I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
3
9
,
No
.
2
,
A
u
g
u
s
t
2
0
2
5
,
p
p
.
1
421
~
1
4
3
0
I
SS
N:
2502
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/ijeecs.v
3
9
.i
2
.
pp
1
4
2
1
-
1
4
3
0
1421
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs.ia
esco
r
e.
co
m
Dy
na
mic
a
tt
enda
nce sy
stem usi
ng
face r
ecog
nition
v
ia
m
a
chine
l
ea
rning
m
o
dels
Nis
ha
nt
Upa
d
hy
a
y
1
,
Nidh
i B
a
ns
a
l
2
,
E
m
il Ve
lin
o
v
3
,
H
a
rsh
it
1
,
Abha
y
Sh
a
rm
a
4
,
Sa
nje
ev
K
um
a
r
5
1
D
e
p
a
r
t
me
n
t
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
S
c
h
o
o
l
o
f
E
n
g
i
n
e
e
r
i
n
g
a
n
d
Te
c
h
n
o
l
o
g
y
,
S
h
a
r
d
a
U
n
i
v
e
r
si
t
y
,
G
r
e
a
t
e
r
N
o
i
d
a
,
I
n
d
i
a
2
D
e
p
a
r
t
me
n
t
o
f
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
a
n
d
E
n
g
i
n
e
e
r
i
n
g
,
S
c
h
o
o
l
o
f
E
n
g
i
n
e
e
r
i
n
g
a
n
d
Te
c
h
n
o
l
o
g
y
,
M
a
n
a
v
R
a
c
h
n
a
I
n
t
e
r
n
a
t
i
o
n
a
l
I
n
st
i
t
u
t
e
o
f
R
e
se
a
r
c
h
a
n
d
S
t
u
d
i
e
s (D
e
e
me
d
t
o
b
e
U
n
i
v
e
r
si
t
y
)
,
F
a
r
i
d
a
b
a
d
,
I
n
d
i
a
3
R
I
S
EB
A
U
n
i
v
e
r
s
i
t
y
o
f
A
p
p
l
i
e
d
S
c
i
e
n
c
e
s,
R
i
g
a
,
L
a
t
v
i
a
a
n
d
B
u
s
i
n
e
ss S
c
h
o
o
l
,
I
n
d
i
a
3
U
n
i
v
e
r
s
i
t
y
o
f
C
h
e
mi
s
t
r
y
a
n
d
Te
c
h
n
o
l
o
g
y
,
P
r
a
g
u
e
,
C
z
e
c
h
i
a
4
D
e
p
a
r
t
me
n
t
o
f
I
o
T
& I
S
,
M
a
n
i
p
a
l
U
n
i
v
e
r
si
t
y
J
a
i
p
u
r
,
J
a
i
p
u
r
,
I
n
d
i
a
5
S
c
h
o
o
l
o
f
H
o
t
e
l
M
a
n
a
g
e
me
n
t
a
n
d
T
o
u
r
i
sm,
L
o
v
e
l
y
P
r
o
f
e
ssi
o
n
a
l
U
n
i
v
e
r
si
t
y
,
P
h
a
g
w
a
r
a
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
m
o
n
th
d
d
,
y
y
y
y
R
ev
is
ed
m
o
n
th
d
d
,
y
y
y
y
Acc
ep
ted
m
o
n
t
h
d
d
,
y
y
y
y
Trad
it
io
n
a
l
m
e
th
o
d
s
to
h
a
n
d
le
a
tt
e
n
d
a
n
c
e
h
a
v
e
b
e
e
n
imp
lem
e
n
ted
in
th
e
sc
h
o
o
ls i
n
th
e
p
a
st an
d
m
o
st o
f
t
h
e
m
a
re
d
isc
o
u
ra
g
in
g
a
s th
e
y
re
q
u
i
re
th
a
t
th
e
in
stit
u
ti
o
n
s
imp
lem
e
n
t
th
e
u
se
o
f
p
a
p
e
r
a
n
d
p
e
n
to
g
e
t
th
e
r
e
su
lt
s.
T
o
e
n
h
a
n
c
in
g
e
ffe
c
ti
v
e
n
e
ss
a
n
d
s
a
fe
g
u
a
rd
in
g
,
t
h
is
p
a
p
e
r
p
re
se
n
ts
a
fa
c
e
re
c
o
g
n
it
i
o
n
a
tt
e
n
d
a
n
c
e
sy
ste
m
th
a
t
m
e
c
h
a
n
ize
s
th
e
u
su
a
l
a
tt
e
n
d
a
n
c
e
tak
in
g
p
ro
c
e
ss
.
Us
in
g
b
e
st
p
ra
c
ti
c
e
s
i
n
fa
c
ial
re
c
o
g
n
i
ti
o
n
,
th
e
sy
ste
m
c
a
p
tu
re
s
ima
g
e
s
o
f
stu
d
e
n
ts’
fa
c
e
s,
st
o
re
s
th
e
m
,
fe
e
d
s
th
e
m
i
n
t
o
a
re
c
o
g
n
it
i
o
n
m
o
d
e
l,
a
n
d
u
se
s
re
a
l
-
ti
m
e
fa
c
ial
re
c
o
g
n
it
i
o
n
t
o
m
a
rk
a
tt
e
n
d
a
n
c
e
.
Th
is
m
e
a
n
s
th
a
t
th
e
sy
ste
m
e
n
jo
y
s
d
a
ta
e
n
c
ry
p
ti
o
n
a
n
d
p
a
ss
wo
rd
p
ro
tec
ted
a
c
c
e
ss
th
a
t
e
n
su
re
s
d
a
ta
is
sa
fe
.
In
th
e
p
ro
p
o
se
d
sy
st
e
m
,
th
e
Op
e
n
CV
fa
c
e
re
c
o
g
n
it
io
n
li
b
ra
ries
c
o
m
b
in
e
d
wi
th
m
a
c
h
in
e
lea
rn
in
g
a
lg
o
rit
h
m
s
f
o
r
b
e
tt
e
r
fa
c
e
re
c
o
g
n
i
ti
o
n
a
b
il
it
y
with
b
e
tt
e
r
e
fficie
n
c
y
.
T
h
e
re
su
lt
s
c
o
n
firm
t
h
a
t
t
h
e
sy
ste
m
p
ro
v
i
d
e
s
a
re
li
a
b
le
a
p
p
ro
a
c
h
t
o
h
a
n
d
li
n
g
a
tt
e
n
d
a
n
c
e
a
n
d
it
m
a
y
d
e
b
u
t
i
n
v
a
rio
u
s
c
o
n
tex
ts.
K
ey
w
o
r
d
s
:
Dec
en
t c
am
er
a
Face
r
ec
o
g
n
itio
n
tec
h
n
iq
u
e
Op
en
C
V
Py
th
o
n
Sp
r
ea
d
s
h
ee
t
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ab
h
ay
Sh
ar
m
a
Dep
ar
tm
en
t o
f
I
o
T
&
I
S,
Ma
n
i
p
al
Un
iv
er
s
ity
J
aip
u
r
J
aip
u
r
R
ajasth
an
,
I
n
d
ia
E
m
ail:
ab
h
ay
.
s
h
ar
m
a@
jaip
u
r
.
m
an
ip
al.
ed
u
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
Acc
u
r
ate
an
d
ef
f
icien
t
att
en
d
an
ce
t
r
ac
k
in
g
is
cr
u
cial.
T
h
is
ap
p
lies
to
ed
u
ca
tio
n
al
i
n
s
titu
tio
n
s
as
well
as
wo
r
k
p
lace
s
.
T
r
ad
itio
n
al
m
eth
o
d
s
lik
e
r
o
ll
ca
ll
an
d
s
ig
n
-
in
s
h
ee
ts
ar
e
u
n
r
eliab
le.
T
h
is
is
b
ec
au
s
e
th
ey
ar
e
tim
e
-
co
n
s
u
m
i
n
g
an
d
p
r
o
n
e
to
er
r
o
r
s
.
T
h
ey
ar
e
also
s
u
s
ce
p
tib
le
to
p
r
o
x
y
atten
d
an
ce
.
T
h
ese
lim
itatio
n
s
u
n
d
er
s
co
r
e
th
e
n
ee
d
f
o
r
an
a
u
to
m
ated
,
s
ec
u
r
e
an
d
r
eliab
le
atten
d
an
ce
s
y
s
tem
.
B
io
m
etr
ic
b
ased
s
o
lu
tio
n
s
,
p
ar
ticu
lar
ly
f
ac
e
r
ec
o
g
n
itio
n
p
r
o
v
id
es
a
m
o
r
e
ad
v
a
n
ce
d
an
d
s
ea
m
less
ap
p
r
o
ac
h
b
y
r
em
o
v
in
g
m
a
n
u
al
in
ter
v
en
tio
n
.
T
h
e
tech
n
o
lo
g
y
f
o
r
f
ac
e
r
ec
o
g
n
itio
n
is
g
ain
in
g
m
o
m
en
tu
m
d
u
e
to
its
n
o
n
-
in
tr
u
s
iv
e
an
d
r
ea
l
-
tim
e
au
th
en
ticatio
n
n
at
u
r
e
with
o
u
t
h
av
in
g
t
o
r
eq
u
ir
e
an
y
f
u
r
th
er
ac
tio
n
f
r
o
m
th
e
u
s
er
[
1
]
-
[
4
]
.
R
ec
en
t
ad
v
an
ce
s
in
co
m
p
u
ter
v
is
io
n
an
d
m
ac
h
in
e
lear
n
in
g
h
a
v
e
im
p
r
o
v
ed
t
h
e
ac
cu
r
ac
y
a
n
d
f
ea
s
ib
ilit
y
o
f
r
ea
l
-
tim
e
f
ac
ial
r
ec
o
g
n
itio
n
s
y
s
tem
s
f
o
r
atten
d
an
ce
tr
ac
k
in
g
.
Uses
in
s
ec
u
r
ity
,
id
en
tify
i
n
g
wh
o
h
as
ac
ce
s
s
to
wh
at,
an
d
b
io
m
etr
ic
id
en
tific
atio
n
h
as
p
u
s
h
ed
a
g
r
ea
t
d
ea
l
o
f
r
esear
ch
in
to
f
ac
ial
r
ec
o
g
n
itio
n
.
Alth
o
u
g
h
n
ew
m
eth
o
d
s
h
av
e
s
u
b
s
eq
u
en
tly
in
c
o
r
p
o
r
at
ed
d
ee
p
lear
n
in
g
m
o
d
els
s
u
ch
as
co
n
v
o
lu
tio
n
al
n
e
u
r
al
n
et
wo
r
k
s
(
C
NNs)
f
o
r
g
r
ea
ter
p
r
ec
is
io
n
an
d
s
tab
ilit
y
,
p
r
ev
io
u
s
ly
im
p
lem
e
n
ted
ap
p
r
o
ac
h
es
u
s
ed
f
ea
t
u
r
es
-
b
ased
r
ec
o
g
n
itio
n
m
eth
o
d
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
4
2
1
-
1
430
1422
[
4
]
.
T
r
an
s
f
er
lear
n
in
g
h
as
p
er
f
o
r
m
ed
a
h
ig
h
p
r
ed
ictio
n
ac
c
u
r
ac
y
with
a
r
e
d
u
ce
d
tr
ain
in
g
tim
e
u
tili
zin
g
p
r
e
-
tr
ain
ed
m
o
d
els
p
ar
ticu
lar
ly
R
eset
an
d
Go
o
g
le
Net.
Secu
r
ity
co
n
ce
r
n
s
,
in
clu
d
in
g
d
ata
e
n
s
h
r
in
e
m
en
t
a
n
d
r
estricte
d
ac
ce
s
s
ib
ili
ty
also
cr
o
p
p
e
d
u
p
as
p
ar
am
o
u
n
t
f
ac
to
r
s
s
o
as
to
s
af
eg
u
ar
d
e
s
teem
ed
b
io
m
etr
ic
cr
ed
en
tials
[
5
]
.
Fig
u
r
e
1
a
n
d
F
ig
u
r
e
2
ar
e
s
h
o
win
g
th
e
wo
r
k
f
lo
w
o
f
th
e
p
r
o
p
o
s
ed
atten
d
an
ce
s
y
s
tem
with
r
eq
u
ir
ed
f
ea
tu
r
es with
co
m
p
lete
d
etai
ls
.
T
h
e
m
ain
ch
allen
g
e
o
f
atte
n
d
an
ce
tr
ac
k
in
g
is
in
its
au
th
en
t
icity
an
d
p
r
e
v
en
tio
n
f
r
o
m
th
e
f
r
au
d
u
le
n
t
p
r
ac
tices su
ch
as b
u
d
d
y
p
u
n
ch
in
g
an
d
u
n
a
u
th
o
r
ize
d
atten
d
an
ce
m
ar
k
in
g
.
C
u
r
r
en
tly
,
b
io
m
et
r
ic
ap
p
r
o
ac
h
es lik
e
f
in
g
er
p
r
in
t
an
d
r
a
d
io
f
r
eq
u
en
c
y
id
en
tific
atio
n
(
R
FID
)
s
y
s
te
m
s
ar
e
u
s
ed
to
f
ig
h
t
th
ese
is
s
u
es.
Ho
wev
er
,
s
u
ch
s
y
s
tem
s
ca
n
r
aise
h
y
g
ien
e
c
o
n
ce
r
n
s
,
esp
ec
ially
af
te
r
th
e
C
o
v
id
-
1
9
p
an
d
em
ic
an
d
m
ig
h
t
b
e
n
o
t
ef
f
ec
tiv
e
in
th
e
h
ig
h
-
tr
af
f
ic
s
itu
atio
n
s
.
T
h
e
f
ac
e
r
ec
o
g
n
itio
n
b
ased
atten
d
an
c
e
s
y
s
tem
s
ca
n
b
e
im
p
lem
e
n
ted
to
o
v
er
c
o
m
e
th
e
ch
allen
g
es
in
th
e
m
a
n
u
al
atte
n
d
an
ce
s
y
s
tem
,
in
wh
ic
h
it
p
r
o
v
id
es
th
e
co
n
tactless
,
au
to
m
atic
an
d
r
ea
l
tim
e
au
th
en
ticatio
n
f
o
r
t
h
e
u
s
er
s
.
W
h
ile
th
e
ex
is
tin
g
s
o
lu
tio
n
s
ar
e
u
s
in
g
d
ee
p
lear
n
in
g
m
o
d
els
s
u
ch
as
d
ee
p
co
n
v
o
l
u
tio
n
al
n
eu
r
al
n
etwo
r
k
s
(
DC
NN)
an
d
tr
a
d
itio
n
al
m
eth
o
d
s
s
u
ch
as
h
is
to
g
r
a
m
o
f
o
r
ien
ted
g
r
ad
ien
ts
(
HOG)
,
th
e
ch
allen
g
es
s
u
ch
as
lig
h
ten
in
g
,
p
o
s
e
an
d
o
cc
lu
s
io
n
s
ar
e
s
til
l
p
er
s
is
t
in
g
to
p
r
o
v
id
e
th
e
ac
cu
r
ac
y
an
d
r
o
b
u
s
tn
ess
.
T
h
e
u
s
e
o
f
f
ac
ial
r
e
co
g
n
itio
n
tech
n
o
lo
g
y
in
th
e
a
u
to
m
ated
m
o
d
e
o
f
atten
d
an
ce
ta
k
in
g
h
a
s
r
ec
eiv
ed
s
ig
n
if
ican
t
in
ter
est
in
r
ec
en
t
tim
es
d
u
e
to
its
ca
p
a
b
ilit
y
f
o
r
en
h
a
n
cin
g
o
r
g
an
izatio
n
al
p
er
f
o
r
m
an
ce
an
d
in
cr
ea
s
in
g
ac
cu
r
ac
y
i
n
atten
d
an
ce
tak
in
g
[
6
]
,
s
h
o
wn
i
n
F
ig
u
r
e
1
.
D
u
e
to
th
e
f
o
cu
s
o
n
th
e
in
teg
r
atio
n
o
f
m
ac
h
in
e
l
ea
r
n
in
g
with
r
ea
l
-
t
im
e
co
m
p
u
ter
v
is
io
n
alg
o
r
ith
m
s
,
th
is
liter
atu
r
e
r
ev
iew
p
r
esen
ts
n
u
m
er
o
u
s
m
eth
o
d
s
an
d
ad
v
an
ce
m
en
ts
[
7
]
.
T
h
is
r
esear
ch
p
ap
er
aim
s
to
ac
h
iev
e:
I
n
atten
d
a
n
ce
m
an
a
g
em
en
t
s
y
s
tem
s
f
o
r
f
ac
u
lty
,
s
taf
f
a
n
d
s
tu
d
e
n
ts
,
th
e
r
e
h
as
b
ee
n
s
u
g
g
esti
o
n
s
m
ad
e
o
n
th
e
i
n
co
r
p
o
r
atio
n
o
f
r
ea
l
ti
m
e
co
m
p
u
ter
v
is
io
n
alg
o
r
ith
m
s
.
On
e
ap
p
r
o
ac
h
is
in
co
r
p
o
r
atin
g
r
ea
l
-
tim
e
f
ac
e
id
en
tific
atio
n
alg
o
r
ith
m
s
in
t
o
alr
ea
d
y
-
av
aila
b
le
lear
n
in
g
m
an
a
g
em
en
t
s
y
s
tem
s
(
L
MS)
f
o
r
in
s
tan
ce
[
8
]
.
L
e
ctu
r
es
th
at
ar
e
g
iv
en
in
class
es
ar
e
au
to
m
ati
ca
lly
id
en
tifie
d
b
y
th
is
s
y
s
tem
a
n
d
th
e
s
tu
d
en
ts
ar
e
r
ec
o
r
d
ed
as
w
ell.
T
h
is
is
ac
h
iev
e
d
th
r
o
u
g
h
m
o
n
ito
r
in
g
f
ea
t
u
r
es
o
v
er
t
h
e
tim
e
u
s
in
g
ad
ap
tiv
e
m
o
d
el
a
n
d
m
ac
h
in
e
lear
n
in
g
t
ec
h
n
iq
u
es
o
n
t
h
e
f
ac
ial
ex
p
r
ess
io
n
s
[
9
]
.
B
y
h
a
v
in
g
th
is
in
teg
r
atio
n
,
in
s
tr
u
cto
r
s
wi
ll
h
av
e
an
ex
tr
a
f
ea
tu
r
e
th
at
will
en
h
an
ce
t
h
e
ef
f
ec
tiv
e
n
ess
o
f
m
o
n
ito
r
in
g
atten
d
an
ce
.
Fig
u
r
e
1
.
Flo
w
f
o
r
th
e
p
r
o
ce
s
s
to
r
ec
o
g
n
ize
th
e
in
p
u
t f
o
r
atte
m
p
tin
g
th
e
atten
d
an
ce
s
y
s
tem
T
h
e
u
s
e
o
f
f
ac
e
r
ec
o
g
n
itio
n
a
s
a
s
in
g
le
m
eth
o
d
t
o
esti
m
ate
atten
d
an
ce
is
n
o
t
e
f
f
ec
tiv
e
b
ec
au
s
e
o
f
v
ar
iab
ilit
y
in
f
ac
e
d
etec
tio
n
r
ates.
Fo
r
th
e
s
am
e
r
ea
s
o
n
s
th
e
ap
p
r
o
ac
h
p
r
o
p
o
s
ed
in
is
b
as
ed
o
n
ac
c
u
m
u
latin
g
in
f
o
r
m
atio
n
f
r
o
m
cu
r
r
e
n
t
f
ac
e
r
ec
o
g
n
itio
n
o
b
s
er
v
atio
n
s
[
1
0
]
.
T
o
en
s
u
r
e
th
at
th
e
r
ec
o
g
n
itio
n
r
esu
lts
p
r
o
v
id
e
r
esu
lts
th
at
ar
e
as
ac
cu
r
ate
a
s
p
o
s
s
ib
le
th
e
s
y
s
tem
wo
r
k
s
to
p
r
o
d
u
ce
th
e
s
tu
d
en
t
atte
n
d
an
ce
esti
m
ate
b
y
p
r
o
ce
s
s
in
g
s
ev
er
al
in
s
tan
ce
s
o
f
f
ac
e
r
ec
o
g
n
itio
n
d
ata.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
Dyn
a
mic
a
tten
d
a
n
ce
s
ystem
u
s
in
g
fa
ce
r
ec
o
g
n
itio
n
via
ma
c
h
in
e
lea
r
n
in
g
m
o
d
els
(
N
is
h
a
n
t U
p
a
d
h
y
a
y
)
1423
R
FID
is
ea
s
y
to
im
p
lem
en
t
an
d
ca
n
also
an
aly
ze
d
ata
at
a
v
er
y
h
ig
h
r
ate
an
d
h
as
th
er
e
f
o
r
e
b
ee
n
r
esear
ch
well
in
an
attem
p
t
to
s
elf
-
atten
d
.
I
n
R
FID
b
ased
s
y
s
tem
s
,
ea
ch
p
u
p
il
is
p
r
o
v
id
e
d
with
a
u
n
iq
u
e
tag
wh
ich
is
u
s
ed
to
m
ar
k
h
is
o
r
h
er
atten
d
an
ce
[
1
1
]
.
As
f
o
r
u
s
in
g
R
FID
d
ev
ices,
p
eo
p
le
wi
ll
n
o
t
n
ee
d
tim
e
to
atten
d
an
d
,
th
u
s
,
s
u
c
h
d
e
v
ice
s
ca
n
h
elp
s
av
e
m
u
c
h
tim
e
b
u
t,
at
th
e
s
am
e
tim
e,
s
u
ch
d
e
v
ices
r
ev
ea
l
ce
r
tain
n
eg
ativ
e
f
ea
tu
r
es,
f
o
r
ex
am
p
le,
th
ey
ca
n
b
e
a
b
u
s
ed
an
d
th
ey
ca
n
n
o
t
p
r
o
v
e
o
n
e’
s
id
e
n
tity
.
Acc
o
r
d
i
n
g
ly
,
s
ec
u
r
ity
o
f
th
e
s
o
l
u
tio
n
s
is
th
e
lead
in
g
p
r
o
b
lem
.
Facial
r
ec
o
g
n
itio
n
s
y
s
tem
s
p
ar
ticu
lar
ly
h
a
v
e
b
ee
n
a
s
u
b
j
ec
t
o
f
in
te
r
est
in
r
ec
e
n
t
s
tu
d
ies
m
o
s
tly
b
ec
au
s
e
o
f
ac
co
m
p
lis
h
m
e
n
ts
to
war
d
s
m
ac
h
in
e
lear
n
in
g
[
1
2
]
.
T
o
s
o
lv
e
th
e
p
r
o
b
le
m
o
f
lig
h
tin
g
,
r
o
tatio
n
a
n
d
s
ca
lin
g
m
eth
o
d
s
th
at
a
r
e
u
s
ed
in
clu
d
e
eig
e
n
f
ac
es,
lo
ca
l
b
i
n
ar
y
p
atter
n
s
(
L
B
P)
h
is
to
g
r
am
o
f
o
r
ien
ted
g
r
ad
ie
n
t
s
(
HOG)
.
I
d
ea
lly
,
s
u
ch
m
eth
o
d
s
ass
i
s
t in
en
h
an
cin
g
th
e
r
eliab
ilit
y
o
f
f
ac
ial
r
ec
o
g
n
itio
n
t
ec
h
n
o
lo
g
ies in
d
if
f
er
en
t
ac
tu
al
tim
e
co
n
d
itio
n
s
.
B
io
m
etr
ic
f
ac
ial
r
ec
o
g
n
itio
n
,
o
r
f
ac
ial
r
ec
o
g
n
itio
n
-
b
ased
atten
d
an
ce
s
y
s
tem
s
,
o
f
ten
ex
p
er
ien
ce
ten
d
en
cies
with
r
eg
ar
d
t
o
ad
a
p
tiv
e
lu
m
in
o
s
ity
,
f
ac
e
p
o
s
itio
n
s
,
an
d
b
ar
r
ier
s
[
1
3
]
.
I
n
o
r
d
er
to
o
v
er
co
m
e
th
ese
ch
a
llen
g
es,
th
e
r
ec
e
n
t
s
tu
d
ies
in
co
m
p
u
ter
v
is
io
n
an
d
m
ac
h
i
n
e
lear
n
i
n
g
s
u
ch
as
C
NN
an
d
ad
ap
tiv
e
m
eth
o
d
s
ar
e
in
p
r
o
g
r
ess
.
I
n
o
r
d
er
to
e
n
h
an
ce
th
e
s
y
s
tem
r
eliab
ilit
y
a
n
d
co
n
v
en
ien
ce
o
f
t
h
e
co
n
s
u
m
er
s
,
m
o
r
e
a
d
v
an
ce
d
ap
p
r
o
ac
h
es
th
at
in
teg
r
ates
th
e
f
ac
ial
r
ec
o
g
n
iti
o
n
s
y
s
tem
with
o
th
er
b
io
m
etr
ic
m
eth
o
d
s
o
r
tech
n
o
lo
g
ies,
to
g
eth
er
with
n
ea
r
f
ield
c
o
m
m
u
n
icatio
n
(
NFC
)
tech
n
iq
u
e
ar
e
u
n
d
er
d
ev
elo
p
m
en
t
[
1
4
]
.
Fig
u
r
e
2
.
W
o
r
k
f
lo
w
f
o
r
th
e
p
r
o
p
o
s
ed
s
y
s
tem
2.
M
E
T
H
O
D
T
h
e
p
r
o
p
o
s
ed
s
y
s
tem
is
a
s
y
s
tem
o
f
4
s
tep
s
:
r
ea
l
-
tim
e
f
ac
ial
r
ec
o
g
n
itio
n
,
m
o
d
el
u
p
d
atin
g
,
d
ataset
co
llectio
n
,
s
ec
u
r
ity
.
E
ac
h
s
tep
is
cr
u
cial
f
o
r
th
e
s
y
s
tem
t
o
b
e
ac
c
u
r
ate,
f
ast,
an
d
en
s
u
r
e
d
ata
p
r
iv
ac
y
.
T
h
is
s
ec
tio
n
is
g
o
in
g
to
d
etail
th
e
m
eth
o
d
s
o
f
d
ataset
cr
ea
tio
n
,
m
o
d
el
tr
ai
n
in
g
,
f
ac
e
r
ec
o
g
n
itio
n
,
a
n
d
s
ec
u
r
ity
s
o
th
at
th
e
r
esear
ch
co
u
ld
b
e
r
ep
l
icate
d
b
y
a
c
o
m
p
eten
t
p
er
s
o
n
.
2
.
1
.
Cre
a
t
io
n o
f
d
a
t
a
s
et
s
Stru
ctu
r
ed
d
ataset
is
a
m
u
s
t
f
o
r
ac
cu
r
ate
tr
ain
in
g
o
f
th
e
s
y
s
tem
o
f
f
ac
ial
r
ec
o
g
n
itio
n
.
T
h
e
s
y
s
tem
s
tar
ts
cr
ea
tin
g
a
f
o
ld
er
f
o
r
ea
ch
s
tu
d
en
t,
s
u
ch
as
Stu
d
en
t
_
I
D_
Nam
e,
in
wh
ich
all
p
h
o
to
s
ar
e
s
to
r
e
d
.
W
h
en
a
n
ew
s
tu
d
en
t
co
m
es,
d
etails,
s
u
ch
as
n
am
e
a
n
d
I
D
g
e
n
e
r
ated
b
y
th
e
s
y
s
tem
,
a
r
e
wr
itten
in
a
n
E
x
ce
l
f
ile,
wh
ich
allo
ws
m
ain
tain
in
g
a
s
tr
u
ctu
r
e
d
d
atab
ase.
T
o
p
r
ev
en
t
d
ata
r
e
d
u
n
d
a
n
cy
,
th
e
s
y
s
tem
ch
ec
k
s
f
o
r
th
e
ex
is
ten
ce
o
f
r
ec
o
r
d
s
b
ef
o
r
e
a
d
d
in
g
a
n
ew
o
n
e
an
d
i
n
d
icate
s
in
ca
s
e
o
f
d
u
p
licatio
n
.
Data
co
llectio
n
p
r
o
ce
s
s
:
T
h
e
p
ictu
r
es
ar
e
tak
en
b
y
web
ca
m
u
n
d
er
v
ar
y
i
n
g
illu
m
i
n
atio
n
a
n
d
p
o
s
itio
n
cir
cu
m
s
tan
ce
s
.
R
ec
o
g
n
itio
n
ac
cu
r
ac
y
is
im
p
r
o
v
ed
b
y
co
llecti
n
g
a
m
in
im
u
m
o
f
4
0
-
5
0
im
a
g
es
p
er
s
tu
d
en
t.
T
h
e
im
ag
es
u
n
d
er
g
o
p
r
e
p
r
o
ce
s
s
in
g
tech
n
iq
u
es
s
u
ch
as
g
r
ay
s
ca
le
co
n
v
er
s
io
n
,
h
is
to
g
r
am
eq
u
aliza
tio
n
,
an
d
n
o
is
e
r
ed
u
ctio
n
to
e
n
h
an
ce
f
ea
tu
r
e
ex
tr
ac
tio
n
.
Pro
ce
s
s
ed
p
ictu
r
es
r
esid
e
in
s
tu
d
en
t
f
o
ld
er
s
an
d
ar
e
ass
o
ciate
d
with
E
x
ce
l
en
tr
ies.
T
h
is
way
o
f
ali
g
n
in
g
with
th
e
e
x
is
tin
g
f
ac
e
r
e
co
g
n
itio
n
tech
n
iq
u
es
f
o
c
u
s
es
o
n
th
e
q
u
ality
o
f
th
e
d
ataset,
th
u
s
en
h
an
cin
g
th
e
m
ac
h
in
e
lear
n
in
g
m
o
d
el
ef
f
i
cien
cy
[
1
5
]
,
[
1
6
]
.
T
h
e
d
atas
et
is
b
ein
g
u
p
d
ate
d
co
n
s
tan
tly
d
u
e
to
th
e
n
ew
s
tu
d
en
t
en
r
o
llm
en
t
an
d
also
f
o
r
th
e
b
etter
m
o
d
el
ef
f
icien
cy
.
Fi
g
u
r
es
3
-
8
s
h
o
w
th
e
p
r
o
ce
s
s
o
f
d
ataset
cr
ea
tio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
4
2
1
-
1
430
1424
Fig
u
r
e
3
.
C
r
ea
t
in
g
Data
B
ase
Fig
u
r
e
4
.
Ad
d
in
g
f
ield
f
o
r
n
a
m
e
Fig
u
r
e
5
.
Ad
d
in
g
f
ield
f
o
r
a
u
n
iq
u
e
n
u
m
b
er
Fig
u
r
e
6
.
Field
s
ar
e
g
ettin
g
s
to
r
ag
e
in
ex
ce
l n
o
w
Fig
u
r
e
7
.
Field
s
ar
e
g
ettin
g
s
to
r
ag
e
in
ex
ce
l
n
o
w
Fig
u
r
e
8
.
Feld
s
ar
e
g
ettin
g
in
f
o
r
m
atio
n
f
o
r
d
if
f
er
et
u
s
er
s
s
ep
er
ately
2
.
2
.
M
o
del
i
ns
t
ruct
io
n
Fo
llo
win
g
th
e
f
illi
n
g
o
f
th
e
d
a
taset
th
e
s
y
s
tem
b
eg
i
n
s
th
e
tr
a
in
in
g
p
r
o
ce
s
s
.
T
h
is
p
r
o
ce
s
s
is
au
to
m
atic
an
d
s
tar
ts
as
s
o
o
n
as
n
ew
s
tu
d
en
t
in
f
o
r
m
atio
n
is
ad
d
e
d
,
g
u
ar
an
teein
g
a
n
ac
tu
al
an
d
ad
ap
tab
le
id
en
tific
atio
n
s
y
s
tem
.
-
T
r
ain
in
g
p
r
o
ce
d
u
r
e:
f
ac
e
en
c
o
d
in
g
a
n
d
f
ea
tu
r
e
ex
tr
ac
tio
n
:
Face
_
r
ec
o
g
n
itio
n
lib
r
ar
y
[
1
7
]
is
em
p
lo
y
ed
to
ex
tr
ac
t
1
2
8
-
d
im
e
n
s
io
n
al
f
ea
t
u
r
e
v
ec
to
r
s
f
r
o
m
ea
c
h
im
ag
e
.
Face
s
h
av
e
b
ee
n
d
etec
ted
an
d
cu
t
o
u
t
u
s
in
g
Op
en
C
V’
s
h
aa
r
ca
s
ca
d
e
class
if
ier
o
r
m
u
lti
-
task
ca
s
ca
d
ed
c
o
n
v
o
lu
ti
o
n
al
n
etwo
r
k
s
(
MT
C
NN)
f
o
r
a
b
etter
cu
t
-
o
u
t.
-
C
las
s
if
ier
Selectio
n
:
E
x
tr
ac
te
d
f
ac
ial
em
b
ed
d
in
g
s
ar
e
class
if
ied
u
s
in
g
eith
er
:
Su
p
p
o
r
t
v
ec
to
r
m
ac
h
in
e
(
SVM)
f
o
r
lin
ea
r
class
if
icatio
n
with
h
ig
h
ac
cu
r
ac
y
.
C
o
n
v
o
lu
tio
n
al
n
e
u
r
al
n
etwo
r
k
s
(
C
NN)
f
o
r
d
ee
p
lear
n
in
g
f
ea
t
u
r
e
ex
tr
ac
tio
n
an
d
class
if
icatio
n
.
-
Mo
d
el
s
to
r
ag
e
&
o
p
tim
izatio
n
:
T
r
ain
ed
m
o
d
el
is
s
av
ed
in
p
i
ck
le/.
h
5
f
ile
f
o
r
m
at.
T
h
e
s
av
e
d
m
o
d
el
ca
n
b
e
d
ir
ec
tly
lo
ad
ed
in
to
th
e
s
y
s
te
m
f
o
r
in
f
er
e
n
ce
with
o
u
t
r
e
-
tr
ain
in
g
in
f
u
tu
r
e
if
n
o
n
ew
d
a
ta
is
in
tr
o
d
u
ce
d
.
Sy
s
tem
r
e
-
tr
ain
s
p
er
io
d
ically
u
s
in
g
n
ew
im
ag
es to
i
n
cr
ea
s
e
ac
cu
r
ac
y
an
d
ad
a
p
tab
ilit
y
.
Fig
u
r
es
9
-
1
4
.
T
r
ai
n
in
g
p
r
o
ce
s
s
an
d
f
in
al
p
r
o
ce
s
s
in
g
s
tep
s
.
T
h
is
tr
ain
in
g
m
eth
o
d
o
lo
g
y
is
b
ased
o
n
th
e
u
s
e
o
f
ex
is
tin
g
f
ac
e
r
ec
o
g
n
itio
n
m
o
d
els,
wh
ich
en
s
u
r
es th
at
th
e
s
y
s
tem
is
o
p
tim
ized
f
o
r
r
ea
l
-
wo
r
l
d
co
n
d
itio
n
s
[
1
8
]
.
2
.
3
.
Rec
o
g
nitio
n a
nd
det
ec
t
io
n o
f
f
a
ce
s
A
r
ea
l
-
tim
e
f
ac
e
r
ec
o
g
n
itio
n
m
o
d
u
le
ca
p
t
u
r
es
liv
e
im
ag
es
th
r
o
u
g
h
a
web
ca
m
a
n
d
p
r
o
ce
s
s
es
th
em
f
o
r
d
etec
tin
g
an
d
au
t
h
en
ticatin
g
s
tu
d
en
ts
.
R
ec
o
g
n
itio
n
w
o
r
k
f
lo
w:
l
iv
e
p
ictu
r
e
u
n
d
er
g
o
es
p
r
o
ce
s
s
in
g
b
y
m
ea
n
s
o
f
f
ac
e
d
etec
tio
n
tech
n
iq
u
es
f
r
o
m
Op
en
C
V.
T
h
e
p
r
o
ce
s
s
ed
im
ag
e
is
th
en
tu
r
n
ed
in
to
an
em
b
ed
d
in
g
u
s
in
g
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
Dyn
a
mic
a
tten
d
a
n
ce
s
ystem
u
s
in
g
fa
ce
r
ec
o
g
n
itio
n
via
ma
c
h
in
e
lea
r
n
in
g
m
o
d
els
(
N
is
h
a
n
t U
p
a
d
h
y
a
y
)
1425
m
o
d
el
th
at
was
tr
ain
ed
.
T
h
e
d
etec
ted
f
ac
e
is
co
m
p
ar
ed
wit
h
th
e
s
to
r
ed
em
b
ed
d
in
g
s
in
t
h
e
d
atab
ase
u
s
in
g
a
s
im
ilar
ity
th
r
esh
o
ld
.
I
f
th
e
m
a
tch
is
f
o
u
n
d
,
it
s
h
o
ws
o
n
th
e
s
cr
ee
n
th
e
s
tu
d
en
t’
s
f
u
ll
n
a
m
e
an
d
I
D
t
h
at
ar
e
in
th
e
E
x
ce
l
f
ile.
I
n
ca
s
e
th
e
f
ac
e
is
n
o
t
id
en
tifie
d
a
n
o
tific
ati
o
n
"Un
au
t
h
o
r
ized
Per
s
o
n
Dete
cte
d
"
is
ac
tiv
ated
.
T
h
is
s
tep
ce
r
tifie
s
th
at
o
n
ly
r
eg
is
ter
ed
in
d
iv
id
u
als
atten
d
t
o
p
r
e
v
en
t
atten
d
a
n
ce
b
y
p
r
o
x
y
.
Op
en
-
s
o
u
r
ce
f
ac
e
r
ec
o
g
n
itio
n
alg
o
r
ith
m
s
,
s
u
ch
as
Dlib
’
s
p
r
e
-
tr
ain
e
d
d
ee
p
lear
n
in
g
m
o
d
els,
ar
e
u
s
ed
to
in
cr
ea
s
e
s
y
s
tem
ac
cu
r
ac
y
[
1
9
]
,
[
2
0
]
.
Fig
u
r
e
9
.
C
ap
tu
r
i
n
g
im
ag
es
v
ia
web
ca
m
er
a
Fig
u
r
e
1
0
.
C
ap
tu
r
ed
im
a
g
es
g
ettin
g
s
av
ed
Fig
u
r
e
1
1
.
No
tific
atio
n
af
ter
c
ap
tu
r
in
g
t
h
e
im
ag
es
Fig
u
r
e
1
2
.
Ask
u
s
er
if
wan
t to
ad
d
an
o
th
er
s
tu
d
e
n
t
in
f
o
r
m
atio
n
Fig
u
r
e
1
3
.
C
o
n
f
ir
m
atio
n
n
o
tifi
ca
tio
n
Fig
u
r
e
1
4
.
Fin
ally
f
ac
e
d
etec
te
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
4
2
1
-
1
430
1426
2
.
4
.
Sa
f
et
y
a
nd
I
nfo
rm
a
t
io
n
Securit
y
T
o
u
p
h
o
l
d
th
e
co
n
f
id
en
tiality
an
d
in
te
g
r
ity
o
f
th
e
d
ata,
t
h
e
s
y
s
tem
co
n
s
is
ts
o
f
s
ev
e
r
al
s
ec
u
r
ity
s
tr
ata:
p
ass
wo
r
d
-
p
r
o
tecte
d
d
ata
s
to
r
a
g
e
.
All
E
x
ce
l
an
d
im
a
g
e
d
ata
s
ets
ar
e
en
cr
y
p
ted
with
AE
S
-
2
5
6
en
cr
y
p
tio
n
f
o
r
r
estricte
d
ac
ce
s
s
.
User
a
u
th
en
ticatio
n
:
i
m
p
lem
e
n
ted
a
lo
g
in
s
y
s
tem
wh
er
e
u
s
er
d
ata
is
v
er
if
ied
b
y
u
s
er
n
am
e
an
d
p
ass
wo
r
d
.
User
ca
n
u
p
d
a
te
th
eir
p
ass
wo
r
d
u
s
in
g
th
e
la
s
t
r
ec
o
r
d
ed
p
ass
wo
r
d
o
r
ca
n
r
eset
th
e
p
ass
wo
r
d
th
r
o
u
g
h
th
e
"Fo
r
g
o
t
Pas
s
wo
r
d
"
o
p
tio
n
.
Acc
ess
l
o
g
g
in
g
:
E
ac
h
attem
p
t
to
lo
g
i
n
an
d
m
o
d
if
y
f
iles
is
r
ec
o
r
d
ed
.
Un
au
th
o
r
ized
ac
ce
s
s
is
r
estricte
d
.
Secu
r
ity
m
ea
s
u
r
es
alig
n
with
s
tan
d
ar
d
b
io
m
etr
ic
d
ata
p
r
o
tectio
n
p
r
o
to
co
ls
an
d
p
r
i
v
ac
y
laws [
2
1
]
,
[
2
2
]
.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
3
.
1
.
Rec
o
g
nitio
n
a
cc
ura
cy
a
nd
perf
o
rm
a
nce
T
h
e
p
r
o
p
o
s
ed
f
ac
e
r
ec
o
g
n
it
io
n
atten
d
a
n
ce
s
y
s
tem
was
ex
p
er
im
en
tally
test
ed
i
n
a
class
r
o
o
m
en
v
ir
o
n
m
en
t
t
o
e
v
alu
ate
its
ac
cu
r
ac
y
,
p
r
o
ce
s
s
in
g
s
p
ee
d
,
an
d
o
v
er
all
p
er
f
o
r
m
an
ce
.
T
h
e
r
esu
lts
s
h
o
wed
th
at
t
h
e
f
ac
e
r
ec
o
g
n
itio
n
s
y
s
tem
ac
h
ie
v
ed
a
r
ec
o
g
n
itio
n
r
ate
o
f
o
v
er
9
5
% wh
en
tr
ain
ed
with
a
s
m
al
l n
u
m
b
er
o
f
s
tu
d
en
t
im
ag
es.
R
ea
l
-
tim
e
f
ac
e
r
ec
o
g
n
itio
n
s
h
o
we
d
a
laten
cy
o
f
l
ess
th
an
1
s
ec
o
n
d
,
wh
ic
h
is
v
er
y
ef
f
ec
tiv
e
f
o
r
class
r
o
o
m
-
b
ased
atten
d
an
ce
tr
ac
k
in
g
(
T
a
b
le
1
)
.
T
ab
le
1
.
R
ea
l
-
tim
e
r
ec
o
g
n
itio
n
laten
cy
s
u
p
p
o
r
tin
g
e
f
f
e
ctiv
e
c
lass
r
o
o
m
atten
d
an
ce
tr
ac
k
in
g
M
e
t
r
i
c
O
b
serv
e
d
p
e
r
f
o
r
m
a
n
c
e
R
e
c
o
g
n
i
t
i
o
n
a
c
c
u
r
a
c
y
9
5
.
2
%
F
a
l
se
r
e
j
e
c
t
i
o
n
r
a
t
e
(
F
R
R
)
3
.
8
%
F
a
l
se
a
c
c
e
p
t
a
n
c
e
r
a
t
e
(
F
A
R
)
1
.
0
%
P
r
o
c
e
ss
i
n
g
l
a
t
e
n
c
y
Le
ss
t
h
e
n
1
se
c
o
n
d
p
e
r
d
e
t
e
c
t
i
o
n
Sy
s
tem
s
u
cc
ess
f
u
lly
h
an
d
led
ca
s
es
wh
er
e
f
ac
es
wer
e
n
o
t
d
e
tecte
d
.
I
t
is
also
wo
r
th
m
en
tio
n
in
g
t
h
at
th
e
s
y
s
tem
h
as
s
u
cc
ess
f
u
lly
h
an
d
led
ca
s
es
wh
er
e
n
o
f
ac
e
was
d
etec
ted
.
W
h
en
s
u
ch
ca
s
es
o
cc
u
r
r
e
d
,
th
e
er
r
o
r
m
ess
ag
e
s
h
o
wn
to
th
e
u
s
er
w
as
th
e
ap
p
r
o
p
r
iate
o
n
e,
s
u
ch
as
“No
Face
Dete
cted
”
o
r
“I
n
s
u
f
f
icien
t
Data
f
o
r
T
r
ain
in
g
”
wh
en
a
m
in
im
al
d
a
taset
wa
s
p
r
o
v
id
ed
.
T
h
ese
er
r
o
r
-
h
an
d
lin
g
m
ec
h
a
n
is
m
s
en
s
u
r
ed
u
s
er
clar
ity
an
d
im
p
r
o
v
e
d
s
y
s
tem
u
s
ab
ilit
y
[
2
3
]
(
Fig
u
r
e
1
5
-
1
7
)
.
Fig
u
r
e
1
5
.
Sy
s
tem
r
ec
o
g
n
ized
th
e
s
tu
d
en
t
3
.
2
.
Securit
y
a
nd
d
a
t
a
p
ro
t
e
ct
io
n
T
o
p
r
ev
e
n
tin
g
u
n
a
u
th
o
r
ize
d
ac
ce
s
s
an
d
th
e
p
o
s
s
ib
ilit
y
o
f
d
ata
tam
p
er
in
g
,
m
u
ltip
le
s
ec
u
r
ity
m
ec
h
an
is
m
s
h
av
e
b
ee
n
im
p
lem
en
ted
an
d
e
v
alu
ated
.
T
h
e
test
ed
s
ec
u
r
ity
m
ec
h
an
is
m
s
in
v
o
lv
e
th
e
u
s
e
o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
Dyn
a
mic
a
tten
d
a
n
ce
s
ystem
u
s
in
g
fa
ce
r
ec
o
g
n
itio
n
via
ma
c
h
in
e
lea
r
n
in
g
m
o
d
els
(
N
is
h
a
n
t U
p
a
d
h
y
a
y
)
1427
en
cr
y
p
tio
n
tech
n
iq
u
es
an
d
p
ass
wo
r
d
p
r
o
tectio
n
to
en
s
u
r
e
d
ata
co
n
f
id
e
n
tiality
.
I
n
th
e
s
y
s
tem
,
atten
d
an
ce
r
ec
o
r
d
s
ar
e
s
to
r
ed
in
en
cr
y
p
te
d
E
x
ce
l f
iles
,
wh
ile
ac
ce
s
s
lo
g
s
r
ec
o
r
d
all
lo
g
in
attem
p
ts
an
d
d
ata
m
o
d
if
icatio
n
s
.
T
h
ese
s
ec
u
r
ity
m
ea
s
u
r
es
s
ig
n
if
ican
tly
r
ed
u
ce
th
e
r
is
k
o
f
d
ata
b
r
ea
ch
es
an
d
en
s
u
r
e
th
e
s
y
s
tem
s
co
m
p
lian
ce
w
ith
b
io
m
etr
ic
d
ata
p
r
o
tectio
n
r
eg
u
latio
n
s
[
2
4
]
(
T
ab
le
2
)
.
Fig
u
r
e
1
6
.
R
ep
r
esen
tin
g
th
e
ac
cu
r
ac
y
Fig
u
r
e
1
7
.
T
r
ain
in
g
an
d
Valid
atio
n
f
o
r
h
ig
h
e
r
ac
cu
r
ac
y
T
ab
le
2
.
Secu
r
ity
m
ea
s
u
r
es e
n
s
u
r
in
g
co
m
p
lian
ce
with
b
io
m
e
tr
ic
d
ata
p
r
o
tectio
n
r
eg
u
latio
n
s
S
e
c
u
r
i
t
y
f
e
a
t
u
r
e
I
mp
l
e
me
n
t
a
t
i
o
n
o
u
t
c
o
m
e
P
a
ssw
o
r
d
p
r
o
t
e
c
t
i
o
n
En
a
b
l
e
d
f
o
r
a
c
c
e
ss
c
o
n
t
r
o
l
D
a
t
a
e
n
c
r
y
p
t
i
o
n
(
a
e
s
-
2
5
6
)
S
u
c
c
e
ssf
u
l
l
y
i
m
p
l
e
me
n
t
e
d
A
c
c
e
ss
l
o
g
g
i
n
g
A
l
l
l
o
g
i
n
a
t
t
e
m
p
t
s l
o
g
g
e
d
3
.
3
.
Co
m
pa
riso
n wit
h
ex
is
t
ing
m
et
ho
ds
I
n
co
n
tr
ast
to
a
g
e
-
o
l
d
atten
d
a
n
ce
s
y
s
tem
s
lik
e
m
an
u
al
r
o
ll
ca
lls
R
FID
tr
ac
k
in
g
,
an
d
f
i
n
g
er
p
r
in
t
s
ca
n
s
,
th
e
s
y
s
tem
p
r
o
p
o
s
ed
was
m
o
r
e
ac
cu
r
ate,
ef
f
icien
t,
an
d
u
s
er
-
f
r
ien
d
ly
.
Ma
n
u
al
r
o
ll
ca
lls
ar
e
n
o
t
o
n
ly
tim
e
-
co
n
s
u
m
in
g
b
u
t
also
p
r
o
m
o
te
p
r
o
x
y
atten
d
an
ce
.
R
FID
s
y
s
tem
s
ar
e
b
etter
b
u
t
th
er
e
is
a
r
is
k
o
f
lo
s
in
g
ca
r
d
s
o
r
m
is
u
s
e.
Fi
n
g
er
p
r
in
t scan
n
er
s
ar
e
th
e
m
o
s
t a
cc
u
r
ate
b
u
t th
ey
n
ee
d
p
h
y
s
ical
co
n
tact,
wh
ich
m
ig
h
t b
e
a
m
atter
o
f
h
y
g
ien
e,
esp
ec
ially
i
n
p
o
s
t
-
p
an
d
em
ic
s
itu
atio
n
s
.
T
h
e
f
ac
e
r
ec
o
g
n
itio
n
s
y
s
tem
p
r
o
p
o
s
ed
is
f
u
lly
au
to
m
ated
,
co
n
tact
-
less
,
an
d
s
ec
u
r
e,
a
n
d
e
lim
in
ates m
an
u
al
er
r
o
r
s
,
th
u
s
b
ein
g
th
e
b
est f
o
r
lar
g
er
class
r
o
o
m
s
(
T
ab
le
3
)
.
C
o
m
p
ar
is
o
n
o
n
th
e
ad
v
an
tag
e
s
o
f
u
s
in
g
f
ac
e
r
ec
o
g
n
itio
n
s
y
s
tem
in
atten
d
an
ce
s
y
s
tem
f
o
r
s
tu
d
en
ts
an
d
wo
r
k
er
s
ess
ay
f
ac
e
r
ec
o
g
n
itio
n
tech
n
o
lo
g
y
in
th
e
p
r
esen
t
c
o
n
tex
t
is
am
o
n
g
th
e
n
ew
tech
n
o
lo
g
ies
th
at
h
av
e
b
ee
n
u
s
ed
to
s
o
lv
e
t
h
e
p
r
o
b
le
m
s
th
at
ar
e
f
o
u
n
d
in
v
a
r
io
u
s
i
n
s
titu
tio
n
s
.
T
h
e
f
ac
e
r
ec
o
g
n
itio
n
tech
n
o
lo
g
y
h
as
b
ee
n
u
s
ed
to
tak
e
atten
d
a
n
ce
i
n
th
e
v
ar
i
o
u
s
in
s
titu
tio
n
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
4
2
1
-
1
430
1428
T
ab
le
3
.
Su
m
m
a
r
y
o
f
th
e
p
r
o
p
o
s
ed
f
u
lly
a
u
to
m
ated
f
ac
e
r
ec
o
g
n
itio
n
s
y
s
tem
f
o
r
s
ca
lab
le
class
r
o
o
m
d
ep
lo
y
m
e
n
t
M
e
t
h
o
d
A
c
c
u
r
a
c
y
P
r
o
c
e
ss
i
n
g
t
i
me
Li
mi
t
a
t
i
o
n
s
M
a
n
u
a
l
r
o
l
l
c
a
l
l
~
70
%
3
–
5
m
i
n
p
e
r
c
l
a
s
s
P
r
o
n
e
t
o
p
r
o
x
i
e
s
R
f
i
d
-
b
a
s
e
d
s
y
st
e
m
~
8
5
%
1
–
2
m
i
n
p
e
r
c
l
a
s
s
R
e
q
u
i
r
e
s
p
h
y
s
i
c
a
l
c
a
r
d
s
F
i
n
g
e
r
p
r
i
n
t
s
c
a
n
n
e
r
~
9
0
%
~
1
se
c
p
e
r
s
t
u
d
e
n
t
C
o
n
t
a
c
t
-
b
a
se
d
,
h
y
g
i
e
n
e
i
ss
u
e
s
P
r
o
p
o
se
d
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
s
y
st
e
m
9
5
.
2
%
<
1
se
c
p
e
r
s
t
u
d
e
n
t
S
e
n
s
i
t
i
v
e
t
o
l
i
g
h
t
i
n
g
c
o
n
d
i
t
i
o
n
s
4.
CO
NC
LUSIO
N
T
h
is
s
tu
d
y
p
r
o
p
o
s
es
a
r
o
b
u
s
t,
ac
cu
r
ate,
an
d
s
ec
u
r
e
f
ac
ial
r
ec
o
g
n
itio
n
-
b
ased
au
t
o
m
ated
a
tten
d
an
ce
s
y
s
tem
th
at
en
h
a
n
ce
s
ef
f
icie
n
cy
a
n
d
elim
in
ates
t
h
e
d
r
awb
ac
k
s
o
f
tr
ad
itio
n
al
atten
d
a
n
ce
-
tak
in
g
p
r
o
ce
s
s
es.
W
ith
th
e
ap
p
licatio
n
o
f
r
ea
l
-
tim
e
d
etec
tio
n
,
m
ac
h
in
e
l
ea
r
n
i
n
g
alg
o
r
ith
m
s
,
an
d
s
ec
u
r
ity
m
ea
s
u
r
es,
ac
cu
r
ac
y
,
p
u
n
ctu
ality
,
an
d
d
ata
s
ec
u
r
ity
ar
e
en
s
u
r
ed
,
an
d
m
an
u
al
wo
r
k
lo
ad
is
r
ed
u
ce
d
.
T
h
e
f
in
d
in
g
s
o
f
th
is
r
esear
ch
co
n
f
ir
m
th
at
f
ac
e
r
ec
o
g
n
itio
n
tech
n
o
lo
g
y
s
ig
n
if
ican
tly
o
u
tp
er
f
o
r
m
s
co
n
v
en
tio
n
al
m
eth
o
d
s
s
u
ch
as
r
o
ll
ca
lls
,
R
FID
tr
ac
k
in
g
,
an
d
f
in
g
er
p
r
i
n
t
r
ea
d
er
s
in
ter
m
s
o
f
s
p
ee
d
,
a
cc
u
r
ac
y
,
a
n
d
u
s
er
co
n
v
en
ien
c
e.
Ad
d
itio
n
ally
,
th
e
ap
p
licatio
n
o
f
l
o
ca
l
b
in
a
r
y
p
a
tter
n
h
is
to
g
r
am
(
L
B
PH
)
f
o
r
f
ea
tu
r
e
ex
tr
ac
tio
n
h
as
b
ee
n
s
u
cc
ess
f
u
l
in
h
an
d
lin
g
v
ar
y
in
g
lig
h
tin
g
c
o
n
d
itio
n
s
,
h
en
ce
m
ak
in
g
th
e
s
y
s
tem
m
o
r
e
r
esil
ien
t
f
o
r
r
ea
l
-
wo
r
l
d
d
ep
l
o
y
m
en
t.
Ou
ts
id
e
o
f
th
e
ca
m
p
u
s
s
ettin
g
,
th
is
s
y
s
te
m
ca
n
b
e
u
s
ed
in
b
u
s
in
ess
o
f
f
ices,
g
o
v
er
n
m
en
t
m
in
is
tr
ies,
an
d
s
ec
u
r
e
ar
ea
s
,
wh
er
e
au
to
-
v
er
if
icatio
n
a
n
d
m
o
n
ito
r
in
g
o
f
p
r
esen
ce
ar
e
n
ec
ess
ar
y
.
Fu
tu
r
e
d
ev
elo
p
m
en
t
s
ca
n
b
e
d
ir
ec
ted
at
m
u
lti
-
m
o
d
al
b
i
o
m
etr
ic
v
e
r
if
ic
atio
n
,
wh
er
e
f
ac
e
r
ec
o
g
n
itio
n
ca
n
b
e
in
te
g
r
ated
with
ir
is
o
r
v
o
ice
v
e
r
if
icatio
n
f
o
r
en
h
an
ce
d
s
ec
u
r
ity
an
d
ac
cu
r
ac
y
.
C
lo
u
d
s
to
r
a
g
e
an
d
r
e
m
o
te
ac
ce
s
s
ca
n
also
b
e
im
p
lem
en
ted
to
en
a
b
le
m
ax
im
u
m
s
ca
la
b
ilit
y
an
d
ea
s
e
o
f
u
s
e
s
o
th
at
th
e
s
y
s
tem
ca
n
b
e
d
ep
lo
y
ed
o
n
a
lar
g
e
s
c
ale.
B
y
ad
d
r
ess
in
g
ac
cu
r
ac
y
,
s
ec
u
r
ity
,
an
d
u
s
ab
ilit
y
p
r
o
b
lem
s
,
th
is
r
esear
ch
ad
d
s
to
th
e
n
ew
f
ield
o
f
AI
-
b
ased
b
io
m
etr
ic
au
th
en
ticatio
n
s
y
s
tem
s
.
I
t
o
p
en
s
th
e
g
ates
f
o
r
f
u
tu
r
e
in
n
o
v
atio
n
s
in
au
to
m
ated
atten
d
an
ce
m
an
ag
em
e
n
t
s
y
s
tem
s
th
at
co
u
ld
b
e
ad
o
p
ted
b
y
s
ch
o
o
ls
,
o
r
g
an
izatio
n
s
,
an
d
s
ec
u
r
ity
-
awa
r
e
en
v
ir
o
n
m
e
n
ts
ar
o
u
n
d
th
e
g
l
o
b
e.
RE
F
E
R
E
NC
E
S
[
1
]
P
.
Y
a
sw
a
n
t
h
r
a
m
a
n
d
B
.
A
.
S
a
b
a
r
i
sh
,
"
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
U
s
i
n
g
M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
M
o
d
e
l
s
-
C
o
mp
a
r
a
t
i
v
e
A
n
a
l
y
s
i
s
a
n
d
i
m
p
a
c
t
o
f
d
i
m
e
n
s
i
o
n
a
l
i
t
y
r
e
d
u
c
t
i
o
n
,
"
in
2
0
2
2
I
EEE
F
o
u
r
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
ren
c
e
o
n
Ad
v
a
n
c
e
s
i
n
El
e
c
t
r
o
n
i
c
s,
C
o
m
p
u
t
e
rs
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
s (I
C
AE
C
C
)
,
Be
n
g
a
l
u
ru
,
I
n
d
i
a
,
2
0
2
2
,
p
p
.
1
-
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
A
EC
C
5
4
0
4
5
.
2
0
2
2
.
9
7
1
6
5
9
0
.
[
2
]
J.
H
a
r
i
k
r
i
s
h
n
a
n
,
A
.
S
u
d
a
r
sa
n
,
A
.
S
a
d
a
sh
i
v
,
R
e
my
a
A
j
a
i
a
n
d
A
.
S
,
"
V
i
si
o
n
-
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
A
t
t
e
n
d
a
n
c
e
M
o
n
i
t
o
r
i
n
g
S
y
s
t
e
m
f
o
r
S
u
r
v
e
i
l
l
a
n
c
e
u
s
i
n
g
D
e
e
p
Le
a
r
n
i
n
g
T
e
c
h
n
o
l
o
g
y
a
n
d
C
o
m
p
u
t
e
r
V
i
s
i
o
n
"
,
in
201
9
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Vi
si
o
n
T
o
w
a
r
d
s
Em
e
rg
i
n
g
T
r
e
n
d
s
i
n
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
N
e
t
w
o
rk
i
n
g
(
Vi
T
E
C
o
N
)
,
2
0
1
9
.
[
3
]
Tr
i
p
t
y
S
i
n
g
h
,
C
.
M
a
r
y
a
n
d
J
,
"
D
e
v
e
l
o
p
me
n
t
o
f
A
c
c
u
r
a
t
e
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
P
r
o
c
e
ss
F
l
o
w
f
o
r
A
u
t
h
e
n
t
i
c
a
t
i
o
n
"
,
Em
e
rg
i
n
g
Re
s
e
a
r
c
h
i
n
C
o
m
p
u
t
i
n
g
I
n
f
o
rm
a
t
i
o
n
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s E
R
C
I
C
A
-
2
0
1
6
N
MIT
,
2
0
1
6
.
[
4
]
R
.
N
e
h
a
a
n
d
S
N
i
t
h
i
n
,
"
C
o
m
p
a
r
a
t
i
v
e
A
n
a
l
y
si
s
o
f
I
mag
e
P
r
o
c
e
ss
i
n
g
A
l
g
o
r
i
t
h
ms
f
o
r
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
"
,
i
n
2
0
1
8
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
v
e
n
t
i
v
e
Re
s
e
a
rc
h
i
n
C
o
m
p
u
t
i
n
g
A
p
p
l
i
c
a
t
i
o
n
s (I
C
I
R
C
A)
,
2
0
1
8
.
[
5
]
J
.
M
a
d
a
r
k
a
r
,
P
.
S
h
a
r
ma
a
n
d
R
i
mj
h
i
m
P
a
d
a
m
S
i
n
g
h
,
"
I
mp
r
o
v
e
d
P
e
r
f
o
r
m
a
n
c
e
a
n
d
E
x
e
c
u
t
i
o
n
Ti
m
e
o
f
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
U
s
i
n
g
M
R
S
R
C
"
,
S
o
f
t
C
o
m
p
u
t
i
n
g
f
o
r
Pr
o
b
l
e
m
S
o
l
v
i
n
g
,
2
0
2
0
.
[
6
]
M
.
N
e
h
r
u
a
n
d
S
.
P
a
d
m
a
v
a
t
h
i
,
"
I
l
l
u
m
i
n
a
t
i
o
n
I
n
v
a
r
i
a
n
t
F
a
c
e
D
e
t
e
c
t
i
o
n
u
si
n
g
V
i
o
l
a
J
o
n
e
s
A
l
g
o
r
i
t
h
m"
,
in
2
0
1
7
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
A
d
v
a
n
c
e
d
C
o
m
p
u
t
i
n
g
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
S
y
st
e
m
s (I
C
A
C
C
S
)
,
2
0
1
7
.
[
7
]
S
.
M
e
n
o
n
,
J.
S
w
a
t
h
i
,
S
.
K
.
A
n
i
t
,
A
.
P
.
N
a
i
r
a
n
d
S
.
S
a
r
a
t
h
,
"
D
r
i
v
e
r
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
a
n
d
s
o
b
e
r
d
r
u
n
k
c
l
a
ss
i
f
i
c
a
t
i
o
n
u
s
i
n
g
t
h
e
r
m
a
l
i
ma
g
e
s"
,
i
n
P
r
o
c
e
e
d
i
n
g
s
o
f
t
h
e
2
0
1
9
I
EEE
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
S
i
g
n
a
l
Pro
c
e
ss
i
n
g
I
C
C
S
P
2
0
1
9
.
I
n
st
i
t
u
t
e
o
f
El
e
c
t
r
i
c
a
l
a
n
d
E
l
e
c
t
r
o
n
i
c
s
En
g
i
n
e
e
rs In
c
.
,
p
p
.
4
0
0
-
4
0
4
,
2
0
1
9
.
[
8
]
K
i
r
i
l
l
S
me
l
y
a
k
o
v
,
A
n
a
s
t
a
s
i
y
a
C
h
u
p
r
y
n
a
,
O
l
e
k
sa
n
d
r
B
o
h
o
m
o
l
o
v
a
n
d
N
i
k
i
t
a
H
u
n
k
o
,
"
T
h
e
N
e
u
r
a
l
N
e
t
w
o
r
k
M
o
d
e
l
s
Ef
f
e
c
t
i
v
e
n
e
ss
f
o
r
F
a
c
e
D
e
t
e
c
t
i
o
n
a
n
d
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
"
,
i
n
El
e
c
t
ri
c
a
l
E
l
e
c
t
r
o
n
i
c
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
c
i
e
n
c
e
s
(
e
S
t
r
e
a
m
)
2
0
2
1
I
E
EE
O
p
e
n
C
o
n
f
e
re
n
c
e
o
f
,
p
p
.
1
-
7
,
2
0
2
1
.
[
9
]
F
l
o
r
i
a
n
S
c
h
r
o
f
f
,
D
m
i
t
r
y
K
a
l
e
n
i
c
h
e
n
k
o
a
n
d
J
a
mes.
P
h
i
l
b
i
n
,
"
F
a
c
e
N
e
t
:
A
U
n
i
f
i
e
d
Em
b
e
d
d
i
n
g
f
o
r
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
a
n
d
C
l
u
st
e
r
i
n
g
"
,
Pro
c
.
C
VPR
,
2
0
1
5
.
[
1
0
]
W
a
l
d
e
m
a
r
W
ó
j
c
i
k
,
K
o
n
r
a
d
G
r
o
m
a
s
z
e
k
,
M
u
h
t
a
r
Ju
n
i
s
b
e
k
o
v
a
n
d
S
.
R
a
mak
r
i
sh
n
a
n
,
"
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
:
I
ssu
e
s
M
e
t
h
o
d
s
a
n
d
A
l
t
e
r
n
a
t
i
v
e
A
p
p
l
i
c
a
t
i
o
n
s"
,
F
a
c
e
Re
c
o
g
n
i
t
i
o
n
-
S
e
m
i
S
u
p
e
rv
i
se
d
C
l
a
s
si
f
i
c
a
t
i
o
n
S
u
b
s
p
a
c
e
Pr
o
j
e
c
t
i
o
n
a
n
d
E
v
a
l
u
a
t
i
o
n
Me
t
h
o
d
s
,
J
u
l
y
2
0
1
6
.
[
1
1
]
A
.
R
.
S
.
S
i
sw
a
n
t
o
,
A
.
S
.
N
u
g
r
o
h
o
a
n
d
M
.
G
a
l
i
n
i
u
m,
"
I
mp
l
e
m
e
n
t
a
t
i
o
n
o
f
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
a
l
g
o
r
i
t
h
m
f
o
r
b
i
o
m
e
t
r
i
c
s
b
a
s
e
d
t
i
m
e
a
t
t
e
n
d
a
n
c
e
s
y
s
t
e
m"
,
i
n
2
0
1
4
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
C
T
F
o
r
S
m
a
rt
S
o
c
i
e
t
y
(
I
C
I
S
S
)
,
p
p
.
1
4
9
-
1
5
4
,
2
0
1
4
[
1
2
]
S
.
S
h
a
r
ma,
M
.
B
h
a
t
t
a
n
d
P
.
S
h
a
r
ma
,
"
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
S
y
s
t
e
m
U
si
n
g
M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
A
l
g
o
r
i
t
h
m"
,
i
n
2
0
2
0
5
t
h
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
C
o
m
m
u
n
i
c
a
t
i
o
n
a
n
d
E
l
e
c
t
ro
n
i
c
s
S
y
st
e
m
s
(
I
C
C
ES
)
,
p
p
.
1
1
6
2
-
1
1
6
8
,
2
0
2
0
.
[
1
3
]
L.
L
i
,
X
.
M
u
,
S
.
Li
a
n
d
H
.
P
e
n
g
,
"
A
R
e
v
i
e
w
o
f
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
T
e
c
h
n
o
l
o
g
y
"
,
I
EEE
A
c
c
e
ss
,
v
o
l
.
8
,
p
p
.
1
3
9
1
1
0
-
1
3
9
1
2
0
,
2
0
2
0
.
[
1
4
]
V
.
M
e
h
t
a
,
S
.
K
h
a
n
d
e
l
w
a
l
a
n
d
A
.
K
.
K
u
maw
a
t
,
"
A
S
u
r
v
e
y
o
n
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
A
l
g
o
r
i
t
h
m"
,
i
n
2
0
1
8
2
n
d
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
T
re
n
d
s
i
n
El
e
c
t
r
o
n
i
c
s
a
n
d
I
n
f
o
rm
a
t
i
c
s
(
I
C
O
EI
)
,
p
p
.
1
-
3
,
2
0
1
8
.
[
1
5
]
X
.
H
a
n
a
n
d
Q
.
D
u
,
"
R
e
s
e
a
r
c
h
o
n
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
b
a
se
d
o
n
d
e
e
p
l
e
a
r
n
i
n
g
"
,
i
n
2
0
1
8
S
i
x
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
D
i
g
i
t
a
l
I
n
f
o
rm
a
t
i
o
n
,
p
p
.
5
3
-
5
8
,
2
0
1
8
.
[
1
6
]
K
.
S
me
l
y
a
k
o
v
,
A
.
C
h
u
p
r
y
n
a
,
M
.
H
v
o
z
d
i
e
v
a
n
d
D
.
S
a
n
d
r
k
i
n
,
"
G
r
a
d
a
t
i
o
n
a
l
C
o
r
r
e
c
t
i
o
n
M
o
d
e
l
s
Ef
f
i
c
i
e
n
c
y
A
n
a
l
y
si
s
o
f
L
o
w
-
Li
g
h
t
D
i
g
i
t
a
l
I
mag
e
"
,
i
n
2
0
1
9
O
p
e
n
C
o
n
f
e
r
e
n
c
e
o
f
El
e
c
t
r
i
c
a
l
El
e
c
t
ro
n
i
c
a
n
d
I
n
f
o
r
m
a
t
i
o
n
S
c
i
e
n
c
e
s (e
S
t
r
e
a
m
)
,
p
p
.
1
-
6
,
2
5
–
2
5
A
p
r
i
l
2
0
1
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
Dyn
a
mic
a
tten
d
a
n
ce
s
ystem
u
s
in
g
fa
ce
r
ec
o
g
n
itio
n
via
ma
c
h
in
e
lea
r
n
in
g
m
o
d
els
(
N
is
h
a
n
t U
p
a
d
h
y
a
y
)
1429
[
1
7
]
K
.
S
mel
y
a
k
o
v
,
A
.
C
h
u
p
r
y
n
a
,
M
.
H
v
o
z
d
i
e
v
,
D
.
S
a
n
d
r
k
i
n
a
n
d
V
.
M
a
r
t
o
v
y
t
sk
y
i
,
"
C
o
m
p
a
r
a
t
i
v
e
e
f
f
i
c
i
e
n
c
y
a
n
a
l
y
si
s
o
f
g
r
a
d
a
t
i
o
n
a
l
c
o
r
r
e
c
t
i
o
n
mo
d
e
l
s
o
f
h
i
g
h
l
y
l
i
g
h
t
e
d
i
ma
g
e
"
,
i
n
2
0
1
9
I
E
EE
I
n
t
e
r
n
a
t
i
o
n
a
l
S
c
i
e
n
t
i
f
i
c
-
Pra
c
t
i
c
a
l
C
o
n
f
e
re
n
c
e
Pro
b
l
e
m
s
o
f
I
n
f
o
c
o
m
m
u
n
i
c
a
t
i
o
n
s
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
(
PI
C
S
&T
)
,
p
p
.
7
0
3
-
7
0
8
,
8
–
1
1
O
c
t
.
2
0
1
9
.
[
1
8
]
I
.
R
u
b
a
n
,
K
.
S
me
l
y
a
k
o
v
,
M
.
V
i
t
a
l
i
i
,
D
.
P
r
i
b
y
l
n
o
v
a
n
d
N
.
B
o
l
o
h
o
v
a
,
"
M
e
t
h
o
d
o
f
n
e
u
r
a
l
n
e
t
w
o
r
k
r
e
c
o
g
n
i
t
i
o
n
o
f
g
r
o
u
n
d
-
b
a
se
d
a
i
r
o
b
j
e
c
t
s"
,
i
n
I
EEE
9
t
h
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
D
e
p
e
n
d
a
b
l
e
S
y
s
t
e
m
s
S
e
r
v
i
c
e
s
a
n
d
T
e
c
h
n
o
l
o
g
i
e
s
(
D
ES
S
E
R
T
)
,
p
p
.
5
8
9
-
5
9
2
,
2
0
1
8
.
[
1
9
]
I
.
V
.
R
u
b
a
n
,
G
.
I
.
C
h
u
r
y
u
mo
v
,
V
.
V
.
To
k
a
r
e
v
a
n
d
V
.
M
.
T
k
a
c
h
o
v
,
"
P
r
o
v
i
si
o
n
o
f
S
u
r
v
i
v
a
b
i
l
i
t
y
o
f
R
e
c
o
n
f
i
g
u
r
a
b
l
e
M
o
b
i
l
e
S
y
s
t
e
m
o
n
E
x
p
o
s
u
r
e
t
o
H
i
g
h
-
P
o
w
e
r
E
l
e
c
t
r
o
mag
n
e
t
i
c
R
a
d
i
a
t
i
o
n
"
,
S
e
l
e
c
t
e
d
Pa
p
e
rs
o
f
t
h
e
XVII
I
n
t
e
r
n
a
t
i
o
n
a
l
S
c
i
e
n
t
i
f
i
c
a
n
d
Pra
c
t
i
c
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
f
o
rm
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
a
n
d
S
e
c
u
r
i
t
y
(
I
T
S
)
C
EU
R
W
o
rks
h
o
p
Pro
c
e
ss
i
n
g
,
p
p
.
1
0
5
-
1
1
1
,
2
0
1
8
.
[
2
0
]
D
.
A
g
e
y
e
v
a
n
d
A
.
I
g
n
a
t
e
n
k
o
,
"
D
e
sc
r
i
b
i
n
g
a
n
d
mo
d
e
l
i
n
g
o
f
v
i
d
e
o
-
on
-
d
e
man
d
s
e
r
v
i
c
e
w
i
t
h
t
h
e
u
sa
g
e
o
f
mu
l
t
i
-
l
a
y
e
r
g
r
a
p
h
"
,
i
n
Pro
c
e
e
d
i
n
g
s
o
f
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
M
o
d
e
r
n
Pro
b
l
e
m
o
f
R
a
d
i
o
E
n
g
i
n
e
e
ri
n
g
T
e
l
e
c
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
p
p
.
3
4
0
-
3
4
1
,
2
0
1
2
.
[
2
1
]
I
.
R
u
b
a
n
,
V
.
M
a
r
t
o
v
y
t
sk
y
i
a
n
d
N
.
Lu
k
o
v
a
-
C
h
u
i
k
o
,
"
A
p
p
r
o
a
c
h
t
o
C
l
a
s
si
f
y
i
n
g
t
h
e
S
t
a
t
e
o
f
a
N
e
t
w
o
r
k
B
a
s
e
d
o
n
S
t
a
t
i
s
t
i
c
a
l
P
a
r
a
me
t
e
r
s
f
o
r
D
e
t
e
c
t
i
n
g
A
n
o
ma
l
i
e
s
i
n
t
h
e
I
n
f
o
r
mat
i
o
n
S
t
r
u
c
t
u
r
e
o
f
a
C
o
m
p
u
t
i
n
g
S
y
s
t
e
m"
,
C
y
b
e
rn
e
t
i
c
s a
n
d
S
y
st
e
m
s
An
a
l
y
si
s
,
p
p
.
3
0
2
-
3
0
9
,
2
0
1
8
.
[
2
2
]
O
.
Le
m
e
s
h
k
o
,
K
.
A
r
o
u
s
a
n
d
N
.
T
a
r
i
k
i
,
"
Ef
f
e
c
t
i
v
e
S
o
l
u
t
i
o
n
f
o
r
S
c
a
l
a
b
i
l
i
t
y
a
n
d
P
r
o
d
u
c
t
i
v
i
t
y
I
mp
r
o
v
e
me
n
t
i
n
F
a
u
l
t
-
T
o
l
e
r
a
n
t
R
o
u
t
i
n
g
"
,
i
n
Pr
o
c
e
e
d
i
n
g
s
o
f
S
e
c
o
n
d
I
n
t
e
r
n
a
t
i
o
n
a
l
I
E
EE
C
o
n
f
e
re
n
c
e
Pr
o
b
l
e
m
s
o
f
I
n
f
o
c
o
m
m
u
n
i
c
a
t
i
o
n
s.
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
(
PI
C
S
&T
)
,
p
p
.
7
6
-
7
8
,
2
0
1
5
.
[
2
3
]
A
.
K
a
r
p
u
k
h
i
n
,
A
.
T
e
v
j
a
s
h
e
v
,
V
.
Tk
a
c
h
e
n
k
o
a
n
d
D
.
A
g
e
y
e
v
,
"
F
e
a
t
u
r
e
s
o
f
t
h
e
u
s
e
o
f
s
o
f
t
w
a
r
e
p
a
c
k
a
g
e
s
f
o
r
m
o
d
e
l
i
n
g
i
n
f
o
c
o
mm
u
n
i
c
a
t
i
o
n
s
y
st
e
ms"
,
i
n
2
0
1
7
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
S
c
i
e
n
t
i
f
i
c
-
Pr
a
c
t
i
c
a
l
C
o
n
f
e
re
n
c
e
Pr
o
b
l
e
m
s
o
f
I
n
f
o
c
o
m
m
u
n
i
c
a
t
i
o
n
s.
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
(
PI
C
S
&T
)
,
p
p
.
3
80
-
3
8
2
,
2
0
1
7
,
d
o
i
:
1
0
.
1
1
0
9
/
I
N
F
O
C
O
M
M
S
T.
2
0
1
7
.
8
2
4
6
4
2
1
.
[
2
4
]
V
.
F
i
l
a
t
o
v
a
n
d
V
.
S
e
m
e
n
e
t
s
,
"
M
e
t
h
o
d
s
f
o
r
S
y
n
t
h
e
s
i
s
o
f
R
e
l
a
t
i
o
n
a
l
D
a
t
a
M
o
d
e
l
i
n
I
n
f
o
r
mat
i
o
n
S
y
s
t
e
ms
R
e
e
n
g
i
n
e
e
r
i
n
g
P
r
o
b
l
e
ms"
,
i
n
Pr
o
c
e
e
d
i
n
g
s
o
f
t
h
e
I
n
t
e
r
n
a
t
i
o
n
a
l
S
c
i
e
n
t
i
f
i
c
-
Pr
a
c
t
i
c
a
l
C
o
n
f
e
re
n
c
e
Pro
b
l
e
m
s
o
f
I
n
f
o
c
o
m
m
u
n
i
c
a
t
i
o
n
s.
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
(
PI
C
S
&T
)
,
p
p
.
2
4
7
-
2
5
1
,
2
0
1
8
.
[
2
5
]
A.
S
h
a
r
ma,
R.
C
h
a
t
u
r
v
e
d
i
,
S.
K
u
mar
,
a
n
d
U
.
K
.
D
w
i
v
e
d
i
,
M
u
l
t
i
-
l
e
v
e
l
i
m
a
g
e
t
h
r
e
sh
o
l
d
i
n
g
b
a
se
d
o
n
K
a
p
u
r
a
n
d
Tsa
l
l
i
s
e
n
t
r
o
p
y
u
si
n
g
f
i
r
e
f
l
y
a
l
g
o
r
i
t
h
m.
J
o
u
r
n
a
l
o
f
I
n
t
e
rd
i
sc
i
p
l
i
n
a
ry
M
a
t
h
e
m
a
t
i
c
s
,
v
o
l
.
23
,
n
o
.
2
,
5
6
3
–
5
7
1
,
2
0
2
0
,
d
o
i
:
1
0
.
1
0
8
0
/
0
9
7
2
0
5
0
2
.
2
0
2
0
.
1
7
3
1
9
7
6
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Nisha
n
t
U
p
a
d
h
y
a
y
is
a
n
a
ss
istan
t
p
r
o
fe
ss
o
r
wit
h
o
v
e
r
fiv
e
y
e
a
rs
o
f
e
x
p
e
rien
c
e
in
h
ig
h
e
r
e
d
u
c
a
ti
o
n
,
s
p
e
c
ializin
g
in
o
p
e
ra
ti
n
g
s
y
ste
m
s,
d
a
ta
str
u
c
tu
re
s,
a
n
d
m
a
c
h
in
e
lea
rn
i
n
g
.
He
is
c
u
rre
n
tl
y
p
u
rsu
in
g
a
P
h
.
D.
a
n
d
h
o
ld
s
a
n
M
.
Tec
h
in
Da
ta
S
c
ien
c
e
fro
m
Ja
wa
h
a
rlal
Ne
h
ru
Un
iv
e
rsit
y
(JN
U).
He
h
a
s
tau
g
h
t
a
t
in
stit
u
ti
o
n
s
s
u
c
h
a
s
G
NIO
T,
G
.
B.
De
g
re
e
Co
ll
e
g
e
,
a
n
d
is
c
u
rre
n
tl
y
wo
r
k
in
g
a
t
S
h
a
rd
a
Un
iv
e
rsit
y
,
G
re
a
ter
No
id
a
.
He
h
a
s
a
lso
wo
r
k
e
d
o
n
re
se
a
rc
h
p
ro
jec
ts
re
late
d
to
CO
VID
-
1
9
a
n
d
c
li
n
ica
l
tri
a
ls.
His
t
e
c
h
n
ica
l
e
x
p
e
rt
ise
in
c
l
u
d
e
s
P
y
th
o
n
,
AI/M
L
,
d
a
ta
a
n
a
l
y
sis,
a
n
d
n
e
u
ra
l
n
e
two
r
k
s.
H
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
n
ish
a
n
t
.
u
p
a
d
h
y
a
y
2
3
@g
m
a
il
.
c
o
m
.
Dr
.
Nid
h
i
Ba
n
sa
l
is an
a
ss
o
c
iate
p
ro
fe
ss
o
r
a
t
M
RIIRS
F
a
ri
d
a
b
a
d
Ha
ry
a
n
a
,
In
d
ia.
S
h
e
re
c
e
iv
e
d
a
B.
Tec
h
.
fr
o
m
G
BTU
-
UPT
U
Lu
c
k
n
o
w
In
d
ia
in
2
0
1
0
,
M
.
E
.
fro
m
NI
TT
TR
P
a
n
jab
Un
i
v
e
rsity
C
h
a
n
d
i
g
a
rh
I
n
d
ia
in
2
0
1
4
,
a
n
d
P
h
.
D.
in
C
o
m
p
u
ter
S
c
ien
c
e
fro
m
AK
TU
-
UPT
U
Lu
c
k
n
o
w
I
n
d
ia
in
2
0
2
3
.
He
r
re
se
a
rc
h
in
tere
sts
a
re
i
n
c
l
o
u
d
c
o
m
p
u
ti
n
g
a
n
d
m
a
c
h
i
n
e
lea
rn
in
g
b
ro
a
d
ly
,
wit
h
a
p
p
li
c
a
ti
o
n
s
in
d
a
ta
sc
ien
c
e
,
a
n
d
c
o
m
p
u
te
r
n
e
two
rk
i
n
g
.
S
h
e
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
n
i
d
h
i1
8
ju
l@
g
m
a
il
.
c
o
m
.
Em
il
Ve
li
n
o
v
,
is
a
p
a
rt
o
f
RI
S
EBA
Un
iv
e
rsit
y
o
f
A
p
p
li
e
d
S
c
ien
c
e
s,
Rig
a
,
Lat
v
ia
a
n
d
B
u
sin
e
ss
S
c
h
o
o
l.
He
is
a
lso
wo
rk
i
n
g
with
t
h
e
U
n
iv
e
rsit
y
o
f
C
h
e
m
istry
a
n
d
Tec
h
n
o
lo
g
y
,
P
ra
g
u
e
,
Cz
e
c
h
ia.
H
e
c
a
n
b
e
c
o
n
ta
c
ted
a
t
e
m
a
il
:
e
m
il
.
v
e
li
n
o
v
@rise
b
a
.
lv
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
2
,
Au
g
u
s
t
20
25
:
1
4
2
1
-
1
430
1430
H
a
r
shi
t
is
a
stu
d
e
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
De
p
a
rt
m
e
n
t
in
S
h
a
rd
a
Un
iv
e
rsity
G
re
a
ter
No
id
a
Uttar
P
ra
d
e
sh
In
d
ia.
H
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
h
a
rsh
it
9
0
5
8
2
1
1
9
8
3
@g
a
m
il
.
c
o
m
.
Dr
.
Abh
a
y
S
h
a
r
m
a
is
c
u
rre
n
tl
y
a
ss
o
c
iate
d
a
s
As
sista
n
t
P
r
o
f
e
ss
o
r
a
t
M
a
n
ip
a
l
Un
iv
e
rsity
Ja
ip
u
r
.
He
h
a
s
c
o
m
p
lete
d
P
h
.
D.
d
e
g
re
e
fro
m
Am
it
y
Un
i
v
e
rsity
Ra
jas
th
a
n
.
He
a
lso
re
c
e
iv
e
d
th
e
B.
E
.
a
n
d
M
.
Tec
h
d
e
g
re
e
in
C
o
m
p
u
ter
S
c
ien
c
e
a
n
d
E
n
g
i
n
e
e
rin
g
fro
m
Ra
jas
th
a
n
Un
iv
e
rsity
a
n
d
S
G
VU
,
Ja
ip
u
r,
I
n
d
ia.
His
re
se
a
rc
h
in
tere
sts
in
c
l
u
d
e
ima
g
e
p
ro
c
e
ss
in
g
,
ima
g
e
se
g
m
e
n
tatio
n
,
d
ig
i
tal
ima
g
e
wa
term
a
rk
in
g
,
m
a
c
h
in
e
lea
rn
in
g
,
p
a
tt
e
rn
re
c
o
g
n
it
io
n
,
so
ft
c
o
m
p
u
ti
n
g
a
n
d
n
a
t
u
re
in
s
p
i
re
d
c
o
m
p
u
ti
n
g
.
H
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
a
b
h
a
y
.
sh
a
rm
a
@ja
ip
u
r.
m
a
n
ip
a
l.
e
du
.
Pro
f.
Dr
.
S
a
n
je
e
v
K
u
m
a
r
i
s
a
P
ro
fe
ss
o
r
i
n
L
o
v
e
l
y
P
ro
fe
ss
i
o
n
a
l
U
n
iv
e
rsit
y
P
u
n
ja
b
In
d
ia.
He
c
o
m
p
lete
d
Do
c
t
o
r
o
f
P
h
il
o
so
p
h
y
in
Ho
s
p
it
a
li
t
y
M
a
n
a
g
e
m
e
n
t
in
2
0
1
9
fr
o
m
Am
it
y
Un
i
v
e
rsity
Ja
ip
u
r
In
d
ia.
Dr.
S
a
n
jee
v
Ku
m
a
r
p
a
rti
c
ip
a
ted
a
n
d
a
c
ted
a
s
re
so
u
rc
e
p
e
rso
n
in
v
a
rio
u
s
Na
ti
o
n
a
l
a
n
d
I
n
ter
n
a
ti
o
n
a
l
c
o
n
fe
re
n
c
e
s,
se
m
in
a
rs,
se
ss
io
n
c
h
a
ir,
re
se
a
rc
h
wo
rk
sh
o
p
s
a
n
d
i
n
d
u
stry
tal
k
s
a
n
d
h
is
wo
rk
h
a
s
b
e
e
n
wid
e
ly
c
it
e
d
.
Dr.
S
a
n
jee
v
a
lso
e
d
it
e
d
m
o
re
th
a
n
1
4
b
o
o
k
s
wit
h
v
a
rio
u
s
In
tern
a
ti
o
n
a
l
P
u
b
li
sh
e
rs
s
u
c
h
a
s
IG
I
G
lo
b
a
l,
Ca
m
b
ri
d
g
e
S
c
h
o
lars
,
Eme
ra
ld
,
CABI,
Be
n
th
a
m
S
c
ien
c
e
,
Tay
lo
r
&
F
ra
n
c
is.
H
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
k
u
m
a
rsh
a
rm
a
1
2
3
6
0
@
g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.