I
nte
rna
t
io
na
l J
o
urna
l o
f
I
nfo
rm
a
t
ics a
nd
Co
m
m
un
ica
t
io
n T
ec
hn
o
lo
g
y
(
I
J
-
I
CT
)
Vo
l.
1
4
,
No
.
3
,
Dec
em
b
er
20
2
5
,
p
p
.
1
1
2
6
~
1
135
I
SS
N:
2252
-
8
7
7
6
,
DOI
:
1
0
.
1
1
5
9
1
/iji
ct
.
v
1
4
i
3
.
pp
1
1
2
6
-
1
1
3
5
1126
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ict.
ia
esco
r
e.
co
m
Rea
l
-
time
pos
ture
mo
nitoring
pred
i
ction for m
itiga
ti
ng
sedenta
ry
health
risks
using
deep
l
ea
rning
t
ech
niqu
es
D.
B
.
Sh
a
nm
ug
a
m
,
J
.
Dhili
p
a
n
D
e
p
a
r
t
me
n
t
o
f
C
o
mp
u
t
e
r
S
c
i
e
n
c
e
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s,
S
R
M
I
n
st
i
t
u
t
e
o
f
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
C
h
e
n
n
a
i
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
3
0
,
2
0
2
4
R
ev
is
ed
J
u
n
1
3
,
2
0
2
5
Acc
ep
ted
J
u
l 1
,
2
0
2
5
S
e
d
e
n
tary
b
e
h
a
v
i
o
r
h
a
s
b
e
c
o
m
e
a
p
re
ss
in
g
g
lo
b
a
l
p
u
b
li
c
h
e
a
lt
h
i
ss
u
e
.
Th
is
stu
d
y
i
n
tro
d
u
c
e
s
a
n
i
n
n
o
v
a
ti
v
e
m
e
th
o
d
f
o
r
m
o
n
i
to
ri
n
g
a
n
d
a
d
d
re
ss
in
g
p
o
stu
re
c
h
a
n
g
e
s
d
u
ri
n
g
i
n
a
c
ti
v
it
y
,
o
ffe
ri
n
g
re
a
l
-
ti
m
e
fe
e
d
b
a
c
k
t
o
i
n
d
iv
i
d
u
a
ls.
Un
li
k
e
o
u
r
p
ri
o
r
re
se
a
rc
h
,
wh
ic
h
fo
c
u
se
d
o
n
p
o
st
-
a
n
a
l
y
sis,
t
h
is
a
p
p
r
o
a
c
h
e
m
p
h
a
siz
e
s
re
a
l
-
ti
m
e
m
o
n
it
o
r
in
g
o
f
u
p
p
e
r
b
o
d
y
p
o
stu
re
,
in
c
l
u
d
i
n
g
h
a
n
d
s,
sh
o
u
l
d
e
rs,
a
n
d
h
e
a
d
p
o
si
ti
o
n
in
g
.
Im
a
g
e
c
a
p
tu
re
tec
h
n
iq
u
e
s
d
o
c
u
m
e
n
t
se
d
e
n
tary
p
o
stu
re
s,
f
o
ll
o
we
d
b
y
p
re
p
ro
c
e
ss
in
g
wit
h
b
a
n
d
p
a
ss
f
il
ters
a
n
d
m
o
rp
h
o
l
o
g
ica
l
o
p
e
ra
ti
o
n
s
su
c
h
a
s
d
il
a
ti
o
n
,
e
ro
si
o
n
,
a
n
d
o
p
e
n
in
g
t
o
e
n
h
a
n
c
e
ima
g
e
q
u
a
li
t
y
.
Tex
tu
re
fe
a
tu
re
e
x
trac
ti
o
n
is
e
m
p
lo
y
e
d
f
o
r
c
o
m
p
re
h
e
n
siv
e
a
n
a
ly
sis,
a
n
d
d
e
e
p
n
e
u
ra
l
n
e
two
r
k
s
(DN
N)
a
re
u
se
d
fo
r
p
re
c
ise
p
re
d
ictio
n
s.
A
k
e
y
in
n
o
v
a
ti
o
n
is
a
fe
e
d
b
a
c
k
sy
ste
m
th
a
t
a
lerts
in
d
iv
id
u
a
ls
t
h
ro
u
g
h
a
n
a
larm
,
e
n
a
b
li
n
g
imm
e
d
iate
p
o
st
u
r
e
a
d
ju
stm
e
n
ts.
Im
p
lem
e
n
ted
in
M
ATLAB,
th
e
m
e
th
o
d
a
c
h
iev
e
d
a
c
c
u
ra
c
y
,
s
e
n
siti
v
it
y
,
a
n
d
sp
e
c
ifi
c
it
y
ra
tes
o
f
9
8
.
2
%
,
9
0
.
7
%
,
a
n
d
9
9
.
2
%
,
re
sp
e
c
ti
v
e
l
y
.
C
o
m
p
a
ra
ti
v
e
a
n
a
ly
sis
with
e
sta
b
li
sh
e
d
m
e
th
o
d
s,
i
n
c
lu
d
in
g
su
p
p
o
rt
v
e
c
to
r
m
a
c
h
in
e
(S
VM)
,
ra
n
d
o
m
f
o
re
st,
a
n
d
K
-
n
e
a
re
st
n
e
ig
h
b
o
rs
(KN
N),
d
e
m
o
n
stra
te
t
h
e
s
u
p
e
ri
o
rit
y
o
f
o
u
r
a
p
p
ro
a
c
h
in
a
c
c
u
ra
c
y
a
n
d
p
e
rfo
rm
a
n
c
e
m
e
tri
c
s.
Th
is
re
a
l
-
ti
m
e
in
ter
v
e
n
ti
o
n
st
ra
teg
y
h
a
s
th
e
p
o
ten
ti
a
l
t
o
m
it
ig
a
te
t
h
e
a
d
v
e
rse
e
ffe
c
ts
o
f
se
d
e
n
tar
y
b
e
h
a
v
i
o
r,
re
d
u
c
i
n
g
risk
s
a
ss
o
c
iate
d
with
c
a
rd
i
o
v
a
s
c
u
lar
a
n
d
m
u
sc
u
lo
sk
e
leta
l
d
ise
a
se
s.
By
p
ro
v
id
i
n
g
imm
e
d
iate
c
o
rre
c
ti
v
e
fe
e
d
b
a
c
k
,
th
e
p
ro
p
o
se
d
s
y
ste
m
a
d
d
re
ss
e
s
a
c
rit
ica
l
g
a
p
i
n
se
d
e
n
tary
b
e
h
a
v
i
o
r
re
se
a
rc
h
a
n
d
o
ffe
rs
a
p
ra
c
ti
c
a
l
so
lu
ti
o
n
f
o
r
im
p
ro
v
i
n
g
p
u
b
l
ic h
e
a
lt
h
o
u
tco
m
e
s.
K
ey
w
o
r
d
s
:
C
ar
d
io
v
ascu
lar
h
ea
lth
Dee
p
n
eu
r
al
n
etwo
r
k
Ma
ch
in
e
lear
n
in
g
Po
s
tu
r
e
m
o
n
ito
r
in
g
Sed
en
tar
y
b
e
h
av
io
r
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
D.
B
.
Sh
an
m
u
g
am
Dep
ar
tm
en
t o
f
C
o
m
p
u
ter
Scie
n
ce
an
d
Ap
p
licatio
n
s
,
SR
M
I
n
s
titu
te
o
f
Scien
ce
an
d
T
ec
h
n
o
l
o
g
y
R
am
ap
u
r
am
,
C
h
en
n
ai,
I
n
d
ia
E
m
ail: sh
an
m
u
g
d
@
s
r
m
is
t.e
d
u
.
in
1.
I
NT
RO
D
UCT
I
O
N
I
n
r
ec
e
n
t
tim
es,
s
ed
en
tar
y
b
eh
av
io
r
h
as
em
er
g
ed
as
a
p
r
ess
in
g
g
lo
b
al
h
ea
lth
is
s
u
e
t
h
at
af
f
ec
ts
in
d
iv
id
u
als
o
f
all
ag
e
g
r
o
u
p
s
a
n
d
d
iv
e
r
s
e
d
em
o
g
r
ap
h
ics.
T
h
e
p
r
ev
alen
ce
o
f
co
n
tem
p
o
r
ar
y
t
ec
h
n
o
lo
g
y
an
d
th
e
ev
o
lu
tio
n
o
f
wo
r
k
en
v
ir
o
n
m
e
n
ts
h
av
e
g
iv
e
n
r
is
e
to
a
p
e
r
io
d
ch
ar
ac
ter
ized
b
y
p
r
o
l
o
n
g
e
d
p
er
io
d
s
o
f
p
h
y
s
ical
in
ac
tiv
ity
.
Ma
n
y
in
d
iv
id
u
als
n
o
w
s
p
en
d
s
u
b
s
tan
tial
h
o
u
r
s
s
ea
ted
,
wh
eth
er
it
b
e
at
th
eir
wo
r
k
p
lace
,
d
u
r
in
g
d
aily
co
m
m
u
tes,
o
r
with
in
t
h
e
co
n
f
in
es
o
f
th
eir
h
o
m
es
[
1
]
-
[
7
]
.
T
h
is
tr
en
d
h
as
b
ee
n
ex
ac
er
b
ated
b
y
an
in
cr
ea
s
in
g
d
e
p
en
d
e
n
cy
o
n
v
e
h
icles
f
o
r
tr
a
n
s
p
o
r
tatio
n
an
d
t
h
e
o
m
n
i
p
r
esen
ce
o
f
s
cr
ee
n
s
i
n
o
u
r
d
aily
r
o
u
tin
es.
As
a
r
esu
lt,
s
ed
en
tar
y
b
eh
av
i
o
r
h
as
b
ec
o
m
e
a
s
u
b
tle
an
d
i
n
co
n
s
p
icu
o
u
s
h
ea
lth
h
az
ar
d
,
with
m
an
y
p
eo
p
le
u
n
d
er
esti
m
atin
g
t
h
e
cu
m
u
lati
v
e
h
o
u
r
s
s
p
en
t
in
a
s
ea
ted
p
o
s
itio
n
an
d
r
em
ain
i
n
g
lar
g
ely
o
b
l
iv
io
u
s
to
th
e
l
o
n
g
-
ter
m
h
ea
lth
im
p
licatio
n
s
ass
o
ciate
d
with
th
is
way
o
f
life
.
Nu
m
er
o
u
s
r
esear
ch
en
d
ea
v
o
r
s
h
a
v
e
b
ee
n
d
ed
icate
d
to
u
n
d
er
s
tan
d
i
n
g
th
e
p
atter
n
s
an
d
h
ea
lth
r
is
k
s
ass
o
ciate
d
with
s
ed
en
t
ar
y
b
eh
av
i
o
r
[8
]
-
[
1
5
]
.
Ho
wev
e
r
,
v
ar
iatio
n
s
in
m
ea
s
u
r
em
en
t
m
eth
o
d
o
l
o
g
ies,
d
ata
p
r
o
ce
s
s
in
g
tech
n
iq
u
es,
a
n
d
t
h
e
ab
s
e
n
ce
o
f
f
u
n
d
am
e
n
tal
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
I
SS
N:
2252
-
8
7
7
6
R
ea
l
-
time
p
o
s
tu
r
e
mo
n
ito
r
in
g
p
r
ed
ictio
n
fo
r
mitig
a
tin
g
s
ed
e
n
ta
r
y
h
ea
lth
…
(
D.
B
.
S
h
a
n
mu
g
a
m
)
1127
o
u
tco
m
e
in
d
icato
r
s
h
av
e
p
r
e
s
en
ted
ch
allen
g
es
in
co
m
p
r
e
h
en
s
iv
ely
ass
ess
in
g
an
d
ad
d
r
ess
in
g
th
is
h
ea
lth
co
n
ce
r
n
.
O
u
r
p
r
e
v
io
u
s
p
a
p
er
in
to
s
ed
en
tar
y
b
e
h
av
io
r
p
r
im
ar
ily
f
o
cu
s
ed
o
n
th
e
an
al
y
s
is
o
f
its
p
atter
n
s
an
d
r
elate
d
r
is
k
s
.
Ho
wev
er
,
th
ese
s
tu
d
ies
wer
e
u
n
ab
le
to
p
r
o
v
i
d
e
in
d
iv
id
u
als
with
r
ea
l
-
tim
e
f
ee
d
b
ac
k
wh
ile
th
e
y
en
g
ag
ed
i
n
s
ed
en
tar
y
ac
tiv
it
ies.
I
n
th
is
p
ap
er
,
we
p
r
es
en
t
an
in
n
o
v
ativ
e
m
eth
o
d
t
o
o
v
er
c
o
m
e
th
ese
s
h
o
r
tco
m
in
g
s
,
aim
in
g
to
p
r
o
v
id
e
a
p
r
o
ac
tiv
e
s
o
lu
tio
n
f
o
r
r
ed
u
cin
g
h
ea
lth
r
is
k
s
ass
o
ci
ated
with
s
ed
en
tar
y
b
eh
av
io
r
[
1
6
]
-
[
1
9
]
.
Sed
en
tar
y
b
eh
av
io
r
is
ch
ar
ac
ter
ized
b
y
a
s
ig
n
if
ican
t
r
ed
u
ctio
n
in
p
h
y
s
ical
ac
tiv
ity
,
o
f
ten
in
v
o
lv
i
n
g
lo
n
g
p
e
r
io
d
s
o
f
s
itti
n
g
o
r
ly
in
g
d
o
wn
.
T
h
is
in
ac
tiv
e
life
s
ty
le
h
as
b
ee
n
lin
k
ed
to
a
r
an
g
e
o
f
h
ea
lth
is
s
u
es,
s
u
ch
as o
b
esit
y
,
ca
r
d
io
v
ascu
lar
p
r
o
b
lem
s
,
m
u
s
cu
lo
s
k
eleta
l d
is
o
r
d
er
s
,
an
d
ev
en
m
e
n
tal
h
ea
lth
co
n
ce
r
n
s
.
T
h
e
wo
r
r
is
o
m
e
asp
ec
t
is
th
at
s
ed
en
tar
y
liv
i
n
g
h
as
b
ec
o
m
e
m
o
r
e
co
m
m
o
n
in
c
o
n
tem
p
o
r
ar
y
s
o
ciety
,
p
r
im
ar
ily
d
u
e
to
tech
n
o
lo
g
ical
ad
v
a
n
ce
s
an
d
ch
a
n
g
es
in
wo
r
k
h
ab
its
.
As
a
r
esu
lt,
p
eo
p
le
ar
e
d
ev
o
tin
g
m
o
r
e
o
f
t
h
eir
tim
e
to
s
ed
en
tar
y
p
u
r
s
u
its
,
b
o
th
in
t
h
eir
p
r
o
f
ess
io
n
al
an
d
leis
u
r
e
a
ctiv
ities
,
lead
in
g
to
an
o
v
er
all
d
ec
lin
e
in
p
h
y
s
ical
ac
tiv
ity
lev
els
[
2
0
]
-
[
2
5
]
.
Pas
t
r
esear
ch
h
as
aim
ed
to
r
ev
ea
l
th
e
p
atter
n
s
an
d
h
ea
lth
h
az
a
r
d
s
ass
o
ciate
d
with
s
ed
en
tar
y
b
e
h
av
io
r
.
No
n
eth
el
ess
,
d
is
p
ar
ities
in
m
ea
s
u
r
em
e
n
t
ap
p
r
o
ac
h
es
an
d
d
ata
h
an
d
lin
g
h
a
v
e
im
p
e
d
ed
a
th
o
r
o
u
g
h
e
v
a
lu
atio
n
a
n
d
m
a
n
a
g
em
en
t
o
f
th
is
h
ea
lth
is
s
u
e.
Fu
r
th
er
m
o
r
e,
th
e
r
e
h
as
b
ee
n
a
c
o
n
s
p
icu
o
u
s
lack
o
f
ess
en
tial
o
u
tco
m
e
m
ea
s
u
r
es,
m
ak
in
g
it
d
if
f
icu
lt
to
attain
a
co
m
p
r
eh
e
n
s
iv
e
g
r
asp
o
f
s
ed
e
n
tar
y
b
eh
a
v
io
r
a
n
d
its
co
n
s
eq
u
en
ce
s
f
o
r
p
u
b
lic
h
ea
l
th
.
I
n
o
u
r
p
r
ev
i
o
u
s
s
tu
d
y
,
alt
h
o
u
g
h
we
illu
m
in
ated
th
e
p
a
tter
n
s
o
f
s
ed
en
tar
y
b
eh
av
io
r
,
o
u
r
e
m
p
h
asis
was
o
n
p
o
s
t
-
an
aly
s
is
,
an
d
we
d
id
n
o
t
in
clu
d
e
r
ea
l
-
tim
e
f
ee
d
b
a
ck
m
ec
h
an
is
m
s
to
en
co
u
r
a
g
e
im
m
ed
iate
p
o
s
tu
r
e
ad
ju
s
tm
en
ts
.
W
h
ile
p
r
ev
io
u
s
s
tu
d
ies
h
av
e
s
h
ed
lig
h
t
o
n
th
e
p
r
ev
ale
n
ce
an
d
h
ea
lth
im
p
licatio
n
s
o
f
s
ed
en
ta
r
y
life
s
ty
les,
th
er
e
r
e
m
ain
s
a
n
o
tab
le
g
ap
in
ad
d
r
ess
in
g
th
ese
r
is
k
s
th
r
o
u
g
h
r
ea
l
-
tim
e
m
o
n
ito
r
in
g
an
d
in
ter
v
e
n
tio
n
s
tr
ateg
ies.
E
x
is
tin
g
r
esear
c
h
p
r
im
ar
ily
f
o
cu
s
es
o
n
p
o
s
t
-
an
aly
s
is
o
f
s
ed
en
tar
y
b
eh
av
io
r
,
o
v
e
r
lo
o
k
i
n
g
th
e
c
r
itic
al
asp
ec
t
o
f
p
r
o
v
i
d
in
g
im
m
ed
iate
f
ee
d
b
ac
k
to
in
d
i
v
id
u
als
d
u
r
in
g
in
ac
tiv
e
p
er
io
d
s
.
Fu
r
th
er
m
o
r
e,
th
e
in
te
g
r
atio
n
o
f
ad
v
an
ce
d
tech
n
iq
u
e
s
s
u
ch
as
im
ag
e
ca
p
tu
r
e,
d
ee
p
lear
n
in
g
,
an
d
r
ea
l
-
tim
e
f
ee
d
b
ac
k
s
y
s
tem
s
is
lim
ited
in
cu
r
r
e
n
t
liter
atu
r
e.
T
h
is
lack
o
f
in
teg
r
atio
n
h
a
m
p
er
s
t
h
e
d
ev
elo
p
m
en
t
o
f
co
m
p
r
eh
e
n
s
iv
e
s
o
lu
tio
n
s
to
m
itig
ate
s
ed
en
tar
y
b
eh
a
v
io
r
an
d
its
ass
o
ciate
d
h
ea
lth
r
is
k
s
[
4
]
-
[
6
]
.
Mo
r
e
o
v
er
,
m
an
y
s
tu
d
ies
f
ail
to
clea
r
ly
i
d
en
tify
th
e
m
eth
o
d
o
lo
g
ical
lim
itatio
n
s
,
im
p
ed
in
g
t
h
e
a
d
v
a
n
ce
m
en
t
o
f
ef
f
ec
tiv
e
s
tr
ateg
ie
s
to
ad
d
r
ess
s
ed
en
ta
r
y
b
eh
a
v
io
r
.
T
h
er
e
f
o
r
e,
th
is
s
tu
d
y
aim
s
to
f
ill
th
is
g
ap
b
y
p
r
o
p
o
s
in
g
an
in
n
o
v
ativ
e
ap
p
r
o
ac
h
f
o
r
r
ea
l
-
tim
e
p
o
s
tu
r
e
m
o
n
ito
r
in
g
an
d
in
ter
v
e
n
tio
n
,
lev
er
a
g
in
g
ad
v
a
n
ce
d
tech
n
o
lo
g
ies
to
p
r
o
m
o
te
h
ea
lth
ier
life
s
ty
les.
2.
L
I
T
E
R
AT
U
RE
R
E
VI
E
W
I
n
r
ec
en
t
y
ea
r
s
,
s
ed
en
tar
y
b
e
h
av
io
r
h
as
em
e
r
g
ed
as
a
s
ig
n
i
f
ican
t
an
d
wid
esp
r
ea
d
h
ea
lth
co
n
ce
r
n
th
at
af
f
ec
ts
p
eo
p
le
o
f
all
ag
es
a
n
d
b
ac
k
g
r
o
u
n
d
s
w
o
r
ld
wid
e.
T
h
e
p
r
e
v
alen
ce
o
f
m
o
d
er
n
tech
n
o
lo
g
y
an
d
ev
o
l
v
in
g
wo
r
k
e
n
v
ir
o
n
m
en
ts
h
as
g
iv
e
n
r
is
e
to
a
life
s
ty
le
m
a
r
k
ed
b
y
p
r
o
l
o
n
g
e
d
p
er
io
d
s
o
f
p
h
y
s
ical
in
ac
tiv
ity
.
Ma
n
y
in
d
iv
id
u
als
s
p
en
d
s
u
b
s
tan
tial
h
o
u
r
s
s
itti
n
g
at
th
eir
wo
r
k
p
lace
s
,
d
u
r
in
g
d
aily
co
m
m
u
tes,
an
d
at
h
o
m
e.
T
h
is
s
ed
en
tar
y
life
s
ty
le
h
as
b
ee
n
f
u
r
th
er
e
x
ac
er
b
ate
d
b
y
a
h
ea
v
y
r
elian
ce
o
n
v
eh
icles
f
o
r
tr
a
n
s
p
o
r
tatio
n
a
n
d
t
h
e
o
m
n
ip
r
esen
ce
o
f
s
cr
ee
n
s
in
d
a
ily
life
.
Desp
ite
its
s
u
b
tle
an
d
in
co
n
s
p
icu
o
u
s
n
atu
r
e
,
s
ed
en
ta
r
y
b
e
h
av
io
r
ca
r
r
ies
s
u
b
s
tan
tial
h
ea
lth
r
is
k
s
,
o
f
ten
u
n
d
er
esti
m
ated
b
y
in
d
i
v
id
u
al
s
wh
o
r
em
ain
lar
g
ely
u
n
awa
r
e
o
f
th
e
lo
n
g
-
ter
m
h
ea
lth
co
n
s
eq
u
en
ce
s
ass
o
ciate
d
with
th
is
way
o
f
life
.
I
n
lig
h
t
o
f
th
is
in
cr
e
asin
g
h
ea
lth
c
o
n
ce
r
n
,
r
esear
ch
er
s
h
av
e
b
ee
n
f
o
cu
s
in
g
th
eir
e
n
d
e
av
o
r
s
o
n
co
m
p
r
eh
e
n
d
in
g
th
e
p
atter
n
s
an
d
h
az
ar
d
s
lin
k
e
d
to
s
ed
en
tar
y
b
e
h
av
io
r
.
Var
iatio
n
s
in
m
ea
s
u
r
em
en
t
tech
n
iq
u
es,
d
ata
p
r
o
ce
s
s
in
g
m
eth
o
d
s
,
an
d
th
e
a
b
s
en
ce
o
f
ess
en
tial
o
u
tco
m
e
in
d
icato
r
s
h
a
v
e
p
o
s
ed
c
h
allen
g
es
in
th
o
r
o
u
g
h
ly
ass
ess
in
g
an
d
tack
lin
g
t
h
is
p
r
o
b
lem
.
W
h
ile
n
u
m
e
r
o
u
s
s
tu
d
ies
h
av
e
p
r
o
v
id
ed
in
s
ig
h
ts
in
to
v
ar
io
u
s
f
ac
ets
o
f
s
ed
en
tar
y
b
e
h
av
io
r
an
d
its
im
p
ac
t
o
n
h
ea
lth
,
th
ey
h
av
e
also
u
n
d
er
s
co
r
e
d
th
e
n
ec
ess
ity
f
o
r
in
v
en
tiv
e
s
o
lu
tio
n
s
an
d
r
ea
l
-
ti
m
e
m
o
n
ito
r
in
g
to
en
c
o
u
r
a
g
e
i
n
d
iv
id
u
als
to
ad
o
p
t
h
ea
lth
ier
p
o
s
tu
r
es
an
d
r
e
d
u
ce
th
e
tim
e
s
p
en
t
in
a
s
ed
e
n
tar
y
s
tate.
C
h
en
g
et
a
l.
[
1
2
]
co
n
d
u
cted
a
s
tu
d
y
to
ex
p
lo
r
e
th
e
ac
c
u
m
u
latio
n
o
f
s
ed
en
tar
y
b
e
h
av
io
r
an
d
p
h
y
s
i
ca
l
ac
tiv
ity
p
atter
n
s
in
in
d
iv
i
d
u
als
with
ch
r
o
n
ic
o
b
s
tr
u
ctiv
e
p
u
lm
o
n
ar
y
d
is
ea
s
e
(
C
OP
D)
.
T
h
is
r
esear
ch
u
tili
ze
d
a
cr
o
s
s
-
s
ec
tio
n
al
d
esig
n
to
in
v
esti
g
ate
s
ed
en
tar
y
b
eh
a
v
io
r
with
in
th
e
co
n
tex
t
o
f
a
p
ar
ticu
lar
h
ea
lth
co
n
d
itio
n
,
e
m
p
lo
y
i
n
g
b
o
th
s
elf
-
r
ep
o
r
t
m
ea
s
u
r
es
an
d
o
b
jectiv
e
ass
ess
m
en
ts
.
D
av
o
u
d
i
et
a
l.
[
1
3
]
in
tr
o
d
u
ce
an
in
n
o
v
ativ
e
co
n
ce
p
t
k
n
o
w
n
as
th
e
"I
n
tellig
en
t
I
C
U,
"
wh
ich
in
v
o
lv
es
au
to
n
o
m
o
u
s
p
atien
t
m
o
n
ito
r
in
g
u
s
in
g
p
er
v
asiv
e
s
en
s
in
g
an
d
d
ee
p
lear
n
in
g
tech
n
o
lo
g
ies.
I
n
th
e
cr
itical
en
v
ir
o
n
m
e
n
t
o
f
th
e
in
ten
s
iv
e
ca
r
e
u
n
it
(
I
C
U)
,
co
n
tin
u
o
u
s
p
atien
t
m
o
n
ito
r
in
g
is
o
f
u
tm
o
s
t
im
p
o
r
tan
ce
,
an
d
th
is
s
tu
d
y
p
r
esen
ts
a
g
r
o
u
n
d
b
r
ea
k
i
n
g
ap
p
r
o
ac
h
to
ad
d
r
ess
th
is
n
ee
d
.
B
y
co
m
b
in
in
g
d
ee
p
lear
n
in
g
alg
o
r
ith
m
s
w
ith
p
er
v
asiv
e
s
en
s
in
g
tech
n
o
lo
g
ies,
th
e
p
r
im
ar
y
o
b
jecti
v
e
is
to
ac
h
iev
e
au
to
n
o
m
o
u
s
p
atien
t
m
o
n
ito
r
in
g
.
Dee
p
lear
n
in
g
m
o
d
els
ar
e
u
tili
ze
d
to
a
n
aly
ze
d
ata
f
r
o
m
v
ar
io
u
s
s
en
s
o
r
s
,
in
clu
d
in
g
th
o
s
e
th
at
ca
p
tu
r
e
v
i
tal
s
ig
n
s
an
d
p
atien
t
m
o
v
em
e
n
ts
.
T
h
e
in
teg
r
atio
n
o
f
p
er
v
asiv
e
s
en
s
in
g
an
d
d
ee
p
lear
n
in
g
en
a
b
les
r
ea
l
-
tim
e
ass
ess
m
en
t
an
d
aler
ts
f
o
r
h
ea
lth
ca
r
e
p
r
o
v
id
er
s
,
f
ac
ilit
atin
g
th
e
ea
r
ly
d
etec
tio
n
o
f
cr
itical
co
n
d
itio
n
s
an
d
tim
ely
in
ter
v
e
n
tio
n
.
T
h
is
ap
p
r
o
ac
h
h
as
th
e
p
o
ten
tial
to
s
ig
n
if
ican
tly
im
p
r
o
v
e
p
atien
t
ca
r
e
in
in
ten
s
iv
e
ca
r
e
u
n
its
,
r
e
d
u
cin
g
th
e
wo
r
k
lo
ad
o
n
h
ea
lth
ca
r
e
s
taf
f
wh
ile
s
im
u
ltan
eo
u
s
ly
en
h
an
cin
g
p
atien
t
s
af
ety
.
Dem
p
s
ey
et
a
l.
[
1
4
]
i
n
v
esti
g
ate
th
e
to
p
ic
o
f
g
lo
b
al
g
u
id
elin
es
r
eg
ar
d
in
g
s
ed
e
n
tar
y
b
eh
a
v
io
r
a
n
d
its
im
p
ac
t
o
n
th
e
h
ea
lth
o
f
ad
u
l
ts
.
T
h
eir
p
r
im
ar
y
g
o
al
is
to
b
r
o
ad
e
n
th
e
r
an
g
e
o
f
b
eh
av
i
o
r
al
o
b
jectiv
es
f
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
7
6
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
,
Vo
l.
1
4
,
No
.
3
,
Dec
em
b
er
20
2
5
:
1
1
2
6
-
1
1
3
5
1128
ad
d
r
ess
in
g
s
ed
en
ta
r
y
b
eh
a
v
io
r
.
T
h
e
r
esear
c
h
in
v
o
lv
es
a
n
ex
ten
s
iv
e
ex
am
i
n
atio
n
o
f
ex
i
s
tin
g
liter
atu
r
e
a
n
d
g
u
id
elin
es
r
elate
d
to
s
ed
en
tar
y
b
eh
av
io
r
.
B
y
s
y
n
th
esizin
g
a
n
d
an
aly
zin
g
th
is
ex
ten
s
iv
e
b
o
d
y
o
f
i
n
f
o
r
m
atio
n
,
th
e
s
tu
d
y
o
f
f
er
s
a
v
alu
ab
le
o
v
er
v
iew
o
f
th
e
g
lo
b
al
c
o
n
s
en
s
u
s
o
n
th
e
h
ea
lth
im
p
licatio
n
s
ass
o
ciate
d
with
s
ed
en
tar
y
life
s
ty
les.
I
t
u
n
d
er
s
co
r
es
th
e
im
p
o
r
tan
ce
o
f
f
o
r
m
u
latin
g
g
u
id
elin
es
th
at
n
o
t
o
n
l
y
f
o
cu
s
o
n
r
ed
u
ci
n
g
s
ed
en
tar
y
tim
e
b
u
t
also
e
n
co
u
r
ag
e
p
h
y
s
ical
ac
tiv
ity
t
o
co
u
n
ter
ac
t
th
e
ad
v
er
s
e
e
f
f
ec
ts
o
f
p
r
o
lo
n
g
e
d
s
itti
n
g
.
T
h
is
co
m
p
r
eh
en
s
iv
e
ap
p
r
o
ac
h
co
n
tr
ib
u
tes
to
th
e
d
ev
elo
p
m
en
t
o
f
m
o
r
e
h
o
lis
tic
p
u
b
lic
h
ea
lth
r
ec
o
m
m
en
d
atio
n
s
to
co
m
b
at
s
ed
en
tar
y
b
eh
a
v
io
r
.
Dem
p
s
ey
et
a
l.
[
1
5
]
s
h
if
t
th
eir
atten
tio
n
to
war
d
s
in
v
esti
g
atin
g
th
e
m
ec
h
an
is
m
s
an
d
p
o
ten
tial
f
u
tu
r
e
d
ir
ec
ti
o
n
s
co
n
ce
r
n
in
g
th
e
c
o
n
n
ec
tio
n
b
etwe
en
s
ed
en
tar
y
b
eh
av
io
r
an
d
ch
r
o
n
ic
d
is
ea
s
es
.
T
h
e
s
tu
d
y
in
v
o
lv
es
a
t
h
o
r
o
u
g
h
ex
a
m
in
atio
n
o
f
e
x
is
tin
g
liter
atu
r
e
with
th
e
aim
o
f
u
n
co
v
e
r
in
g
th
e
u
n
d
er
ly
in
g
m
ec
h
an
is
m
s
th
r
o
u
g
h
w
h
ich
s
ed
en
tar
y
b
eh
a
v
io
r
co
n
t
r
ib
u
tes
to
th
e
o
n
s
et
o
f
ch
r
o
n
ic
d
is
ea
s
es.
Fu
r
th
er
m
o
r
e
,
th
e
r
esear
ch
ex
p
lo
r
es
p
o
ten
ti
al
p
ath
way
s
f
o
r
f
u
tu
r
e
r
esear
c
h
an
d
in
ter
v
en
tio
n
s
tr
ateg
ies.
B
y
d
elv
in
g
in
to
th
e
m
ec
h
an
is
m
s
an
d
co
n
s
id
er
in
g
f
u
tu
r
e
d
ir
ec
tio
n
s
,
th
is
s
tu
d
y
aim
s
to
p
r
o
v
i
d
e
a
m
o
r
e
c
o
m
p
r
e
h
en
s
iv
e
u
n
d
er
s
tan
d
in
g
o
f
h
o
w
s
ed
en
tar
y
b
eh
av
io
r
a
f
f
ec
ts
h
ea
lth
.
T
h
is
k
n
o
wled
g
e
ca
n
p
lay
a
p
iv
o
tal
r
o
le
in
s
h
ap
i
n
g
ta
r
g
ete
d
in
ter
v
en
tio
n
s
t
o
r
ed
u
ce
th
e
h
ea
lth
r
is
k
s
ass
o
ciate
d
with
p
r
o
lo
n
g
e
d
p
e
r
io
d
s
o
f
in
ac
tiv
ity
.
T
h
e
r
e
v
iewe
d
s
tu
d
ies
o
n
s
ed
en
tar
y
b
eh
a
v
io
r
s
h
ar
e
s
ev
er
al
co
m
m
o
n
lim
ita
tio
n
s
,
in
clu
d
in
g
v
ar
iatio
n
s
in
m
ea
s
u
r
em
en
t
tec
h
n
iq
u
es,
lim
ited
ap
p
licab
ilit
y
d
u
e
to
a
f
o
cu
s
o
n
s
p
ec
if
ic
p
o
p
u
latio
n
s
,
ch
allen
g
es
in
d
ata
p
r
o
ce
s
s
in
g
r
elate
d
to
al
g
o
r
ith
m
d
ev
elo
p
m
en
t,
d
ep
e
n
d
en
ce
o
n
s
elf
-
r
ep
o
r
t
m
ea
s
u
r
es
s
u
s
ce
p
tib
le
to
r
ec
all
b
ias,
an
d
a
lack
o
f
r
ea
l
-
tim
e
f
e
ed
b
ac
k
m
ec
h
an
is
m
s
.
3.
T
H
E
P
RO
P
O
SE
D
M
E
T
H
O
D
T
h
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
f
o
r
p
r
ed
ictin
g
s
ed
en
tar
y
b
eh
av
i
o
r
an
d
en
co
u
r
ag
in
g
th
e
tr
an
s
itio
n
f
r
o
m
u
n
h
ea
lth
y
p
o
s
tu
r
es
to
h
ea
lth
ier
o
n
es
in
v
o
lv
es
a
co
m
p
r
eh
e
n
s
iv
e
m
u
lti
-
s
tag
e
p
r
o
ce
s
s
th
at
in
co
r
p
o
r
ates
v
ar
io
u
s
t
ec
h
n
iq
u
es,
in
clu
d
in
g
p
r
e
-
p
r
o
ce
s
s
in
g
,
f
ea
tu
r
e
ex
tr
ac
tio
n
,
an
d
d
ee
p
lear
n
in
g
.
T
h
is
m
eth
o
d
lev
er
ag
es
th
e
ca
p
ab
ilit
ies
o
f
d
ee
p
n
eu
r
al
n
etwo
r
k
s
(
DNNs)
to
en
h
an
ce
th
e
k
n
o
wled
g
e
b
ase
r
elate
d
to
th
e
an
aly
s
is
o
f
s
ed
en
tar
y
b
eh
a
v
io
r
,
with
a
s
p
ec
if
ic
f
o
cu
s
o
n
h
ea
lth
ca
r
e
s
tat
u
s
an
d
m
etab
o
lic
m
etr
ics.
T
h
e
o
v
er
all
f
r
a
m
ewo
r
k
is
g
iv
en
in
F
ig
u
r
e
1
.
Fig
u
r
e
1
.
Ov
e
r
v
iew
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
T
h
e
p
r
e
-
p
r
o
ce
s
s
in
g
p
h
ase
c
o
m
m
en
ce
s
b
y
co
n
v
er
tin
g
in
p
u
t
im
ag
es
to
g
r
ay
s
ca
le,
elim
in
atin
g
u
n
n
ec
ess
ar
y
co
lo
r
in
f
o
r
m
ati
o
n
,
an
d
im
p
r
o
v
in
g
p
r
o
ce
s
s
in
g
ef
f
icien
c
y
.
T
h
is
p
h
ase
also
in
clu
d
es
im
ag
e
cr
o
p
p
in
g
to
f
o
cu
s
o
n
th
e
r
e
g
io
n
o
f
in
ter
est,
ef
f
ec
tiv
el
y
r
em
o
v
in
g
ir
r
elev
a
n
t
elem
en
ts
.
Ad
d
itio
n
ally
,
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
I
SS
N:
2252
-
8
7
7
6
R
ea
l
-
time
p
o
s
tu
r
e
mo
n
ito
r
in
g
p
r
ed
ictio
n
fo
r
mitig
a
tin
g
s
ed
e
n
ta
r
y
h
ea
lth
…
(
D.
B
.
S
h
a
n
mu
g
a
m
)
1129
in
tr
o
d
u
ctio
n
o
f
a
b
a
n
d
p
ass
f
ilter
is
em
p
lo
y
ed
to
em
p
h
asiz
e
ed
g
es
an
d
r
ed
u
ce
im
ag
e
n
o
is
e.
Su
b
s
eq
u
en
tly
,
m
o
r
p
h
o
lo
g
ical
o
p
er
atio
n
s
lik
e
d
ilatio
n
an
d
er
o
s
io
n
ar
e
a
p
p
lied
,
p
r
eser
v
in
g
th
e
s
h
ap
e
an
d
d
im
en
s
io
n
s
o
f
p
er
tin
en
t
im
ag
e
co
m
p
o
n
en
ts
wh
ile
elim
in
atin
g
s
m
aller
,
less
p
er
tin
en
t
d
etails.
Featu
r
e
ex
tr
ac
tio
n
is
a
p
iv
o
tal
asp
ec
t
o
f
th
e
m
eth
o
d
o
lo
g
y
,
e
m
p
h
asizin
g
th
e
ex
tr
ac
tio
n
o
f
tex
tu
r
e
-
b
ased
f
ea
tu
r
es.
Statis
tical
m
eth
o
d
o
lo
g
ies,
wh
ich
d
elv
e
in
to
p
ix
el
in
te
n
s
ity
d
is
tr
ib
u
tio
n
s
,
p
lay
a
p
iv
o
tal
r
o
le.
T
h
ese
f
ea
tu
r
es
co
m
p
r
is
e
p
ar
am
eter
s
s
u
ch
as
m
ea
n
,
s
tan
d
ar
d
d
e
v
iatio
n
,
s
k
ewn
ess
,
k
u
r
to
s
is
,
en
er
g
y
,
an
d
en
tr
o
p
y
,
d
eliv
er
in
g
in
s
ig
h
t
s
in
to
th
e
tex
tu
r
al
attr
ib
u
tes
o
f
th
e
im
ag
es.
I
n
ad
d
itio
n
,
s
ec
o
n
d
-
o
r
d
er
f
ea
tu
r
es
b
ased
o
n
g
r
ey
lev
el
co
-
o
cc
u
r
r
e
n
ce
m
atr
ices
ar
e
em
p
lo
y
ed
to
ca
p
t
u
r
e
th
e
co
n
n
ec
tio
n
s
b
etwe
en
p
ix
el
in
ten
s
ities
,
f
u
r
n
is
h
in
g
v
alu
ab
le
in
s
ig
h
ts
in
to
th
e
im
ag
e's
tex
tu
r
e.
T
h
ese
f
ea
tu
r
es
en
c
o
m
p
ass
co
n
tr
ast,
co
r
r
elatio
n
,
in
v
er
s
e
d
if
f
er
en
ce
m
o
m
en
t
,
v
ar
ian
ce
,
clu
s
ter
p
r
o
m
in
e
n
ce
,
clu
s
ter
s
h
ad
e,
a
n
d
h
o
m
o
g
en
eity
.
L
astl
y
,
th
e
p
r
ed
ictiv
e
f
r
am
ewo
r
k
in
c
o
r
p
o
r
a
tes
alar
m
s
y
s
tem
s
d
esig
n
ed
to
aler
t
in
d
iv
id
u
als
wh
en
th
eir
s
ed
en
tar
y
b
eh
a
v
io
r
s
u
r
p
ass
es
p
r
ed
ef
i
n
ed
t
h
r
esh
o
ld
s
.
T
h
is
r
ea
l
-
tim
e
f
ee
d
b
ac
k
m
ec
h
a
n
is
m
is
in
ten
d
ed
to
s
tim
u
late
h
ea
lth
ier
b
eh
av
io
r
s
,
en
h
an
ci
n
g
in
d
iv
id
u
als'
awa
r
en
ess
o
f
th
eir
p
o
s
tu
r
e
an
d
m
o
tiv
atin
g
th
e
ad
o
p
tio
n
o
f
h
ea
lth
ier
s
tan
ce
s
.
3
.
1
.
B
a
nd
pa
s
s
f
ilte
r
T
h
e
s
u
b
s
eq
u
e
n
t
s
tep
i
n
th
e
lo
ca
l
p
r
e
-
p
r
o
ce
s
s
in
g
p
r
o
ce
d
u
r
e
in
v
o
lv
es
th
e
ap
p
licatio
n
o
f
a
b
an
d
p
ass
f
ilter
.
T
h
is
f
ilter
ac
ts
b
y
m
o
d
u
latin
g
f
r
e
q
u
en
cies
at
t
h
e
ex
t
r
e
m
e
lo
w
an
d
h
ig
h
en
d
s
wh
ile
p
r
eser
v
in
g
a
s
p
ec
if
ic
f
r
eq
u
e
n
cy
r
an
g
e
in
th
e
m
i
d
d
l
e.
E
m
p
lo
y
in
g
a
b
an
d
p
ass
f
ilter
s
er
v
es
th
e
d
u
al
p
u
r
p
o
s
e
o
f
en
h
a
n
cin
g
im
ag
e
ed
g
es
b
y
r
e
d
u
cin
g
t
h
e
in
f
lu
e
n
ce
o
f
lo
w
f
r
eq
u
e
n
cies
an
d
d
im
in
is
h
in
g
n
o
is
e
b
y
m
itig
ati
n
g
h
ig
h
f
r
eq
u
e
n
cies.
T
h
e
s
im
p
lest
f
o
r
m
o
f
a
lo
w
-
p
ass
f
ilter
,
wh
ich
en
co
u
r
ag
es
a
ll
f
r
eq
u
en
cies
ab
o
v
e
a
d
ef
i
n
e
d
cu
t
-
o
f
f
f
r
eq
u
e
n
cy
wh
ile
leav
in
g
lo
wer
f
r
eq
u
en
c
ies
u
n
af
f
ec
ted
,
is
th
e
o
p
tim
al
ch
o
ice.
I
t
ca
n
b
e
ex
p
r
ess
ed
m
ath
em
atica
lly
as
f
o
llo
ws:
(
ℎ
,
)
=
1
√
ℎ
2
+
2
≤
0
(1
)
(
ℎ
,
)
=
0
√
ℎ
2
+
2
>
0
(
2
)
wh
er
e
C
0
r
ep
r
esen
ts
th
e
c
u
t
-
o
f
f
f
r
eq
u
en
cy
.
I
n
(
1
)
,
if
t
h
e
d
is
tan
ce
f
r
o
m
th
e
o
r
ig
i
n
(
0
,
0
)
to
th
e
p
o
in
t
(
h
,
l)
with
in
th
e
f
r
eq
u
en
cy
d
o
m
ain
is
less
th
an
o
r
eq
u
al
to
a
s
p
ec
if
ied
th
r
esh
o
ld
r
ad
iu
s
,
d
e
n
o
ted
as
D0
,
th
en
F(h
,
l)
is
ass
ig
n
ed
a
v
alu
e
o
f
1
.
T
h
is
in
d
icate
s
th
at
wav
ev
ec
to
r
s
(
k
,
l)
co
r
r
esp
o
n
d
in
g
to
f
r
eq
u
en
cie
s
f
allin
g
with
in
a
cir
cu
lar
r
eg
i
o
n
o
f
r
a
d
iu
s
D0
ar
e
allo
wed
to
p
ass
th
r
o
u
g
h
with
o
u
t
an
y
r
ed
u
ctio
n
in
m
a
g
n
itu
d
e.
C
o
n
v
e
r
s
ely
,
wh
en
th
e
d
is
tan
ce
f
r
o
m
th
e
o
r
ig
i
n
(
0
,
0
)
to
th
e
p
o
in
t
(
h
,
l)
in
th
e
f
r
eq
u
e
n
cy
d
o
m
ain
ex
ce
ed
s
D0
,
F(h
,
l)
is
s
et
to
0
,
as
d
escr
ib
ed
in
(
2
)
.
B
an
d
p
ass
f
ilter
s
,
o
n
t
h
e
o
t
h
er
h
an
d
,
ar
e
a
co
m
b
i
n
atio
n
o
f
l
o
w
-
p
ass
an
d
h
ig
h
-
p
ass
f
ilter
s
.
T
h
ey
atten
u
ate
all
f
r
e
q
u
en
cies
b
elo
w
th
e
lo
wer
cu
t
-
o
f
f
f
r
eq
u
en
cy
(
D0
)
an
d
ab
o
v
e
th
e
h
ig
h
er
cu
t
-
o
f
f
f
r
eq
u
en
cy
(
D1
)
,
al
lo
win
g
f
r
e
q
u
en
cies
with
in
th
is
r
an
g
e
to
p
ass
th
r
o
u
g
h
to
th
e
o
u
tp
u
t
s
ig
n
al.
W
h
en
th
e
cu
t
-
o
f
f
f
r
eq
u
en
cy
o
f
th
e
lo
w
-
p
ass
f
ilter
is
g
r
ea
ter
th
an
t
h
at
o
f
th
e
h
ig
h
-
p
ass
f
ilter
,
a
b
an
d
p
ass
ef
f
ec
t
c
an
b
e
ac
h
iev
e
d
b
y
m
u
ltip
ly
in
g
th
e
p
ar
a
m
eter
s
o
f
b
o
th
f
ilter
s
.
T
h
e
im
ag
e
p
r
o
ce
s
s
ed
with
th
e
b
an
d
p
ass
f
ilter
is
th
e
n
r
ea
d
y
f
o
r
th
e
s
u
b
s
eq
u
en
t
m
o
r
p
h
o
lo
g
ica
l
o
p
er
atio
n
.
T
h
e
im
ag
es
ar
e
s
h
o
wn
in
F
ig
u
r
e
2
.
Fig
u
r
e
2
(
a)
r
e
p
r
esen
ts
th
e
o
r
ig
in
al
in
p
u
t
im
a
g
e
ca
p
tu
r
e
d
d
u
r
in
g
th
e
m
o
n
ito
r
in
g
o
f
s
ed
en
tar
y
b
e
h
av
io
r
.
I
t
s
er
v
es
as
th
e
in
itial
r
aw
d
ata
th
at
u
n
d
er
g
o
es
s
u
b
s
eq
u
en
t
p
r
ep
r
o
ce
s
s
in
g
s
tep
s
.
T
h
e
im
ag
e
ca
p
tu
r
es
th
e
p
o
s
tu
r
e
o
f
an
in
d
iv
id
u
al
d
u
r
in
g
a
s
ed
en
tar
y
ac
tiv
ity
,
in
clu
d
in
g
th
e
p
o
s
itio
n
in
g
o
f
h
an
d
s
,
s
h
o
u
ld
er
s
,
an
d
h
ea
d
.
Fig
u
r
e
2
(
b
)
s
h
o
ws
th
e
in
p
u
t
im
ag
e
co
n
v
er
t
ed
in
to
a
g
r
a
y
s
ca
le
f
o
r
m
at.
T
h
e
g
r
a
y
s
ca
le
tr
an
s
f
o
r
m
atio
n
s
im
p
lifie
s
th
e
im
ag
e
b
y
r
e
m
o
v
in
g
co
lo
r
in
f
o
r
m
ati
o
n
,
r
etain
i
n
g
o
n
ly
in
ten
s
ity
v
alu
es.
T
h
is
s
tep
i
s
cr
u
cial
f
o
r
r
ed
u
cin
g
co
m
p
u
t
atio
n
al
co
m
p
lex
ity
an
d
p
r
ep
a
r
in
g
th
e
im
ag
e
f
o
r
f
u
r
th
er
p
r
ep
r
o
ce
s
s
in
g
,
in
clu
d
in
g
th
e
ap
p
licatio
n
o
f
f
ilter
s
an
d
f
ea
tu
r
e
ex
tr
ac
tio
n
tech
n
iq
u
es.
Fig
u
r
e
3
illu
s
tr
ates
th
e
o
u
tco
m
e
o
f
a
p
p
ly
in
g
a
b
a
n
d
p
ass
f
ilter
to
th
e
g
r
ay
s
ca
le
im
ag
e
.
T
h
is
s
tep
is
in
teg
r
al
to
th
e
lo
ca
l
p
r
ep
r
o
ce
s
s
in
g
p
r
o
ce
d
u
r
e,
as
th
e
b
an
d
p
ass
f
ilter
en
h
an
ce
s
im
ag
e
q
u
ality
b
y
atten
u
atin
g
e
x
tr
em
e
lo
w
an
d
h
ig
h
f
r
eq
u
e
n
cies.
(
a)
(
b
)
Fig
u
r
e
2
.
C
o
n
v
er
s
io
n
o
f
(
a)
in
p
u
t im
ag
e
to
(
b
)
g
r
ay
s
ca
le
im
a
g
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
7
6
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
,
Vo
l.
1
4
,
No
.
3
,
Dec
em
b
er
20
2
5
:
1
1
2
6
-
1
1
3
5
1130
Fig
u
r
e
3
.
B
an
d
p
ass
f
ilter
im
ag
e
B
y
f
o
cu
s
in
g
o
n
a
s
p
ec
if
ic
f
r
eq
u
en
cy
r
an
g
e,
th
e
f
ilter
r
ed
u
ce
s
n
o
is
e
an
d
ac
ce
n
tu
ates
e
d
g
es,
i
m
p
r
o
v
i
n
g
th
e
v
is
ib
ilit
y
o
f
r
elev
an
t
f
ea
tu
r
es.
Fre
q
u
en
cies
o
u
ts
id
e
th
e
d
ef
in
ed
r
an
g
e,
d
eter
m
in
ed
b
y
th
e
cu
t
-
o
f
f
f
r
eq
u
e
n
cies
D
0
(
lo
w
-
p
ass
)
an
d
D
1
(
h
ig
h
-
p
ass
)
,
ar
e
s
u
p
p
r
ess
ed
,
en
s
u
r
in
g
o
n
ly
u
s
ef
u
l
in
f
o
r
m
atio
n
is
r
etain
ed
.
T
h
e
f
ilter
ed
im
ag
e
is
n
o
w
r
ea
d
y
f
o
r
s
u
b
s
eq
u
en
t
m
o
r
p
h
o
l
o
g
ical
o
p
er
atio
n
s
to
f
u
r
th
e
r
r
ef
i
n
e
an
d
en
h
a
n
ce
th
e
im
ag
e
f
ea
tu
r
es
f
o
r
p
o
s
tu
r
e
an
a
ly
s
is
.
B
ef
o
r
e
p
r
o
ce
e
d
in
g
with
m
o
r
p
h
o
lo
g
ical
o
p
er
atio
n
s
,
th
e
th
r
esh
o
ld
er
im
ag
e
u
n
d
er
g
o
es
b
an
d
p
ass
f
ilter
in
g
.
T
h
is
in
v
o
lv
es
r
ep
lacin
g
ea
ch
p
ix
el
in
th
e
im
ag
e
with
a
b
lac
k
p
ix
el
if
th
e
im
ag
e
in
ten
s
ity
I
(
i,
j)
is
less
th
an
o
r
e
q
u
al
to
a
f
ix
ed
co
n
s
tan
t
T
,
o
r
with
a
wh
ite
p
ix
el
if
t
h
e
im
a
g
e
in
ten
s
ity
is
g
r
ea
ter
th
an
th
at
c
o
n
s
tan
t.
I
n
m
o
r
p
h
o
lo
g
ical
p
r
o
ce
s
s
es,
ea
ch
im
ag
e
p
ix
el
is
in
f
l
u
en
ce
d
b
y
th
e
v
al
u
es
o
f
n
eig
h
b
o
r
in
g
p
ix
els.
3
.
2
.
T
ex
t
ure
f
e
a
t
ure
ex
t
r
a
ct
i
o
n
T
ex
tu
r
e
f
ea
tu
r
e
e
x
tr
ac
tio
n
in
im
ag
e
p
r
o
ce
s
s
in
g
r
ev
o
lv
es
ar
o
u
n
d
th
e
v
ar
iatio
n
s
i
n
p
i
x
e
l
in
ten
s
ity
ac
r
o
s
s
th
e
s
p
atial
d
im
en
s
io
n
s
.
I
n
a
b
r
o
ad
er
co
n
te
x
t,
it
d
e
lv
es
in
to
th
e
s
u
r
f
ac
e
c
h
ar
ac
t
er
is
tics
an
d
v
is
u
al
attr
ib
u
tes
o
f
a
n
o
b
ject,
e
n
co
m
p
ass
in
g
f
ac
to
r
s
lik
e
s
ca
le,
s
h
ap
e,
a
r
r
an
g
e
m
en
t,
p
r
o
p
o
r
tio
n
,
an
d
d
e
n
s
ity
.
T
h
e
ex
tr
ac
tio
n
o
f
tex
tu
r
e
f
ea
tu
r
es
s
er
v
es
as
th
e
f
u
n
d
am
en
tal
s
tep
in
th
e
p
r
o
ce
s
s
o
f
tex
tu
r
e
an
aly
s
is
,
f
ac
ilit
atin
g
th
e
ca
p
tu
r
e
o
f
s
p
ec
if
ic
an
d
d
e
f
in
in
g
attr
ib
u
tes.
T
h
e
s
ig
n
if
ic
an
ce
o
f
tex
tu
r
e
f
ea
tu
r
e
ex
tr
ac
tio
n
ex
ten
d
s
to
a
m
u
ltit
u
d
e
o
f
a
p
p
licatio
n
s
,
s
p
a
n
n
in
g
r
em
o
te
s
en
s
in
g
,
m
ed
ic
al
im
ag
in
g
,
an
d
co
n
ten
t
r
etr
i
ev
al,
wh
er
e
tex
tu
r
e
in
f
o
r
m
atio
n
ass
u
m
es
a
p
iv
o
tal
r
o
le.
Ad
d
itio
n
ally
,
it
in
v
o
lv
es
th
e
ex
tr
ac
tio
n
o
f
m
ea
n
in
g
f
u
l
attr
ib
u
tes
th
at
en
ca
p
s
u
late
th
e
in
tr
in
s
ic
p
r
o
p
e
r
ties
o
f
te
x
tu
r
e
f
r
o
m
r
aw
im
ag
e
d
ata.
T
ex
tu
r
e
a
n
aly
s
is
ca
n
b
e
d
iv
id
e
d
i
n
to
f
o
u
r
k
ey
ap
p
licatio
n
s
:
tex
tu
r
e
class
if
icatio
n
,
tex
tu
r
e
s
eg
m
e
n
tatio
n
,
tex
tu
r
e
s
y
n
th
esis
,
an
d
tex
tu
r
e
f
u
s
io
n
.
I
n
te
x
tu
r
e
class
if
icatio
n
,
in
p
u
t
im
ag
es
ar
e
d
iv
id
ed
i
n
to
d
is
tin
ct
r
eg
io
n
s
,
ea
ch
ass
o
ciate
d
with
a
s
p
ec
if
ic
tex
tu
r
e
class
.
T
ex
tu
r
e
s
eg
m
e
n
tatio
n
e
n
tails
p
a
r
titi
o
n
in
g
an
im
a
g
e
in
to
d
is
cr
ete
r
eg
io
n
s
b
ased
o
n
th
ei
r
tex
tu
r
e
ch
ar
ac
te
r
is
tics
,
en
s
u
r
in
g
th
at
ea
ch
r
e
g
io
n
d
is
p
lay
s
s
p
ec
if
ic
tex
tu
r
al
attr
ib
u
t
es.
T
ex
tu
r
e
f
u
s
io
n
is
a
wid
ely
u
s
ed
tech
n
iq
u
e
f
o
r
m
er
g
in
g
s
m
aller
te
x
tu
r
e
s
am
p
les
in
to
m
o
r
e
co
m
p
r
eh
e
n
s
iv
e
t
ex
tu
r
e
s
,
esp
ec
ially
v
alu
a
b
le
in
s
u
r
f
ac
e
an
d
s
ce
n
e
m
ap
p
in
g
a
p
p
licatio
n
s
.
T
o
ac
h
iev
e
th
e
g
o
al
o
f
3
D
im
ag
e
e
x
tr
ac
tio
n
,
it
is
ess
en
tia
l
to
ex
tr
ac
t
tex
tu
r
e
p
atter
n
s
f
r
o
m
im
a
g
es
with
s
p
ec
if
ic
tex
t
u
r
es.
T
h
is
in
v
o
lv
es
th
e
ex
a
m
in
atio
n
o
f
tex
tu
al
f
ea
tu
r
es
an
d
s
p
atial
r
ela
tio
n
s
h
ip
s
to
id
en
tify
th
e
s
tr
u
ct
u
r
al
a
n
d
s
h
ap
e
c
h
ar
ac
ter
is
tics
o
f
el
em
en
ts
with
in
th
e
im
a
g
e.
V
ar
io
u
s
m
eth
o
d
s
ar
e
av
ailab
le
f
o
r
tex
tu
r
e
f
ea
tu
r
e
ex
tr
ac
tio
n
,
in
clu
d
in
g
s
tatis
tical
-
b
ased
,
s
tr
u
ctu
r
al
-
b
ased
,
m
o
d
el
-
b
ased
,
a
n
d
tr
an
s
f
o
r
m
-
b
ased
tech
n
iq
u
es.
I
n
th
is
r
esear
ch
p
r
o
ject,
th
e
ch
o
s
en
m
eth
o
d
o
f
o
p
e
r
atio
n
is
a
s
tati
s
tical
-
b
ased
ap
p
r
o
ac
h
.
T
h
is
s
tu
d
y
em
p
lo
y
s
a
s
tati
s
tical
-
b
ased
ap
p
r
o
ac
h
f
o
r
th
e
ex
tr
ac
tio
n
o
f
tex
tu
r
e
f
ea
t
u
r
es to
u
n
co
v
e
r
th
e
s
u
b
tle
in
tr
icac
ies
o
f
tex
tu
r
e
p
atter
n
s
in
im
ag
es.
T
h
is
ap
p
r
o
ac
h
f
in
d
s
s
p
e
cif
ic
r
elev
an
ce
with
in
th
e
f
ield
s
o
f
s
ed
en
tar
y
b
e
h
av
io
r
an
d
p
o
s
tu
r
e
an
aly
s
is
,
with
a
p
ar
ticu
lar
e
m
p
h
asis
o
n
h
ea
lth
ca
r
e
an
d
m
e
tab
o
lic
ass
ess
m
en
ts
.
T
h
e
m
eth
o
d
o
l
o
g
y
en
c
o
m
p
ass
es
an
ar
r
ay
o
f
s
tatis
tical
m
etr
ics,
in
clu
d
in
g
m
ea
n
,
s
tan
d
ar
d
d
ev
iatio
n
,
s
k
ewn
ess
,
kur
to
s
is
,
en
er
g
y
,
a
n
d
en
tr
o
p
y
,
co
llectiv
ely
p
r
o
v
id
in
g
an
all
-
en
co
m
p
ass
in
g
co
m
p
r
eh
e
n
s
io
n
o
f
tex
tu
r
al
attr
ib
u
tes.
T
h
e
s
u
b
s
eq
u
en
t
e
q
u
atio
n
s
ar
e
em
p
lo
y
ed
to
q
u
an
tify
v
ar
io
u
s
attr
ib
u
tes,
in
clu
d
i
n
g
m
ea
n
,
s
k
ewn
ess
,
en
er
g
y
,
k
u
r
t
o
s
is
,
s
tan
d
ar
d
d
ev
i
atio
n
,
an
d
en
tr
o
p
y
,
u
s
in
g
th
e
f
i
r
s
t
-
o
r
d
er
h
is
to
g
r
am
as a
b
asis
.
S
P
=
∑
(
)
−
1
=
0
(
3
)
S
Ks
=
∑
(
−
)
̅
̅
̅
2
(
)
−
1
=
0
(
4
)
S
K
=
∑
(
−
)
̅
̅
̅
3
(
)
−
2
−
1
=
0
(
5
)
S
E
=
∑
|
(
)
|
−
1
=
0
(
6
)
S
N
=
∑
(
)
−
1
=
0
lo
g
2
{p
(
a
)
}
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
I
SS
N:
2252
-
8
7
7
6
R
ea
l
-
time
p
o
s
tu
r
e
mo
n
ito
r
in
g
p
r
ed
ictio
n
fo
r
mitig
a
tin
g
s
ed
e
n
ta
r
y
h
ea
lth
…
(
D.
B
.
S
h
a
n
mu
g
a
m
)
1131
I
n
(
3
)
s
er
v
es
as
an
in
d
icato
r
o
f
wh
eth
e
r
th
e
im
ag
e
is
p
r
e
d
o
m
in
an
t
ly
b
r
ig
h
t
o
r
d
a
r
k
.
A
h
ig
h
er
m
ea
n
v
alu
e
s
ig
n
if
ies
a
b
r
ig
h
ter
im
a
g
e,
wh
ile
a
lo
wer
m
ea
n
v
alu
e
s
u
g
g
ests
a
d
ar
k
er
im
ag
e.
Sk
e
wn
ess
q
u
an
tifie
s
th
e
ex
ten
t
o
f
asy
m
m
etr
y
with
in
th
e
d
is
tr
ib
u
tio
n
o
f
p
i
x
el
v
alu
es,
r
ev
ea
lin
g
if
t
h
ese
v
alu
es
ar
e
m
o
r
e
d
en
s
ely
clu
s
ter
ed
o
n
o
n
e
s
id
e
o
f
th
e
m
ea
n
th
an
th
e
o
th
er
.
A
p
o
s
itiv
e
s
k
ewn
ess
v
alu
e
in
d
ica
tes
a
r
ig
h
t
-
s
k
ewe
d
d
is
tr
ib
u
tio
n
(
with
a
tail
o
n
th
e
r
ig
h
t)
,
wh
er
ea
s
n
e
g
ativ
e
s
k
ewn
ess
s
u
g
g
ests
a
lef
t
-
s
k
ewe
d
d
i
s
tr
ib
u
tio
n
as
in
(
4
)
.
In
(
5
)
q
u
an
tifie
s
h
o
w
m
u
c
h
in
d
iv
id
u
al
p
ix
el
v
alu
es
d
ev
ia
te
f
r
o
m
th
e
m
ea
n
.
A
h
ig
h
e
r
s
tan
d
ar
d
d
e
v
iatio
n
in
d
icate
s
a
wid
er
r
an
g
e
o
f
p
i
x
el
v
alu
es
an
d
g
r
ea
ter
co
n
tr
a
s
t
in
th
e
im
ag
e.
E
n
er
g
y
as
in
(
6
)
ass
ess
es
th
e
u
n
if
o
r
m
ity
an
d
r
eg
u
lar
ity
o
f
p
ix
el
v
alu
es
p
r
esen
t
i
n
th
e
im
a
g
e.
A
h
ig
h
er
en
er
g
y
v
alu
e
s
ig
n
if
ies
a
s
tate
wh
er
e
d
o
m
in
an
t
p
ix
el
v
alu
es
an
d
g
r
a
y
-
to
n
e
tr
a
n
s
itio
n
s
ar
e
f
ew,
r
es
u
ltin
g
in
a
m
o
r
e
h
o
m
o
g
e
n
eo
u
s
im
ag
e.
E
n
tr
o
p
y
as
in
(
7
)
is
a
m
ea
s
u
r
e
th
at
q
u
an
t
if
ies
th
e
d
eg
r
ee
o
f
r
an
d
o
m
n
es
s
o
r
u
n
p
r
e
d
ictab
ilit
y
in
th
e
d
i
s
tr
ib
u
tio
n
o
f
p
ix
el
v
alu
es
with
in
th
e
im
ag
e
.
A
h
i
g
h
er
en
tr
o
p
y
v
alu
e
in
d
icate
s
t
h
at
p
ix
el
v
alu
es
a
r
e
d
is
tr
ib
u
ted
in
a
m
o
r
e
r
an
d
o
m
m
an
n
er
,
w
h
er
ea
s
a
lo
wer
e
n
tr
o
p
y
v
al
u
e
s
u
g
g
ests
a
d
is
tr
ib
u
ti
o
n
th
at
is
m
o
r
e
o
r
d
e
r
ed
o
r
s
tr
u
ctu
r
ed
.
4.
DE
E
P
L
E
A
RNING
B
AS
E
D
CL
AS
SI
F
I
CAT
I
O
N
Dee
p
lear
n
in
g
-
b
ased
class
if
icatio
n
tech
n
iq
u
es
s
er
v
e
as
a
co
r
n
er
s
to
n
e
in
t
h
e
d
o
m
ain
s
o
f
h
u
m
an
b
o
d
y
p
ar
t
id
e
n
tific
atio
n
a
n
d
th
e
a
n
aly
s
is
o
f
s
ed
e
n
tar
y
b
eh
a
v
io
r
.
T
h
ese
d
o
m
ain
s
p
r
esen
t
n
o
tab
le
ch
allen
g
es,
ch
ar
ac
ter
ized
b
y
t
h
eir
h
ig
h
ly
n
o
n
lin
ea
r
n
atu
r
e
a
n
d
th
e
n
e
ed
f
o
r
r
o
b
u
s
tn
ess
wh
en
d
ea
li
n
g
with
n
o
is
y
d
ata.
C
o
n
s
eq
u
en
tly
,
a
p
a
r
ad
ig
m
s
h
if
t
h
as
o
cc
u
r
r
e
d
,
lead
in
g
to
t
h
e
ad
o
p
tio
n
o
f
h
ea
t
m
ap
s
an
d
th
e
u
tili
za
tio
n
o
f
d
en
s
e
p
ix
el
in
f
o
r
m
atio
n
as
p
r
im
ar
y
ap
p
r
o
ac
h
es.
Ho
wev
e
r
,
th
ese
s
tr
ateg
ies
b
r
in
g
f
o
r
th
th
eir
u
n
i
q
u
e
s
et
o
f
ch
allen
g
es,
s
u
ch
as
r
ed
u
ce
d
i
m
ag
e
r
eso
lu
tio
n
a
n
d
th
e
n
o
n
-
d
if
f
er
en
tiab
ilit
y
o
f
ce
r
tain
p
r
o
c
ess
es.
I
n
r
esp
o
n
s
e
to
th
ese
ch
allen
g
es,
o
u
r
r
esear
c
h
en
d
ea
v
o
r
s
to
p
r
o
v
id
e
a
co
m
p
r
eh
en
s
iv
e
s
o
lu
tio
n
b
y
am
a
lg
am
atin
g
a
d
iv
er
s
e
ar
r
ay
o
f
tech
n
iq
u
es
an
d
s
tr
ate
g
ies
g
ea
r
ed
to
war
d
s
o
p
tim
iz
in
g
b
o
d
y
p
ar
t
id
en
tific
atio
n
,
s
ed
en
tar
y
b
eh
av
i
o
r
an
aly
s
is
,
an
d
p
o
s
tu
r
e
co
r
r
ec
tio
n
.
T
ab
le
1
s
h
o
ws th
e
m
eth
o
d
s
u
s
ed
f
o
r
t
h
e
d
etec
tio
n
o
f
b
o
d
y
p
ar
ts
.
T
ab
le
1
.
B
o
d
y
p
ar
t
d
etec
tio
n
m
eth
o
d
s
M
e
t
h
o
d
D
e
scri
p
t
i
o
n
H
e
a
t
ma
p
s
P
r
o
b
a
b
i
l
i
t
y
d
i
s
t
r
i
b
u
t
i
o
n
o
f
b
o
d
y
p
a
r
t
l
o
c
a
t
i
o
n
s
I
mag
e
p
a
t
c
h
e
s
D
e
t
e
c
t
i
o
n
c
a
n
d
i
d
a
t
e
s fr
o
m l
o
c
a
l
i
z
e
d
i
mag
e
p
a
t
c
h
e
s
D
e
e
p
l
e
a
r
n
i
n
g
U
t
i
l
i
z
a
t
i
o
n
o
f
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
s
(
C
N
N
s)
D
a
t
a
a
u
g
m
e
n
t
a
t
i
o
n
G
e
n
e
r
a
t
i
o
n
o
f
t
r
a
i
n
i
n
g
d
a
t
a
t
h
r
o
u
g
h
s
i
mu
l
a
t
e
d
sce
n
a
r
i
o
s
M
o
d
e
l
t
r
a
i
n
i
n
g
P
h
a
se
s
o
f
n
e
t
w
o
r
k
p
a
r
a
me
t
e
r
t
r
a
i
n
i
n
g
4
.
1
.
Det
ec
t
io
n a
nd
ca
t
eg
o
riz
a
t
io
n o
f
bo
dy
pa
r
t
s
T
h
e
p
r
ec
is
e
id
e
n
tific
atio
n
a
n
d
ca
teg
o
r
izatio
n
o
f
b
o
d
y
p
ar
ts
h
o
ld
p
ar
am
o
u
n
t
s
ig
n
if
ican
ce
in
co
m
p
r
eh
e
n
d
in
g
h
u
m
an
p
o
s
tu
r
e,
m
o
v
em
en
t,
an
d
in
ter
ac
tio
n
s
.
T
h
ese
task
s
lay
th
e
g
r
o
u
n
d
wo
r
k
f
o
r
a
m
u
ltit
u
d
e
o
f
ap
p
licatio
n
s
,
in
cl
u
d
in
g
f
itn
ess
tr
ac
k
in
g
,
h
ea
lth
ca
r
e
m
o
n
i
t
o
r
in
g
,
a
n
d
h
u
m
an
-
c
o
m
p
u
ter
in
ter
ac
tio
n
.
I
n
o
u
r
p
u
r
s
u
it
o
f
ac
cu
r
ate
b
o
d
y
p
ar
t
d
etec
tio
n
,
we
h
ar
n
ess
th
e
p
o
wer
o
f
d
ee
p
lear
n
in
g
m
o
d
el
s
,
with
a
p
ar
ticu
lar
em
p
h
asis
o
n
C
NNs,
r
en
o
w
n
e
d
f
o
r
th
eir
p
r
o
f
icien
cy
in
lear
n
in
g
in
t
r
icate
im
ag
e
p
atter
n
s
.
T
h
e
in
itial
p
h
ase
o
f
o
u
r
m
et
h
o
d
o
lo
g
y
r
ev
o
lv
es
ar
o
u
n
d
t
h
e
esti
m
atio
n
o
f
b
o
d
y
p
a
r
t
p
o
s
itio
n
s
,
a
task
r
ep
lete
wit
h
ch
allen
g
es
d
u
e
t
o
th
e
d
y
n
am
ic
n
at
u
r
e
o
f
t
h
e
h
u
m
an
b
o
d
y
an
d
th
e
n
ee
d
to
id
en
tify
b
o
d
y
p
ar
ts
ac
r
o
s
s
a
s
p
e
ctr
u
m
o
f
p
o
s
es
an
d
o
r
ien
tatio
n
s
.
T
o
s
u
r
m
o
u
n
t
th
e
s
e
ch
allen
g
es,
we
em
p
lo
y
h
ea
t
m
ap
s
as
a
co
r
n
e
r
s
to
n
e
o
f
s
u
p
er
v
is
ed
tr
ain
in
g
f
o
r
o
u
r
d
ee
p
lear
n
in
g
m
o
d
el.
E
ac
h
h
ea
t
m
a
p
en
ca
p
s
u
lates
th
e
p
r
o
b
a
b
ilit
y
d
is
tr
ib
u
tio
n
o
f
a
s
p
ec
if
ic
b
o
d
y
p
ar
t'
s
lo
ca
tio
n
,
ty
p
ically
r
ep
r
esen
ted
as
a
2
D
ga
u
s
s
ian
d
is
tr
ib
u
tio
n
ce
n
ter
ed
at
t
h
e
jo
i
n
t'
s
an
ticip
ated
p
o
s
itio
n
.
T
h
is
ap
p
r
o
ac
h
o
f
f
e
r
s
a
m
u
ltit
u
d
e
o
f
ad
v
an
ta
g
es,
n
o
tab
ly
h
ei
g
h
ten
ed
r
o
b
u
s
tn
ess
d
er
iv
ed
f
r
o
m
th
e
u
tili
za
tio
n
o
f
co
m
p
r
eh
e
n
s
iv
e
p
i
x
el
in
f
o
r
m
at
io
n
.
I
t
ef
f
ec
tiv
ely
o
v
er
co
m
es
th
e
lim
itatio
n
s
in
h
er
e
n
t
in
th
e
d
ir
ec
t
r
eg
r
ess
io
n
f
r
o
m
s
in
g
le
p
o
i
n
ts
,
a
tech
n
iq
u
e
f
r
au
g
h
t
with
h
ig
h
n
o
n
lin
e
ar
ity
an
d
s
u
s
ce
p
tib
ilit
y
to
n
o
is
e.
On
e
p
o
ten
tial
d
r
awb
ac
k
ass
o
ciate
d
with
h
ea
t
m
ap
s
is
th
eir
r
ed
u
ce
d
r
eso
lu
tio
n
wh
en
co
m
p
ar
ed
t
o
th
e
o
r
ig
in
al
im
ag
e.
T
h
is
d
im
in
is
h
m
en
t
in
r
eso
lu
tio
n
is
an
in
h
er
en
t
co
n
s
eq
u
e
n
ce
o
f
t
h
e
p
o
o
lin
g
p
r
o
ce
s
s
in
teg
r
al
to
C
NN
s
.
W
h
ile
th
is
p
h
en
o
m
en
o
n
d
o
es
im
p
ac
t
th
e
p
r
ec
is
io
n
o
f
jo
i
n
t
co
o
r
d
in
ate
esti
m
atio
n
,
o
u
r
r
esear
ch
is
d
ee
p
ly
co
m
m
itted
to
d
ev
is
in
g
in
n
o
v
ativ
e
s
tr
ateg
ies
to
m
itig
ate
th
is
lim
itatio
n
ef
f
e
ctiv
ely
.
4
.
2
.
E
nh
a
ncing
det
ec
t
io
n o
f
bo
dy
pa
rt
s
T
r
ad
itio
n
al
b
o
d
y
p
a
r
t
d
etec
tio
n
m
eth
o
d
s
ty
p
ically
b
eg
i
n
b
y
id
e
n
tify
in
g
p
o
ten
tial
b
o
d
y
p
ar
t
ca
n
d
id
ates
f
r
o
m
im
a
g
e
p
atch
es.
T
h
ese
ca
n
d
id
ates
ar
e
s
u
b
s
eq
u
en
tly
o
r
g
an
ize
d
to
alig
n
with
a
h
u
m
an
b
o
d
y
m
o
d
el.
Ho
wev
er
,
th
e
in
h
e
r
en
t
d
y
n
am
is
m
an
d
co
m
p
le
x
it
y
o
f
th
e
h
u
m
an
b
o
d
y
p
o
s
e
d
is
tin
ct
ch
allen
g
es
in
th
is
p
r
o
ce
s
s
.
Fo
r
in
s
tan
ce
,
r
ely
in
g
o
n
d
is
cr
ete
im
ag
e
p
atch
es
with
lim
ited
lo
ca
l
co
n
tex
t
m
ay
n
o
t
f
u
r
n
is
h
ad
e
q
u
ate
d
is
cr
im
in
ato
r
y
in
f
o
r
m
atio
n
f
o
r
p
r
ec
is
e
b
o
d
y
p
ar
t
id
e
n
tific
atio
n
.
T
o
o
v
er
co
m
e
th
ese
co
n
s
t
r
ain
ts
an
d
en
h
a
n
ce
th
e
r
esil
ien
ce
o
f
o
u
r
d
ee
p
le
ar
n
in
g
m
o
d
el,
we
em
p
lo
y
d
a
ta
au
g
m
e
n
tatio
n
tec
h
n
iq
u
es.
Data
au
g
m
en
tatio
n
en
tails
th
e
g
en
er
atio
n
o
f
s
u
p
p
lem
en
tar
y
tr
ain
in
g
d
ata
b
y
s
im
u
latin
g
d
iv
e
r
s
e
s
ce
n
ar
io
s
an
d
v
ar
iatio
n
s
.
I
n
s
tead
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
7
6
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
,
Vo
l.
1
4
,
No
.
3
,
Dec
em
b
er
20
2
5
:
1
1
2
6
-
1
1
3
5
1132
o
f
s
o
lely
d
ep
en
d
in
g
o
n
p
r
e
d
ictio
n
s
f
r
o
m
th
e
p
r
ec
ed
in
g
p
h
ase,
we
in
tr
o
d
u
ce
s
im
u
lated
f
o
r
ec
asts
.
T
h
is
is
ac
co
m
p
lis
h
ed
b
y
r
ep
lacin
g
th
e
ac
tu
al
p
o
s
itio
n
o
f
a
jo
in
t
with
a
v
ec
to
r
r
a
n
d
o
m
l
y
d
r
awn
f
r
o
m
a
2
-
d
im
e
n
s
io
n
al
(
2
D)
n
o
r
m
al
d
is
tr
ib
u
tio
n
.
T
h
e
p
ar
am
eter
s
o
f
th
is
d
is
tr
ib
u
tio
n
,
in
clu
d
in
g
its
m
ea
n
an
d
v
ar
ian
ce
,
ar
e
d
ir
ec
tly
tied
to
th
e
m
ea
n
a
n
d
v
ar
ian
ce
o
f
th
e
o
b
s
er
v
e
d
d
is
p
lace
m
en
ts
.
T
h
e
in
te
g
r
atio
n
o
f
th
is
au
g
m
en
ted
tr
ain
in
g
d
ata
eq
u
ip
s
o
u
r
m
o
d
el
with
b
etter
g
en
er
aliza
tio
n
ca
p
a
b
ilit
ies,
en
ab
lin
g
it
to
p
er
f
o
r
m
ef
f
ec
tiv
ely
u
n
d
er
v
ar
y
i
n
g
cir
cu
m
s
ta
n
ce
s
.
T
ab
le
2
p
r
o
v
i
d
e
th
e
b
eh
a
v
io
r
an
al
y
s
is
.
T
ab
le
2
.
Sed
en
ta
r
y
b
e
h
av
io
r
a
n
aly
s
is
C
o
m
p
o
n
e
n
t
D
e
scri
p
t
i
o
n
A
l
a
r
m s
y
st
e
m
A
l
e
r
t
s
y
s
t
e
m f
o
r
s
h
i
f
t
i
n
g
f
r
o
m s
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
t
o
h
e
a
l
t
h
y
p
o
st
u
r
e
N
e
t
w
o
r
k
a
l
e
r
t
D
a
t
a
st
o
r
a
g
e
a
n
d
a
l
e
r
t
s
y
st
e
m
i
n
t
e
g
r
a
t
i
o
n
f
o
r
h
e
a
l
t
h
i
mp
r
o
v
e
m
e
n
t
s
Th
r
e
s
h
o
l
d
D
e
f
i
n
i
n
g
t
h
r
e
sh
o
l
d
v
a
l
u
e
s
t
o
t
r
i
g
g
e
r
a
l
a
r
ms f
o
r
u
n
h
e
a
l
t
h
y
p
o
s
e
s
D
a
t
a
me
t
r
i
c
s
C
o
l
l
e
c
t
i
o
n
a
n
d
o
r
g
a
n
i
z
a
t
i
o
n
o
f
d
a
t
a
f
o
r
mo
n
i
t
o
r
i
n
g
a
n
d
a
n
a
l
y
si
s
A
l
a
r
m
e
n
g
i
n
e
Ev
a
l
u
a
t
i
o
n
o
f
d
a
t
a
f
o
r
a
b
n
o
r
mal
i
t
i
e
s
,
f
o
c
u
si
n
g
o
n
se
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
5.
E
XP
E
R
I
M
E
N
T
A
T
I
O
N
AN
D
RE
SU
L
T
DIS
C
USS
I
O
N
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
is
ev
alu
ated
u
s
in
g
a
d
ataset
co
m
p
r
is
in
g
im
ag
es
o
f
h
u
m
an
ac
tiv
ities
to
p
r
ed
ic
t
s
ed
en
tar
y
b
e
h
av
io
r
ac
cu
r
atel
y
.
T
h
e
d
ataset
in
clu
d
es
b
o
t
h
n
o
r
m
al
an
d
ab
n
o
r
m
al
h
u
m
an
ac
tiv
ities
.
Data
co
llectio
n
in
v
o
lv
e
d
4
0
p
ar
ticip
an
ts
(
2
0
m
ales
an
d
2
0
f
em
al
es),
with
a
to
tal
o
f
3
5
0
d
atas
ets.
Ap
p
r
o
x
im
ately
2
7
5
s
am
p
les
wer
e
allo
ca
ted
f
o
r
tr
ain
in
g
,
an
d
th
e
r
em
ain
in
g
7
5
f
o
r
test
in
g
.
T
h
e
in
clu
s
io
n
cr
iter
ia
f
o
r
p
ar
ticip
an
ts
wer
e
ag
e
with
in
th
e
r
an
g
e
o
f
1
8
to
6
5
y
ea
r
s
.
T
h
e
s
tu
d
y
r
ev
ea
led
a
h
ig
h
p
r
ev
alen
ce
o
f
s
ed
en
tar
y
b
eh
av
io
r
am
o
n
g
o
f
f
ice
wo
r
k
e
r
s
,
with
7
7
%
o
f
th
eir
ty
p
ical
wo
r
k
i
n
g
d
ay
s
p
en
t
i
n
s
ed
e
n
tar
y
ac
tiv
ities
.
T
h
e
ca
p
tu
r
ed
im
a
g
e
d
ataset
was
u
s
ed
to
p
r
ed
ict
an
i
n
d
iv
id
u
al'
s
s
ed
en
tar
y
b
eh
a
v
io
r
.
T
h
e
p
r
ed
i
cti
o
n
p
r
o
ce
s
s
was
p
er
f
o
r
m
ed
u
s
in
g
MA
T
L
AB
s
o
f
twar
e
to
o
ls
.
T
h
e
r
esear
ch
was
co
n
d
u
cted
u
s
in
g
MA
T
L
AB
v
er
s
io
n
R
2
0
1
8
a
with
a
co
r
e
i
3
p
r
o
ce
s
s
o
r
r
u
n
n
i
n
g
at
3
.
5
GHz
a
n
d
6
GB
o
f
DDR3
R
AM
.
Du
r
in
g
th
e
s
im
u
latio
n
,
DNNs
wer
e
em
p
lo
y
ed
to
p
r
ed
ict
h
u
m
a
n
ac
tiv
ities
in
b
o
th
n
o
r
m
al
an
d
ab
n
o
r
m
al
s
tates.
T
h
e
DNNs
u
tili
ze
d
r
eg
r
ess
io
n
an
d
class
if
icatio
n
tech
n
iq
u
es
to
cl
ass
if
y
th
e
ac
tiv
ity
.
Fo
r
in
s
tan
c
e,
if
an
in
d
iv
id
u
al
ex
h
ib
ited
n
o
r
m
al
b
eh
av
i
o
r
with
a
s
tr
aig
h
t h
ea
d
a
n
d
s
h
o
u
ld
er
s
,
th
e
DNN
wo
u
ld
p
r
e
d
ict
a
h
ea
l
th
y
p
o
s
e
.
T
h
e
ac
cu
r
ac
y
f
o
r
th
e
p
r
e
d
ictio
n
o
f
s
ed
e
n
tar
y
b
eh
a
v
io
r
u
s
i
n
g
th
e
s
u
p
p
o
r
t
v
ec
to
r
m
ac
h
in
e
(
SVM)
alg
o
r
ith
m
was
7
7
.
6
%,
as
r
ep
o
r
ted
b
y
W
u
llem
s
et
a
l.
[
2
]
.
T
h
e
ac
cu
r
ac
y
f
o
r
th
e
p
r
e
d
i
ctio
n
o
f
s
ed
en
tar
y
b
eh
av
io
r
u
s
in
g
th
e
SVM
alg
o
r
ith
m
was
7
7
.
6
%,
as
r
ep
o
r
ted
b
y
W
u
llem
s
et
al.
[
2
]
.
Ad
d
itio
n
ally
,
th
e
ac
cu
r
a
c
y
f
o
r
p
r
ed
ictio
n
u
s
in
g
th
e
r
a
n
d
o
m
f
o
r
est
alg
o
r
ith
m
was
8
0
.
6
%,
as
r
ep
o
r
ted
b
y
B
h
attac
h
ar
jee
et
a
l.
[
3
]
.
Fu
r
th
er
m
o
r
e
,
th
e
ac
c
u
r
ac
y
f
o
r
p
r
ed
ictio
n
u
s
in
g
t
h
e
K
-
n
ea
r
e
s
t
n
eig
h
b
o
r
(
KNN)
alg
o
r
ith
m
was
6
5
.
8
%
,
also
as
r
ep
o
r
ted
in
[
3
]
.
No
ta
b
ly
,
th
e
ac
cu
r
ac
y
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
ex
ce
ed
e
d
all
th
ese
ex
is
tin
g
m
eth
o
d
s
.
T
h
e
ac
cu
r
ac
y
r
esu
lt is
s
h
o
wn
in
F
ig
u
r
e
4
.
Fig
u
r
e
4
.
Acc
u
r
ac
y
a
n
aly
s
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
I
SS
N:
2252
-
8
7
7
6
R
ea
l
-
time
p
o
s
tu
r
e
mo
n
ito
r
in
g
p
r
ed
ictio
n
fo
r
mitig
a
tin
g
s
ed
e
n
ta
r
y
h
ea
lth
…
(
D.
B
.
S
h
a
n
mu
g
a
m
)
1133
T
h
e
s
en
s
itiv
ity
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
,
wh
ich
m
ea
s
u
r
es
th
e
tr
u
e
p
o
s
itiv
e
r
ate,
was
ap
p
r
o
x
im
ately
9
0
.
7
%,
as
s
h
o
wn
in
Fig
u
r
e
5
.
T
h
is
co
m
p
ar
es
f
av
o
r
ab
l
y
with
ex
is
tin
g
alg
o
r
ith
m
s
,
in
clu
d
in
g
KNN,
SVM,
an
d
r
an
d
o
m
f
o
r
est,
wh
ich
h
ad
s
en
s
itiv
ity
v
alu
es
o
f
6
1
.
2
%,
5
7
.
4
%,
an
d
6
3
.
7
%,
r
esp
ec
tiv
ely
.
T
h
e
s
p
ec
if
icity
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
,
wh
ich
q
u
an
tif
ies
th
e
tr
u
e
n
e
g
ativ
e
r
ate,
w
as
ap
p
r
o
x
im
ately
9
9
.
2
%,
as
d
ep
icted
in
Fig
u
r
e
6
.
I
n
co
n
tr
ast,
th
e
s
p
ec
if
icity
v
alu
es
o
f
th
e
cu
r
r
e
n
t
alg
o
r
ith
m
s
wer
e
s
o
m
ewh
at
lo
wer
.
T
h
e
s
p
ec
if
icity
v
alu
es
f
o
r
v
ar
io
u
s
cu
r
r
e
n
t
alg
o
r
ith
m
s
,
in
clu
d
in
g
SVM
(
9
7
.
8
%),
KN
N
(
9
5
.
1
%),
an
d
r
an
d
o
m
f
o
r
e
s
t
(
9
7
.
5
%),
wer
e
all
s
u
r
p
ass
ed
b
y
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
.
Fig
u
r
e
5
.
Sen
s
itiv
ity
an
aly
s
is
Fig
u
r
e
6
.
Sp
ec
if
icity
a
n
aly
s
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
2
5
2
-
8
7
7
6
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
,
Vo
l.
1
4
,
No
.
3
,
Dec
em
b
er
20
2
5
:
1
1
2
6
-
1
1
3
5
1134
6.
CO
NCLU
SI
O
N
I
n
th
is
r
esear
ch
,
we
h
av
e
e
x
p
lo
r
ed
d
ee
p
lear
n
i
n
g
-
b
ased
class
if
icatio
n
m
eth
o
d
s
to
ad
d
r
ess
th
e
ch
allen
g
es
o
f
b
o
d
y
p
a
r
t
d
etec
t
io
n
an
d
s
ed
en
tar
y
b
eh
a
v
io
r
p
r
ed
ictio
n
.
T
h
ese
task
s
h
o
l
d
s
ig
n
if
ican
t
im
p
o
r
tan
ce
in
v
ar
io
u
s
ap
p
licatio
n
s
,
in
clu
d
in
g
f
itn
ess
tr
ac
k
in
g
,
h
ea
lth
c
ar
e
m
o
n
ito
r
in
g
,
an
d
h
u
m
an
-
c
o
m
p
u
ter
in
ter
ac
tio
n
.
T
h
e
d
y
n
am
ic
n
atu
r
e
o
f
h
u
m
a
n
b
o
d
y
p
o
s
tu
r
es
an
d
o
r
ie
n
tatio
n
s
r
eq
u
ir
es r
o
b
u
s
t
tech
n
iq
u
es
f
o
r
p
r
e
cise
b
o
d
y
p
ar
t
d
etec
tio
n
,
wh
ich
we
ac
h
iev
e
d
u
s
in
g
C
NNs.
T
o
en
h
an
ce
th
e
r
o
b
u
s
tn
ess
o
f
o
u
r
d
ee
p
l
ea
r
n
in
g
m
o
d
el,
we
em
p
lo
y
ed
s
u
p
er
v
is
ed
tr
ain
in
g
with
h
ea
t
m
ap
s
,
wh
ich
r
ep
r
esen
t
th
e
p
r
o
b
ab
ilit
y
d
is
tr
ib
u
tio
n
o
f
b
o
d
y
p
ar
t
lo
ca
tio
n
s
.
T
h
is
a
p
p
r
o
ac
h
o
v
e
r
ca
m
e
th
e
lim
itatio
n
s
o
f
d
ir
e
ct
r
eg
r
ess
io
n
a
n
d
p
r
o
v
ed
to
b
e
h
ig
h
ly
e
f
f
ec
tiv
e.
Alth
o
u
g
h
h
ea
t
m
ap
s
in
tr
o
d
u
c
ed
s
o
m
e
r
eso
lu
ti
o
n
co
n
s
tr
ain
t
s
d
u
e
to
C
NN
p
o
o
lin
g
p
r
o
ce
s
s
es,
o
u
r
r
esear
c
h
f
o
cu
s
ed
o
n
i
n
n
o
v
ativ
e
s
o
lu
tio
n
s
to
m
itig
ate
t
h
is
ch
allen
g
e.
T
h
r
o
u
g
h
e
x
p
er
im
e
n
ts
an
d
r
es
u
lts
d
is
cu
s
s
io
n
,
we
u
tili
ze
d
r
ea
l
-
wo
r
ld
im
ag
e
d
ata
to
p
r
ed
ict
s
ed
en
ta
r
y
b
eh
av
io
r
an
d
ac
h
iev
ed
an
im
p
r
ess
iv
e
a
cc
u
r
ac
y
o
f
9
8
.
2
%.
C
o
m
p
ar
ativ
ely
,
th
e
p
r
o
p
o
s
ed
m
eth
o
d
o
u
tp
e
r
f
o
r
m
ed
ex
is
ti
n
g
alg
o
r
ith
m
s
s
u
ch
as
SVM,
r
an
d
o
m
f
o
r
est
,
an
d
KNN,
em
p
h
asizin
g
th
e
ef
f
ec
t
iv
en
ess
an
d
ef
f
icien
c
y
o
f
o
u
r
ap
p
r
o
ac
h
.
Sen
s
itiv
ity
a
n
d
s
p
ec
if
icity
an
al
y
s
es
f
u
r
th
er
c
o
n
f
ir
m
ed
th
e
s
tr
en
g
th
o
f
o
u
r
m
eth
o
d
,
with
a
s
en
s
itiv
ity
o
f
9
0
.
7
%
an
d
s
p
ec
if
icity
o
f
9
9
.
2
%,
en
s
u
r
in
g
ac
cu
r
ate
p
r
e
d
ictio
n
s
o
f
s
ed
e
n
tar
y
b
e
h
av
io
r
.
T
h
e
c
o
m
p
u
tatio
n
al
ef
f
icien
cy
o
f
o
u
r
a
p
p
r
o
ac
h
s
ig
n
if
ican
tly
o
u
tp
er
f
o
r
m
ed
ex
is
tin
g
m
eth
o
d
s
,
with
a
9
4
% e
f
f
icien
cy
g
ain
i
n
a
tim
e
p
er
io
d
o
f
6
s
ec
o
n
d
s
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
T
h
e
a
u
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
is
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
D.
B
.
Sh
an
m
u
g
am
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
J
.
Dh
ilip
an
✓
✓
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
atasets
u
s
ed
an
d
/o
r
an
aly
ze
d
d
u
r
in
g
th
e
cu
r
r
e
n
t
s
tu
d
y
ar
e
av
ailab
le
f
r
o
m
th
e
co
r
r
esp
o
n
d
in
g
au
th
o
r
o
n
r
ea
s
o
n
ab
le
r
e
q
u
est.
RE
F
E
R
E
NC
E
S
[
1
]
K
.
K
o
sa
k
i
e
t
a
l
.
,
“
S
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
,
p
h
y
si
c
a
l
a
c
t
i
v
i
t
y
,
a
n
d
r
e
n
a
l
f
u
n
c
t
i
o
n
i
n
o
l
d
e
r
a
d
u
l
t
s:
i
so
t
e
m
p
o
r
a
l
su
b
st
i
t
u
t
i
o
n
m
o
d
e
l
l
i
n
g
,
”
BM
C
N
e
p
h
r
o
l
o
g
y
,
v
o
l
.
2
1
,
n
o
.
1
,
J
u
n
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
8
6
/
s1
2
8
8
2
-
0
2
0
-
0
1
8
6
9
-
8.
[
2
]
J.
A
.
W
u
l
l
e
ms
,
S
.
M
.
P
.
V
e
r
sc
h
u
e
r
e
n
,
H
.
D
e
g
e
n
s,
C
.
I
.
M
o
r
se,
a
n
d
G
.
L.
O
n
a
m
b
é
l
é
,
“
P
e
r
f
o
r
ma
n
c
e
o
f
t
h
i
g
h
-
mo
u
n
t
e
d
t
r
i
a
x
i
a
l
a
c
c
e
l
e
r
o
m
e
t
e
r
a
l
g
o
r
i
t
h
ms i
n
o
b
j
e
c
t
i
v
e
q
u
a
n
t
i
f
i
c
a
t
i
o
n
o
f
s
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
a
n
d
p
h
y
si
c
a
l
a
c
t
i
v
i
t
y
i
n
o
l
d
e
r
a
d
u
l
t
s
,
”
PLo
S
O
N
E
,
v
o
l
.
1
2
,
n
o
.
1
1
,
p
.
e
0
1
8
8
2
1
5
,
N
o
v
.
2
0
1
7
,
d
o
i
:
1
0
.
1
3
7
1
/
j
o
u
r
n
a
l
.
p
o
n
e
.
0
1
8
8
2
1
5
.
[
3
]
P
.
B
h
a
t
t
a
c
h
a
r
j
e
e
,
S
.
P
.
K
a
r
,
a
n
d
N
.
K
.
R
o
u
t
,
“
S
l
e
e
p
a
n
d
se
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
a
n
a
l
y
si
s
f
r
o
m
p
h
y
s
i
o
l
o
g
i
c
a
l
si
g
n
a
l
s
u
s
i
n
g
m
a
c
h
i
n
e
l
e
a
r
n
i
n
g
,
”
i
n
2
n
d
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
n
o
v
a
t
i
v
e
M
e
c
h
a
n
i
sm
s
f
o
r
I
n
d
u
st
r
y
A
p
p
l
i
c
a
t
i
o
n
s,
I
C
I
MIA
2
0
2
0
-
C
o
n
f
e
re
n
c
e
P
ro
c
e
e
d
i
n
g
s
,
M
a
r
.
2
0
2
0
,
p
p
.
2
4
0
–
2
4
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
M
I
A
4
8
4
3
0
.
2
0
2
0
.
9
0
7
4
8
8
3
.
[
4
]
K
.
C
.
H
e
e
sc
h
,
R
.
L.
H
i
l
l
,
N
.
A
g
u
i
l
a
r
-
F
a
r
i
a
s,
J.
G
.
Z.
v
a
n
U
f
f
e
l
e
n
,
a
n
d
T.
P
a
v
e
y
,
“
V
a
l
i
d
i
t
y
o
f
o
b
j
e
c
t
i
v
e
m
e
t
h
o
d
s
f
o
r
m
e
a
s
u
r
i
n
g
sed
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
i
n
o
l
d
e
r
a
d
u
l
t
s
:
a
sy
s
t
e
mat
i
c
r
e
v
i
e
w
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
B
e
h
a
v
i
o
ra
l
N
u
t
ri
t
i
o
n
a
n
d
Ph
y
s
i
c
a
l
Ac
t
i
v
i
t
y
,
v
o
l
.
1
5
,
n
o
.
1
,
p
.
1
1
9
,
D
e
c
.
2
0
1
8
,
d
o
i
:
1
0
.
1
1
8
6
/
s
1
2
9
6
6
-
0
1
8
-
0
7
4
9
-
2.
[
5
]
W
.
H
a
o
x
i
a
n
g
a
n
d
S
.
S
m
y
s
,
“
O
v
e
r
v
i
e
w
o
f
c
o
n
f
i
g
u
r
i
n
g
a
d
a
p
t
i
v
e
a
c
t
i
v
a
t
i
o
n
f
u
n
c
t
i
o
n
s
f
o
r
d
e
e
p
n
e
u
r
a
l
n
e
t
w
o
r
k
s
-
a
c
o
m
p
a
r
a
t
i
v
e
st
u
d
y
,
”
J
o
u
rn
a
l
o
f
U
b
i
q
u
i
t
o
u
s
C
o
m
p
u
t
i
n
g
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s
,
v
o
l
.
3
,
n
o
.
1
,
p
p
.
1
0
–
2
2
,
M
a
y
2
0
2
1
,
d
o
i
:
1
0
.
3
6
5
4
8
/
j
u
c
c
t
.
2
0
2
1
.
1
.
0
0
2
.
[
6
]
E.
F
r
i
d
r
i
k
s
d
o
t
t
i
r
a
n
d
A
.
G
.
B
o
n
o
mi
,
“
A
c
c
e
l
e
r
o
met
e
r
-
b
a
se
d
h
u
ma
n
a
c
t
i
v
i
t
y
r
e
c
o
g
n
i
t
i
o
n
f
o
r
p
a
t
i
e
n
t
m
o
n
i
t
o
r
i
n
g
u
si
n
g
a
d
e
e
p
n
e
u
r
a
l
n
e
t
w
o
r
k
,
”
S
e
n
s
o
rs (
S
w
i
t
z
e
rl
a
n
d
)
,
v
o
l
.
2
0
,
n
o
.
2
2
,
p
p
.
1
–
1
3
,
N
o
v
.
2
0
2
0
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
0
2
2
6
4
2
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J I
n
f
&
C
o
m
m
u
n
T
ec
h
n
o
l
I
SS
N:
2252
-
8
7
7
6
R
ea
l
-
time
p
o
s
tu
r
e
mo
n
ito
r
in
g
p
r
ed
ictio
n
fo
r
mitig
a
tin
g
s
ed
e
n
ta
r
y
h
ea
lth
…
(
D.
B
.
S
h
a
n
mu
g
a
m
)
1135
[
7
]
D
.
B
.
S
h
a
n
m
u
g
a
m
a
n
d
J
.
D
h
i
l
i
p
a
n
,
“
S
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
h
e
a
l
t
h
o
u
t
c
o
m
e
s
a
n
d
i
d
e
n
t
i
f
y
i
n
g
t
h
e
u
n
c
e
r
t
a
i
n
b
e
h
a
v
i
o
r
p
a
t
t
e
r
n
s
i
n
a
d
u
l
t
,”
S
c
i
e
n
t
i
f
i
c
a
n
d
T
e
c
h
n
i
c
a
l
J
o
u
r
n
a
l
o
f
I
n
f
o
rm
a
t
i
o
n
T
e
c
h
n
o
l
o
g
i
e
s,
M
e
c
h
a
n
i
c
s
a
n
d
O
p
t
i
c
s
,
v
o
l
.
2
3
,
n
o
.
5
,
p
p
.
1
0
2
1
–
1
0
2
9
,
O
c
t
.
2
0
2
3
,
d
o
i
:
1
0
.
1
7
5
8
6
/
2
2
2
6
-
1
4
9
4
-
2
0
2
3
-
23
-
5
-
1
0
2
1
-
1
0
2
9
.
[
8
]
F
.
C
.
B
u
l
l
e
t
a
l
.
,
“
W
o
r
l
d
H
e
a
l
t
h
O
r
g
a
n
i
z
a
t
i
o
n
2
0
2
0
g
u
i
d
e
l
i
n
e
s
o
n
p
h
y
s
i
c
a
l
a
c
t
i
v
i
t
y
a
n
d
se
d
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
,
”
Bri
t
i
sh
J
o
u
r
n
a
l
o
f
S
p
o
r
t
s M
e
d
i
c
i
n
e
,
v
o
l
.
5
4
,
n
o
.
2
4
,
p
p
.
1
4
5
1
–
1
4
6
2
,
N
o
v
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
3
6
/
b
j
sp
o
r
t
s
-
2
0
2
0
-
1
0
2
9
5
5
.
[
9
]
C
.
L
.
E
d
w
a
r
d
s
o
n
e
t
a
l
.
,
“
Ef
f
e
c
t
i
v
e
n
e
s
s
o
f
a
n
i
n
t
e
r
v
e
n
t
i
o
n
f
o
r
r
e
d
u
c
i
n
g
s
i
t
t
i
n
g
t
i
me
a
n
d
i
mp
r
o
v
i
n
g
h
e
a
l
t
h
i
n
o
f
f
i
c
e
w
o
r
k
e
r
s
:
t
h
r
e
e
a
r
m c
l
u
s
t
e
r
r
a
n
d
o
mi
s
e
d
c
o
n
t
r
o
l
l
e
d
t
r
i
a
l
,
”
T
h
e
B
MJ
,
v
o
l
.
3
7
8
,
p
.
e
0
6
9
2
8
8
,
A
u
g
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
3
6
/
b
mj
-
2
0
2
1
-
0
6
9
2
8
8
.
[
1
0
]
N
.
O
w
e
n
e
t
a
l
.
,
“
S
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
a
n
d
p
u
b
l
i
c
h
e
a
l
t
h
:
I
n
t
e
g
r
a
t
i
n
g
t
h
e
e
v
i
d
e
n
c
e
a
n
d
i
d
e
n
t
i
f
y
i
n
g
p
o
t
e
n
t
i
a
l
s
o
l
u
t
i
o
n
s,
”
An
n
u
a
l
Re
v
i
e
w
o
f
Pu
b
l
i
c
H
e
a
l
t
h
,
v
o
l
.
4
1
,
n
o
.
1
,
p
p
.
2
6
5
–
2
8
7
,
A
p
r
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
4
6
/
a
n
n
u
r
e
v
-
p
u
b
l
h
e
a
l
t
h
-
0
4
0
1
1
9
-
0
9
4
2
0
1
.
[
1
1
]
J.
P
.
V
a
a
r
a
e
t
a
l
.
,
“
D
e
v
i
c
e
-
b
a
s
e
d
me
a
s
u
r
e
s
o
f
se
d
e
n
t
a
r
y
t
i
m
e
a
n
d
p
h
y
si
c
a
l
a
c
t
i
v
i
t
y
a
r
e
a
sso
c
i
a
t
e
d
w
i
t
h
p
h
y
si
c
a
l
f
i
t
n
e
ss a
n
d
b
o
d
y
f
a
t
c
o
n
t
e
n
t
,
”
Fr
o
n
t
i
e
rs
i
n
S
p
o
rt
s
a
n
d
A
c
t
i
v
e
L
i
v
i
n
g
,
v
o
l
.
2
,
D
e
c
.
2
0
2
0
,
d
o
i
:
1
0
.
3
3
8
9
/
f
s
p
o
r
.
2
0
2
0
.
5
8
7
7
8
9
.
[
1
2
]
S
.
W
.
M
.
C
h
e
n
g
,
J.
A
.
A
l
i
s
o
n
,
E
.
S
t
a
mat
a
k
i
s,
S
.
M
.
D
e
n
n
i
s,
a
n
d
Z.
J.
M
c
K
e
o
u
g
h
,
“
P
a
t
t
e
r
n
s
a
n
d
c
o
r
r
e
l
a
t
e
s
o
f
s
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
a
c
c
u
m
u
l
a
t
i
o
n
a
n
d
p
h
y
s
i
c
a
l
a
c
t
i
v
i
t
y
i
n
p
e
o
p
l
e
w
i
t
h
c
h
r
o
n
i
c
o
b
s
t
r
u
c
t
i
v
e
p
u
l
m
o
n
a
r
y
d
i
se
a
se
:
a
c
r
o
ss
-
se
c
t
i
o
n
a
l
st
u
d
y
,
”
C
O
PD
:
J
o
u
rn
a
l
o
f
C
h
r
o
n
i
c
O
b
st
r
u
c
t
i
v
e
P
u
l
m
o
n
a
r
y
D
i
s
e
a
se
,
v
o
l
.
1
7
,
n
o
.
2
,
p
p
.
1
5
6
–
1
6
4
,
M
a
r
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
8
0
/
1
5
4
1
2
5
5
5
.
2
0
2
0
.
1
7
4
0
1
8
9
.
[
1
3
]
A
.
D
a
v
o
u
d
i
e
t
a
l
.
,
“
I
n
t
e
l
l
i
g
e
n
t
I
C
U
f
o
r
a
u
t
o
n
o
mo
u
s
p
a
t
i
e
n
t
m
o
n
i
t
o
r
i
n
g
u
si
n
g
p
e
r
v
a
s
i
v
e
se
n
si
n
g
a
n
d
d
e
e
p
l
e
a
r
n
i
n
g
,
”
S
c
i
e
n
t
i
f
i
c
Re
p
o
r
t
s
,
v
o
l
.
9
,
n
o
.
1
,
M
a
y
2
0
1
9
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
9
8
-
0
1
9
-
4
4
0
0
4
-
w.
[
1
4
]
P
.
C
.
D
e
m
p
se
y
e
t
a
l
.
,
“
N
e
w
g
l
o
b
a
l
g
u
i
d
e
l
i
n
e
s
o
n
s
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
a
n
d
h
e
a
l
t
h
f
o
r
a
d
u
l
t
s
:
b
r
o
a
d
e
n
i
n
g
t
h
e
b
e
h
a
v
i
o
u
r
a
l
t
a
r
g
e
t
s,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
B
e
h
a
v
i
o
r
a
l
N
u
t
r
i
t
i
o
n
a
n
d
P
h
y
si
c
a
l
Ac
t
i
v
i
t
y
,
v
o
l
.
1
7
,
n
o
.
1
,
N
o
v
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
8
6
/
s
1
2
9
6
6
-
0
2
0
-
0
1
0
4
4
-
0.
[
1
5
]
P
.
C
.
D
e
m
p
se
y
e
t
a
l
.
,
“
S
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
a
n
d
c
h
r
o
n
i
c
d
i
s
e
a
s
e
:
me
c
h
a
n
i
s
ms
a
n
d
f
u
t
u
r
e
d
i
r
e
c
t
i
o
n
s,
”
J
o
u
r
n
a
l
o
f
P
h
y
s
i
c
a
l
A
c
t
i
v
i
t
y
a
n
d
H
e
a
l
t
h
,
v
o
l
.
1
7
,
n
o
.
1
,
p
p
.
5
2
–
6
1
,
Jan
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
2
3
/
j
p
a
h
.
2
0
1
9
-
0
3
7
7
.
[
1
6
]
T.
A
b
r
a
h
a
m
,
S
.
A
.
B
i
n
o
o
s
h
,
a
n
d
K
.
R
.
R
.
B
a
b
u
,
“
V
i
r
t
u
a
l
mo
d
e
l
l
i
n
g
a
n
d
a
n
a
l
y
si
s
o
f
ma
n
u
a
l
m
a
t
e
r
i
a
l
h
a
n
d
l
i
n
g
a
c
t
i
v
i
t
i
e
s
a
mo
n
g
w
a
r
e
h
o
u
se
w
o
r
k
e
r
s i
n
t
h
e
c
o
n
st
r
u
c
t
i
o
n
i
n
d
u
st
r
y
,
”
W
o
rk
,
v
o
l
.
7
3
,
n
o
.
3
,
p
p
.
9
7
7
–
9
9
0
,
N
o
v
.
2
0
2
2
,
d
o
i
:
1
0
.
3
2
3
3
/
W
O
R
-
2
1
0
7
4
2
.
[
1
7
]
M
.
G
i
u
r
g
i
u
e
t
a
l
.
,
“
V
a
l
i
d
a
t
i
n
g
a
c
c
e
l
e
r
o
me
t
e
r
s
f
o
r
t
h
e
a
ss
e
ssm
e
n
t
o
f
b
o
d
y
p
o
si
t
i
o
n
a
n
d
s
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
r
,
”
J
o
u
r
n
a
l
f
o
r
t
h
e
Me
a
su
r
e
m
e
n
t
o
f
P
h
y
s
i
c
a
l
Be
h
a
v
i
o
u
r
,
v
o
l
.
3
,
n
o
.
3
,
p
p
.
2
5
3
–
2
6
3
,
S
e
p
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
2
3
/
j
m
p
b
.
2
0
1
9
-
0
0
6
8
.
[
1
8
]
M
.
H
a
l
l
g
r
e
n
e
t
a
l
.
,
“
A
ss
o
c
i
a
t
i
o
n
s
o
f
i
n
t
e
r
r
u
p
t
i
o
n
s
t
o
l
e
i
s
u
r
e
-
t
i
m
e
s
e
d
e
n
t
a
r
y
b
e
h
a
v
i
o
u
r
w
i
t
h
sy
m
p
t
o
ms
o
f
d
e
p
r
e
ss
i
o
n
a
n
d
a
n
x
i
e
t
y
,
”
T
ra
n
s
l
a
t
i
o
n
a
l
Psy
c
h
i
a
t
ry
,
v
o
l
.
1
0
,
n
o
.
1
,
M
a
y
2
0
2
0
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
3
9
8
-
020
-
0
8
1
0
-
1.
[
1
9
]
H
.
K
.
Ja
n
g
,
H
.
H
a
n
,
a
n
d
S
.
W
.
Y
o
o
n
,
“
C
o
m
p
r
e
h
e
n
si
v
e
mo
n
i
t
o
r
i
n
g
o
f
b
a
d
h
e
a
d
a
n
d
sh
o
u
l
d
e
r
p
o
st
u
r
e
s
b
y
w
e
a
r
a
b
l
e
ma
g
n
e
t
i
c
sen
s
o
r
s
a
n
d
d
e
e
p
l
e
a
r
n
i
n
g
,
”
I
E
EE
S
e
n
s
o
rs
J
o
u
rn
a
l
,
v
o
l
.
2
0
,
n
o
.
2
2
,
p
p
.
1
3
7
6
8
–
1
3
7
7
5
,
N
o
v
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
JS
EN
.
2
0
2
0
.
3
0
0
4
5
6
2
.
[
2
0
]
L.
Ji
a
,
Y
.
G
u
,
K
.
C
h
e
n
g
,
H
.
Y
a
n
,
a
n
d
F
.
R
e
n
,
“
B
e
A
w
a
r
e
:
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
(
C
N
N
)
b
a
se
d
u
ser
b
e
h
a
v
i
o
r
u
n
d
e
r
s
t
a
n
d
i
n
g
t
h
r
o
u
g
h
W
i
F
i
c
h
a
n
n
e
l
s
t
a
t
e
i
n
f
o
r
ma
t
i
o
n
,
”
N
e
u
r
o
c
o
m
p
u
t
i
n
g
,
v
o
l
.
3
9
7
,
p
p
.
457
–
4
6
3
,
J
u
l
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
n
e
u
c
o
m.
2
0
1
9
.
0
9
.
1
1
1
.
[
2
1
]
W
.
R
.
T
i
n
k
e
r
,
“
A
n
e
x
p
l
o
r
a
t
o
r
y
s
t
u
d
y
o
f
e
r
g
o
n
o
mi
c
s
i
n
c
o
l
l
e
g
e
s
t
u
d
e
n
t
s,
”
M
u
r
r
a
y
S
t
a
t
e
U
n
i
v
e
r
si
t
y
,
2
0
2
3
.
[
2
2
]
M
.
H
.
J
a
f
f
e
r
y
e
t
a
l
.
,
“
F
S
R
-
b
a
se
d
sm
a
r
t
sy
s
t
e
m
f
o
r
d
e
t
e
c
t
i
o
n
o
f
w
h
e
e
l
c
h
a
i
r
si
t
t
i
n
g
p
o
st
u
r
e
s
u
si
n
g
ma
c
h
i
n
e
l
e
a
r
n
i
n
g
a
l
g
o
r
i
t
h
ms
a
n
d
t
e
c
h
n
i
q
u
e
s,
”
J
o
u
rn
a
l
o
f
S
e
n
s
o
rs
,
v
o
l
.
2
0
2
2
,
p
p
.
1
–
1
0
,
M
a
y
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
2
/
1
9
0
1
0
5
8
.
[
2
3
]
X
.
Zh
a
n
g
,
J
.
F
a
n
,
T.
P
e
n
g
,
P
.
Z
h
e
n
g
,
C
.
K
.
M
.
Le
e
,
a
n
d
R
.
Ta
n
g
,
“
A
p
r
i
v
a
c
y
-
p
r
e
ser
v
i
n
g
a
n
d
u
n
o
b
t
r
u
si
v
e
s
i
t
t
i
n
g
p
o
st
u
r
e
r
e
c
o
g
n
i
t
i
o
n
s
y
s
t
e
m
v
i
a
p
r
e
ssu
r
e
a
r
r
a
y
se
n
s
o
r
a
n
d
i
n
f
r
a
r
e
d
a
r
r
a
y
s
e
n
s
o
r
f
o
r
o
f
f
i
c
e
w
o
r
k
e
r
s,”
Ad
v
a
n
c
e
d
E
n
g
i
n
e
e
ri
n
g
I
n
f
o
rm
a
t
i
c
s
,
v
o
l
.
5
3
,
p
.
1
0
1
6
9
0
,
A
u
g
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
e
i
.
2
0
2
2
.
1
0
1
6
9
0
.
[
2
4
]
R
.
O
.
O
g
u
n
d
o
k
u
n
,
R
.
M
a
s
k
e
l
i
ū
n
a
s,
S
.
M
i
sr
a
,
a
n
d
R
.
D
a
m
a
se
v
i
c
i
u
s
,
“
A
n
o
v
e
l
d
e
e
p
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
a
p
p
r
o
a
c
h
b
a
s
e
d
o
n
d
e
p
t
h
-
w
i
s
e
sep
a
r
a
b
l
e
C
N
N
f
o
r
h
u
ma
n
p
o
s
t
u
r
e
d
e
t
e
c
t
i
o
n
,
”
I
n
f
o
rm
a
t
i
o
n
(
S
w
i
t
zer
l
a
n
d
)
,
v
o
l
.
1
3
,
n
o
.
1
1
,
p
.
5
2
0
,
O
c
t
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
i
n
f
o
1
3
1
1
0
5
2
0
.
[
2
5
]
J.
A
r
sh
a
d
,
H
.
M
.
A
si
m
,
M
.
A
.
A
s
h
r
a
f
,
M
.
H
.
Jaff
e
r
y
,
K
.
S
.
Za
i
d
i
,
a
n
d
M
.
D
.
A
me
n
t
i
e
,
“
A
n
i
n
t
e
l
l
i
g
e
n
t
c
o
s
t
-
e
f
f
i
c
i
e
n
t
s
y
s
t
e
m
t
o
p
r
e
v
e
n
t
t
h
e
i
m
p
r
o
p
e
r
p
o
s
t
u
r
e
h
a
z
a
r
d
s
i
n
o
f
f
i
c
e
s
u
s
i
n
g
mac
h
i
n
e
l
e
a
r
n
i
n
g
a
l
g
o
r
i
t
h
ms,”
C
o
m
p
u
t
a
t
i
o
n
a
l
I
n
t
e
l
l
i
g
e
n
c
e
a
n
d
N
e
u
ro
s
c
i
e
n
c
e
,
v
o
l
.
2
0
2
2
,
p
p
.
1
–
9
,
A
u
g
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
2
/
7
9
5
7
1
4
8
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
D.
B
.
S
h
a
n
m
u
g
a
m
re
c
e
iv
e
d
h
is
Ba
c
h
e
lo
r’s
d
e
g
re
e
i
n
c
o
m
p
u
ter
s
c
ien
c
e
fro
m
M
.
G
.
R
Un
iv
e
rsity
in
2
0
0
1
.
He
c
o
m
p
lete
d
h
is
M
a
ste
r’s
in
Co
m
p
u
ter
Ap
p
li
c
a
ti
o
n
s
(M
CA)
a
t
S
h
a
n
m
u
g
a
A
rts
a
n
d
S
c
ie
n
c
e
Co
l
leg
e
in
2
0
0
3
.
C
u
rre
n
tl
y
,
h
e
is
p
u
rsu
in
g
P
h
.
D.
i
n
c
o
m
p
u
ter
sc
ien
c
e
a
t
S
RM
I
n
stit
u
te
o
f
S
c
ien
c
e
a
n
d
Tec
h
n
o
l
o
g
y
,
Ch
e
n
n
a
i.
He
h
a
s
2
0
y
e
a
rs
o
f
e
x
p
e
rien
c
e
a
s
a
n
a
ss
istan
t
p
ro
fe
ss
o
r,
tea
c
h
in
g
b
o
th
u
n
d
e
rg
ra
d
u
a
te
a
n
d
p
o
stg
ra
d
u
a
te
stu
d
e
n
ts.
Hi
s
sp
e
c
ializa
ti
o
n
s
a
n
d
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
re
c
o
m
m
e
n
d
a
ti
o
n
sy
st
e
m
s,
se
m
a
n
ti
c
tec
h
n
o
lo
g
ies
,
o
n
t
o
lo
g
y
,
c
it
a
ti
o
n
n
e
two
rk
s,
a
n
d
I
o
T.
He
c
a
n
b
e
c
o
n
tac
te
d
a
t
e
m
a
il
:
sh
a
n
m
u
g
d
@s
rm
ist.
e
d
u
.
in
.
J
.
Dhi
li
p
a
n
is
c
u
rre
n
tl
y
se
rv
in
g
a
s
th
e
Vic
e
P
rin
c
i
p
a
l
Ad
m
in
a
n
d
th
e
He
a
d
o
f
Co
m
p
u
ter
Ap
p
li
c
a
ti
o
n
s
(M
CA)
a
t
S
RM
In
stit
u
te
o
f
S
c
ien
c
e
a
n
d
Te
c
h
n
o
l
o
g
y
,
Ch
e
n
n
a
i
with
a
n
e
x
p
e
rien
c
e
o
f
m
o
re
th
a
n
2
5
y
e
a
rs.
He
o
b
tai
n
e
d
h
is
P
h
.
D
.
d
e
g
re
e
in
th
e
y
e
a
r
2
0
1
4
fr
o
m
M
a
n
o
n
m
a
m
iam
S
u
n
d
a
ra
n
a
r
Un
i
v
e
rsity
i
n
th
e
f
ield
o
f
e
-
c
o
m
m
e
rc
e
a
n
d
d
a
ta
a
n
a
ly
ti
c
s.
He
h
a
s
p
u
b
li
sh
e
d
se
v
e
ra
l
re
se
a
rc
h
p
a
p
e
rs
in
p
e
e
r
re
v
iew
e
d
re
p
u
te
d
S
c
o
p
u
s
in
d
e
x
e
d
jo
u
rn
a
ls
i
n
t
h
e
a
re
a
s
o
f
m
a
c
h
in
e
lea
rn
in
g
,
c
lo
u
d
c
o
m
p
u
ti
n
g
,
I
o
T
,
a
n
d
d
a
ta
a
n
a
ly
t
ics
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
h
o
d
.
m
c
a
.
rm
p
@s
rm
ist.
e
d
u
.
i
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.