I
AE
S In
t
er
na
t
io
na
l J
o
urna
l o
f
Art
if
icia
l In
t
ellig
ence
(
I
J
-
AI
)
Vo
l.
14
,
No
.
4
,
A
u
g
u
s
t
20
25
,
p
p
.
2
7
3
4
~
2
7
4
0
I
SS
N:
2
2
5
2
-
8
9
3
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijai.v
14
.i
4
.
p
p
2
7
3
4
-
2
7
4
0
2734
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
a
i
.
ia
esco
r
e.
co
m
A f
usio
n conv
o
lut
io
n neural ne
twor
k
-
lo
ca
l bina
ry
pat
tern
histo
g
ra
m a
lg
o
rithm f
o
r emo
tion r
ecog
nition in hum
a
n
Arpa
na
G
iridh
a
r
K
a
t
t
i,
Chid
a
na
nd
a
M
urt
hy
M
elek
o
t
e
Vina
y
a
k
a
m
urt
hy
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
o
n
i
c
s a
n
d
C
o
mm
u
n
i
c
a
t
i
o
n
En
g
i
n
e
e
r
i
n
g
,
S
r
i
S
i
d
d
h
a
r
t
h
a
I
n
st
i
t
u
t
e
o
f
T
e
c
h
n
o
l
o
g
y
,
S
r
i
S
i
d
d
h
a
r
t
h
a
A
c
a
d
e
m
y
o
f
H
i
g
h
e
r
Ed
u
c
a
t
i
o
n
,
Tu
m
k
u
r
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
9
,
2024
R
ev
is
ed
J
u
n
14
,
2
0
2
5
Acc
ep
ted
J
u
l
10
,
2
0
2
5
Th
is
p
a
p
e
r
p
r
o
p
o
se
s
a
fu
sio
n
o
f
a
lg
o
ri
th
m
s
n
a
m
e
ly
c
o
n
v
o
lu
ti
o
n
n
e
u
ra
l
n
e
two
rk
s
(CNN
)
a
n
d
lo
c
a
l
b
in
a
r
y
p
a
tt
e
r
n
h
isto
g
ra
m
(LBP
H)
tec
h
n
i
q
u
e
s
t
o
c
o
m
p
re
h
e
n
d
th
e
e
m
o
ti
o
n
s
in
h
u
m
a
n
s
fo
r
g
re
y
sc
a
le
ima
g
e
s.
In
t
h
is
wo
rk
,
th
e
c
o
m
b
in
e
d
a
d
v
a
n
tag
e
s o
f
CNN
fo
r
it
s a
b
il
it
y
t
o
e
x
trac
t
fe
a
tu
re
s,
su
it
a
b
il
it
y
f
o
r
ima
g
e
p
ro
c
e
ss
in
g
a
n
d
LB
P
H
a
l
g
o
rit
h
m
to
id
e
n
ti
fy
th
e
e
m
o
ti
o
n
s
o
f
t
h
e
h
u
m
a
n
ima
g
e
s
a
re
in
c
lu
d
e
d
.
T
h
o
u
g
h
th
e
re
a
re
e
n
h
a
n
c
e
d
fu
se
d
a
lg
o
rit
h
m
s
with
CNN
fo
r
ima
g
e
p
r
o
c
e
ss
in
g
,
th
e
c
o
m
b
i
n
a
ti
o
n
o
f
LBP
H
wit
h
CNN
is
p
re
c
ise
a
n
d
s
imp
le
in
d
e
sig
n
.
I
n
t
h
is
wo
rk
,
t
h
e
se
c
o
n
d
a
ry
d
a
ta
sa
m
p
le
is
u
se
d
to
re
c
o
g
n
ize
t
h
e
h
u
m
a
n
e
m
o
ti
o
n
s.
Th
e
se
c
o
n
d
a
ry
d
a
ta
se
t
c
o
n
sis
ts
o
f
1
6
0
sa
m
p
les
with
e
m
o
t
io
n
s
o
f
h
a
p
p
y
,
a
n
g
e
r,
sa
d
,
a
n
d
s
u
rp
rise
is
c
o
n
si
d
e
re
d
f
o
r
m
a
k
in
g
d
e
c
isio
n
s.
I
n
c
o
m
p
a
riso
n
,
th
e
a
c
c
u
ra
c
y
o
f
t
h
e
p
r
o
p
o
se
d
m
e
th
o
d
is
h
ig
h
c
o
m
p
a
re
d
to
th
e
o
th
e
r
a
lg
o
rit
h
m
s.
K
ey
w
o
r
d
s
:
C
o
n
v
o
lu
tio
n
al
n
eu
r
al
n
etwo
r
k
E
m
o
tio
n
r
ec
o
g
n
itio
n
Hu
m
an
I
m
ag
e
an
aly
s
is
L
in
ea
r
b
in
ar
y
p
atter
n
h
is
to
g
r
a
m
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ar
p
an
a
Gir
id
h
a
r
Katti
Dep
ar
tm
en
t o
f
E
lectr
o
n
ics an
d
C
o
m
m
u
n
icatio
n
E
n
g
in
ee
r
i
n
g
,
Sri
Sid
d
h
ar
th
a
I
n
s
titu
te
o
f
T
e
ch
n
o
lo
g
y
Sri
Sid
d
h
ar
th
a
Aca
d
em
y
o
f
Hig
h
er
E
d
u
ca
tio
n
Ma
r
alu
r
,
T
u
m
k
u
r
5
7
2
1
0
5
,
Ka
r
n
atak
a,
I
n
d
ia
E
m
ail:
ar
p
an
ak
atti2
6
8
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Hu
m
an
em
o
tio
n
id
en
tific
atio
n
is
a
k
ey
ar
ea
o
f
r
esear
ch
af
ter
th
e
er
a
o
f
s
m
ar
t
g
en
er
a
tio
n
.
Mo
s
t
AI
-
b
ased
s
m
ar
t
a
p
p
licatio
n
s
u
s
e
th
e
h
u
m
an
f
ac
e
id
e
n
tific
atio
n
s
y
s
tem
to
au
th
e
n
ticate,
in
t
er
ac
t,
o
r
v
alid
ate
its
p
u
r
p
o
s
e.
T
h
o
u
g
h
m
ac
h
in
e
lear
n
in
g
an
d
d
ee
p
lear
n
i
n
g
alg
o
r
it
h
m
s
ar
e
u
tili
ze
d
f
o
r
im
ag
e
r
ec
o
g
n
itio
n
,
th
e
lin
ea
r
b
in
ar
y
p
atter
n
h
is
to
g
r
am
(
L
B
PH)
is
p
r
ef
er
r
ed
f
o
r
th
e
f
ea
t
u
r
e
ex
tr
ac
tio
n
o
f
th
e
h
u
m
an
f
ac
e
as
it
in
v
o
lv
es
b
in
ar
y
n
u
m
b
e
r
m
an
i
p
u
latio
n
with
its
h
is
to
g
r
am
.
T
h
e
h
u
m
an
f
ac
e
im
ag
e
is
tr
an
s
f
o
r
m
ed
to
way
a
n
g
o
r
a
n
g
i
m
ag
e
u
s
in
g
th
e
u
n
s
u
p
e
r
v
is
ed
g
en
er
ativ
e
atten
tio
n
al
n
etwo
r
k
with
ad
a
p
tiv
e
lay
er
-
in
s
tan
ce
n
o
r
m
aliza
tio
n
im
ag
e
tr
an
s
latio
n
.
T
h
is
m
eth
o
d
co
n
s
id
er
s
th
e
b
ac
k
g
r
o
u
n
d
alo
n
g
with
th
e
h
u
m
an
f
ac
e
f
o
r
its
tr
an
s
latio
n
[
1
]
.
Au
to
m
atic
f
ac
e
r
ec
o
g
n
itio
n
is
attain
ed
u
s
in
g
th
e
m
o
d
if
y
b
id
ir
ec
tio
n
al
ass
o
ciativ
e
m
em
o
r
y
alg
o
r
ith
m
th
at
e
x
tr
ac
ts
th
e
h
u
m
a
n
f
ac
e
f
ea
tu
r
es
f
o
r
th
e
s
ak
e
o
f
id
en
tific
atio
n
[
2
]
.
T
h
e
em
o
tio
n
o
f
h
u
m
a
n
s
an
d
th
e
v
elo
city
o
f
th
e
o
b
s
tacle
s
ar
e
m
an
ip
u
l
ated
in
ca
s
e
o
f
a
n
y
em
er
g
en
cy
e
v
ac
u
atio
n
is
n
ee
d
ed
u
s
in
g
th
e
e
m
o
tio
n
al
r
ec
ip
r
o
ca
l
v
elo
city
o
b
s
tacle
s
m
eth
o
d
[
3
]
.
T
h
e
ca
m
er
a
-
b
ased
f
ac
e
r
ec
o
g
n
itio
n
f
o
r
th
e
r
esid
en
t
is
d
ev
elo
p
e
d
u
s
in
g
th
e
Haa
r
tr
an
s
f
o
r
m
a
n
d
L
B
PH
m
eth
o
d
to
m
ak
e
co
n
tact
less
au
to
m
ated
d
o
o
r
o
p
en
in
g
[
4
]
.
T
h
e
L
B
PH
s
ee
m
s
to
b
e
a
p
o
wer
f
u
l
alg
o
r
ith
m
i
n
co
m
p
ar
is
o
n
to
th
e
o
th
er
alg
o
r
ith
m
s
u
s
e
d
f
o
r
im
ag
e
class
if
icatio
n
[
5
]
.
T
h
e
u
n
if
o
r
m
L
B
PH
is
p
r
o
n
e
to
n
o
is
e
s
en
s
itiv
ity
an
d
is
u
s
ed
f
o
r
th
e
em
o
tio
n
s
in
t
h
e
h
u
m
an
f
ac
e
[
6
]
.
T
h
e
f
ac
ial
em
o
tio
n
s
ar
e
r
ec
o
g
n
ize
d
u
n
d
er
d
if
f
er
en
t
wea
th
er
co
n
d
itio
n
s
an
d
a
r
e
i
m
p
le
m
en
ted
u
s
in
g
th
e
L
B
PH
alg
o
r
ith
m
[
7
]
.
T
h
e
L
B
PH
h
u
m
an
f
ac
e
r
ec
o
g
n
itio
n
u
n
d
er
v
a
r
y
in
g
co
n
d
itio
n
s
ca
n
b
e
u
s
ed
f
o
r
id
en
tify
in
g
c
r
im
in
al
p
e
r
s
o
n
s
[
8
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ar
tif
I
n
tell
I
SS
N:
2252
-
8
9
3
8
A
fu
s
io
n
co
n
v
o
lu
tio
n
n
eu
r
a
l n
etw
o
r
k
-
lo
ca
l b
in
a
r
y
p
a
tter
n
h
i
s
to
g
r
a
m
a
lg
o
r
ith
m
…
(
A
r
p
a
n
a
Gir
id
h
a
r
K
a
tti
)
2735
I
n
r
ec
en
t
tim
es,
th
e
L
B
PH
alg
o
r
ith
m
h
as
b
ee
n
u
tili
ze
d
in
d
if
f
er
e
n
t
en
v
ir
o
n
m
en
ts
f
o
r
its
h
ig
h
ac
cu
r
ac
y
co
m
p
ar
ed
to
t
h
e
o
t
h
er
alg
o
r
ith
m
s
.
T
h
e
L
B
PH
a
lg
o
r
ith
m
is
u
tili
ze
d
to
f
in
d
t
h
e
s
ix
em
o
tio
n
s
o
f
h
u
m
an
s
b
y
co
n
s
id
er
in
g
th
e
d
if
f
er
en
t
r
e
g
io
n
s
o
f
th
e
f
ac
e
a
n
d
s
ev
er
al
ag
e
g
r
o
u
p
s
[
9
]
.
T
h
e
h
u
m
a
n
em
o
tio
n
u
n
d
er
s
tan
d
i
n
g
ca
n
b
e
en
h
an
ce
d
b
y
f
o
c
u
s
in
g
o
n
th
e
lip
a
n
d
f
a
cial
im
ag
es th
at
co
u
ld
en
h
an
ce
th
e
ac
cu
r
ac
y
[
1
0
]
.
T
h
e
id
en
tific
atio
n
o
f
th
e
h
u
m
a
n
is
b
ased
o
n
th
e
ea
r
im
ag
es
u
s
in
g
th
e
L
B
PH
[
1
1
]
.
T
h
e
h
is
to
g
r
am
an
aly
s
is
p
lay
s
a
p
iv
o
tal
r
o
le
in
f
ac
e
r
ec
o
g
n
itio
n
u
s
in
g
th
e
L
B
PH
tech
n
iq
u
e.
T
h
e
s
co
r
es
ar
e
as
s
ig
n
ed
to
th
e
h
is
t
o
g
r
am
s
an
d
o
r
ien
te
d
to
class
if
y
th
e
co
lo
r
tex
tu
r
e
[
1
2
]
.
T
h
e
eq
u
aliza
tio
n
o
f
th
e
h
is
to
g
r
am
o
f
th
e
L
B
PH
m
eth
o
d
ex
h
ib
its
h
ig
h
ac
cu
r
ac
y
wh
en
th
e
f
ac
e
is
d
etec
ted
at
lo
w
lig
h
t
in
ten
s
ity
[
1
3
]
.
T
h
ese
m
er
its
o
f
th
e
L
B
PH
ca
n
b
e
in
co
r
p
o
r
ated
with
th
e
o
t
h
er
alg
o
r
ith
m
s
to
attain
m
u
lti
p
le
o
b
jectiv
es
o
f
th
e
im
ag
e
an
aly
s
is
.
T
h
e
f
u
s
io
n
o
f
m
o
m
en
ts
an
d
th
e
L
B
PH
alg
o
r
ith
m
ev
alu
ates
t
h
e
ce
n
ter
o
f
t
h
e
o
b
ject
to
d
etec
t
th
e
s
h
ap
es
o
f
th
e
en
v
ir
o
n
m
en
t
[
1
4
]
.
T
h
e
l
o
w
-
r
eso
lu
tio
n
im
a
g
es
ar
e
c
h
ec
k
ed
f
o
r
f
ac
e
id
e
n
tific
atio
n
u
s
in
g
th
e
co
m
b
in
atio
n
o
f
L
B
PH a
n
d
Ha
ar
ca
s
ca
d
e
class
if
ier
[
1
5
]
.
T
h
e
ap
p
licatio
n
o
f
L
B
PH
v
ar
i
es
f
r
o
m
s
ev
e
r
al
au
th
e
n
ticatio
n
s
to
th
e
v
alid
atio
n
o
f
i
n
d
iv
id
u
als
in
th
e
b
an
k
in
g
s
ec
to
r
,
s
ch
o
o
ls
,
u
n
i
v
e
r
s
ities
,
an
d
co
r
p
o
r
ate
o
f
f
ices.
T
h
e
au
t
o
m
atic
atten
d
a
n
ce
is
m
ar
k
ed
in
r
ea
l
-
tim
e
b
y
u
s
in
g
L
B
PH
-
b
ased
f
ac
e
r
e
co
g
n
itio
n
[
1
6
]
.
T
h
e
co
n
v
o
lu
ti
o
n
n
e
u
r
al
n
etwo
r
k
s
(
C
NN
)
al
g
o
r
ith
m
ca
n
b
e
u
s
ed
to
f
in
d
th
e
im
p
r
o
v
is
atio
n
o
f
m
u
lti
-
lab
el
class
if
icatio
n
o
n
t
h
e
X
-
r
ay
s
im
ag
es
o
f
th
e
ch
es
ts
[
1
7
]
.
T
h
e
s
eismic
h
ap
p
en
i
n
g
s
ca
n
b
e
r
ec
o
g
n
ize
d
au
to
m
atica
lly
u
s
in
g
th
e
t
r
an
s
f
er
-
b
ased
C
NN
alg
o
r
ith
m
[
1
8
]
.
T
h
e
im
ag
e
with
lo
w
r
eso
lu
tio
n
ca
n
b
e
r
ec
o
g
n
iz
ed
f
o
r
t
h
e
f
ac
ial
f
ea
tu
r
es u
s
in
g
th
e
C
NN
[
1
9
]
.
T
h
e
m
u
lti
-
task
C
NN
alg
o
r
ith
m
ca
n
b
e
u
tili
ze
d
to
id
e
n
tify
t
h
e
p
u
b
lic
f
o
r
t
h
e
p
u
r
p
o
s
e
o
f
h
ea
lth
s
af
ety
in
h
o
s
p
ital
an
d
in
p
u
b
lic
d
o
m
ain
s
[
2
0
]
.
T
h
e
C
NN
is
co
m
b
in
ed
with
th
e
au
to
-
e
n
co
d
e
r
to
r
ec
o
v
er
th
e
m
e
d
ical
im
ag
es
th
at
ar
e
tr
a
n
s
f
er
r
ed
t
h
r
o
u
g
h
th
e
clo
u
d
a
n
d
I
o
T
[
2
1
]
.
T
h
e
co
m
b
in
atio
n
o
f
th
e
C
NN
an
d
r
ec
u
r
r
e
n
t
n
eu
r
al
n
etwo
r
k
(
R
NN
)
p
r
o
v
es to
b
e
m
er
ito
r
io
u
s
in
id
e
n
tify
in
g
th
e
s
p
ea
k
er
b
ased
in
t
h
eir
ch
ar
ac
te
r
is
tic
o
f
v
o
ice
[
2
2
]
.
T
h
e
u
s
e
o
f
AI
i
n
t
h
e
wild
-
life
v
id
eo
ca
p
t
u
r
in
g
ca
n
s
av
e
t
h
e
tim
e
an
d
c
o
llect
ac
cu
r
ate
d
at
a
wh
en
it
o
cc
u
r
s
[
2
3
]
.
I
n
Ay
u
r
v
e
d
a
m
e
d
icin
e,
th
e
h
u
m
a
n
f
ac
es
ar
e
c
h
ec
k
ed
f
o
r
d
o
s
h
a
v
ar
iatio
n
s
t
o
d
etec
t
th
e
d
is
ea
s
es
th
at
co
u
ld
em
e
r
g
e
d
u
e
to
in
s
ta
b
ilit
y
in
Do
s
h
as.
T
h
e
im
ag
e
o
u
t
lier
s
ar
e
ex
tin
g
u
is
h
ed
u
s
in
g
th
e
b
in
ar
y
class
if
ier
b
y
m
atch
in
g
t
h
e
E
u
clid
ian
d
is
t
an
ce
m
an
ip
u
latio
n
b
etwe
en
two
im
ag
es u
n
d
er
test
[
2
4
]
. Th
e
clo
u
d
-
b
ased
im
a
g
e
r
ec
o
g
n
itio
n
n
am
el
y
I
m
ag
g
a
a
n
d
Go
o
g
le
a
r
e
ass
ess
ed
f
o
r
e
n
h
an
ce
m
e
n
t
with
o
r
with
o
u
t
t
ex
t
an
d
b
lack
-
an
d
-
wh
ite
o
r
co
lo
r
im
ag
es
[
2
5
]
.
I
n
th
is
p
ap
er
,
th
e
f
u
s
io
n
o
f
C
NN
an
d
L
B
PH
is
u
s
ed
to
r
ec
o
g
n
ize
th
e
f
ac
ial
em
o
tio
n
s
in
h
u
m
an
f
ac
es.
2.
T
H
E
P
RO
P
O
SE
D
F
USI
O
N
F
ACIAL
RE
CO
G
N
I
T
I
O
N
M
E
T
H
O
D
T
h
e
p
r
o
p
o
s
ed
f
u
s
io
n
C
NN
-
L
B
PH
-
b
ased
em
o
tio
n
r
ec
o
g
n
itio
n
alg
o
r
ith
m
co
n
s
is
ts
o
f
tak
in
g
th
e
s
ec
o
n
d
ar
y
im
ag
e
d
ata
s
am
p
les
.
T
h
ese
s
ec
o
n
d
ar
y
d
ata
s
am
p
les
co
n
s
is
t
o
f
4
d
if
f
er
en
t
e
m
o
ti
o
n
s
n
am
ely
h
a
p
p
y
,
s
ad
,
s
u
r
p
r
is
e,
an
d
a
n
g
r
y
.
T
h
e
n
u
m
b
er
o
f
s
am
p
les
co
n
s
id
er
e
d
f
o
r
th
is
wo
r
k
is
1
6
0
with
4
0
s
am
p
les
ea
ch
p
e
r
e
m
o
tio
n
.
T
h
e
b
lo
c
k
d
iag
r
am
f
o
r
th
e
p
r
o
p
o
s
ed
m
eth
o
d
is
d
ep
icted
in
Fig
u
r
e
1
.
Fig
u
r
e
1
.
B
lo
ck
d
iag
r
am
f
o
r
t
h
e
p
r
o
p
o
s
ed
f
u
s
io
n
C
NN
-
L
B
P
H
alg
o
r
ith
m
S
E
C
O
N
D
A
R
Y
D
A
T
A
S
E
T
CNN
A
L
G
O
R
I
T
H
M
P
A
R
A
M
E
T
R
I
C
E
V
A
L
U
A
T
I
O
N
L
O
C
A
L
B
I
N
A
R
Y
P
A
T
T
E
R
N
H
I
S
T
O
G
R
A
M
P
A
R
A
M
E
T
R
I
C
E
V
A
L
U
A
T
I
O
N
I
M
A
G
E
F
E
A
T
U
R
E
S
F
O
R
E
M
O
T
I
O
N
S
I
N
H
U
M
A
N
C
O
NVO
L
UT
I
O
NS
S
U
B
-
S
A
M
P
L
I
N
G
C
O
NVO
L
UT
I
O
NS
S
U
B
-
S
A
M
P
L
I
N
G
F
U
L
L
C
O
N
N
E
C
T
I
O
N
F
U
L
L
C
O
N
N
E
C
T
I
O
N
G
A
U
SS
I
A
N
C
O
N
N
E
C
T
I
O
N
5
9
1
4
4
6
7
2
3
1
1
1
1
1
1
0
0
0
128
64
32
16
8
4
2
1
0
128
64
16
2
1
0
0
0
0
3
X
3
N
E
I
G
H
B
O
R
H
O
O
D
T
H
R
E
SH
O
L
D
R
E
SU
L
T
M
A
SK
P
A
T
T
E
R
N
R
E
SU
L
T
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8
9
3
8
I
n
t J Ar
tif
I
n
tell
,
Vo
l.
14
,
No
.
4
,
Au
g
u
s
t
20
25
:
2
7
3
4
-
2
7
4
0
2736
T
h
e
im
ag
e
d
ata
s
am
p
les
ar
e
c
o
llected
b
ased
o
n
th
e
e
m
o
tio
n
s
o
f
h
u
m
a
n
s
an
d
ar
e
co
n
s
id
e
r
ed
as
th
e
s
ec
o
n
d
ar
y
d
ata
s
am
p
le.
T
h
ese
s
ec
o
n
d
ar
y
d
ata
s
am
p
les
ar
e
g
iv
en
with
th
e
o
p
tio
n
o
f
s
elec
tin
g
eith
er
th
e
C
NN
o
r
th
e
L
B
PH
alg
o
r
ith
m
.
T
h
e
C
NN
alg
o
r
ith
m
is
th
e
co
m
m
o
n
alg
o
r
ith
m
u
tili
ze
d
f
o
r
im
a
g
e
-
b
ased
m
an
ip
u
latio
n
.
T
h
e
im
ag
e
f
ea
tu
r
es a
r
e
ex
tr
ac
t
ed
f
o
r
th
e
em
o
tio
n
s
in
th
e
im
a
g
es.
T
h
e
C
NN
alg
o
r
ith
m
g
o
es th
r
o
u
g
h
two
s
tag
es
o
f
co
n
v
o
lu
tio
n
s
an
d
s
u
b
-
s
am
p
lin
g
.
T
h
e
s
u
b
-
s
am
p
le
d
im
ag
es
f
r
o
m
th
e
s
ec
o
n
d
s
tag
e,
ar
e
f
ed
to
th
e
f
u
lly
co
n
n
ec
ted
lay
er
s
to
r
ec
o
v
er
th
e
im
ag
e
s
ig
n
als.
T
h
e
Gau
s
s
ian
co
n
n
ec
tio
n
is
th
e
ac
tiv
a
tio
n
lay
er
to
h
av
e
non
-
lin
ea
r
ity
in
th
e
im
a
g
e
f
r
o
m
th
e
in
p
u
t to
th
e
o
u
tp
u
t
o
f
th
e
C
NN
alg
o
r
ith
m
.
T
h
e
L
B
PH
alg
o
r
ith
m
wo
r
k
s
with
th
e
n
u
m
b
er
s
as
th
e
im
ag
e
is
class
if
ied
in
to
its
b
in
ar
y
p
atter
n
b
y
co
n
s
id
er
in
g
t
h
e
im
ag
es
as
3
×
3
m
atr
ices.
E
ac
h
o
f
th
e
3
×
3
m
atr
ices
ar
e
s
u
b
jecte
d
to
a
t
h
r
esh
o
ld
in
g
p
r
o
ce
s
s
.
I
n
th
r
esh
o
l
d
in
g
,
t
h
e
v
alu
e
o
f
t
h
e
ce
n
ter
p
i
x
el
is
co
m
p
ar
e
d
with
th
e
n
eig
h
b
o
r
i
n
g
p
i
x
els an
d
i
f
th
e
ce
n
ter
p
ix
el
is
g
r
ea
ter
th
a
n
o
r
eq
u
al
to
t
h
e
n
eig
h
b
o
r
p
ix
el,
t
h
e
b
in
ar
y
h
i
g
h
v
alu
e
o
f
"1
"
is
ass
ig
n
ed
i
n
its
co
r
r
esp
o
n
d
i
n
g
p
ix
els;
else
if
th
e
ce
n
ter
p
ix
el
is
les
s
th
an
th
e
n
eig
h
b
o
r
p
ix
el,
th
e
b
in
ar
y
lo
w
v
alu
e
o
f
"0
"
is
as
s
ig
n
ed
to
th
e
co
r
r
esp
o
n
d
in
g
p
ix
els.
T
h
e
m
a
s
k
m
atr
ic
f
o
r
t
h
e
L
B
PH
is
s
el
ec
ted
b
ased
o
n
th
e
r
e
q
u
ir
ed
f
e
atu
r
e
to
ex
tr
ac
t
f
o
r
em
o
tio
n
r
ec
o
g
n
itio
n
in
h
u
m
a
n
f
ac
e
im
ag
es.
T
h
e
r
e
s
u
ltan
t
p
a
tter
n
is
ev
al
u
ated
t
o
b
e
th
e
u
p
d
ated
3
×
3
m
atr
ix
.
T
h
is
p
r
o
ce
s
s
is
r
ep
ea
ted
f
o
r
a
ll
th
e
p
ix
els
with
th
eir
n
eig
h
b
o
r
in
t
h
e
im
ag
e
u
n
d
er
test
.
N
o
w
b
ased
o
n
th
ese
ev
alu
ated
m
atr
ices
o
f
all
th
e
p
ix
els,
th
e
h
is
to
g
r
am
is
p
lo
tted
f
o
r
th
e
L
B
PH v
alu
e.
3.
AL
G
O
RI
T
H
M
I
C
F
L
O
W
F
O
R
L
O
CAL
B
I
NA
RY
P
AT
T
E
R
N
H
I
S
T
O
G
RAM
T
h
e
L
B
HP
alg
o
r
ith
m
is
ac
tiv
ated
f
o
r
p
ar
a
m
eter
s
n
am
ely
r
a
d
iu
s
,
n
eig
h
b
o
r
s
,
g
r
id
‘
x
’
an
d
‘
y
’
.
W
h
er
e
“
r
ad
iu
s
”
r
ef
er
s
to
t
h
e
cir
cu
la
r
L
B
p
atter
n
an
d
d
ef
a
u
lt
v
al
u
e
is
‘
1
’
.
“Gr
i
d
x
”
is
u
s
ed
t
o
m
o
v
e
th
r
o
u
g
h
th
e
h
o
r
izo
n
tal
d
ir
ec
tio
n
o
f
th
e
p
i
x
els,
wh
er
ea
s
th
e
“Gr
id
y
”
is
to
m
o
v
e
th
r
o
u
g
h
th
e
v
er
tical
d
ir
ec
tio
n
o
f
th
e
p
ix
els.
“
n
eig
h
b
o
r
”
r
ef
er
s
to
th
e
p
ix
el
s
u
r
r
o
u
n
d
ed
b
y
th
e
ce
n
ter
p
i
x
el
u
n
d
er
L
B
PH o
p
er
atio
n
.
T
h
e
in
itializatio
n
to
p
ass
th
e
p
ar
am
ete
r
s
tr
u
ctu
r
es,
th
e
in
it
f
u
n
ctio
n
is
u
tili
ze
d
.
T
h
e
s
lices
o
f
im
a
g
es
an
d
lab
els
ar
e
p
ass
ed
b
y
u
s
in
g
th
e
p
ar
am
eter
s
to
tr
ain
th
e
L
B
PH
alg
o
r
ith
m
.
No
te
th
at
all
im
ag
es
ar
e
eq
u
al
s
ize
an
d
I
Ds
ar
e
d
ef
in
ed
as
lab
els
to
av
o
id
r
e
d
u
n
d
an
cy
o
f
im
a
g
es.
T
h
is
tr
ain
f
u
n
ctio
n
will
s
cr
u
ti
n
ize
a
ll
im
ag
es
f
o
r
s
im
ilar
s
ize
an
d
in
d
icate
s
an
er
r
o
r
if
an
y
m
is
m
atch
in
s
ize.
T
h
en
th
e
b
asic
L
B
PH
m
an
ip
u
late
to
d
ig
itize
th
e
n
eig
h
b
o
r
p
ix
els
as
d
ef
in
ed
b
y
th
e
r
ad
iu
s
o
f
‘
1
’
.
T
h
e
im
ag
e
is
s
h
if
ted
b
y
1
p
i
x
el
v
alu
e
u
s
in
g
th
e
g
r
id
f
u
n
ctio
n
s
t
h
e
h
is
to
g
r
am
s
f
o
r
ea
ch
p
o
r
tio
n
o
f
im
a
g
es
ar
e
co
n
ca
ten
ated
t
o
cr
ea
te
an
u
p
d
ated
im
ag
e
f
o
r
f
u
r
t
h
er
p
r
o
ce
s
s
in
g
o
f
th
e
L
B
PH
alg
o
r
ith
m
.
T
h
e
p
r
e
d
ict
f
u
n
ctio
n
will
co
m
p
ar
e
th
e
n
ew
im
ag
e
p
ar
am
eter
s
with
th
e
im
a
g
e,
lab
els
,
an
d
h
is
to
g
r
a
m
s
.
T
h
u
s
,
th
e
test
in
g
o
f
t
h
e
L
B
PH
alg
o
r
ith
m
is
in
i
tiated
.
T
h
e
p
r
ed
ict
f
u
n
ctio
n
co
m
p
a
r
e
s
th
e
h
is
to
g
r
am
s
o
f
th
e
n
ew
im
ag
e
with
th
e
s
to
r
ed
im
ag
e
f
r
o
m
th
e
tr
ain
ed
d
ata
i
m
ag
es.
T
h
e
d
is
tan
ce
m
etr
ic
is
u
s
ed
to
ev
alu
ate
th
e
n
ea
r
est
h
is
to
g
r
am
o
f
th
e
n
ew
im
ag
e
o
f
th
e
tr
ain
ed
im
ag
e.
T
h
o
u
g
h
th
e
r
e
ar
e
o
th
e
r
d
is
tan
c
e
m
etr
ics
s
u
ch
as
c
h
i
-
s
q
u
ar
e,
ab
s
o
lu
te
v
alu
e
,
an
d
n
o
r
m
alize
d
E
u
clid
ea
n
m
etr
ic
,
th
is
wo
r
k
u
s
es
th
e
E
u
clid
ea
n
d
is
tan
c
e
m
etr
ic
f
o
r
m
u
la
as
it
is
ea
s
y
to
e
x
ec
u
te.
T
h
e
d
is
tan
ce
m
etr
ic
u
s
ed
f
o
r
t
h
is
L
B
PH a
lg
o
r
ith
m
is
E
u
clid
ea
n
d
is
tan
ce
m
etr
ic
as g
iv
e
n
i
n
(
1
)
.
=
√
∑
(
1
−
2
)
2
=
1
(
1
)
4.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
e
p
r
o
p
o
s
ed
f
u
s
io
n
m
eth
o
d
o
f
em
o
tio
n
r
ec
o
g
n
itio
n
in
h
u
m
an
f
ac
es
is
b
ee
n
ev
alu
ate
d
u
s
in
g
t
h
e
s
ec
o
n
d
ar
y
d
ata
s
et.
T
h
e
s
ec
o
n
d
ar
y
d
ataset
co
n
s
id
er
ed
f
o
r
th
is
wo
r
k
h
as
1
6
0
s
am
p
les
o
f
im
ag
es
o
f
h
u
m
an
f
ac
es with
em
o
tio
n
s
.
T
h
e
em
o
tio
n
s
ar
e
s
u
b
d
iv
id
e
d
in
to
4
0
s
a
m
p
les ea
ch
to
b
e
c
o
n
s
id
er
ed
h
ap
p
y
,
s
u
r
p
r
is
e,
s
ad
,
an
d
an
g
r
y
.
T
h
e
p
r
o
p
o
s
ed
f
u
s
i
o
n
m
eth
o
d
is
s
u
b
ject
to
th
is
s
ec
o
n
d
ar
y
d
ata
to
p
r
o
d
u
ce
ev
alu
atio
n
r
esu
lts
in
ter
m
s
o
f
p
er
ce
n
tag
es.
T
h
e
Py
t
h
o
n
co
d
e
is
d
ev
elo
p
ed
to
ev
al
u
ate
b
o
th
C
NN
an
d
L
B
PH
as
p
er
th
e
p
r
ef
e
r
en
ce
s
o
f
th
e
u
s
er
.
T
h
e
C
NN
u
s
es
th
e
Nu
m
Py
lib
r
ar
y
to
ac
ce
s
s
th
e
d
ee
p
lear
n
in
g
alg
o
r
ith
m
to
ex
h
ib
it
th
e
p
er
ce
n
tag
e
o
f
esti
m
atio
n
f
o
r
all
em
o
tio
n
s
as
g
iv
en
in
Fig
u
r
es
2
d
e
p
ictin
g
th
e
p
er
ce
n
tag
e
o
f
ac
c
u
r
ac
y
f
o
r
th
e
4
d
i
f
f
er
en
t
em
o
tio
n
s
,
Fig
u
r
e
2
(
a
)
s
h
o
ws
h
ap
p
y
em
o
tio
n
,
Fig
u
r
e
2
(
b
)
s
h
o
ws
s
u
r
p
r
is
e
em
o
tio
n
,
Fig
u
r
e
2
(
c
)
s
h
o
ws
s
ad
em
o
tio
n
,
an
d
Fig
u
r
e
2
(
d
)
s
h
o
ws
an
g
r
y
em
o
tio
n
.
T
h
e
em
o
tio
n
o
f
an
g
e
r
is
h
ig
h
at
th
e
p
er
ce
n
tag
e
o
f
8
9
%
an
d
th
e
r
em
ain
in
g
all
ar
e
u
n
d
er
5
0
%.
I
n
co
m
p
ar
is
o
n
,
th
e
p
r
o
p
o
s
ed
C
NN
-
L
B
PH
i
s
m
o
r
e
ac
cu
r
ate
a
n
d
h
as
h
ig
h
ac
cu
r
ac
y
i
n
all
f
o
u
r
em
o
tio
n
s
d
u
e
to
th
e
u
tili
za
tio
n
o
f
L
B
PH
alg
o
r
ith
m
.
T
h
e
r
e
aso
n
b
eh
i
n
d
th
e
ac
cu
r
ac
y
o
f
t
h
e
L
B
PH
th
an
th
e
C
NN
is
th
e
n
u
m
b
er
o
f
s
ec
o
n
d
ar
y
d
ata
s
am
p
les
co
n
s
id
er
e
d
f
o
r
th
is
wo
r
k
is
m
in
im
al
,
a
n
d
th
e
u
tili
za
tio
n
o
f
b
in
ar
y
v
alu
es
in
t
h
e
m
an
i
p
u
la
tio
n
o
f
th
e
L
B
PH
p
r
o
v
id
es
m
o
r
e
ac
cu
r
ac
y
th
a
n
th
e
C
NN.
T
h
e
m
an
ip
u
latio
n
o
f
th
e
b
in
ar
y
n
u
m
b
er
in
L
B
PH is
f
ast co
m
p
ar
ed
to
th
e
C
NN
alg
o
r
ith
m
.
T
h
e
4
em
o
tio
n
s
o
f
h
u
m
an
f
ac
es u
s
in
g
th
e
L
B
PH
alg
o
r
ith
m
ar
e
e
n
h
an
ce
d
as
s
h
o
w
n
in
Fig
u
r
es
3
,
Fig
u
r
e
3
(
a
)
s
h
o
ws
h
ap
p
y
em
o
tio
n
,
Fig
u
r
e
3
(
b
)
s
h
o
ws
s
u
r
p
r
is
e
em
o
tio
n
,
Fig
u
r
e
3
(
c
)
s
h
o
ws
s
ad
em
o
tio
n
,
a
n
d
Fig
u
r
e
3
(
d
)
s
h
o
ws
an
g
r
y
e
m
o
tio
n
.
W
ith
th
e
p
ar
a
m
eter
s
ev
alu
ated
f
o
r
th
e
p
r
o
p
o
s
ed
f
u
s
io
n
m
eth
o
d
,
th
e
L
B
PH m
eth
o
d
h
as a
n
o
v
er
all
ac
cu
r
ac
y
o
f
8
4
% c
o
m
p
ar
ed
to
th
e
6
5
% wit
h
th
e
C
NN
alg
o
r
ith
m
as g
iv
en
in
Fig
u
r
e
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ar
tif
I
n
tell
I
SS
N:
2252
-
8
9
3
8
A
fu
s
io
n
co
n
v
o
lu
tio
n
n
eu
r
a
l n
etw
o
r
k
-
lo
ca
l b
in
a
r
y
p
a
tter
n
h
i
s
to
g
r
a
m
a
lg
o
r
ith
m
…
(
A
r
p
a
n
a
Gir
id
h
a
r
K
a
tti
)
2737
(
a)
(
b
)
(
c)
(
d
)
Fig
u
r
e
2
.
Face
r
ec
o
g
n
itio
n
o
f
h
u
m
an
s
am
p
les u
s
in
g
C
NN
alg
o
r
ith
m
f
o
r
(
a)
h
a
p
p
y
e
m
o
tio
n
,
(
b
)
s
u
r
p
r
is
e
em
o
tio
n
,
(
c)
s
ad
e
m
o
tio
n
,
a
n
d
(
d
)
an
g
r
y
e
m
o
tio
n
(
a)
(
b
)
(
c)
(
d
)
Fig
u
r
e
3
.
Face
r
ec
o
g
n
itio
n
o
f
h
u
m
an
s
am
p
les u
s
in
g
L
B
PH a
lg
o
r
ith
m
f
o
r
(
a
)
h
ap
p
y
em
o
tio
n
,
(
b
)
s
u
r
p
r
is
e
em
o
tio
n
,
(
c)
s
ad
e
m
o
tio
n
,
a
n
d
(
d
)
an
g
r
y
e
m
o
tio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8
9
3
8
I
n
t J Ar
tif
I
n
tell
,
Vo
l.
14
,
No
.
4
,
Au
g
u
s
t
20
25
:
2
7
3
4
-
2
7
4
0
2738
Fig
u
r
e
4
.
Acc
u
r
ac
y
ca
lcu
latio
n
f
o
r
t
h
e
L
B
PH a
lg
o
r
ith
m
f
o
r
t
h
e
g
iv
en
s
ec
o
n
d
ar
y
d
ata
s
am
p
l
e
T
h
e
p
r
o
p
o
s
ed
f
u
s
io
n
alg
o
r
ith
m
co
m
b
i
n
es
th
e
a
d
v
an
tag
e
o
f
th
e
L
B
PH
an
d
C
NN
in
th
e
id
en
tific
atio
n
o
f
th
e
em
o
tio
n
s
.
T
h
e
ac
c
u
r
ac
y
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
in
id
e
n
tify
in
g
h
u
m
an
em
o
t
io
n
with
th
e
g
iv
en
d
ataset
is
8
4
.
3
7
5
%.
T
h
is
ac
cu
r
ac
y
in
c
r
e
ase
is
th
e
m
er
it
o
f
co
m
b
in
in
g
th
e
L
B
PH
an
d
C
NN
in
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
.
T
ab
le
1
d
ep
icts
th
at
th
e
co
m
p
ar
is
o
n
o
f
th
e
ac
cu
r
ac
y
p
a
r
am
eter
to
p
r
o
v
e
th
at
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
ad
v
an
tag
e
o
u
s
th
an
th
e
n
et
-
b
a
s
ed
alg
o
r
ith
m
an
d
th
e
C
NN
alg
o
r
ith
m
.
T
h
o
u
g
h
th
e
ac
c
u
r
a
cy
o
f
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
m
er
ito
r
io
u
s
,
th
e
in
cr
ea
s
e
in
th
e
d
ata
s
am
p
le
h
as
to
en
s
u
r
e
th
at
th
er
e
is
n
o
d
r
o
p
in
ac
cu
r
ac
y
o
f
id
en
tify
in
g
h
u
m
a
n
em
o
tio
n
s
b
y
u
s
in
g
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
.
T
h
e
ex
te
n
s
io
n
o
f
th
is
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
t
o
v
alid
ate
th
e
ac
cu
r
ac
y
f
o
r
co
n
s
id
er
in
g
lar
g
er
d
ataset
with
d
if
f
er
en
t e
m
o
tio
n
s
o
f
h
u
m
an
.
T
ab
le
1
.
C
o
m
p
a
r
is
o
n
o
f
ac
cu
r
ac
y
in
p
er
ce
n
tag
e
u
s
in
g
th
e
p
r
o
p
o
s
ed
m
eth
o
d
R
e
f
e
r
e
n
c
e
M
e
t
h
o
d
Y
e
a
r
A
c
c
u
r
a
c
y
(
%)
[
2
6
]
M
a
t
c
h
-
N
e
t
,
6
-
C
h
a
n
n
e
l
-
N
e
t
,
S
i
a
m
e
se
-
N
e
t
2
0
1
9
7
3
.
6
[
2
7
]
F
e
a
t
u
r
e
e
x
t
r
a
c
t
i
o
n
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
(
F
EC
N
N
)
a
n
d
s
u
p
e
r
r
e
so
l
u
t
i
o
n
a
n
d
F
EC
N
N
(
S
R
F
E
C
N
N
)
2
0
2
0
81
P
r
o
p
o
se
d
m
e
t
h
o
d
F
u
si
o
n
C
N
N
a
n
d
LB
P
H
a
l
g
o
r
i
t
h
m
2
0
2
4
8
4
.
3
7
5
5.
CO
NCLU
SI
O
N
T
h
e
p
r
o
p
o
s
ed
f
u
s
io
n
C
NN
-
L
B
PH
-
b
ased
em
o
tio
n
r
ec
o
g
n
itio
n
in
h
u
m
an
f
ac
es
is
im
p
lem
en
ted
s
u
cc
ess
f
u
lly
u
s
in
g
Py
th
o
n
co
d
e.
T
h
e
ac
cu
r
ac
y
o
f
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
well
co
m
p
ar
ativ
ely
h
ig
h
at
8
4
.
3
7
5
%
th
an
th
e
o
th
er
f
u
s
in
g
alg
o
r
ith
m
s
.
T
h
is
wo
r
k
h
as
co
n
s
id
er
ed
o
n
l
y
1
6
0
d
a
ta
s
am
p
les
f
o
r
its
m
an
ip
u
latio
n
.
Fu
r
th
er
,
th
e
a
cc
u
r
ac
y
c
o
u
ld
b
e
im
p
r
o
v
e
d
wh
en
lar
g
e
d
ata
s
am
p
les
ar
e
test
ed
with
th
e
d
ev
elo
p
e
d
co
d
e.
Fu
t
u
r
e
wo
r
k
ca
n
b
e
co
n
ce
n
tr
ated
o
n
th
e
r
ea
l
-
tim
e
di
g
ital
im
p
lem
en
tatio
n
o
f
th
e
p
r
o
p
o
s
ed
f
u
s
io
n
C
NN
-
L
B
PH a
lg
o
r
ith
m
in
id
en
tify
in
g
th
e
em
o
tio
n
o
f
t
h
e
h
u
m
a
n
f
ac
e
.
ACK
NO
WL
E
DG
E
M
E
NT
S
T
h
e
au
th
o
r
s
wo
u
l
d
lik
e
t
o
th
a
n
k
th
e
Sri
Sid
d
h
a
r
th
a
Aca
d
e
m
y
o
f
Hig
h
er
E
d
u
ca
ti
o
n
,
Kar
n
at
ak
a,
I
n
d
ia
f
o
r
th
e
s
u
s
tain
ed
e
n
co
u
r
ag
em
e
n
t to
co
m
p
lete
th
is
wo
r
k
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
Au
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
t
es,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Ar
p
an
a
Gir
id
h
a
r
Katti
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
C
h
id
an
an
d
a
Mu
r
th
y
Me
lek
o
te
Vin
ay
ak
am
u
r
t
h
y
✓
✓
✓
✓
✓
✓
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Ar
tif
I
n
tell
I
SS
N:
2252
-
8
9
3
8
A
fu
s
io
n
co
n
v
o
lu
tio
n
n
eu
r
a
l n
etw
o
r
k
-
lo
ca
l b
in
a
r
y
p
a
tter
n
h
i
s
to
g
r
a
m
a
lg
o
r
ith
m
…
(
A
r
p
a
n
a
Gir
id
h
a
r
K
a
tti
)
2739
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
T
h
e
au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
ter
est.
I
NF
O
RM
E
D
CO
NS
E
N
T
W
e
h
av
e
o
b
tain
ed
in
f
o
r
m
ed
c
o
n
s
en
t f
r
o
m
all
in
d
iv
id
u
als in
c
lu
d
ed
in
t
h
is
s
tu
d
y
.
E
T
H
I
CAL AP
P
RO
V
AL
No
an
im
als o
r
h
u
m
an
wer
e
in
v
o
lv
ed
i
n
th
is
r
esear
ch
wo
r
k
.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
ata
th
at
s
u
p
p
o
r
t
th
e
f
i
n
d
i
n
g
s
o
f
th
is
s
tu
d
y
ar
e
a
v
ailab
le
f
r
o
m
th
e
c
o
r
r
esp
o
n
d
in
g
au
th
o
r
,
[
AGK]
,
u
p
o
n
r
ea
s
o
n
ab
le
r
eq
u
est
RE
F
E
R
E
NC
E
S
[
1
]
C
.
N
u
r
d
e
n
a
r
a
a
n
d
W
.
F
.
A
l
M
a
k
i
,
“
I
mag
e
t
r
a
n
s
l
a
t
i
o
n
b
e
t
w
e
e
n
h
u
ma
n
f
a
c
e
a
n
d
w
a
y
a
n
g
o
r
a
n
g
u
si
n
g
U
-
GAT
-
I
T,
”
I
AE
S
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
Ar
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
(
I
J
-
AI
)
,
v
o
l
.
1
3
,
n
o
.
2
,
J
u
n
.
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
a
i
.
v
1
3
.
i
2
.
p
p
2
4
5
1
-
2
4
5
8
.
[
2
]
Z.
T
a
n
g
,
“
R
e
s
e
a
r
c
h
o
n
f
a
c
e
d
e
t
e
c
t
i
o
n
b
a
se
d
o
n
C
B
A
M
m
o
d
u
l
e
a
n
d
i
mp
r
o
v
e
d
Y
O
LO
v
5
a
l
g
o
r
i
t
h
m
i
n
smar
t
c
a
mp
u
s
se
c
u
r
i
t
y
,
”
i
n
Pro
c
e
e
d
i
n
g
o
f
t
h
e
2
0
2
4
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Ar
t
i
f
i
c
i
a
l
I
n
t
e
l
l
i
g
e
n
c
e
a
n
d
F
u
t
u
re
E
d
u
c
a
t
i
o
n
,
2
0
2
4
,
p
p
.
2
55
–
2
5
9
,
d
o
i
:
1
0
.
1
1
4
5
/
3
7
0
8
3
9
4
.
3
7
0
8
4
3
8
.
[
3
]
M
.
F
a
c
h
r
i
,
M
.
H
a
r
i
a
d
i
,
a
n
d
S
.
M
.
S
.
N
u
g
r
o
h
o
,
“
E
mo
t
i
o
n
a
l
r
e
c
i
p
r
o
c
a
l
v
e
l
o
c
i
t
y
o
b
st
a
c
l
e
s
f
o
r
l
e
a
d
e
r
-
f
o
l
l
o
w
i
n
g
:
a
v
e
l
o
c
i
t
y
o
b
st
a
c
l
e
s
b
a
s
e
d
st
e
e
r
i
n
g
b
e
h
a
v
i
o
r
,
”
I
EEE
Ac
c
e
s
s
,
v
o
l
.
1
2
,
p
p
.
1
6
9
9
7
7
–
1
6
9
9
8
7
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
4
.
3
4
9
4
8
3
4
.
[
4
]
L.
W
a
n
g
a
n
d
A
.
A
.
S
i
d
d
i
q
u
e
,
“
F
a
c
i
a
l
r
e
c
o
g
n
i
t
i
o
n
s
y
s
t
e
m
u
s
i
n
g
LB
P
H
f
a
c
e
r
e
c
o
g
n
i
z
e
r
f
o
r
a
n
t
i
-
t
h
e
f
t
a
n
d
s
u
r
v
e
i
l
l
a
n
c
e
a
p
p
l
i
c
a
t
i
o
n
b
a
s
e
d
o
n
d
r
o
n
e
t
e
c
h
n
o
l
o
g
y
,
”
M
e
a
s
u
r
e
m
e
n
t
a
n
d
C
o
n
t
r
o
l
,
v
o
l
.
5
3
,
n
o
.
7
–
8
,
p
p
.
1
0
7
0
–
1
0
7
7
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
7
7
/
0
0
2
0
2
9
4
0
2
0
9
3
2
3
4
4
.
[
5
]
A
.
El
e
y
a
n
,
“
S
t
a
t
i
s
t
i
c
a
l
l
o
c
a
l
d
e
s
c
r
i
p
t
o
r
s
f
o
r
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
:
a
c
o
mp
r
e
h
e
n
si
v
e
st
u
d
y
,
”
M
u
l
t
i
m
e
d
i
a
T
o
o
l
s
a
n
d
Ap
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
8
2
,
n
o
.
2
1
,
p
p
.
3
2
4
8
5
–
3
2
5
0
4
,
S
e
p
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
4
2
-
023
-
1
4
4
8
2
-
2.
[
6
]
K
.
S
.
R
e
d
d
y
,
V
.
V
.
K
u
m
a
r
,
a
n
d
B
.
E.
R
e
d
d
y
,
“
F
a
c
e
r
e
c
o
g
n
i
t
i
o
n
b
a
se
d
o
n
t
e
x
t
u
r
e
f
e
a
t
u
r
e
s
u
si
n
g
l
o
c
a
l
t
e
r
n
a
r
y
p
a
t
t
e
r
n
s
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
I
m
a
g
e
,
G
ra
p
h
i
c
s
a
n
d
S
i
g
n
a
l
Pr
o
c
e
ssi
n
g
,
v
o
l
.
7
,
n
o
.
1
0
,
p
p
.
3
7
–
4
6
,
S
e
p
.
2
0
1
5
,
d
o
i
:
1
0
.
5
8
1
5
/
i
j
i
g
sp
.
2
0
1
5
.
1
0
.
0
5
.
[
7
]
M
.
M
.
A
h
sa
n
,
Y
.
L
i
,
J.
Zh
a
n
g
,
M
.
T
.
A
h
a
d
,
a
n
d
K
.
D
.
G
u
p
t
a
,
“
E
v
a
l
u
a
t
i
n
g
t
h
e
p
e
r
f
o
r
m
a
n
c
e
o
f
e
i
g
e
n
f
a
c
e
,
f
i
sh
e
r
f
a
c
e
,
a
n
d
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
h
i
st
o
g
r
a
m
-
b
a
se
d
f
a
c
i
a
l
r
e
c
o
g
n
i
t
i
o
n
m
e
t
h
o
d
s
u
n
d
e
r
v
a
r
i
o
u
s
w
e
a
t
h
e
r
c
o
n
d
i
t
i
o
n
s
,
”
T
e
c
h
n
o
l
o
g
i
e
s
,
v
o
l
.
9
,
n
o
.
2
,
A
p
r
.
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
t
e
c
h
n
o
l
o
g
i
e
s
9
0
2
0
0
3
1
.
[
8
]
K
.
C
.
P
a
u
l
a
n
d
S
.
A
sl
a
n
,
“
A
n
i
mp
r
o
v
e
d
r
e
a
l
-
t
i
m
e
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
sy
s
t
e
m
a
t
l
o
w
r
e
s
o
l
u
t
i
o
n
b
a
s
e
d
o
n
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
h
i
s
t
o
g
r
a
m
a
l
g
o
r
i
t
h
m
a
n
d
C
LA
H
E,
”
O
p
t
i
c
s
a
n
d
Ph
o
t
o
n
i
c
s
J
o
u
r
n
a
l
,
v
o
l
.
1
1
,
n
o
.
0
4
,
p
p
.
6
3
–
7
8
,
2
0
2
1
,
d
o
i
:
1
0
.
4
2
3
6
/
o
p
j
.
2
0
2
1
.
1
1
4
0
0
5
.
[
9
]
M
.
S
h
a
r
i
f
n
e
j
a
d
,
A
.
S
h
a
h
b
a
h
r
a
m
i
,
A
.
A
k
o
u
s
h
i
d
e
h
,
a
n
d
R
.
Z.
H
a
ss
a
n
p
o
u
r
,
“
F
a
c
i
a
l
e
x
p
r
e
ss
i
o
n
r
e
c
o
g
n
i
t
i
o
n
u
s
i
n
g
a
c
o
m
b
i
n
a
t
i
o
n
o
f
e
n
h
a
n
c
e
d
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
a
n
d
p
y
r
a
mi
d
h
i
s
t
o
g
r
a
m
o
f
o
r
i
e
n
t
e
d
g
r
a
d
i
e
n
t
s
f
e
a
t
u
r
e
s
e
x
t
r
a
c
t
i
o
n
,
”
I
ET
I
m
a
g
e
Pr
o
c
e
ssi
n
g
,
v
o
l
.
1
5
,
n
o
.
2
,
p
p
.
4
6
8
–
4
7
8
,
F
e
b
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
4
9
/
i
p
r
2
.
1
2
0
3
7
.
[
1
0
]
R.
R
.
K
.
D
e
w
i
,
F
.
S
t
h
e
v
a
n
i
e
,
a
n
d
A
.
A
r
i
f
i
a
n
t
o
,
“
F
a
c
e
e
x
p
r
e
ss
i
o
n
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
L
o
c
a
l
g
a
b
o
r
b
i
n
a
r
y
p
a
t
t
e
r
n
t
h
r
e
e
o
r
t
h
o
g
o
n
a
l
p
l
a
n
e
s
(
LG
B
P
-
TO
P
)
a
n
d
s
u
p
p
o
r
t
v
e
c
t
o
r
m
a
c
h
i
n
e
(
S
V
M
)
me
t
h
o
d
,
”
J
o
u
r
n
a
l
o
f
Ph
y
si
c
s:
C
o
n
f
e
re
n
c
e
S
e
ri
e
s
,
v
o
l
.
1
1
9
2
,
M
a
r
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
8
8
/
1
7
4
2
-
6
5
9
6
/
1
1
9
2
/
1
/
0
1
2
0
4
8
.
[
1
1
]
A
.
K
.
H
u
s
sei
n
,
“
H
i
s
t
o
g
r
a
m
o
f
g
r
a
d
i
e
n
t
a
n
d
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
w
i
t
h
e
x
t
r
e
m
e
l
e
a
r
n
i
n
g
mac
h
i
n
e
b
a
se
d
e
a
r
r
e
c
o
g
n
i
t
i
o
n
,
”
J
o
u
rn
a
l
o
f
S
o
u
t
h
w
e
s
t
J
i
a
o
t
o
n
g
U
n
i
v
e
rsi
t
y
,
v
o
l
.
5
4
,
n
o
.
6
,
2
0
1
9
,
d
o
i
:
1
0
.
3
5
7
4
1
/
i
ssn
.
0
2
5
8
-
2
7
2
4
.
5
4
.
6
.
3
1
.
[
1
2
]
M
.
K
a
l
a
k
e
c
h
,
A
.
P
o
r
e
b
s
k
i
,
N
.
V
a
n
d
e
n
b
r
o
u
c
k
e
,
a
n
d
D
.
H
a
m
a
d
,
“
U
n
s
u
p
e
r
v
i
sed
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
h
i
st
o
g
r
a
m
se
l
e
c
t
i
o
n
sc
o
r
e
s
f
o
r
c
o
l
o
r
t
e
x
t
u
r
e
c
l
a
ssi
f
i
c
a
t
i
o
n
,
”
J
o
u
rn
a
l
o
f
I
m
a
g
i
n
g
,
v
o
l
.
4
,
n
o
.
1
0
,
S
e
p
.
2
0
1
8
,
d
o
i
:
1
0
.
3
3
9
0
/
j
i
m
a
g
i
n
g
4
1
0
0
1
1
2
.
[
1
3
]
A
.
S
a
l
ma
n
,
M
.
H
a
y
a
t
y
,
a
n
d
I
.
N
.
F
a
j
r
i
,
“
F
a
c
i
a
l
i
m
a
g
e
s
i
m
p
r
o
v
e
me
n
t
i
n
t
h
e
LB
P
H
a
l
g
o
r
i
t
h
m
u
si
n
g
t
h
e
h
i
st
o
g
r
a
m
e
q
u
a
l
i
z
a
t
i
o
n
met
h
o
d
,
”
J
U
I
T
A
:
J
u
r
n
a
l
I
n
f
o
rm
a
t
i
k
a
,
v
o
l
.
1
0
,
n
o
.
2
,
N
o
v
.
2
0
2
2
,
d
o
i
:
1
0
.
3
0
5
9
5
/
j
u
i
t
a
.
v
1
0
i
2
.
1
3
2
2
3
.
[
1
4
]
R
.
O
g
l
a
,
A
.
A
.
S
a
e
i
d
,
a
n
d
S
.
H
.
S
h
a
k
e
r
,
“
Te
c
h
n
i
q
u
e
f
o
r
r
e
c
o
g
n
i
z
i
n
g
f
a
c
e
s
u
si
n
g
a
h
y
b
r
i
d
o
f
mo
m
e
n
t
s
a
n
d
a
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
h
i
s
t
o
g
r
a
m
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
E
l
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
r
i
n
g
(
I
J
E
C
E)
,
v
o
l
.
1
2
,
n
o
.
3
,
J
u
n
.
2
0
2
2
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
2
i
3
.
p
p
2
5
7
1
-
2
5
8
1
.
[
1
5
]
I
.
R
.
R
i
z
a
l
,
A
.
R
o
c
h
i
m
,
D
.
Er
i
d
a
n
i
,
a
n
d
G
.
C
a
h
y
o
n
o
,
“
M
u
l
t
i
-
o
b
j
e
c
t
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
h
i
s
t
o
g
r
a
m a
n
d
H
a
a
r
c
a
sc
a
d
e
c
l
a
ss
i
f
i
e
r
o
n
l
o
w
-
r
e
s
o
l
u
t
i
o
n
i
ma
g
e
s
,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
En
g
i
n
e
e
ri
n
g
a
n
d
T
e
c
h
n
o
l
o
g
y
I
n
n
o
v
a
t
i
o
n
,
v
o
l
.
1
1
,
n
o
.
1
,
p
p
.
4
5
–
5
8
,
J
a
n
.
2
0
2
1
,
d
o
i
:
1
0
.
4
6
6
0
4
/
i
j
e
t
i
.
2
0
2
1
.
6
1
7
4
.
[
1
6
]
S
.
K
u
mar,
S
.
K
.
S
h
a
r
m
a
,
a
n
d
V
.
Jai
n
,
“
F
a
c
e
d
e
t
e
c
t
i
o
n
b
a
se
d
mar
k
i
n
g
a
t
t
e
n
d
a
n
c
e
t
h
r
o
u
g
h
l
o
c
a
l
b
i
n
a
r
y
p
a
t
t
e
r
n
h
i
st
o
g
r
a
m
,
”
i
n
Pro
c
e
e
d
i
n
g
s
o
f
t
h
e
Ad
v
a
n
c
e
m
e
n
t
i
n
E
l
e
c
t
r
o
n
i
c
s &
C
o
m
m
u
n
i
c
a
t
i
o
n
E
n
g
i
n
e
e
r
i
n
g
2
0
2
2
,
2
0
2
2
,
d
o
i
:
1
0
.
2
1
3
9
/
ssr
n
.
4
1
5
7
4
9
0
.
[
1
7
]
Y
.
Ji
n
,
H
.
L
u
,
W
.
Z
h
u
,
a
n
d
W
.
H
u
o
,
“
D
e
e
p
l
e
a
r
n
i
n
g
b
a
se
d
c
l
a
ss
i
f
i
c
a
t
i
o
n
o
f
mu
l
t
i
-
l
a
b
e
l
c
h
e
st
X
-
r
a
y
i
m
a
g
e
s
v
i
a
d
u
a
l
-
w
e
i
g
h
t
e
d
met
r
i
c
l
o
ss
,
”
C
o
m
p
u
t
e
rs
i
n
Bi
o
l
o
g
y
a
n
d
M
e
d
i
c
i
n
e
,
v
o
l
.
1
5
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
mp
b
i
o
m
e
d
.
2
0
2
3
.
1
0
6
6
8
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2252
-
8
9
3
8
I
n
t J Ar
tif
I
n
tell
,
Vo
l.
14
,
No
.
4
,
Au
g
u
s
t
20
25
:
2
7
3
4
-
2
7
4
0
2740
[
1
8
]
L.
D
o
n
g
,
H
.
S
h
u
,
Z
.
T
a
n
g
,
a
n
d
X
.
Y
a
n
,
“
M
i
c
r
o
s
e
i
s
m
i
c
e
v
e
n
t
w
a
v
e
f
o
r
m
c
l
a
ss
i
f
i
c
a
t
i
o
n
u
s
i
n
g
C
N
N
-
b
a
s
e
d
t
r
a
n
sf
e
r
l
e
a
r
n
i
n
g
m
o
d
e
l
s
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
M
i
n
i
n
g
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
3
3
,
n
o
.
1
0
,
p
p
.
1
2
0
3
–
1
2
1
6
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
j
ms
t
.
2
0
2
3
.
0
9
.
0
0
3
.
[
1
9
]
D
.
B
h
a
g
a
t
,
A
.
V
a
k
i
l
,
R
.
K
.
G
u
p
t
a
,
a
n
d
A
.
K
u
mar,
“
F
a
c
i
a
l
e
m
o
t
i
o
n
r
e
c
o
g
n
i
t
i
o
n
(
F
E
R
)
u
s
i
n
g
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
(
C
N
N
)
,
”
Pro
c
e
d
i
a
C
o
m
p
u
t
e
r
S
c
i
e
n
c
e
,
v
o
l
.
2
3
5
,
p
p
.
2
0
7
9
–
2
0
8
9
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
p
r
o
c
s.
2
0
2
4
.
0
4
.
1
9
7
.
[
2
0
]
F
.
A
.
M
o
h
a
mm
e
d
,
K
.
K
.
Tu
n
e
,
B
.
G
.
A
ssefa
,
M
.
Je
t
t
,
a
n
d
S
.
M
u
h
i
e
,
“
M
e
d
i
c
a
l
i
ma
g
e
c
l
a
ssi
f
i
c
a
t
i
o
n
s
u
s
i
n
g
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
s:
a
s
u
r
v
e
y
o
f
c
u
r
r
e
n
t
me
t
h
o
d
s
a
n
d
st
a
t
i
st
i
c
a
l
mo
d
e
l
i
n
g
o
f
t
h
e
l
i
t
e
r
a
t
u
r
e
,
”
M
a
c
h
i
n
e
L
e
a
r
n
i
n
g
a
n
d
K
n
o
w
l
e
d
g
e
Ex
t
r
a
c
t
i
o
n
,
v
o
l
.
6
,
n
o
.
1
,
p
p
.
6
9
9
–
7
3
5
,
2
0
2
4
,
d
o
i
:
1
0
.
3
3
9
0
/
ma
k
e
6
0
1
0
0
3
3
.
[2
1]
M
.
C
h
e
n
,
X
.
S
h
i
,
Y
.
Z
h
a
n
g
,
D
.
W
u
,
a
n
d
M
.
G
u
i
z
a
n
i
,
“
D
e
e
p
f
e
a
t
u
r
e
l
e
a
r
n
i
n
g
f
o
r
m
e
d
i
c
a
l
i
m
a
g
e
a
n
a
l
y
s
i
s
w
i
t
h
c
o
n
v
o
l
u
t
i
o
n
a
l
a
u
t
o
e
n
c
o
d
e
r
n
e
u
r
a
l
n
e
t
w
o
r
k
,
”
I
E
E
E
T
r
a
n
s
a
c
t
i
o
n
s
o
n
B
i
g
D
a
t
a
,
v
o
l
.
7
,
n
o
.
4
,
p
p
.
7
5
0
–
7
5
8
,
2
0
1
7
,
d
o
i
:
1
0
.
1
1
0
9
/
t
b
d
a
t
a
.
2
0
1
7
.
2
7
1
7
4
3
9
.
[
2
2
]
A
.
B
.
N
a
ssi
f
e
t
a
l
.
,
“
A
n
o
v
e
l
R
B
F
N
N
-
C
N
N
mo
d
e
l
f
o
r
sp
e
a
k
e
r
i
d
e
n
t
i
f
i
c
a
t
i
o
n
i
n
s
t
r
e
ssf
u
l
t
a
l
k
i
n
g
e
n
v
i
r
o
n
me
n
t
s,”
Ap
p
l
i
e
d
S
c
i
e
n
c
e
s
,
v
o
l
.
1
2
,
n
o
.
1
0
,
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
a
p
p
1
2
1
0
4
8
4
1
.
[
2
3
]
D
.
V
e
l
a
sc
o
-
M
o
n
t
e
r
o
,
J.
F
e
r
n
á
n
d
e
z
-
B
e
r
n
i
,
R
.
C
a
r
m
o
n
a
-
G
a
l
á
n
,
A
.
S
a
n
g
l
a
s
,
a
n
d
F
.
P
a
l
o
m
a
r
e
s,
“
R
e
l
i
a
b
l
e
a
n
d
e
f
f
i
c
i
e
n
t
i
n
t
e
g
r
a
t
i
o
n
o
f
A
I
i
n
t
o
c
a
m
e
r
a
t
r
a
p
s
f
o
r
sm
a
r
t
w
i
l
d
l
i
f
e
m
o
n
i
t
o
r
i
n
g
b
a
se
d
o
n
c
o
n
t
i
n
u
a
l
l
e
a
r
n
i
n
g
,
”
Ec
o
l
o
g
i
c
a
l
I
n
f
o
rm
a
t
i
c
s
,
v
o
l
.
8
3
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
c
o
i
n
f
.
2
0
2
4
.
1
0
2
8
1
5
.
[
2
4
]
C
.
L
o
p
e
z
-
M
o
l
i
n
a
,
S
.
I
g
l
e
si
a
s
-
R
e
y
,
a
n
d
B
.
D
e
B
a
e
t
s,
“
U
l
t
r
a
m
e
t
r
i
c
s
f
o
r
c
o
n
t
e
x
t
-
a
w
a
r
e
c
o
mp
a
r
i
s
o
n
o
f
b
i
n
a
r
y
i
m
a
g
e
s,”
I
n
f
o
rm
a
t
i
o
n
Fu
si
o
n
,
v
o
l
.
1
0
3
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
n
f
f
u
s.
2
0
2
3
.
1
0
2
1
0
1
.
[
2
5
]
Y
.
L.
W
u
,
C
.
S
.
W
a
n
g
,
W
.
C
.
W
e
n
g
,
a
n
d
Y
.
C
.
Li
n
,
“
D
e
v
e
l
o
p
m
e
n
t
o
f
a
c
l
o
u
d
-
b
a
s
e
d
i
ma
g
e
p
r
o
c
e
ss
i
n
g
h
e
a
l
t
h
c
h
e
c
k
u
p
s
y
s
t
e
m
f
o
r
mu
l
t
i
-
i
t
e
m
u
r
i
n
e
a
n
a
l
y
si
s
,
”
S
e
n
s
o
rs
,
v
o
l
.
2
3
,
n
o
.
1
8
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s2
3
1
8
7
7
3
3
.
[
2
6
]
P
.
L
i
,
L.
P
r
i
e
t
o
,
D
.
M
e
r
y
,
a
n
d
P
.
J.
F
l
y
n
n
,
“
O
n
l
o
w
-
r
e
so
l
u
t
i
o
n
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
i
n
t
h
e
w
i
l
d
:
c
o
m
p
a
r
i
s
o
n
s
a
n
d
n
e
w
t
e
c
h
n
i
q
u
e
s
,”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
I
n
f
o
rm
a
t
i
o
n
F
o
re
n
si
c
s
a
n
d
S
e
c
u
ri
t
y
,
v
o
l
.
1
4
,
n
o
.
8
,
p
p
.
2
0
0
0
–
2
0
1
2
,
A
u
g
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
F
S
.
2
0
1
8
.
2
8
9
0
8
1
2
.
[
2
7
]
E.
Z
a
n
g
e
n
e
h
,
M
.
R
a
h
mat
i
,
a
n
d
Y
.
M
o
h
s
e
n
z
a
d
e
h
,
“
Lo
w
r
e
s
o
l
u
t
i
o
n
f
a
c
e
r
e
c
o
g
n
i
t
i
o
n
u
si
n
g
a
t
w
o
-
b
r
a
n
c
h
d
e
e
p
c
o
n
v
o
l
u
t
i
o
n
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
a
r
c
h
i
t
e
c
t
u
r
e
,
”
Ex
p
e
r
t
S
y
s
t
e
m
s
w
i
t
h
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
1
3
9
,
Ja
n
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
e
sw
a
.
2
0
1
9
.
1
1
2
8
5
4
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Ar
p
a
n
a
G
irid
h
a
r
K
a
tti
wa
s
b
o
rn
in
1
9
8
6
i
n
A
b
u
-
D
h
a
b
i,
U
AE.
S
h
e
o
b
tain
e
d
B.
E.
[E
lec
tro
n
ics
a
n
d
Co
m
m
u
n
ic
a
ti
o
n
]
d
e
g
re
e
fr
o
m
Vis
v
e
sv
a
ra
y
a
Tec
h
n
o
l
o
g
ica
l
Un
i
v
e
rsity
in
th
e
y
e
a
r
2
0
0
8
a
n
d
M
.
Tec
h
.
[Dig
it
a
l
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
]
d
e
g
re
e
fro
m
Visv
e
sv
a
ra
y
a
Tec
h
n
o
lo
g
ica
l
Un
i
v
e
rsity
i
n
t
h
e
y
e
a
r
2
0
1
6
.
S
h
e
h
a
s
p
u
t
i
n
1
2
y
e
a
rs
o
f
se
rv
ice
in
tea
c
h
in
g
.
S
h
e
is
c
u
rre
n
t
ly
a
re
se
a
rc
h
sc
h
o
lar
in
th
e
De
p
a
r
tme
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
En
g
in
e
e
rin
g
a
t
S
ri
S
i
d
d
h
a
rth
a
In
stit
u
te
o
f
T
e
c
h
n
o
l
o
g
y
,
S
ri
S
i
d
d
h
a
rth
a
Ac
a
d
e
m
y
o
f
Hig
h
e
r
Ed
u
c
a
ti
o
n
,
Ka
rn
a
tak
a
,
In
d
ia.
He
r
re
se
a
rc
h
in
tere
st
in
c
lu
d
e
s
ima
g
e
fe
a
tu
re
e
x
trac
ti
o
n
,
li
n
e
a
r
b
in
a
ry
p
a
tt
e
rn
h
isto
g
ra
m
s
m
e
th
o
d
o
l
o
g
y
,
ima
g
e
a
n
a
ly
sis,
m
a
c
h
i
n
e
lea
rn
i
n
g
a
n
d
d
e
e
p
lea
rn
i
n
g
a
lg
o
r
it
h
m
s
,
V
LS
I
d
e
si
g
n
,
F
P
G
A
imp
lem
e
n
tati
o
n
o
f
re
a
l
-
ti
m
e
a
p
p
li
c
a
ti
o
n
s.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
a
r
p
a
n
a
k
a
tt
i
2
6
8
@g
m
a
il
.
c
o
m
.
Dr
.
Chi
d
a
n
a
n
d
a
Mu
r
th
y
Mele
k
o
te
Vin
a
y
a
k
a
m
u
r
th
y
is
wo
rk
in
g
a
s
As
so
c
iate
P
ro
fe
ss
o
r
i
n
th
e
De
p
a
rtme
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
o
f
S
ri
S
i
d
d
h
a
rth
a
Ac
a
d
e
m
y
o
f
Hig
h
e
r
Ed
u
c
a
ti
o
n
.
He
h
a
s
c
o
m
p
lete
d
h
is
B.
E
.
,
M
.
Tec
h
.
a
n
d
P
h
.
D.
d
e
g
re
e
s
fro
m
Visv
e
sv
a
ra
y
a
Tec
h
n
o
l
o
g
ica
l
U
n
iv
e
rsit
y
d
u
ri
n
g
2
0
0
5
,
2
0
0
7
a
n
d
2
0
1
9
re
sp
e
c
ti
v
e
ly
.
He
h
a
s
2
6
p
a
p
e
rs
p
u
b
li
sh
e
d
i
n
jo
u
rn
a
ls
a
n
d
p
re
se
n
ted
in
c
o
n
fe
re
n
c
e
s.
His
re
se
a
rc
h
in
tere
sts
a
re
ima
g
e
su
p
e
r
re
so
lu
ti
o
n
,
c
o
m
p
u
t
e
r
v
isi
o
n
a
n
d
m
a
c
h
i
n
e
lea
rn
in
g
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
c
h
id
a
n
a
n
d
a
m
u
rth
y
m
v
@s
sit.
e
d
u
.
i
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.