
e
r
f
o
r
ma
n
c
e
d
e
p
e
n
d
s
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
d
i
se
a
se
c
o
-
o
c
c
u
r
r
e
n
c
e
p
r
e
d
i
c
t
i
o
n
s.
[
5
6
]
M
o
d
e
r
a
t
e
c
o
s
t
f
o
r
f
u
s
i
o
n
mo
d
e
l
d
e
v
e
l
o
p
m
e
n
t
a
n
d
D
L
t
r
a
i
n
i
n
g
.
S
p
e
e
d
c
a
n
b
e
f
a
s
t
f
o
r
t
r
a
i
n
e
d
D
L
mo
d
e
l
s.
P
e
r
f
o
r
man
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
d
i
v
e
r
si
t
y
a
n
d
q
u
a
l
i
t
y
o
f
t
h
e
d
a
t
a
s
e
t
u
se
d
f
o
r
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
[
5
7
]
M
o
d
e
r
a
t
e
c
o
st
f
o
r
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
a
n
d
D
L
m
o
d
e
l
d
e
v
e
l
o
p
me
n
t
.
S
p
e
e
d
c
a
n
b
e
f
a
st
f
o
r
t
r
a
i
n
e
d
D
L
mo
d
e
l
s.
P
e
r
f
o
r
man
c
e
d
e
p
e
n
d
s
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
f
e
a
t
u
r
e
e
x
t
r
a
c
t
i
o
n
a
n
d
D
L
m
o
d
e
l
t
r
a
i
n
i
n
g
.
[
5
8
]
M
o
d
e
r
a
t
e
c
o
st
f
o
r
d
a
t
a
a
u
g
me
n
t
a
t
i
o
n
a
n
d
D
L
mo
d
e
l
d
e
v
e
l
o
p
me
n
t
.
S
p
e
e
d
c
a
n
b
e
f
a
s
t
f
o
r
t
r
a
i
n
e
d
D
L
mo
d
e
l
s
.
P
e
r
f
o
r
ma
n
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
d
i
v
e
r
si
t
y
o
f
a
u
g
m
e
n
t
e
d
d
a
t
a
s
e
t
s.
[
6
1
]
H
i
g
h
c
o
s
t
f
o
r
d
e
v
e
l
o
p
i
n
g
a
n
d
t
r
a
i
n
i
n
g
D
L
m
o
d
e
l
s
f
o
r
m
u
l
t
i
-
c
l
a
ss
a
b
n
o
r
ma
l
i
t
y
d
e
t
e
c
t
i
o
n
.
S
p
e
e
d
m
a
y
v
a
r
y
d
e
p
e
n
d
i
n
g
o
n
t
h
e
c
o
m
p
l
e
x
i
t
y
o
f
o
b
j
e
c
t
d
e
t
e
c
t
i
o
n
mo
d
e
l
s.
P
e
r
f
o
r
m
a
n
c
e
d
e
p
e
n
d
s
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
mu
l
t
i
-
c
l
a
ss
a
b
n
o
r
mal
i
t
y
l
o
c
a
l
i
z
a
t
i
o
n
a
n
d
c
l
a
ssi
f
i
c
a
t
i
o
n
.
[
6
3
]
H
i
g
h
c
o
s
t
f
o
r
d
e
v
e
l
o
p
i
n
g
a
n
d
t
r
a
i
n
i
n
g
d
e
e
p
TL
f
r
a
mew
o
r
k
s
.
S
p
e
e
d
c
a
n
b
e
f
a
s
t
f
o
r
t
r
a
i
n
e
d
D
L
m
o
d
e
l
s
.
P
e
r
f
o
r
man
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
q
u
a
l
i
t
y
a
n
d
d
i
v
e
r
si
t
y
o
f
t
h
e
e
l
e
c
t
r
o
c
a
r
d
i
o
g
r
a
m s
i
g
n
a
l
d
a
t
a
s
e
t.
[
6
4
]
H
i
g
h
c
o
st
f
o
r
d
e
v
e
l
o
p
i
n
g
a
n
d
t
r
a
i
n
i
n
g
P
S
O
R
F
-
b
a
se
d
c
l
a
ssi
f
i
e
r
s.
S
p
e
e
d
c
a
n
b
e
f
a
s
t
f
o
r
t
r
a
i
n
e
d
P
S
O
R
F
m
o
d
e
l
s
.
P
e
r
f
o
r
ma
n
c
e
d
e
p
e
n
d
s
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
f
e
a
t
u
r
e
s
e
l
e
c
t
i
o
n
a
n
d
c
l
a
ss
i
f
i
e
r
o
p
t
i
mi
z
a
t
i
o
n
.
[
6
9
]
H
i
g
h
c
o
st
f
o
r
d
e
v
e
l
o
p
i
n
g
s
e
c
u
r
e
I
o
M
T
-
b
a
se
d
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s.
S
p
e
e
d
m
a
y
v
a
r
y
d
e
p
e
n
d
i
n
g
o
n
t
h
e
c
o
m
p
l
e
x
i
t
y
o
f
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
m
o
d
e
l
s.
P
e
r
f
o
r
ma
n
c
e
h
i
g
h
l
y
r
e
l
i
a
n
t
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
d
i
s
e
a
s
e
p
r
e
d
i
c
t
i
o
n
a
n
d
c
l
a
ss
i
f
i
c
a
t
i
o
n
.
T
h
e
is
s
u
es a
n
d
ch
allen
g
es id
e
n
tifie
d
f
r
o
m
th
e
ab
o
v
e
lim
itati
o
n
s
ar
e
as f
o
llo
ws:
−
C
o
s
t:
C
T
s
ca
n
s
ar
e
g
en
er
ally
m
o
r
e
ex
p
e
n
s
iv
e
th
an
C
XR
s
,
wh
ich
ca
n
p
o
s
e
a
f
in
an
cial
b
u
r
d
en
o
n
p
atien
ts
,
h
ea
lth
ca
r
e
f
ac
ilit
ies,
an
d
i
n
s
u
r
an
ce
p
r
o
v
i
d
er
s
.
T
h
is
co
s
t
f
ac
to
r
ca
n
lim
it
ac
ce
s
s
to
a
d
v
an
ce
d
im
a
g
in
g
tech
n
iq
u
es f
o
r
ce
r
tain
p
ati
en
t
p
o
p
u
latio
n
s
o
r
in
r
eso
u
r
ce
-
c
o
n
s
tr
ain
ed
s
ettin
g
s
.
−
Pro
ce
s
s
in
g
tim
e
: CT
s
ca
n
s
ty
p
ically
r
eq
u
ir
e
m
o
r
e
p
r
o
ce
s
s
in
g
tim
e
co
m
p
ar
e
d
to
C
XR
s
.
T
h
e
in
tr
icate
n
atu
r
e
o
f
C
T
im
ag
in
g
,
wh
ich
ca
p
tu
r
es
cr
o
s
s
-
s
ec
tio
n
al
im
ag
es
o
f
t
h
e
b
o
d
y
,
n
ec
ess
itates
co
m
p
lex
r
ec
o
n
s
tr
u
cti
o
n
alg
o
r
ith
m
s
an
d
c
o
m
p
u
tatio
n
al
r
eso
u
r
ce
s
.
T
h
is
lo
n
g
er
p
r
o
ce
s
s
in
g
tim
e
ca
n
lead
to
d
elay
s
i
n
d
iag
n
o
s
is
an
d
tr
ea
tm
en
t,
esp
ec
ially
in
em
er
g
en
cy
s
itu
atio
n
s
wh
er
e
r
a
p
id
as
s
ess
m
en
t is cr
u
cial.
−
R
ad
iatio
n
ex
p
o
s
u
r
e
:
C
T
s
ca
n
s
ex
p
o
s
e
p
atien
ts
to
h
ig
h
er
l
ev
els
o
f
io
n
izin
g
r
ad
iatio
n
co
m
p
ar
ed
to
C
XR
s
.
W
h
ile
th
e
r
ad
iatio
n
d
o
s
es
f
r
o
m
m
o
d
e
r
n
C
T
s
ca
n
n
er
s
ar
e
g
e
n
er
ally
co
n
s
id
er
e
d
s
af
e,
r
ep
ea
ted
o
r
u
n
n
ec
ess
ar
y
C
T
s
ca
n
s
ca
n
cu
m
u
lativ
ely
in
cr
ea
s
e
th
e
r
is
k
o
f
r
ad
iatio
n
-
r
elate
d
h
ea
lth
is
s
u
es
,
s
u
ch
as c
an
ce
r
.
Min
im
izin
g
r
ad
iatio
n
ex
p
o
s
u
r
e
is
a
k
ey
co
n
s
id
er
atio
n
in
m
ed
ical
im
ag
in
g
,
p
ar
ticu
lar
l
y
f
o
r
v
u
ln
er
a
b
le
p
o
p
u
latio
n
s
s
u
ch
as c
h
ild
r
en
a
n
d
p
r
e
g
n
an
t w
o
m
en
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
d
va
n
ce
men
ts
a
n
d
ch
a
llen
g
es
in
d
ee
p
le
a
r
n
in
g
tech
n
iq
u
es f
o
r
lu
n
g
d
is
ea
s
e
d
ia
g
n
o
s
is
(
La
x
mi
B
a
g
a
lko
t
)
1059
−
A
c
c
e
s
s
i
b
il
i
t
y
a
n
d
p
o
r
t
a
b
i
l
it
y
:
C
XR
s
a
r
e
m
o
r
e
a
c
c
es
s
i
b
l
e
a
n
d
p
o
r
t
a
b
l
e
t
h
a
n
C
T
s
c
a
n
n
e
r
s
.
X
-
r
a
y
m
a
c
h
i
n
e
s
a
r
e
c
o
m
m
o
n
l
y
a
v
a
i
l
a
b
l
e
i
n
m
e
d
i
c
al
f
a
c
i
li
t
i
es
,
c
li
n
i
cs
,
a
n
d
e
v
e
n
m
o
b
i
l
e
h
e
a
l
t
h
c
a
r
e
u
n
i
t
s
,
m
a
k
i
n
g
t
h
e
m
c
o
n
v
e
n
i
e
n
t
f
o
r
r
o
u
t
i
n
e
s
c
r
e
e
n
i
n
g
s
,
f
o
l
l
o
w
-
u
p
e
x
a
m
s
,
a
n
d
p
o
i
n
t
-
of
-
c
a
r
e
d
ia
g
n
o
s
t
i
cs
.
I
n
c
o
n
t
r
a
s
t
,
C
T
s
ca
n
n
e
r
s
a
r
e
l
a
r
g
e
r
,
s
t
a
ti
o
n
a
r
y
e
q
u
i
p
m
e
n
t
t
h
a
t
m
a
y
r
e
q
u
i
r
e
s
p
e
c
i
al
i
z
e
d
f
a
ci
l
it
i
es
a
n
d
t
r
a
i
n
e
d
p
e
r
s
o
n
n
e
l
f
o
r
o
p
e
r
a
t
io
n
.
−
Diag
n
o
s
tic
ac
cu
r
ac
y
:
w
h
ile
C
T
s
ca
n
s
o
f
f
er
s
u
p
e
r
io
r
s
p
atial
r
eso
lu
tio
n
an
d
d
etailed
an
ato
m
ical
in
f
o
r
m
atio
n
co
m
p
ar
ed
to
C
XR
s
,
th
e
d
iag
n
o
s
tic
ac
cu
r
ac
y
o
f
b
o
th
m
o
d
ali
ties
d
ep
en
d
s
o
n
th
e
s
p
ec
if
ic
clin
ical
s
ce
n
ar
io
.
I
n
m
a
n
y
ca
s
es,
C
XR
s
ca
n
p
r
o
v
id
e
s
u
f
f
icien
t
in
f
o
r
m
atio
n
f
o
r
in
itial
ass
ess
m
en
t,
tr
iag
e,
a
n
d
m
o
n
ito
r
in
g
o
f
p
u
lm
o
n
a
r
y
co
n
d
itio
n
s
.
C
T
s
ca
n
s
ar
e
ty
p
ically
r
eser
v
e
d
f
o
r
ca
s
es
r
eq
u
ir
in
g
m
o
r
e
p
r
ec
is
e
ch
ar
ac
ter
izatio
n
o
f
lesi
o
n
s
,
ev
alu
atio
n
o
f
c
o
m
p
lex
p
ath
o
lo
g
i
es,
o
r
s
tag
in
g
o
f
d
is
ea
s
es.
−
R
eso
u
r
ce
allo
ca
tio
n
:
g
iv
en
t
h
e
v
a
r
y
in
g
ca
p
a
b
ilit
ies
an
d
co
s
ts
ass
o
ciate
d
with
C
XR
s
an
d
C
T
s
ca
n
s
,
h
ea
lth
ca
r
e
p
r
o
v
i
d
er
s
m
u
s
t
allo
ca
te
r
eso
u
r
ce
s
b
ased
o
n
clin
ic
al
n
ee
d
,
co
s
t
-
ef
f
ec
tiv
e
n
ess
,
p
a
tien
t
s
af
ety
,
an
d
d
iag
n
o
s
tic
ef
f
icac
y
.
I
n
teg
r
atin
g
d
ec
is
io
n
s
u
p
p
o
r
t
to
o
ls
,
ar
t
if
icial
in
tellig
en
ce
alg
o
r
ith
m
s
,
an
d
ev
id
en
ce
-
b
ased
g
u
id
elin
es c
an
h
elp
o
p
ti
m
ize
im
ag
in
g
u
tili
za
tio
n
an
d
i
m
p
r
o
v
e
p
atien
t o
u
tco
m
es.
T
ec
h
n
o
lo
g
ical
ad
v
an
c
em
en
ts
:
o
n
g
o
i
n
g
ad
v
an
ce
m
e
n
ts
in
im
ag
in
g
tech
n
o
lo
g
y
,
s
u
ch
as
d
u
al
-
en
er
g
y
X
-
r
ay
im
a
g
in
g
,
lo
w
-
d
o
s
e
C
T
p
r
o
to
co
ls
,
an
d
ar
tific
ial
in
telli
g
en
ce
-
d
r
iv
en
im
ag
e
an
aly
s
is
,
co
n
tin
u
e
to
e
n
h
an
ce
th
e
ca
p
ab
ilit
ies
an
d
ef
f
icien
cy
o
f
b
o
th
C
XR
s
an
d
C
T
s
ca
n
s
.
B
alan
cin
g
th
ese
tech
n
o
lo
g
ical
in
n
o
v
atio
n
s
with
co
n
s
id
er
atio
n
s
o
f
c
o
s
t,
p
r
o
ce
s
s
in
g
tim
e,
r
ad
iatio
n
s
af
ety
,
an
d
clin
ical
u
tili
ty
r
em
ain
s
a
k
ey
ch
allen
g
e
in
m
ed
ical
im
ag
in
g
p
r
ac
tices.
4.
P
O
SS
I
B
L
E
AP
P
RO
ACH
T
o
ad
d
r
ess
th
e
c
o
s
t
d
is
p
ar
ity
b
etwe
en
C
T
s
ca
n
s
an
d
C
XR
s
in
m
ed
ical
im
ag
in
g
,
a
v
iab
l
e
s
o
lu
tio
n
in
v
o
lv
es
th
e
d
ev
elo
p
m
en
t
o
f
a
DL
f
r
am
ewo
r
k
s
p
ec
if
ically
d
esig
n
ed
f
o
r
C
XR
s
.
T
h
is
f
r
am
ewo
r
k
en
co
m
p
ass
es
p
r
ep
r
o
ce
s
s
in
g
,
d
etec
tio
n
,
an
d
class
if
icatio
n
s
tag
es
to
o
p
tim
ize
th
e
u
s
e
o
f
C
XR
s
f
o
r
lu
n
g
d
is
ea
s
e
d
iag
n
o
s
is
.
I
n
th
e
p
r
e
p
r
o
ce
s
s
in
g
p
h
ase,
DL
alg
o
r
ith
m
s
ca
n
b
e
em
p
l
o
y
ed
to
ef
f
e
ctiv
ely
d
e
n
o
is
e
C
XR
s
,
en
h
a
n
cin
g
i
m
ag
e
q
u
ality
b
y
im
p
r
o
v
in
g
co
n
tr
ast
an
d
b
r
i
g
h
tn
ess
.
Var
io
u
s
en
h
a
n
ce
m
en
t
tech
n
iq
u
es
ca
n
b
e
in
teg
r
ated
to
en
s
u
r
e
th
at
th
e
r
esu
ltin
g
im
ag
es
p
r
o
v
id
e
clea
r
a
n
d
in
f
o
r
m
ativ
e
r
e
p
r
esen
tatio
n
s
o
f
lu
n
g
s
tr
u
ctu
r
es.
Mo
v
in
g
to
th
e
d
etec
tio
n
p
h
ase,
DL
m
o
d
els
ca
n
b
e
tr
ain
ed
to
r
ec
o
g
n
ize
d
ev
iatio
n
s
in
C
X
R
s
in
d
icativ
e
o
f
lu
n
g
ab
n
o
r
m
alities
,
d
is
tin
g
u
is
h
in
g
b
etwe
en
im
ag
e
s
f
r
o
m
h
ea
lth
y
in
d
iv
i
d
u
als
an
d
th
o
s
e
with
lu
n
g
p
ath
o
lo
g
ies.
L
ev
er
ag
in
g
DL
’
s
ca
p
ac
ity
f
o
r
p
atter
n
r
ec
o
g
n
itio
n
an
d
f
ea
t
u
r
e
e
x
tr
ac
tio
n
,
th
is
p
h
a
s
e
aim
s
to
i
d
en
tify
v
ar
io
u
s
v
ar
iatio
n
s
th
at
m
ay
s
ig
n
if
y
d
is
ea
s
e
p
r
esen
ce
.
Fin
ally
,
th
e
class
if
icatio
n
ap
p
r
o
a
ch
with
in
th
e
DL
f
r
a
m
ewo
r
k
ca
n
f
ac
ilit
ate
th
e
ac
cu
r
ate
ca
teg
o
r
izatio
n
o
f
d
if
f
er
en
t
ty
p
es
o
f
lu
n
g
d
is
ea
s
es
b
ased
o
n
f
ea
tu
r
es
ex
tr
ac
ted
f
r
o
m
C
XR
s
.
B
y
lev
er
ag
in
g
DL
’
s
ca
p
ab
ilit
ies in
im
ag
e
an
aly
s
is
an
d
class
if
ic
atio
n
,
th
is
p
r
o
p
o
s
ed
f
r
a
m
ewo
r
k
n
o
t o
n
ly
ad
d
r
ess
es
th
e
co
s
t
c
o
n
s
tr
ain
ts
ass
o
ciate
d
with
C
T
s
ca
n
s
b
u
t
also
h
ar
n
ess
es
th
e
d
iag
n
o
s
tic
p
o
te
n
tial
o
f
C
XR
s
f
o
r
co
m
p
r
eh
e
n
s
iv
e
lu
n
g
d
is
ea
s
e
ass
es
s
m
en
t.
5.
CO
N
CL
U
SI
O
N
I
n
th
is
co
m
p
r
eh
en
s
iv
e
s
tu
d
y
,
we
h
av
e
d
el
v
ed
in
to
th
e
r
ea
lm
o
f
m
ed
ical
im
a
g
in
g
,
s
p
ec
if
ically
f
o
cu
s
in
g
o
n
th
e
u
s
e
o
f
DL
f
r
am
ewo
r
k
s
f
o
r
t
h
e
d
iag
n
o
s
is
o
f
lu
n
g
d
is
ea
s
es
u
s
in
g
C
XR
s
as
a
c
o
s
t
-
ef
f
ec
tiv
e
alter
n
ativ
e
to
C
T
s
ca
n
s
.
T
h
e
liter
atu
r
e
s
u
r
v
ey
co
n
d
u
c
ted
in
th
is
wo
r
k
r
ev
ea
led
a
wea
l
th
o
f
r
esear
ch
an
d
ad
v
an
ce
m
e
n
ts
in
th
e
f
ield
,
s
h
o
wca
s
in
g
v
ar
io
u
s
p
r
ep
r
o
ce
s
s
in
g
tech
n
iq
u
es,
d
etec
tio
n
alg
o
r
ith
m
s
,
an
d
class
if
icatio
n
m
o
d
els
tailo
r
ed
f
o
r
C
XR
an
aly
s
is
.
Desp
ite
th
e
p
r
o
g
r
ess
m
a
d
e
in
th
is
d
o
m
ain
,
s
ev
er
al
lim
itati
o
n
s
an
d
ch
allen
g
es
p
er
s
is
t.
T
h
e
h
ig
h
co
s
t
ass
o
ciate
d
with
C
T
s
ca
n
s
r
em
ain
s
a
s
ig
n
if
ican
t
b
ar
r
ier
f
o
r
m
an
y
h
ea
lth
ca
r
e
f
ac
ilit
ies
an
d
p
atien
ts
,
u
n
d
er
s
co
r
in
g
th
e
n
ee
d
f
o
r
co
s
t
-
ef
f
ec
tiv
e
alter
n
ativ
es
s
u
ch
as
C
XR
s
.
Ad
d
itio
n
ally
,
is
s
u
es
r
elate
d
to
p
r
o
ce
s
s
in
g
tim
e,
im
ag
e
n
o
is
e,
an
d
v
ar
iab
ilit
y
i
n
C
XR
q
u
ality
p
o
s
e
co
n
s
id
er
a
b
le
ch
allen
g
es
in
d
ev
el
o
p
in
g
r
o
b
u
s
t
an
d
r
eliab
le
DL
f
r
am
ew
o
r
k
s
f
o
r
lu
n
g
d
is
ea
s
e
d
iag
n
o
s
is
.
Ho
wev
er
,
o
u
r
s
tu
d
y
p
r
o
p
o
s
es
v
iab
le
s
o
lu
tio
n
s
to
ad
d
r
ess
th
ese
ch
allen
g
es.
B
y
d
ev
elo
p
in
g
a
DL
f
r
am
e
wo
r
k
t
h
at
in
teg
r
ates
p
r
ep
r
o
ce
s
s
in
g
tech
n
iq
u
es
to
en
h
an
ce
C
XR
q
u
ality
,
d
etec
tio
n
alg
o
r
ith
m
s
to
id
en
tify
ab
n
o
r
m
alities
,
an
d
class
if
icatio
n
m
o
d
els
f
o
r
ac
cu
r
ate
d
is
ea
s
e
ca
teg
o
r
izatio
n
,
th
is
wo
r
k
aim
s
to
o
p
tim
ize
th
e
u
s
e
o
f
C
XR
s
as
an
ac
ce
s
s
ib
le
an
d
ef
f
icien
t
im
ag
in
g
m
o
d
ality
.
T
h
ese
s
o
lu
tio
n
s
n
o
t
o
n
ly
m
itig
ate
th
e
f
in
an
cia
l
b
u
r
d
en
ass
o
ciate
d
with
C
T
s
ca
n
s
b
u
t
also
h
ar
n
ess
th
e
ca
p
ab
ilit
ies
o
f
DL
in
im
ag
e
an
aly
s
is
an
d
p
atter
n
r
ec
o
g
n
itio
n
,
lea
d
in
g
to
m
o
r
e
r
eliab
le
an
d
co
s
t
-
ef
f
ec
ti
v
e
d
iag
n
o
s
tic
to
o
ls
f
o
r
lu
n
g
d
i
s
ea
s
es.
I
n
co
n
clu
s
io
n
,
th
is
wo
r
k
co
n
tr
ib
u
tes
to
th
e
o
n
g
o
in
g
ef
f
o
r
ts
in
ad
v
an
cin
g
m
ed
ical
im
ag
in
g
tech
n
o
lo
g
ies,
p
ar
ticu
lar
ly
in
th
e
r
ea
l
m
o
f
lu
n
g
d
is
ea
s
e
d
iag
n
o
s
is
,
b
y
p
r
o
p
o
s
in
g
in
n
o
v
ativ
e
s
o
lu
tio
n
s
,
ac
k
n
o
wled
g
in
g
lim
itatio
n
s
,
an
d
ad
d
r
ess
in
g
ch
allen
g
es
th
r
o
u
g
h
th
e
u
t
ilizatio
n
o
f
DL
f
r
am
ewo
r
k
s
d
esig
n
ed
f
o
r
C
XR
an
aly
s
is
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
0
5
3
-
1
062
1060
F
UNDING
I
NF
O
R
M
A
T
I
O
N
Au
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
L
ax
m
i Bag
alk
o
t
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Kela
p
ati
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
DATA AV
AI
L
AB
I
L
I
T
Y
D
a
t
a
a
v
a
il
a
b
i
li
t
y
is
n
o
t
a
p
p
l
i
ca
b
l
e
t
o
t
h
is
p
a
p
e
r
a
s
n
o
n
e
w
d
at
a
w
e
r
e
c
r
e
a
t
e
d
o
r
a
n
al
y
z
e
d
i
n
t
h
is
s
t
u
d
y
.
RE
F
E
R
E
NC
E
S
[
1
]
J.
H
i
s
c
o
t
t
e
t
a
l
.
,
“
T
h
e
g
l
o
b
a
l
i
mp
a
c
t
o
f
t
h
e
c
o
r
o
n
a
v
i
r
u
s
p
a
n
d
e
m
i
c
,
”
C
y
t
o
k
i
n
e
a
n
d
G
r
o
w
t
h
Fa
c
t
o
r
Re
v
i
e
w
s
,
v
o
l
.
5
3
,
p
p
.
1
–
9
,
J
u
n
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
y
t
o
g
f
r
.
2
0
2
0
.
0
5
.
0
1
0
.
[
2
]
B
.
H
u
,
H
.
G
u
o
,
P
.
Z
h
o
u
,
a
n
d
Z.
L
.
S
h
i
,
“
C
h
a
r
a
c
t
e
r
i
st
i
c
s o
f
S
A
R
S
-
C
o
V
-
2
a
n
d
C
O
V
I
D
-
1
9
,
”
N
a
t
u
r
e
Re
v
i
e
w
s
Mi
c
r
o
b
i
o
l
o
g
y
,
v
o
l
.
1
9
,
n
o
.
3
,
p
p
.
1
4
1
–
1
5
4
,
O
c
t
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
3
8
/
s4
1
5
7
9
-
020
-
0
0
4
5
9
-
7.
[
3
]
A
.
S
h
a
r
ma,
S
.
T
i
w
a
r
i
,
M
.
K
.
D
e
b
,
a
n
d
J
.
L
.
M
a
r
t
y
,
“
S
e
v
e
r
e
a
c
u
t
e
r
e
s
p
i
r
a
t
o
r
y
sy
n
d
r
o
m
e
c
o
r
o
n
a
v
i
r
u
s
-
2
(
S
A
R
S
-
C
o
V
-
2
)
:
a
g
l
o
b
a
l
p
a
n
d
e
mi
c
a
n
d
t
r
e
a
t
me
n
t
st
r
a
t
e
g
i
e
s,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
A
n
t
i
m
i
c
r
o
b
i
a
l
A
g
e
n
t
s
,
v
o
l
.
5
6
,
n
o
.
2
,
p
.
1
0
6
0
5
4
,
A
u
g
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
j
a
n
t
i
m
i
c
a
g
.
2
0
2
0
.
1
0
6
0
5
4
.
[
4
]
R
.
F
i
l
i
p
,
R
.
G
.
P
u
s
c
a
s
e
l
u
,
L.
A
n
c
h
i
d
i
n
-
N
o
r
o
c
e
l
,
M
.
D
i
mi
a
n
,
a
n
d
W
.
K
.
S
a
v
a
g
e
,
“
G
l
o
b
a
l
c
h
a
l
l
e
n
g
e
s
t
o
p
u
b
l
i
c
h
e
a
l
t
h
c
a
r
e
s
y
s
t
e
m
s
d
u
r
i
n
g
t
h
e
C
O
V
I
D
-
1
9
P
a
n
d
e
mi
c
:
a
r
e
v
i
e
w
o
f
p
a
n
d
e
mi
c
m
e
a
s
u
r
e
s
a
n
d
p
r
o
b
l
e
ms
,
”
J
o
u
r
n
a
l
o
f
P
e
rs
o
n
a
l
i
ze
d
M
e
d
i
c
i
n
e
,
v
o
l
.
1
2
,
n
o
.
8
,
p
.
1
2
9
5
,
A
u
g
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
j
p
m
1
2
0
8
1
2
9
5
.
[
5
]
E.
C
h
i
n
e
r
-
V
i
v
e
s
e
t
a
l
.
,
“
S
h
o
r
t
a
n
d
l
o
n
g
-
t
e
r
m
i
m
p
a
c
t
o
f
C
O
V
I
D
-
1
9
i
n
f
e
c
t
i
o
n
o
n
p
r
e
v
i
o
u
s
r
e
s
p
i
r
a
t
o
r
y
d
i
s
e
a
s
e
s,”
Arc
h
i
v
o
s
d
e
Bro
n
c
o
n
e
u
m
o
l
o
g
i
a
,
v
o
l
.
5
8
,
p
p
.
3
9
–
5
0
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
r
b
r
e
s.
2
0
2
2
.
0
3
.
0
1
1
.
[
6
]
A
.
A
g
u
st
í
e
t
a
l
.
,
“
G
l
o
b
a
l
i
n
i
t
i
a
t
i
v
e
f
o
r
c
h
r
o
n
i
c
o
b
s
t
r
u
c
t
i
v
e
l
u
n
g
d
i
se
a
se
2
0
2
3
R
e
p
o
r
t
:
G
O
LD
e
x
e
c
u
t
i
v
e
s
u
m
mary
,
”
E
u
r
o
p
e
a
n
Re
sp
i
r
a
t
o
ry
J
o
u
r
n
a
l
,
v
o
l
.
6
1
,
n
o
.
4
,
p
.
2
3
0
0
2
3
9
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
8
3
/
1
3
9
9
3
0
0
3
.
0
0
2
3
9
-
2
0
2
3
.
[
7
]
“
W
h
a
t
y
o
u
n
e
e
d
t
o
k
n
o
w
a
b
o
u
t
l
u
n
g
d
i
s
e
a
se
,
”
V
e
ry
w
e
l
l
H
e
a
l
t
h
.
h
t
t
p
s
:
/
/
w
w
w
.
v
e
r
y
w
e
l
l
h
e
a
l
t
h
.
c
o
m/
t
y
p
e
s
-
of
-
l
u
n
g
-
d
i
s
e
a
se
-
w
h
a
t
-
y
o
u
-
sh
o
u
l
d
-
k
n
o
w
-
5
2
0
7
5
3
3
(
a
c
c
e
ss
e
d
A
p
r
.
0
2
,
2
0
2
4
)
.
[8
]
J.
M
a
c
l
e
o
d
,
“
D
a
v
i
d
so
n
’
s
p
r
i
n
c
i
p
l
e
s
a
n
d
p
r
a
c
t
i
c
e
o
f
m
e
d
i
c
i
n
e
,
”
A
n
n
a
l
s
o
f
I
n
t
e
rn
a
l
M
e
d
i
c
i
n
e
,
v
o
l
.
1
0
3
,
n
o
.
6
_
P
a
r
t
_
1
,
p
p
.
9
7
3
–
9
7
4
,
D
e
c
.
1
9
8
5
,
d
o
i
:
1
0
.
7
3
2
6
/
0
0
0
3
-
4
8
1
9
-
1
0
3
-
6
-
9
7
3
_
2
.
[
9
]
P
.
A
.
K
r
i
t
e
k
a
n
d
B
.
D
.
L
e
v
y
,
“
A
p
p
r
o
a
c
h
t
o
t
h
e
p
a
t
i
e
n
t
w
i
t
h
d
i
sea
s
e
o
f
t
h
e
r
e
s
p
i
r
a
t
o
r
y
s
y
st
e
m.
”
h
t
t
p
s
:
/
/
a
c
c
e
s
sme
d
i
c
i
n
e
.
mh
m
e
d
i
c
a
l
.
c
o
m/
c
o
n
t
e
n
t
.
a
s
p
x
?
b
o
o
k
i
d
=
2
1
2
9
&se
c
t
i
o
n
i
d
=
1
7
5
7
4
8
5
9
7
(
a
c
c
e
sse
d
A
p
r
.
0
2
,
2
0
2
4
)
.
[
1
0
]
S
.
G
o
y
a
l
a
n
d
R
.
S
i
n
g
h
,
“
D
e
t
e
c
t
i
o
n
a
n
d
c
l
a
ssi
f
i
c
a
t
i
o
n
o
f
l
u
n
g
d
i
sea
s
e
s
f
o
r
p
n
e
u
mo
n
i
a
a
n
d
C
O
V
I
D
-
1
9
u
s
i
n
g
m
a
c
h
i
n
e
a
n
d
d
e
e
p
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s,
”
J
o
u
r
n
a
l
o
f
Am
b
i
e
n
t
I
n
t
e
l
l
i
g
e
n
c
e
a
n
d
H
u
m
a
n
i
z
e
d
C
o
m
p
u
t
i
n
g
,
v
o
l
.
1
4
,
n
o
.
4
,
p
p
.
3
2
3
9
–
3
2
5
9
,
S
e
p
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
2
6
5
2
-
021
-
0
3
4
6
4
-
7.
[
1
1
]
M
.
A
.
T
h
a
n
o
o
n
,
M
.
A
.
Z
u
l
k
i
f
l
e
y
,
M
.
A
.
A
.
M
o
h
d
Z
a
i
n
u
r
i
,
a
n
d
S
.
R
.
A
b
d
a
n
i
,
“
A
r
e
v
i
e
w
o
f
d
e
e
p
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s
f
o
r
l
u
n
g
c
a
n
c
e
r
s
c
r
e
e
n
i
n
g
a
n
d
d
i
a
g
n
o
si
s
b
a
se
d
o
n
C
T
i
m
a
g
e
s,”
D
i
a
g
n
o
st
i
c
s
,
v
o
l
.
1
3
,
n
o
.
1
6
,
p
.
2
6
1
7
,
A
u
g
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
d
i
a
g
n
o
s
t
i
c
s1
3
1
6
2
6
1
7
.
[
1
2
]
D
.
C
o
z
z
i
e
t
a
l
.
,
“
R
o
l
e
o
f
c
h
e
st
i
m
a
g
i
n
g
i
n
v
i
r
a
l
l
u
n
g
d
i
s
e
a
s
e
s,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
n
v
i
ro
n
m
e
n
t
a
l
R
e
se
a
rc
h
a
n
d
P
u
b
l
i
c
H
e
a
l
t
h
,
v
o
l
.
1
8
,
n
o
.
1
2
,
p
.
6
4
3
4
,
J
u
n
.
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
i
j
e
r
p
h
1
8
1
2
6
4
3
4
.
[
1
3
]
D
.
Ji
n
e
t
a
l
.
,
“
A
r
t
i
f
i
c
i
a
l
i
n
t
e
l
l
i
g
e
n
c
e
i
n
r
a
d
i
o
l
o
g
y
,
”
i
n
Ar
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
i
n
Me
d
i
c
i
n
e
:
T
e
c
h
n
i
c
a
l
B
a
si
s
a
n
d
C
l
i
n
i
c
a
l
Ap
p
l
i
c
a
t
i
o
n
s
,
El
s
e
v
i
e
r
,
2
0
2
0
,
p
p
.
2
6
5
–
2
8
9
.
[
1
4
]
S
.
H
.
T
a
n
,
O
.
M
.
A
l
l
i
c
o
c
k
,
A
.
K
a
t
a
m
b
a
,
C
.
V
.
F
.
C
a
r
r
i
n
g
t
o
n
,
A
.
L.
W
y
l
l
i
e
,
a
n
d
M
.
A
r
ms
t
r
o
n
g
-
H
o
u
g
h
,
“
S
a
l
i
v
a
-
b
a
se
d
me
t
h
o
d
s
f
o
r
S
A
R
S
-
C
o
V
-
2
t
e
st
i
n
g
i
n
l
o
w
-
a
n
d
m
i
d
d
l
e
-
i
n
c
o
me
c
o
u
n
t
r
i
e
s,
”
B
u
l
l
e
t
i
n
o
f
t
h
e
W
o
r
l
d
H
e
a
l
t
h
O
r
g
a
n
i
za
t
i
o
n
,
v
o
l
.
1
0
0
,
n
o
.
1
2
,
p
p
.
8
0
8
–
8
1
4
,
D
e
c
.
2
0
2
2
,
d
o
i
:
1
0
.
2
4
7
1
/
B
L
T.
2
2
.
2
8
8
5
2
6
.
[
1
5
]
P
.
H
o
n
k
o
o
p
,
O
.
U
sm
a
n
i
,
a
n
d
M
.
B
o
n
i
n
i
,
“
Th
e
c
u
r
r
e
n
t
a
n
d
f
u
t
u
r
e
r
o
l
e
o
f
t
e
c
h
n
o
l
o
g
y
i
n
r
e
sp
i
r
a
t
o
r
y
c
a
r
e
,
”
Pu
l
m
o
n
a
ry
T
h
e
r
a
p
y
,
v
o
l
.
8
,
n
o
.
2
,
p
p
.
1
6
7
–
1
7
9
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s
4
1
0
3
0
-
022
-
0
0
1
9
1
-
y.
[
1
6
]
J.
V
.
V
a
g
h
a
si
y
a
,
C
.
C
.
M
a
y
o
r
g
a
-
M
a
r
t
i
n
e
z
,
a
n
d
M
.
P
u
mera
,
“
W
e
a
r
a
b
l
e
s
e
n
s
o
r
s
f
o
r
t
e
l
e
h
e
a
l
t
h
b
a
se
d
o
n
e
mer
g
i
n
g
mat
e
r
i
a
l
s
a
n
d
n
a
n
o
a
r
c
h
i
t
e
c
t
o
n
i
c
s
,
”
n
p
j
Fl
e
x
i
b
l
e
El
e
c
t
ro
n
i
c
s
,
v
o
l
.
7
,
n
o
.
1
,
Ju
n
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
2
8
-
0
2
3
-
0
0
2
6
1
-
4.
[
1
7
]
S
.
S
h
a
j
a
r
i
,
K
.
K
u
r
u
v
i
n
a
sh
e
t
t
i
,
A
.
K
o
mei
l
i
,
a
n
d
U
.
S
u
n
d
a
r
a
r
a
j
,
“
Th
e
e
m
e
r
g
e
n
c
e
o
f
A
I
-
b
a
sed
w
e
a
r
a
b
l
e
s
e
n
so
r
s
f
o
r
d
i
g
i
t
a
l
h
e
a
l
t
h
t
e
c
h
n
o
l
o
g
y
:
a
r
e
v
i
e
w
,
”
S
e
n
so
r
s
,
v
o
l
.
2
3
,
n
o
.
2
3
,
p
.
9
4
9
8
,
N
o
v
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
3
2
3
9
4
9
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
A
d
va
n
ce
men
ts
a
n
d
ch
a
llen
g
es
in
d
ee
p
le
a
r
n
in
g
tech
n
iq
u
es f
o
r
lu
n
g
d
is
ea
s
e
d
ia
g
n
o
s
is
(
La
x
mi
B
a
g
a
lko
t
)
1061
[
1
8
]
S
.
N
a
g
e
sw
a
r
a
n
e
t
a
l
.
,
“
L
u
n
g
c
a
n
c
e
r
c
l
a
ssi
f
i
c
a
t
i
o
n
a
n
d
p
r
e
d
i
c
t
i
o
n
u
s
i
n
g
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
a
n
d
i
ma
g
e
p
r
o
c
e
ssi
n
g
,
”
Bi
o
Me
d
Re
se
a
r
c
h
I
n
t
e
r
n
a
t
i
o
n
a
l
,
v
o
l
.
2
0
2
2
,
n
o
.
1
,
Ja
n
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
2
/
1
7
5
5
4
6
0
.
[
1
9
]
L.
W
a
n
g
,
“
D
e
e
p
l
e
a
r
n
i
n
g
t
e
c
h
n
i
q
u
e
s
t
o
d
i
a
g
n
o
s
e
l
u
n
g
c
a
n
c
e
r
,
”
C
a
n
c
e
rs
,
v
o
l
.
1
4
,
n
o
.
2
2
,
p
.
5
5
6
9
,
N
o
v
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
c
a
n
c
e
r
s
1
4
2
2
5
5
6
9
.
[
2
0
]
S
.
S
a
j
e
d
,
A
.
S
a
n
a
t
i
,
J
.
E
.
G
a
r
c
i
a
,
H
.
R
o
s
t
a
m
i
,
A
.
K
e
s
h
a
v
a
r
z
,
a
n
d
A
.
Te
i
x
e
i
r
a
,
“
T
h
e
e
f
f
e
c
t
i
v
e
n
e
ss
o
f
d
e
e
p
l
e
a
r
n
i
n
g
v
s.
t
r
a
d
i
t
i
o
n
a
l
met
h
o
d
s fo
r
l
u
n
g
d
i
se
a
se
d
i
a
g
n
o
si
s
u
s
i
n
g
c
h
e
s
t
X
-
r
a
y
i
ma
g
e
s
:
A
sy
s
t
e
m
a
t
i
c
r
e
v
i
e
w
,
”
Ap
p
l
i
e
d
S
o
f
t
C
o
m
p
u
t
i
n
g
,
v
o
l
.
1
4
7
,
p
.
1
1
0
8
1
7
,
N
o
v
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
s
o
c
.
2
0
2
3
.
1
1
0
8
1
7
.
[
2
1
]
G
.
S
i
r
a
c
u
sa
n
o
,
A
.
La
C
o
r
t
e
,
M
.
G
a
e
t
a
,
G
.
C
i
c
e
r
o
,
M
.
C
h
i
a
p
p
i
n
i
,
a
n
d
G
.
F
i
n
o
c
c
h
i
o
,
“
P
i
p
e
l
i
n
e
f
o
r
a
d
v
a
n
c
e
d
c
o
n
t
r
a
st
e
n
h
a
n
c
e
me
n
t
(
P
a
c
e
)
o
f
c
h
e
st
x
-
r
a
y
i
n
e
v
a
l
u
a
t
i
n
g
C
O
V
I
D
-
1
9
p
a
t
i
e
n
t
s
b
y
c
o
mb
i
n
i
n
g
b
i
d
i
men
s
i
o
n
a
l
e
mp
i
r
i
c
a
l
m
o
d
e
d
e
c
o
m
p
o
s
i
t
i
o
n
a
n
d
c
o
n
t
r
a
st
l
i
m
i
t
e
d
a
d
a
p
t
i
v
e
h
i
st
o
g
r
a
m
e
q
u
a
l
i
z
a
t
i
o
n
(
c
l
a
h
e
)
,
”
S
u
st
a
i
n
a
b
i
l
i
t
y
(
S
w
i
t
ze
rl
a
n
d
)
,
v
o
l
.
1
2
,
n
o
.
2
0
,
p
p
.
1
–
1
8
,
O
c
t
.
2
0
2
0
,
d
o
i
:
1
0
.
3
3
9
0
/
s
u
1
2
2
0
8
5
7
3
.
[
2
2
]
J.
P
.
C
o
h
e
n
,
“
I
EEE
8
0
2
3
/
c
o
v
i
d
-
c
h
e
s
t
x
r
a
y
-
d
a
t
a
se
t
.
”
h
t
t
p
s:
/
/
g
i
t
h
u
b
.
c
o
m/
i
e
e
e
8
0
2
3
/
c
o
v
i
d
-
c
h
e
st
x
r
a
y
-
d
a
t
a
s
e
t
(
a
c
c
e
ss
e
d
J
u
n
.
1
0
,
2
0
2
0
)
.
[
2
3
]
P
.
V
i
e
i
r
a
,
O
.
S
o
u
sa
,
D
.
M
a
g
a
l
h
ã
e
s
,
R
.
R
a
b
ê
l
o
,
a
n
d
R
.
S
i
l
v
a
,
“
D
e
t
e
c
t
i
n
g
p
u
l
mo
n
a
r
y
d
i
se
a
ses
u
si
n
g
d
e
e
p
f
e
a
t
u
r
e
s i
n
X
-
r
a
y
i
m
a
g
e
s,”
Pa
t
t
e
r
n
Re
c
o
g
n
i
t
i
o
n
,
v
o
l
.
1
1
9
,
p
.
1
0
8
0
8
1
,
N
o
v
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
a
t
c
o
g
.
2
0
2
1
.
1
0
8
0
8
1
.
[
2
4
]
J.
P
.
C
o
h
e
n
,
P
.
M
o
r
r
i
s
o
n
,
L.
D
a
o
,
K
.
R
o
t
h
,
T.
D
u
o
n
g
,
a
n
d
M
.
G
h
a
s
sem,
“
C
O
V
I
D
-
1
9
i
m
a
g
e
d
a
t
a
c
o
l
l
e
c
t
i
o
n
:
p
r
o
sp
e
c
t
i
v
e
p
r
e
d
i
c
t
i
o
n
s
a
r
e
t
h
e
f
u
t
u
r
e
,
”
Ma
c
h
i
n
e
L
e
a
r
n
i
n
g
f
o
r
Bi
o
m
e
d
i
c
a
l
I
m
a
g
i
n
g
,
v
o
l
.
1
,
n
o
.
D
e
c
e
m
b
e
r
2
0
2
0
,
p
p
.
1
–
3
8
,
D
e
c
.
2
0
2
0
,
d
o
i
:
1
0
.
5
9
2
7
5
/
j
.
m
e
l
b
a
.
2
0
2
0
-
4
8
g
7
.
[
2
5
]
J.
C
.
G
o
me
s
e
t
a
l
.
,
“
I
K
O
N
O
S
:
a
n
i
n
t
e
l
l
i
g
e
n
t
t
o
o
l
t
o
s
u
p
p
o
r
t
d
i
a
g
n
o
s
i
s
o
f
C
O
V
I
D
-
1
9
b
y
t
e
x
t
u
r
e
a
n
a
l
y
si
s
o
f
X
-
r
a
y
i
m
a
g
e
s,
”
Re
se
a
rc
h
o
n
B
i
o
m
e
d
i
c
a
l
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
3
8
,
n
o
.
1
,
p
p
.
1
5
–
2
8
,
S
e
p
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s
4
2
6
0
0
-
020
-
0
0
0
9
1
-
7.
[
2
6
]
“
C
O
V
I
D
-
19
-
A
R
,
”
T
h
e
C
a
n
c
e
r
I
m
a
g
i
n
g
Arc
h
i
v
e
(
T
C
I
A)
.
h
t
t
p
s:
/
/
w
w
w
.
c
a
n
c
e
r
i
ma
g
i
n
g
a
r
c
h
i
v
e
.
n
e
t
/
c
o
l
l
e
c
t
i
o
n
/
c
o
v
i
d
-
19
-
a
r
/
(
a
c
c
e
ss
e
d
A
p
r
.
0
1
,
2
0
2
4
)
.
[
2
7
]
X
.
W
a
n
g
,
Y
.
P
e
n
g
,
L
.
Lu
,
Z.
Lu
,
M
.
B
a
g
h
e
r
i
,
a
n
d
R
.
M
.
S
u
mm
e
r
s
,
“
C
h
e
st
X
-
r
a
y
8
:
H
o
s
p
i
t
a
l
-
sca
l
e
c
h
e
s
t
X
-
r
a
y
d
a
t
a
b
a
s
e
a
n
d
b
e
n
c
h
mar
k
s
o
n
w
e
a
k
l
y
-
s
u
p
e
r
v
i
se
d
c
l
a
ssi
f
i
c
a
t
i
o
n
a
n
d
l
o
c
a
l
i
z
a
t
i
o
n
o
f
c
o
mm
o
n
t
h
o
r
a
x
d
i
s
e
a
s
e
s,”
i
n
Pro
c
e
e
d
i
n
g
s
-
3
0
t
h
I
E
EE
C
o
n
f
e
re
n
c
e
o
n
C
o
m
p
u
t
e
r
Vi
s
i
o
n
a
n
d
P
a
t
t
e
r
n
Re
c
o
g
n
i
t
i
o
n
,
C
VP
R
2
0
1
7
,
Ju
l
.
2
0
1
7
,
v
o
l
.
2
0
1
7
-
Ja
n
u
a
r
y
,
p
p
.
3
4
6
2
–
3
4
7
1
,
d
o
i
:
1
0
.
1
1
0
9
/
C
V
P
R
.
2
0
1
7
.
3
6
9
.
[
2
8
]
D
.
S
.
K
e
r
ma
n
y
e
t
a
l
.
,
“
I
d
e
n
t
i
f
y
i
n
g
me
d
i
c
a
l
d
i
a
g
n
o
ses
a
n
d
t
r
e
a
t
a
b
l
e
d
i
se
a
ses
b
y
i
m
a
g
e
-
b
a
se
d
d
e
e
p
l
e
a
r
n
i
n
g
,
”
C
e
l
l
,
v
o
l
.
1
7
2
,
n
o
.
5
,
p
p
.
1
1
2
2
-
1
1
3
1
.
e
9
,
F
e
b
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
e
l
l
.
2
0
1
8
.
0
2
.
0
1
0
.
[
2
9
]
T.
R
a
h
ma
n
e
t
a
l
.
,
“
Ex
p
l
o
r
i
n
g
t
h
e
e
f
f
e
c
t
o
f
i
ma
g
e
e
n
h
a
n
c
e
m
e
n
t
t
e
c
h
n
i
q
u
e
s
o
n
C
O
V
I
D
-
1
9
d
e
t
e
c
t
i
o
n
u
si
n
g
c
h
e
s
t
X
-
r
a
y
i
m
a
g
e
s,”
C
o
m
p
u
t
e
rs
i
n
B
i
o
l
o
g
y
a
n
d
Me
d
i
c
i
n
e
,
v
o
l
.
1
3
2
,
p
.
1
0
4
3
1
9
,
M
a
y
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
m
p
b
i
o
me
d
.
2
0
2
1
.
1
0
4
3
1
9
.
[
3
0
]
A
.
G
i
e
ł
c
z
y
k
,
A
.
M
a
r
c
i
n
i
a
k
,
M
.
Ta
r
c
z
e
w
sk
a
,
a
n
d
Z
.
L
u
t
o
w
sk
i
,
“
P
r
e
-
p
r
o
c
e
ss
i
n
g
m
e
t
h
o
d
s
i
n
c
h
e
s
t
X
-
r
a
y
i
ma
g
e
c
l
a
s
si
f
i
c
a
t
i
o
n
,
”
PLo
S
O
N
E
,
v
o
l
.
1
7
,
n
o
.
4
A
p
r
i
l
,
p
.
e
0
2
6
5
9
4
9
,
A
p
r
.
2
0
2
2
,
d
o
i
:
1
0
.
1
3
7
1
/
j
o
u
r
n
a
l
.
p
o
n
e
.
0
2
6
5
9
4
9
.
[
3
1
]
“
C
O
V
I
D
1
9
_
P
n
e
u
m
o
n
i
a
_
N
o
r
m
a
l
_
C
h
e
st
_
X
r
a
y
_
P
A
_
D
a
t
a
s
e
t
.
”
[
3
2
]
W
.
C
h
o
k
c
h
a
i
t
h
a
n
a
k
u
l
,
P
.
P
u
n
y
a
b
u
k
k
a
n
a
,
a
n
d
E.
C
h
u
a
n
g
su
w
a
n
i
c
h
,
“
A
d
a
p
t
i
v
e
i
ma
g
e
p
r
e
p
r
o
c
e
ss
i
n
g
a
n
d
a
u
g
m
e
n
t
a
t
i
o
n
f
o
r
t
u
b
e
r
c
u
l
o
s
i
s
s
c
r
e
e
n
i
n
g
o
n
o
u
t
-
of
-
d
o
mai
n
c
h
e
st
X
-
R
a
y
d
a
t
a
se
t
,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
1
0
,
p
p
.
1
3
2
1
4
4
–
1
3
2
1
5
2
,
2
0
2
2
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
2
.
3
2
2
9
5
9
1
.
[
3
3
]
S
.
Jae
g
e
r
,
S
.
C
a
n
d
e
mi
r
,
S
.
A
n
t
a
n
i
,
Y
.
X
.
J.
W
á
n
g
,
P
.
X
.
Lu
,
a
n
d
G
.
T
h
o
ma,
“
Tw
o
p
u
b
l
i
c
c
h
e
s
t
X
-
r
a
y
d
a
t
a
s
e
t
s
f
o
r
c
o
m
p
u
t
e
r
-
a
i
d
e
d
scree
n
i
n
g
o
f
p
u
l
mo
n
a
r
y
d
i
s
e
a
s
e
s,”
Q
u
a
n
t
i
t
a
t
i
v
e
i
m
a
g
i
n
g
i
n
m
e
d
i
c
i
n
e
a
n
d
s
u
rg
e
r
y
,
v
o
l
.
4
,
n
o
.
6
,
p
.
4
7
5
,
2
0
1
4
.
[
3
4
]
G
.
U
.
N
n
e
j
i
,
J
.
C
a
i
,
J.
D
e
n
g
,
H
.
N
.
M
o
n
d
a
y
,
E.
C
.
J
a
mes
,
a
n
d
C
.
C
.
U
k
w
u
o
ma,
“
M
u
l
t
i
-
c
h
a
n
n
e
l
b
a
se
d
i
ma
g
e
p
r
o
c
e
ssi
n
g
sc
h
e
m
e
f
o
r
p
n
e
u
mo
n
i
a
i
d
e
n
t
i
f
i
c
a
t
i
o
n
,
”
D
i
a
g
n
o
st
i
c
s
,
v
o
l
.
1
2
,
n
o
.
2
,
p
.
3
2
5
,
Ja
n
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
d
i
a
g
n
o
s
t
i
c
s1
2
0
2
0
3
2
5
.
[
3
5
]
“
R
S
N
A
p
n
e
u
m
o
n
i
a
d
e
t
e
c
t
i
o
n
c
h
a
l
l
e
n
g
e
.
”
[
3
6
]
D
.
O
u
r
a
,
S
.
S
a
t
o
,
Y
.
H
o
n
m
a
,
S
.
K
u
w
a
j
i
m
a
,
a
n
d
H
.
S
u
g
i
m
o
r
i
,
“
Q
u
a
l
i
t
y
a
ssu
r
a
n
c
e
o
f
c
h
e
st
X
-
r
a
y
i
ma
g
e
s
w
i
t
h
a
c
o
m
b
i
n
a
t
i
o
n
o
f
d
e
e
p
l
e
a
r
n
i
n
g
met
h
o
d
s
,
”
Ap
p
l
i
e
d
S
c
i
e
n
c
e
s (S
w
i
t
zer
l
a
n
d
)
,
v
o
l
.
1
3
,
n
o
.
4
,
p
.
2
0
6
7
,
F
e
b
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
a
p
p
1
3
0
4
2
0
6
7
.
[
3
7
]
J.
Z.
T.
S
i
m
e
t
a
l
.
,
“
D
i
a
g
n
o
s
t
i
c
p
e
r
f
o
r
ma
n
c
e
o
f
a
d
e
e
p
l
e
a
r
n
i
n
g
m
o
d
e
l
d
e
p
l
o
y
e
d
a
t
a
n
a
t
i
o
n
a
l
C
O
V
I
D
-
1
9
scr
e
e
n
i
n
g
f
a
c
i
l
i
t
y
f
o
r
d
e
t
e
c
t
i
o
n
o
f
p
n
e
u
m
o
n
i
a
o
n
f
r
o
n
t
a
l
c
h
e
st
r
a
d
i
o
g
r
a
p
h
s,”
H
e
a
l
t
h
c
a
r
e
(
S
w
i
t
zerl
a
n
d
)
,
v
o
l
.
1
0
,
n
o
.
1
,
p
.
1
7
5
,
Ja
n
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
h
e
a
l
t
h
c
a
r
e
1
0
0
1
0
1
7
5
.
[3
8]
M
.
L
e
n
g
a
,
H
.
S
c
h
u
l
z
,
a
n
d
A
.
S
a
a
l
b
a
c
h
,
“
C
o
n
t
i
n
u
a
l
l
e
a
r
n
i
n
g
f
o
r
d
o
ma
i
n
a
d
a
p
t
a
t
i
o
n
i
n
c
h
e
s
t
x
-
r
a
y
c
l
a
ssi
f
i
c
a
t
i
o
n
,
”
Me
d
i
c
a
l
I
m
a
g
i
n
g
w
i
t
h
D
e
e
p
L
e
a
r
n
i
n
g
,
p
p
.
4
1
3
–
4
2
3
,
2
0
2
0
.
[
3
9
]
I
.
M
.
B
a
l
t
r
u
sc
h
a
t
,
H
.
N
i
c
k
i
sc
h
,
M
.
G
r
a
ss,
T
.
K
n
o
p
p
,
a
n
d
A
.
S
a
a
l
b
a
c
h
,
“
C
o
mp
a
r
i
s
o
n
o
f
d
e
e
p
l
e
a
r
n
i
n
g
a
p
p
r
o
a
c
h
e
s
f
o
r
m
u
l
t
i
-
l
a
b
e
l
c
h
e
st
X
-
R
a
y
c
l
a
ss
i
f
i
c
a
t
i
o
n
,
”
S
c
i
e
n
t
i
f
i
c
Re
p
o
r
t
s
,
v
o
l
.
9
,
n
o
.
1
,
A
p
r
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
9
8
-
0
1
9
-
4
2
2
9
4
-
8.
[
4
0
]
“
C
h
e
s
t
X
-
r
a
y
1
4
-
V
7
o
p
e
n
d
a
t
a
s
e
t
s
.
”
[
4
1
]
F
.
J.
M
.
S
h
a
mr
a
t
,
S
.
A
z
a
m,
A
.
K
a
r
i
m,
K
.
A
h
m
e
d
,
F
.
M
.
B
u
i
,
a
n
d
F
.
D
e
B
o
e
r
,
“
H
i
g
h
-
p
r
e
c
i
si
o
n
m
u
l
t
i
c
l
a
ss
c
l
a
s
si
f
i
c
a
t
i
o
n
o
f
l
u
n
g
d
i
s
e
a
se
t
h
r
o
u
g
h
c
u
s
t
o
mi
z
e
d
M
o
b
i
l
e
N
e
t
V
2
f
r
o
m
c
h
e
s
t
X
-
r
a
y
i
ma
g
e
s,”
C
o
m
p
u
t
e
rs
i
n
Bi
o
l
o
g
y
a
n
d
Me
d
i
c
i
n
e
,
v
o
l
.
1
5
5
,
p
.
1
0
6
6
4
6
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
m
p
b
i
o
me
d
.
2
0
2
3
.
1
0
6
6
4
6
.
[
4
2
]
H
.
S
h
i
n
e
t
a
l
.
,
“
P
u
l
mo
n
a
r
y
a
b
n
o
r
ma
l
i
t
y
scre
e
n
i
n
g
o
n
c
h
e
s
t
x
-
r
a
y
s
f
r
o
m
d
i
f
f
e
r
e
n
t
m
a
c
h
i
n
e
s
p
e
c
i
f
i
c
a
t
i
o
n
s
:
a
g
e
n
e
r
a
l
i
z
e
d
A
I
-
b
a
se
d
i
ma
g
e
ma
n
i
p
u
l
a
t
i
o
n
p
i
p
e
l
i
n
e
,
”
Eu
r
o
p
e
a
n
R
a
d
i
o
l
o
g
y
E
x
p
e
ri
m
e
n
t
a
l
,
v
o
l
.
7
,
n
o
.
1
,
N
o
v
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
8
6
/
s4
1
7
4
7
-
0
2
3
-
0
0
3
8
6
-
1.
[
4
3
]
M
.
V
.
S
a
n
i
d
a
,
T.
S
a
n
i
d
a
,
A
.
S
i
d
e
r
i
s
,
a
n
d
M
.
D
a
s
y
g
e
n
i
s,
“
A
n
a
d
v
a
n
c
e
d
d
e
e
p
l
e
a
r
n
i
n
g
f
r
a
mew
o
r
k
f
o
r
m
u
l
t
i
-
c
l
a
s
s
d
i
a
g
n
o
s
i
s
f
r
o
m
c
h
e
st
X
-
r
a
y
i
ma
g
e
s
,
”
J
,
v
o
l
.
7
,
n
o
.
1
,
p
p
.
4
8
–
7
1
,
Ja
n
.
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
j
7
0
1
0
0
0
3
.
[
4
4
]
“
N
I
H
c
h
e
st
X
-
r
a
y
d
a
t
a
se
t
-
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
d
a
t
a
se
t
s.”
h
t
t
p
s
:
/
/
d
a
t
a
se
t
s.
a
c
t
i
v
e
l
o
o
p
.
a
i
/
d
o
c
s/
m
l
/
d
a
t
a
s
e
t
s
/
n
i
h
-
c
h
e
st
-
x
-
r
a
y
-
d
a
t
a
s
e
t
/
(
a
c
c
e
s
se
d
A
p
r
.
0
2
,
2
0
2
4
)
.
[
4
5
]
P
.
S
.
Za
r
r
i
n
,
N
.
R
o
e
c
k
e
n
d
o
r
f
,
a
n
d
C
.
W
e
n
g
e
r
,
“
I
n
-
v
i
t
r
o
c
l
a
ssi
f
i
c
a
t
i
o
n
o
f
s
a
l
i
v
a
sam
p
l
e
s
o
f
C
O
P
D
p
a
t
i
e
n
t
s
a
n
d
h
e
a
l
t
h
y
c
o
n
t
r
o
l
s
u
si
n
g
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
t
o
o
l
s,”
I
EEE
Ac
c
e
ss
,
v
o
l
.
8
,
p
p
.
1
6
8
0
5
3
–
1
6
8
0
6
0
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
0
.
3
0
2
3
9
7
1
.
[
4
6
]
M
.
K
.
G
o
u
r
i
sari
a
,
V
.
S
i
n
g
h
,
R
.
C
h
a
t
t
e
r
j
e
e
,
S
.
K
.
P
a
n
d
a
,
M
.
R
.
P
r
a
d
h
a
n
,
a
n
d
B
.
A
c
h
a
r
y
a
,
“
P
n
e
u
N
e
t
V
1
:
a
d
e
e
p
n
e
u
r
a
l
n
e
t
w
o
r
k
f
o
r
c
l
a
ss
i
f
i
c
a
t
i
o
n
o
f
p
n
e
u
mo
t
h
o
r
a
x
u
si
n
g
C
X
R
i
m
a
g
e
s
,
”
I
E
EE
Ac
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
6
5
0
2
8
–
6
5
0
4
2
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
2
8
9
8
4
2
.
[
4
7
]
“
S
i
i
m
_
d
i
c
o
m
_
i
ma
g
e
s
.
”
h
t
t
p
s:
/
/
w
w
w
.
k
a
g
g
l
e
.
c
o
m
/
d
a
t
a
se
t
s/
a
b
h
i
s
h
e
k
/
si
i
m
-
d
i
c
o
m
-
i
m
a
g
e
s
(
a
c
c
e
sse
d
A
p
r
.
0
1
,
2
0
2
4
)
.
[
4
8
]
R
.
R
.
I
r
sh
a
d
e
t
a
l
.
,
“
A
n
o
v
e
l
I
o
T
-
e
n
a
b
l
e
d
h
e
a
l
t
h
c
a
r
e
m
o
n
i
t
o
r
i
n
g
f
r
a
mew
o
r
k
a
n
d
i
mp
r
o
v
e
d
g
r
e
y
w
o
l
f
o
p
t
i
mi
z
a
t
i
o
n
a
l
g
o
r
i
t
h
m
-
b
a
se
d
d
e
e
p
c
o
n
v
o
l
u
t
i
o
n
n
e
u
r
a
l
n
e
t
w
o
r
k
m
o
d
e
l
f
o
r
e
a
r
l
y
d
i
a
g
n
o
s
i
s
o
f
l
u
n
g
c
a
n
c
e
r
,
”
S
e
n
so
rs
,
v
o
l
.
2
3
,
n
o
.
6
,
p
.
2
9
3
2
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
3
0
6
2
9
3
2
.
[
4
9
]
Ex
a
s
e
n
s,
“
U
C
I
mac
h
i
n
e
l
e
a
r
n
i
n
g
r
e
p
o
si
t
o
r
y
,
”
2
0
2
0
.
[
5
0
]
R
.
M
a
h
u
m
a
n
d
A
.
S
.
A
l
-
S
a
l
ma
n
,
“
L
u
n
g
-
R
e
t
i
n
a
N
e
t
:
l
u
n
g
c
a
n
c
e
r
d
e
t
e
c
t
i
o
n
u
si
n
g
a
R
e
t
i
n
a
N
e
t
w
i
t
h
m
u
l
t
i
-
sc
a
l
e
f
e
a
t
u
r
e
f
u
s
i
o
n
a
n
d
c
o
n
t
e
x
t
m
o
d
u
l
e
,
”
I
E
EE
A
c
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
5
3
8
5
0
–
5
3
8
6
1
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
2
8
1
2
5
9
.
[
5
1
]
S
.
G
.
A
r
mat
o
e
t
a
l
.
,
“
G
u
e
st
E
d
i
t
o
r
i
a
l
:
LU
N
G
x
C
h
a
l
l
e
n
g
e
f
o
r
c
o
m
p
u
t
e
r
i
z
e
d
l
u
n
g
n
o
d
u
l
e
c
l
a
ss
i
f
i
c
a
t
i
o
n
:
r
e
f
l
e
c
t
i
o
n
s
a
n
d
l
e
sso
n
s
l
e
a
r
n
e
d
,
”
J
o
u
rn
a
l
o
f
Me
d
i
c
a
l
I
m
a
g
i
n
g
,
v
o
l
.
2
,
n
o
.
2
,
p
.
0
2
0
1
0
3
,
Ju
n
.
2
0
1
5
,
d
o
i
:
1
0
.
1
1
1
7
/
1
.
j
m
i
.
2
.
2
.
0
2
0
1
0
3
.
[5
2]
A
.
P
.
R
e
e
v
e
s
a
n
d
A
.
B
i
a
n
c
a
r
d
i
,
“
Th
e
S
I
M
B
A
i
ma
g
e
ma
n
a
g
e
me
n
t
a
n
d
a
n
a
l
y
si
s
s
y
st
e
m.”
h
t
t
p
s
:
/
/
w
w
w
.
v
i
a
.
c
o
r
n
e
l
l
.
e
d
u
/
v
i
s
i
o
n
x
/
v
4
/
v
b
a
si
c
s/
s
i
m
b
a
-
a
p
i
.
p
d
f
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
39
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
0
5
3
-
1
062
1062
[
5
3
]
K
.
G
u
o
,
S
.
Z
h
e
n
g
,
R
.
H
u
a
n
g
,
a
n
d
R
.
G
a
o
,
“
M
u
l
t
i
-
t
a
s
k
l
e
a
r
n
i
n
g
f
o
r
l
u
n
g
d
i
s
e
a
se
c
l
a
ssi
f
i
c
a
t
i
o
n
a
n
d
r
e
p
o
r
t
g
e
n
e
r
a
t
i
o
n
v
i
a
p
r
i
o
r
g
r
a
p
h
st
r
u
c
t
u
r
e
a
n
d
c
o
n
t
r
a
st
i
v
e
l
e
a
r
n
i
n
g
,
”
I
E
EE
A
c
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
1
1
0
8
8
8
–
1
1
0
8
9
8
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
3
2
2
4
2
5
.
[
5
4
]
D
.
D
e
mn
e
r
-
F
u
sh
ma
n
e
t
a
l
.
,
“
P
r
e
p
a
r
i
n
g
a
c
o
l
l
e
c
t
i
o
n
o
f
r
a
d
i
o
l
o
g
y
e
x
a
mi
n
a
t
i
o
n
s
f
o
r
d
i
st
r
i
b
u
t
i
o
n
a
n
d
r
e
t
r
i
e
v
a
l
,
”
J
o
u
r
n
a
l
o
f
t
h
e
Am
e
ri
c
a
n
Me
d
i
c
a
l
I
n
f
o
rm
a
t
i
c
s A
ss
o
c
i
a
t
i
o
n
,
v
o
l
.
2
3
,
n
o
.
2
,
p
p
.
3
0
4
–
3
1
0
,
Ju
l
.
2
0
1
6
,
d
o
i
:
1
0
.
1
0
9
3
/
j
a
m
i
a
/
o
c
v
0
8
0
.
[
5
5
]
A
.
E.
W
.
J
o
h
n
s
o
n
e
t
a
l
.
,
“
M
I
M
I
C
-
C
X
R
,
a
d
e
-
i
d
e
n
t
i
f
i
e
d
p
u
b
l
i
c
l
y
a
v
a
i
l
a
b
l
e
d
a
t
a
b
a
s
e
o
f
c
h
e
st
r
a
d
i
o
g
r
a
p
h
s
w
i
t
h
f
r
e
e
-
t
e
x
t
r
e
p
o
r
t
s,
”
S
c
i
e
n
t
i
f
i
c
D
a
t
a
,
v
o
l
.
6
,
n
o
.
1
,
D
e
c
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
9
7
-
019
-
0
3
2
2
-
0.
[
5
6
]
H
.
M
a
l
i
k
e
t
a
l
.
,
“
A
n
o
v
e
l
f
u
si
o
n
m
o
d
e
l
o
f
h
a
n
d
-
c
r
a
f
t
e
d
f
e
a
t
u
r
e
s
w
i
t
h
d
e
e
p
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
s
f
o
r
c
l
a
ss
i
f
i
c
a
t
i
o
n
o
f
sev
e
r
a
l
c
h
e
s
t
d
i
se
a
ses
u
si
n
g
X
-
R
a
y
i
m
a
g
e
s,
”
I
E
EE
Ac
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
3
9
2
4
3
–
3
9
2
6
8
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
2
6
7
4
9
2
.
[
5
7
]
A
.
H
u
ssa
i
n
,
S
.
U
.
A
mi
n
,
H
.
L
e
e
,
A
.
K
h
a
n
,
N
.
F
.
K
h
a
n
,
a
n
d
S
.
S
e
o
,
“
A
n
a
u
t
o
ma
t
e
d
c
h
e
s
t
X
-
R
a
y
i
m
a
g
e
a
n
a
l
y
s
i
s
f
o
r
C
o
v
i
d
-
1
9
a
n
d
p
n
e
u
mo
n
i
a
d
i
a
g
n
o
s
i
s
u
si
n
g
d
e
e
p
e
n
sem
b
l
e
s
t
r
a
t
e
g
y
,
”
IE
EE
A
c
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
9
7
2
0
7
–
9
7
2
2
0
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
3
1
2
5
3
3
.
[
5
8
]
M
.
Z
.
H
a
s
a
n
e
t
a
l
.
,
“
F
a
st
a
n
d
e
f
f
i
c
i
e
n
t
l
u
n
g
a
b
n
o
r
m
a
l
i
t
y
i
d
e
n
t
i
f
i
c
a
t
i
o
n
w
i
t
h
e
x
p
l
a
i
n
a
b
l
e
A
I
:
a
c
o
mp
r
e
h
e
n
s
i
v
e
f
r
a
mew
o
r
k
f
o
r
c
h
e
s
t
C
T
s
c
a
n
a
n
d
X
-
R
a
y
i
m
a
g
e
s,
”
I
EEE
A
c
c
e
ss
,
v
o
l
.
1
2
,
p
p
.
3
1
1
1
7
–
3
1
1
3
5
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
4
.
3
3
6
9
9
0
0
.
[
5
9
]
“
C
O
V
I
D
-
1
9
r
a
d
i
o
g
r
a
p
h
y
d
a
t
a
b
a
se
,
”
2
0
2
3
.
h
t
t
p
s:
/
/
w
w
w
.
k
a
g
g
l
e
.
c
o
m
/
t
a
w
s
i
f
u
r
r
a
h
ma
n
/
c
o
v
i
d
1
9
-
r
a
d
i
o
g
r
a
p
h
y
-
d
a
t
a
b
a
s
e
.
[
6
0
]
S
.
Y
a
n
g
,
W
.
X
i
a
o
,
M
.
Z
h
a
n
g
,
S
.
G
u
o
,
J.
Zh
a
o
,
a
n
d
F
.
S
h
e
n
,
“
I
mag
e
d
a
t
a
a
u
g
me
n
t
a
t
i
o
n
f
o
r
d
e
e
p
l
e
a
r
n
i
n
g
:
a
s
u
r
v
e
y
,
”
a
rXi
v
:
2
2
0
4
.
0
8
6
1
0
,
2
0
2
2
.
[
6
1
]
A
.
El
h
a
n
a
s
h
i
,
S
.
S
a
p
o
n
a
r
a
,
a
n
d
Q
.
Z
h
e
n
g
,
“
C
l
a
ss
i
f
i
c
a
t
i
o
n
a
n
d
l
o
c
a
l
i
z
a
t
i
o
n
o
f
m
u
l
t
i
-
t
y
p
e
a
b
n
o
r
ma
l
i
t
i
e
s
o
n
c
h
e
st
X
-
R
a
y
s
i
m
a
g
e
s,”
I
EEE
A
c
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
8
3
2
6
4
–
8
3
2
7
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
3
0
2
1
8
0
.
[
6
2
]
M
.
E.
H
.
C
h
o
w
d
h
u
r
y
e
t
a
l
.
,
“
C
a
n
A
I
h
e
l
p
i
n
s
c
r
e
e
n
i
n
g
v
i
r
a
l
a
n
d
C
O
V
I
D
-
1
9
p
n
e
u
m
o
n
i
a
?
,
”
I
E
EE
Ac
c
e
ss
,
v
o
l
.
8
,
p
p
.
1
3
2
6
6
5
–
1
3
2
6
7
6
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
0
.
3
0
1
0
2
8
7
.
[
6
3
]
I
.
M
o
r
a
n
,
D
.
T.
A
l
t
i
l
a
r
,
M
.
K
.
U
c
a
r
,
C
.
B
i
l
g
i
n
,
a
n
d
M
.
R
.
B
o
z
k
u
r
t
,
“
D
e
e
p
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
f
o
r
c
h
r
o
n
i
c
o
b
st
r
u
c
t
i
v
e
p
u
l
m
o
n
a
r
y
d
i
s
e
a
se
d
e
t
e
c
t
i
o
n
u
t
i
l
i
z
i
n
g
e
l
e
c
t
r
o
c
a
r
d
i
o
g
r
a
m
s
i
g
n
a
l
s,
”
I
EE
E
A
c
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
4
0
6
2
9
–
4
0
6
4
4
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
2
6
9
3
9
7
.
[
6
4
]
A
.
S
i
n
g
h
,
N
.
P
r
a
k
a
sh
,
a
n
d
A
.
Ja
i
n
,
“
P
a
r
t
i
c
l
e
sw
a
r
m
o
p
t
i
mi
z
a
t
i
o
n
-
b
a
s
e
d
r
a
n
d
o
m
f
o
r
e
st
f
r
a
mew
o
r
k
f
o
r
t
h
e
c
l
a
ss
i
f
i
c
a
t
i
o
n
o
f
c
h
r
o
n
i
c
d
i
s
e
a
se
s,”
I
EEE
Ac
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
1
3
3
9
3
1
–
1
3
3
9
4
6
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
3
3
5
3
1
4
.
[
6
5
]
“
I
C
B
H
I
d
a
t
a
s
e
t
,
”
2
0
2
3
.
h
t
t
p
s:
/
/
p
a
p
e
r
s
w
i
t
h
c
o
d
e
.
c
o
m
/
d
a
t
a
se
t
/
i
c
b
h
i
-
r
e
sp
i
r
a
t
o
r
y
-
so
u
n
d
-
d
a
t
a
b
a
se
.
[
6
6
]
“
W
B
C
D
,
”
2
0
2
3
.
h
t
t
p
s
:
/
/
w
w
w
.
k
a
g
g
l
e
.
c
o
m
/
d
a
t
a
se
t
s/
u
c
i
ml
/
b
r
e
a
s
t
-
c
a
n
c
e
r
-
w
i
s
c
o
n
si
n
-
d
a
t
a
.
[
6
7
]
“Z
-
A
l
i
z
a
d
e
h
sa
n
i
D
a
t
a
se
t
,
”
2
0
2
3
.
h
t
t
p
s
:
/
/
a
r
c
h
i
v
e
.
i
c
s.
u
c
i
.
e
d
u
/
d
a
t
a
se
t
/
e
x
t
e
n
t
i
o
n
-
of
-
z
-
a
l
i
z
a
d
e
h
sa
n
i
-
d
a
t
a
s
e
t
.
[
6
8
]
“
D
i
a
b
e
t
e
s
p
r
e
d
i
c
t
i
o
n
d
a
t
a
set
,
”
2
0
2
3
.
h
t
t
p
s:
/
/
d
a
t
a
.
w
o
r
l
d
/
i
n
f
o
r
ma
t
i
c
s
-
e
d
u
/
d
i
a
b
e
t
e
s
-
p
r
e
d
i
c
t
i
o
n
.
[
6
9
]
T.
A
.
K
h
a
n
e
t
a
l
.
,
“
S
e
c
u
r
e
I
o
M
T
f
o
r
d
i
s
e
a
se
p
r
e
d
i
c
t
i
o
n
e
mp
o
w
e
r
e
d
w
i
t
h
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
i
n
h
e
a
l
t
h
c
a
r
e
5
.
0
,
t
h
e
c
o
n
c
e
p
t
a
n
d
c
a
s
e
st
u
d
y
,
”
I
EEE
Ac
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
3
9
4
1
8
–
3
9
4
3
0
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
E
S
S
.
2
0
2
3
.
3
2
6
6
1
5
6
.
[
7
0
]
L.
A
.
D
.
a
n
d
S
.
M
.
M
.
A
.
A
.
B
o
r
k
o
w
s
k
i
,
M
.
M
.
B
u
i
,
L.
B
r
a
n
n
o
n
T
h
o
mas,
C
.
P
.
W
i
l
so
n
,
“
Lu
n
g
a
n
d
c
o
l
o
n
c
a
n
c
e
r
h
i
s
t
o
p
a
t
h
o
l
o
g
i
c
a
l
i
ma
g
e
d
a
t
a
s
e
t
(
LC
2
5
0
0
0
)
,
”
2
0
1
9
.
h
t
t
p
s:
/
/
g
i
t
h
u
b
.
c
o
m/
b
e
a
ma
n
d
r
e
w
/
m
e
d
i
c
a
l
-
d
a
t
a
.
[
7
1
]
Z.
W
a
n
a
n
d
X
.
S
h
a
o
,
“
D
i
se
a
se
c
l
a
s
si
f
i
c
a
t
i
o
n
m
o
d
e
l
b
a
se
d
o
n
m
u
l
t
i
-
m
o
d
a
l
f
e
a
t
u
r
e
f
u
si
o
n
,
”
I
E
EE
Ac
c
e
ss
,
v
o
l
.
1
1
,
p
p
.
2
7
5
3
6
–
2
7
5
4
5
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
3
.
3
2
5
2
0
1
1
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
La
x
m
i
Ba
g
a
lk
o
t
c
u
rre
n
tl
y
se
rv
in
g
a
s
a
n
a
ss
istan
t
p
ro
fe
ss
o
r
a
t
BLDEA
’
s
A
S
P
a
ti
l
Co
ll
e
g
e
o
f
C
o
m
m
e
rc
e
(Au
to
n
o
m
o
u
s)
i
n
Vijay
a
p
u
r,
Ka
rn
a
tak
a
with
in
th
e
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
.
P
u
rsu
in
g
P
h
D
in
Co
m
p
u
ter
S
c
ien
c
e
a
n
d
A
p
p
li
c
a
ti
o
n
with
a
f
o
c
u
s
o
n
Artifi
c
ial
In
telli
g
e
n
c
e
a
n
d
De
e
p
Lea
rn
in
g
a
t
S
h
ri
Ja
g
d
ish
p
ra
sa
d
Jh
a
b
a
rm
a
l
Ti
b
re
wa
la
Un
iv
e
rsity
(S
JJ
TU),
Ra
jas
th
a
n
.
Wi
th
e
ig
h
t
y
e
a
rs
o
f
e
n
rich
i
n
g
te
a
c
h
in
g
e
x
p
e
rien
c
e
,
sh
e
h
a
s
c
o
n
tri
b
u
ted
si
g
n
ifi
c
a
n
tl
y
t
o
a
c
a
d
e
m
ia,
h
a
v
in
g
a
u
t
h
o
re
d
t
h
re
e
n
a
ti
o
n
a
l
a
n
d
tw
o
in
tern
a
ti
o
n
a
l
p
a
p
e
rs,
p
a
rti
c
ip
a
te
d
in
v
a
rio
u
s
c
o
n
fe
re
n
c
e
s,
a
n
d
c
o
n
tri
b
u
te
d
to
a
fil
e
d
p
a
ten
t
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
lax
m
i
b
a
g
a
lk
o
t
2
1
@g
m
a
il
.
c
o
m
.
Dr
.
K
e
la
p
a
ti
a
ss
istan
t
p
ro
fe
ss
o
r
a
n
d
He
a
d
o
f
t
h
e
De
p
a
rtme
n
t,
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
S
c
ie
n
c
e
a
n
d
E
n
g
i
n
e
e
rin
g
,
S
h
r
i
Ja
g
d
is
h
p
ra
sa
d
Jh
a
b
a
rm
a
l
Ti
b
re
wa
la
Un
iv
e
rsity
,
Ch
u
d
e
la,
Vi
d
y
a
n
a
g
ri,
Jh
u
n
j
h
u
n
u
,
Ra
jas
th
a
n
3
3
3
0
1
0
(I
n
d
ia).
S
h
e
h
a
s b
e
e
n
p
u
b
li
sh
e
d
n
u
m
b
e
r
o
f
re
se
a
rc
h
p
a
p
e
rs
in
Na
ti
o
n
a
l
a
n
d
In
tern
a
ti
o
n
a
l
jo
u
rn
a
ls.
S
h
e
h
a
s
a
lso
m
a
n
y
n
a
ti
o
n
a
l
a
n
d
in
tern
a
ti
o
n
a
l
c
o
n
fe
re
n
c
e
s
su
c
c
e
ss
fu
ll
y
c
o
m
p
lete
d
.
S
h
e
h
a
s
su
c
c
e
ss
fu
ll
y
c
o
m
p
lete
d
F
DP
wh
ic
h
is
o
rg
a
n
ize
d
b
y
N
P
TE
L
–
AICTE,
In
d
ian
I
n
stit
u
te
o
f
Tec
h
n
o
lo
g
y
.
S
h
e
h
a
s
a
ls
o
a
tt
e
n
d
e
d
F
IP
one
-
m
o
n
th
o
n
li
n
e
fa
c
u
lt
y
in
d
u
c
ti
o
n
p
ro
g
ra
m
m
e
o
rg
a
n
ize
d
b
y
m
a
lav
iy
a
m
issio
n
Tea
c
h
e
r
Train
in
g
Ce
n
ter
(fo
rm
e
rly
UG
C
-
Hu
m
a
n
Re
so
u
rse
De
v
e
lo
p
m
e
n
t
Ce
n
tre),
Ja
m
ia
M
il
li
a
Isla
m
ia,
Ne
w De
lh
i.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
k
e
lap
a
ti
p
o
o
n
ia
@g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.