I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
5
,
Octo
b
er
20
25
,
p
p
.
4
3
5
5
~
4
3
6
5
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
5
.
pp
4
3
5
5
-
4
3
6
5
4355
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Pract
ic
a
l
spec
ific
a
ti
o
n
o
f
th
e sp
eec
h uni
v
er
se
o
f
th
e
ma
x
i
mum
po
we
r p
o
int
t
ra
ck
ing
co
ntr
o
ll
er b
a
s
ed o
n t
he
a
symme
tric
a
l f
u
zz
y
lo
g
ic:
a
dy
na
mic
beha
v
io
r stu
dy
of
the
ph
o
t
o
v
o
lt
a
ic s
y
st
em
Ahm
ed
Am
ine Ba
ra
k
a
t
e,
Sa
m
i C
ho
ub
a
ne,
Abdelk
a
der
H
a
djo
ud
j
a
La
b
o
r
a
t
o
r
y
o
f
E
l
e
c
t
r
o
n
i
c
S
y
st
e
ms,
I
n
f
o
r
mat
i
o
n
P
r
o
c
e
ssi
n
g
a
n
d
E
n
e
r
g
e
t
i
c
s,
I
b
n
T
o
f
a
i
l
U
n
i
v
e
r
si
t
y
,
K
e
n
i
t
r
a
,
M
o
r
o
c
c
o
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
7
,
2
0
2
4
R
ev
is
ed
Ap
r
2
,
2
0
2
5
Acc
ep
ted
J
u
l 1
2
,
2
0
2
5
In
th
is
p
a
p
e
r,
we
p
re
se
n
t
a
p
r
o
c
e
d
u
re
fo
r
e
x
trac
ti
n
g
d
a
ta
fr
o
m
a
st
a
n
d
-
a
lo
n
e
p
h
o
to
v
o
lt
a
ic
(P
V)
p
a
n
e
l
t
o
p
r
o
g
ra
m
a
m
a
x
imu
m
p
o
we
r
p
o
i
n
t
trac
k
in
g
(M
P
P
T)
c
o
n
t
ro
ll
e
r
b
a
se
d
o
n
th
e
f
u
z
z
y
l
o
g
ic
(
F
L)
m
e
th
o
d
,
a
imin
g
t
o
o
p
ti
m
ize
th
e
p
e
rfo
rm
a
n
c
e
o
f
t
h
e
p
h
o
to
v
o
l
taic
sy
ste
m
.
P
h
o
t
o
v
o
lt
a
ic
d
a
ta
a
c
q
u
isit
i
o
n
e
n
a
b
les
th
e
d
e
term
in
a
ti
o
n
o
f
th
e
in
p
u
t
a
n
d
o
u
tp
u
t
sp
e
e
c
h
u
n
iv
e
r
se
fo
r
th
e
M
P
P
T
c
o
n
tro
l
ler
u
sin
g
fu
z
z
y
lo
g
i
c
.
Th
is
m
e
th
o
d
a
d
a
p
ts
to
n
o
n
li
n
e
a
r
sy
ste
m
s
with
o
u
t
re
q
u
iri
n
g
a
c
o
m
p
le
x
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
l.
Ad
d
i
ti
o
n
a
ll
y
,
it
imp
ro
v
e
s
th
e
p
e
rf
o
rm
a
n
c
e
o
f
t
h
e
p
h
o
to
v
o
lt
a
ic
sy
ste
m
in
b
o
t
h
d
y
n
a
m
ic
a
n
d
st
e
a
d
y
-
sta
te
c
o
n
d
i
ti
o
n
s.
T
o
f
u
rth
e
r
e
n
h
a
n
c
e
th
e
m
e
th
o
d
’s
e
fficie
n
c
y
,
a
n
a
sy
m
m
e
tri
c
m
e
m
b
e
rsh
ip
fu
n
c
ti
o
n
c
o
n
c
e
p
t
is
p
ro
p
o
se
d
b
a
se
d
o
n
t
h
e
d
y
n
a
m
i
c
b
e
h
a
v
io
r
stu
d
y
o
f
th
e
p
h
o
t
o
v
o
lt
a
ic
s
y
ste
m
.
Co
m
p
a
re
d
t
o
th
e
sy
m
m
e
tri
c
m
e
th
o
d
,
t
h
e
a
sy
m
m
e
tri
c
fu
z
z
y
lo
g
ic
c
o
n
tr
o
ll
e
r
a
c
h
iev
e
s
h
ig
h
e
r
m
a
x
imu
m
p
o
we
r
o
u
tp
u
t
a
n
d
b
e
tt
e
r
trac
k
in
g
p
re
c
isio
n
.
T
h
is
tec
h
n
o
lo
g
y
is
e
ss
e
n
ti
a
l
fo
r
m
a
x
imiz
in
g
p
h
o
to
v
o
lt
a
ic
p
a
n
e
l
e
fficie
n
c
y
,
a
k
e
y
re
q
u
irem
e
n
t
a
s
so
lar
e
n
e
r
g
y
g
a
in
s
p
ro
m
in
e
n
c
e
a
s a
c
lea
n
a
n
d
re
n
e
w
a
b
le en
e
rg
y
so
u
rc
e
.
K
ey
w
o
r
d
s
:
Asy
m
m
etr
ical
f
u
zz
y
lo
g
ic
co
n
tr
o
ller
E
f
f
icien
cy
o
f
p
h
o
to
v
o
ltaic
Fu
zz
y
lo
g
ic
co
n
tr
o
ller
M
ax
im
u
m
p
o
wer
p
o
i
n
t tr
ac
k
er
Stan
d
-
alo
n
e
p
h
o
to
v
o
ltaic
s
y
s
tem
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ah
m
ed
Am
in
e
B
ar
ak
ate
L
ab
o
r
ato
r
y
o
f
E
lectr
o
n
ic
Sy
s
t
em
s
,
I
n
f
o
r
m
atio
n
Pro
ce
s
s
in
g
a
n
d
E
n
e
r
g
etics,
I
b
n
T
o
f
ail
Un
iv
er
s
ity
Ken
itra
Ken
itra
,
Mo
r
o
cc
o
E
m
ail:
ah
m
ed
am
in
e.
b
ar
ak
ate1
@
u
it.a
c.
m
a
1.
I
NT
RO
D
UCT
I
O
N
I
n
r
ec
en
t
y
ea
r
s
,
co
n
ce
r
n
s
o
v
er
g
r
ee
n
h
o
u
s
e
g
as
em
is
s
io
n
s
an
d
escalatin
g
f
u
el
p
r
ices
h
av
e
in
ten
s
if
ied
th
e
d
em
a
n
d
f
o
r
alter
n
ativ
e
en
er
g
y
s
o
u
r
ce
s
.
Am
o
n
g
th
ese,
s
o
lar
en
e
r
g
y
is
o
n
e
o
f
th
e
m
o
s
t
s
u
s
tain
ab
le
an
d
in
ex
h
au
s
tib
le
r
eso
u
r
ce
s
.
Ho
we
v
er
,
d
u
e
to
th
e
n
o
n
lin
ea
r
v
ar
ia
tio
n
o
f
cu
r
r
e
n
t
(
I
)
an
d
v
o
ltag
e
(
V)
ch
ar
ac
ter
is
tics
o
f
p
h
o
to
v
o
ltaic
(
PV)
ce
lls
u
n
d
er
d
if
f
er
e
n
t
ir
r
ad
iatio
n
a
n
d
t
em
p
er
atu
r
e
co
n
d
itio
n
s
,
it
is
cr
u
cial
to
o
p
er
ate
PV
s
y
s
tem
s
at
s
p
ec
if
ic
p
o
in
ts
to
ex
tr
ac
t
m
ax
im
u
m
s
o
lar
en
er
g
y
.
T
h
is
p
r
o
ce
s
s
,
k
n
o
w
n
as
m
ax
i
m
u
m
p
o
we
r
p
o
in
t
tr
ac
k
in
g
(
MPPT)
,
en
s
u
r
es
ef
f
icien
t
en
er
g
y
u
tili
za
tio
n
.
Var
io
u
s
MPPT
m
eth
o
d
s
h
a
v
e
b
e
en
d
ev
elo
p
ed
a
n
d
im
p
lem
en
ted
i
n
p
r
ev
io
u
s
s
tu
d
ies
[
1
]
–
[
3
]
,
i
n
clu
d
in
g
p
e
r
tu
r
b
atio
n
an
d
o
b
s
er
v
atio
n
(
P&
O)
,
in
cr
em
e
n
tal
co
n
d
u
cta
n
ce
,
f
r
ac
tio
n
al
o
p
en
cir
cu
it
v
o
ltag
e,
f
r
ac
tio
n
al
s
h
o
r
t
cir
cu
it
cu
r
r
en
t,
a
n
d
f
u
zz
y
lo
g
ic
(
FL)
tech
n
i
q
u
es.
T
h
ese
m
eth
o
d
s
o
f
f
er
h
i
g
h
tr
a
ck
in
g
ac
cu
r
ac
y
b
u
t
o
f
ten
f
ac
e
tr
ad
e
-
o
f
f
s
b
etwe
en
tr
ac
k
in
g
s
p
ee
d
an
d
p
r
ec
is
io
n
u
n
d
er
v
ar
y
i
n
g
in
s
o
latio
n
c
o
n
d
i
tio
n
s
.
Fu
zz
y
lo
g
ic
is
ad
v
an
ta
g
eo
u
s
as
it
d
o
es
n
o
t
r
eq
u
ir
e
a
p
r
ec
i
s
e
an
d
co
m
p
licated
m
ath
em
at
ical
m
o
d
el
an
d
ca
n
h
an
d
le
h
i
g
h
ly
n
o
n
lin
ea
r
s
y
s
tem
s
.
C
o
n
s
eq
u
en
tly
,
MPPT
alg
o
r
ith
m
s
b
ased
o
n
FL
h
av
e
attr
ac
ted
s
ig
n
if
ican
t
r
esear
ch
in
ter
est
[
4
]
–
[
7
]
.
R
ec
en
tly
,
m
an
y
MPPT
tech
n
iq
u
es
b
ased
o
n
FL
h
a
v
e
b
ee
n
p
r
o
p
o
s
ed
i
n
th
e
liter
atu
r
e.
C
o
m
p
ar
ed
to
co
n
v
en
tio
n
al
alg
o
r
ith
m
s
,
FL
-
b
ased
MPPT
tech
n
iq
u
es
d
em
o
n
s
tr
ate
im
p
r
o
v
e
d
tr
ac
k
in
g
p
er
f
o
r
m
a
n
ce
,
r
esp
o
n
s
e
tim
e
an
d
p
o
wer
e
f
f
icien
c
y
u
n
d
er
f
lu
ctu
atin
g
clim
atic
co
n
d
itio
n
s
,
s
u
ch
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
3
5
5
-
4
3
6
5
4356
tem
p
er
atu
r
e
v
ar
iatio
n
s
an
d
s
h
ad
in
g
.
Ho
wev
er
,
th
e
d
esig
n
co
n
s
id
er
atio
n
s
an
d
th
e
co
m
p
le
x
ity
o
f
im
p
lem
en
tin
g
FL
-
b
ased
MPPT
tech
n
iq
u
es v
ar
y
s
ig
n
if
ican
tly
,
n
ec
ess
itatin
g
f
u
r
th
er
in
v
esti
g
atio
n
in
t
o
th
eir
o
p
tim
izatio
n
.
2.
P
RO
P
O
SE
D
P
H
O
T
O
VO
L
T
AIC
SY
ST
E
M
T
h
e
p
r
o
p
o
s
ed
s
y
s
tem
,
illu
s
tr
ated
in
Fig
u
r
e
1
,
o
f
f
e
r
s
an
i
n
n
o
v
ativ
e
s
o
lu
tio
n
f
o
r
g
en
er
atin
g
s
tab
le
p
o
wer
f
r
o
m
a
p
h
o
to
v
o
ltaic
p
a
n
el.
I
t
co
m
p
r
is
es
a
PV
p
an
el,
a
DC
/D
C
s
tatic
en
er
g
y
co
n
v
er
s
io
n
u
n
it
[
8
]
–
[
1
0
]
,
a
lo
ad
,
an
d
a
b
lo
ck
f
o
r
ca
lcu
lati
n
g
th
e
m
ax
im
u
m
p
o
wer
p
o
in
t
(
MPP)
,
wh
ich
co
n
tr
o
ls
th
e
co
n
v
er
ter
.
T
h
e
DC
/DC
co
n
v
er
ter
s
er
v
es
as
an
in
ter
f
a
ce
b
etwe
en
th
e
PV
p
an
els
an
d
th
e
s
to
r
ag
e
s
y
s
tem
[
1
1
]
,
[
1
2
]
,
r
eg
u
latin
g
v
o
ltag
e
an
d
c
u
r
r
en
t
to
m
ain
tain
a
s
ta
b
le
an
d
o
p
tim
al
p
o
wer
o
u
tp
u
t
r
eg
ar
d
less
o
f
tem
p
er
atu
r
e
a
n
d
s
o
lar
ir
r
a
d
ian
ce
v
ar
iatio
n
s
.
T
o
e
n
s
u
r
e
r
ea
l
-
tim
e
m
ax
im
u
m
p
o
wer
g
e
n
er
atio
n
,
an
in
tellig
en
t M
PP
T
s
y
s
tem
b
ased
o
n
f
u
zz
y
lo
g
ic
en
ab
les
th
e
co
n
v
er
ter
to
a
d
a
p
t
th
e
p
an
el’
s
p
o
wer
o
u
tp
u
t
t
o
m
atch
th
e
lo
ad
’
s
r
eq
u
ir
em
en
ts
[
1
3
]
–
[
1
6
]
.
T
h
e
MPPT
alg
o
r
ith
m
d
eter
m
in
es
th
e
o
p
tim
al
d
u
ty
cy
cle
f
o
r
th
e
co
n
v
e
r
ter
b
ased
o
n
in
p
u
t
p
ar
am
eter
s
,
en
s
u
r
in
g
ef
f
icien
t
an
d
s
tab
le
p
o
we
r
g
e
n
er
atio
n
.
T
h
e
m
ax
im
u
m
p
o
w
er
o
u
tp
u
t
o
f
a
p
h
o
to
v
o
ltaic
g
en
er
ato
r
is
h
ea
v
ily
in
f
lu
en
ce
d
b
y
clim
atic
co
n
d
itio
n
s
,
with
MPP
v
ar
y
i
n
g
p
r
o
p
o
r
tio
n
ally
with
ir
r
ad
iatio
n
(
G)
an
d
in
v
er
s
ely
with
tem
p
er
atu
r
e
(
T
)
.
T
h
e
cr
ea
tio
n
o
f
th
e
in
f
e
r
en
ce
tab
le
p
lay
s
a
k
ey
r
o
le
in
co
n
t
r
o
llin
g
th
e
f
u
zz
y
l
o
g
ic
tec
h
n
i
q
u
e.
T
h
er
e
ar
e
two
ty
p
es o
f
in
f
er
en
ce
tab
l
es: th
e
f
ir
s
t,
p
r
esen
ted
in
T
ab
le
1
,
is
a
s
y
m
m
etr
ical
f
u
zz
y
lo
g
ic
co
n
tr
o
ller
(
FLC
)
d
er
iv
ed
f
r
o
m
th
e
p
o
wer
c
u
r
v
e
as
a
f
u
n
ctio
n
o
f
PV
v
o
ltag
e
in
Fig
u
r
e
2
.
T
h
e
s
ec
o
n
d
ty
p
e
is
asy
m
m
etr
ical,
b
ased
o
n
a
n
an
aly
s
is
o
f
th
e
p
h
o
to
v
o
ltaic
p
a
n
el'
s
b
eh
av
io
r
u
n
d
er
v
ar
y
in
g
clim
atic
co
n
d
itio
n
s
[
1
7
]
,
[
1
8
]
.
Fig
u
r
e
1
.
Sy
s
tem
b
lo
c
k
d
ia
g
r
a
m
T
ab
le
1
.
I
n
f
er
e
n
ce
tab
le
f
o
r
s
y
m
m
etr
ical
FLC
CE
E
NB
Ns
ZE
PS
PB
N
B
ZE
ZE
NG
NG
NG
N
S
ZE
ZE
N
P
N
P
N
P
ZE
N
P
ZE
ZE
ZE
PP
PS
PP
PP
PP
ZE
ZE
P
B
P
G
P
G
P
G
ZE
ZE
Fig
u
r
e
2
.
P
-
V
cu
r
v
e
o
f
a
s
o
lar
p
an
el
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
P
r
a
ctica
l sp
ec
ifica
tio
n
o
f th
e
s
p
ee
ch
u
n
ivers
e
o
f th
e
ma
ximu
m
p
o
w
er p
o
in
t …
(
A
h
me
d
A
min
e
B
a
r
a
ka
te
)
4357
3.
B
E
H
AV
I
O
RA
L
ST
UDY
AN
D
CO
NF
I
G
URA
T
I
O
N
3
.
1
.
Cha
ra
ct
er
iza
t
io
n o
f
t
he
AP
I
1
5
6
P
2
0
0
ph
o
t
o
v
o
lt
a
ic
pa
nel
3
.
1
.
1
.
T
ec
hn
ica
l c
ha
ra
ct
er
is
t
ics o
f
t
he
ph
o
t
o
v
o
lt
a
ic
pa
nel
W
e
s
im
u
lated
o
u
r
API
1
5
6
P2
0
0
ty
p
e
p
h
o
to
v
o
ltaic
p
an
el
with
a
s
tatic
lo
ad
o
f
R
S
=
6
0
Ω
at
th
e
o
u
tp
u
t.
T
h
e
p
an
el'
s
m
o
d
u
la
r
ity
an
d
li
g
h
tweig
h
t
d
esig
n
m
ak
e
it
well
-
s
u
ited
f
o
r
r
em
o
te
ap
p
licatio
n
s
,
in
clu
d
in
g
wate
r
p
u
m
p
in
g
s
y
s
tem
s
,
d
o
m
esti
c
in
s
tallatio
n
s
,
an
d
m
ilit
ar
y
u
s
e
[
1
9
]
.
Ad
d
itio
n
ally
,
t
h
e
API
1
5
6
P2
0
0
p
an
els
ca
n
b
e
ea
s
ily
co
n
n
ec
ted
in
s
er
ies
o
r
p
ar
allel
co
n
f
ig
u
r
atio
n
s
to
m
ee
t
v
ar
y
i
n
g
e
n
er
g
y
d
em
a
n
d
s
.
T
h
e
tech
n
ical
s
p
ec
if
icatio
n
s
o
f
th
e
API
1
5
6
P2
0
0
PV p
an
el
a
r
e
p
r
esen
te
d
in
T
ab
le
2
.
T
ab
le
2
.
T
ec
h
n
ical
ch
ar
ac
ter
is
tics
o
f
PV A
PI1
5
6
P2
0
0
Te
c
h
n
i
c
a
l
d
a
t
a
A
B
B
R
U
n
i
t
V
a
l
u
e
M
a
x
i
m
u
m
p
o
w
e
r
f
o
r
S
T
C
V
o
l
t
a
g
e
a
t
ma
x
i
m
u
m
p
o
w
e
r
p
o
i
n
t
C
u
r
r
e
n
t
a
t
ma
x
i
mu
m
p
o
w
e
r
p
o
i
n
t
S
h
o
r
t
c
i
r
c
u
i
t
c
u
r
r
e
n
t
O
p
e
n
c
i
r
c
u
i
t
v
o
l
t
a
g
e
S
e
r
i
e
s r
e
si
s
t
a
n
c
e
S
h
e
n
t
r
e
si
s
t
a
n
c
e
N
u
mb
e
r
o
f
c
e
l
l
s
i
n
s
e
r
i
e
s
N
u
mb
e
r
o
f
c
e
l
l
s
i
n
p
a
r
a
l
l
e
l
D
i
o
d
e
i
d
e
a
l
i
t
y
f
a
c
t
o
r
P
max
V
m
pp
I
m
pp
I
sc
V
oc
R
S
R
SH
Ns
N
P
n
W
V
A
A
V
Ω
Ω
-
-
-
2
0
0
±
3%
2
8
.
7
6
.
9
7
7
.
7
5
36
0
.
4
1
7
2
7
7
1
.
1
7
0
5
60
01
0
.
9
6
5
5
3
.
1
.
2
.
E
lect
rica
l st
ud
y
o
f
t
he
ph
o
t
o
v
o
lt
a
ic
pa
nel
T
h
e
m
ax
im
u
m
p
o
wer
o
u
t
p
u
t
o
f
a
GPV
p
h
o
to
v
o
ltaic
g
en
er
ato
r
is
s
ig
n
if
ican
tly
in
f
l
u
en
ce
d
b
y
v
ar
iatio
n
s
in
ir
r
a
d
ian
ce
a
n
d
te
m
p
er
atu
r
e.
As
s
h
o
wn
in
Fig
u
r
e
3
,
th
e
p
h
o
t
o
v
o
ltaic
p
a
n
el
r
es
p
o
n
d
s
to
ch
an
g
es
in
th
ese
f
ac
to
r
s
,
d
em
o
n
s
tr
atin
g
th
at
p
o
wer
o
u
tp
u
t
an
d
th
e
m
ax
im
u
m
p
o
wer
p
o
in
t
(
MPP)
v
ar
y
p
r
o
p
o
r
tio
n
ally
with
ir
r
ad
ian
ce
Fig
u
r
e
3
(
a)
an
d
tem
p
er
atu
r
e
Fig
u
r
e
3
(
b
)
[
2
0
]
,
[
2
1
]
.
T
ab
le
3
s
u
m
m
ar
izes
th
e
ca
lcu
lated
r
esu
lts
o
f
th
e
elec
tr
ical
q
u
an
titi
es
o
f
th
e
p
h
o
to
v
o
ltaic
p
an
el.
B
y
d
eter
m
in
in
g
th
e
m
a
x
im
u
m
p
o
wer
at
a
g
iv
en
tem
p
er
atu
r
e
an
d
ir
r
ad
ian
ce
,
w
e
estab
lis
h
th
at
ea
ch
m
ax
im
u
m
p
o
wer
co
r
r
esp
o
n
d
s
to
a
s
p
ec
if
ic
d
u
ty
cy
cle
D,
d
er
iv
ed
f
r
o
m
(
1
)
,
wh
ich
allo
w
s
u
s
to
d
eter
m
in
e
th
e
i
n
f
er
en
ce
r
u
les o
f
th
e
f
u
zz
y
lo
g
ic
co
n
tr
o
l
.
=
1
−
√
0
wi
th
=
2
(
1
)
(
a)
(
b
)
Fig
u
r
e
3
.
Po
wer
a
n
d
c
u
r
r
en
t c
h
ar
ac
ter
is
tics
o
f
PV a
s
a
f
u
n
ctio
n
o
f
v
o
ltag
e
(
a)
a
t T
=
2
5
°C
an
d
v
ar
i
o
u
s
G
an
d
(
b
)
a
t G
=1
0
0
0
W
/m
2
an
d
v
ar
io
u
s
T
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
3
5
5
-
4
3
6
5
4358
T
ab
le
3
.
Ma
x
im
u
m
PV p
o
wer
s
an
d
th
eir
d
u
ty
cy
cles
T
(
°C
)
G
(
W
/m
2
)
P
max
(
W
)
I
ppm
(
A)
V
ppm
(
V)
R
0
(
Ω)
D
35
1
0
0
0
1
9
1
.
8
7
.
0
0
2
5
5
5
6
8
27
.
39
3
.
9
1
1
4
2
9
0
9
0
.
7
4
4
6
7
5
7
3
25
1
0
0
0
2
0
0
6
.
9
6
8
6
4
1
1
1
28
.
7
4
.
1
1
8
4
5
0
.
7
3
8
0
15
1
0
0
0
2
0
8
.
1
6
.
9
3
2
0
4
5
3
30
.
02
4
.
3
3
0
6
1
2
2
1
0
.
7
3
1
3
4
2
4
7
5
1
0
0
0
2
1
6
6
.
8
8
7
7
5
5
1
31
.
36
4
.
5
5
3
0
0
7
4
1
0
.
7
2
4
5
3
0
4
8
25
9
0
0
1
8
0
.
9
6
.
3
0
5
3
3
2
8
7
28
.
69
4
.
5
5
0
1
1
6
6
4
0
.
7
2
5
25
8
0
0
1
6
1
.
5
5
.
5
8
4
3
7
0
6
8
28
.
92
5
.
1
7
8
7
3
9
3
2
0
.
7
0
6
25
7
0
0
1
4
1
.
8
4
.
8
9
1
3
4
1
8
4
28
.
99
5
.
9
2
6
7
9
9
0
1
0
.
6
8
5
7
1
25
6
0
0
1
2
1
.
9
4
.
2
0
4
8
9
8
2
4
28
.
99
6
.
8
9
4
3
4
0
4
4
0
.
6
6
1
25
5
0
0
1
0
1
.
7
3
.
5
0
8
1
0
6
2
4
28
.
99
8
.
2
6
3
7
1
7
8
0
.
6
2
8
9
25
4
0
0
81
.
3
2
.
8
0
3
4
4
8
2
8
29
10
.
3
4
4
4
0
3
4
0
.
5
8
4
8
25
3
0
0
60
.
74
2
.
1
0
4
6
4
3
1
28
.
86
13
.
7
1
2
5
3
8
7
0
.
5
2
1
9
3
.
2
.
Co
nfi
g
ura
t
io
n o
f
t
he
f
uzzy
lo
g
ic
M
P
P
T
co
mm
a
nd
I
n
th
is
s
ec
tio
n
,
we
p
r
esen
t
th
e
s
tep
s
in
v
o
lv
ed
i
n
co
n
f
ig
u
r
in
g
t
h
e
f
u
zz
y
lo
g
ic
co
n
tr
o
l.
First,
we
p
r
esen
t
th
e
ca
lcu
lato
r
d
iag
r
a
m
,
f
o
llo
w
ed
b
y
an
e
x
p
lan
atio
n
o
f
th
e
d
a
ta
ex
tr
ac
tio
n
p
r
o
ce
s
s
f
r
o
m
th
e
p
h
o
to
v
o
ltaic
p
an
el.
T
h
is
p
r
o
ce
s
s
is
u
s
ed
to
g
en
e
r
ate
th
e
in
p
u
t
tab
le
(
s
lo
p
e
a
n
d
its
v
ar
iatio
n
)
a
n
d
,
s
u
b
s
eq
u
e
n
tly
,
th
e
in
f
er
en
ce
tab
le
[
2
2
]
.
3
.
2
.
1
.
Ca
lcula
t
o
r
dia
g
r
a
m
T
h
e
f
u
zz
y
L
o
g
ic
co
n
tr
o
l
s
y
s
tem
co
n
s
is
ts
o
f
a
ca
lcu
lato
r
f
o
r
th
e
s
lo
p
e
(
E
)
an
d
its
v
ar
iatio
n
(
C
E
)
,
d
er
iv
ed
f
r
o
m
(
2
)
an
d
(
3
)
,
al
o
n
g
with
a
f
u
zz
y
l
o
g
ic
co
n
tr
o
ller
b
lo
ck
.
T
h
e
s
ch
em
atic
o
f
th
e
p
r
o
p
o
s
ed
c
o
n
tr
o
l
s
y
s
tem
is
p
r
esen
ted
in
Fig
u
r
e
4
.
I
t
s
h
o
ws
th
e
c
o
m
p
u
tatio
n
f
lo
w
o
f
th
e
s
lo
p
e
an
d
its
v
ar
i
atio
n
b
ased
o
n
t
h
e
p
h
o
to
v
o
ltaic
v
o
ltag
e
V
_
P
V
a
n
d
th
e
cu
r
r
en
t
I
_
P
V
o
f
th
e
PV.
=
(
)
−
(
−
1
)
(
)
−
(
−
1
)
(
2
)
=
(
)
−
(
−
1
)
(
3
)
B
ased
o
n
th
e
v
alu
es
o
f
E
a
n
d
CE
r
ec
eiv
ed
b
y
t
h
e
L
F
c
o
n
tr
o
ller
(
f
u
zz
y
lo
g
ic
b
l
o
ck
)
,
th
e
latter
d
eter
m
in
es
th
e
v
alu
e
o
f
th
e
d
u
ty
cy
cle
D
t
o
co
n
tr
o
l
th
e
co
n
v
er
ter
.
T
h
e
PW
M
b
lo
ck
,
p
u
ls
e
wid
th
m
o
d
u
latio
n
,
is
im
p
lem
en
ted
to
g
en
er
ate
a
lo
g
ic
s
ig
n
al
with
a
f
ix
ed
f
r
eq
u
en
cy
,
wh
ile
its
d
u
ty
cy
cle
is
d
ig
itally
co
n
tr
o
lled
.
T
h
e
av
er
a
g
e
o
u
t
p
u
t sig
n
al
co
r
r
esp
o
n
d
s
to
th
e
d
u
ty
c
y
cle.
Fig
u
r
e
4
.
C
alcu
lato
r
d
iag
r
am
MPPT
3
.
2
.
2
.
Acquiring
P
V
da
t
a
t
o
co
nfig
ure
f
uzzy
lo
g
ic
c
o
ntr
o
l
I
n
o
r
d
er
to
c
o
n
f
ig
u
r
e
th
e
f
u
z
zy
lo
g
ic
MPPT
co
n
tr
o
ller
,
we
ca
r
r
ied
o
u
t
a
s
tu
d
y
ab
o
u
t
t
h
e
d
y
n
a
m
ic
b
eh
av
io
r
o
f
th
e
p
h
o
to
v
o
ltaic
p
an
el
u
n
d
er
v
a
r
y
in
g
clim
ate
co
n
d
itio
n
s
.
I
n
ea
ch
s
ce
n
ar
io
,
we
f
ix
ed
th
e
v
alu
es
o
f
illu
m
in
atio
n
an
d
tem
p
er
atu
r
e
,
th
en
r
ec
o
r
d
ed
th
e
c
o
r
r
esp
o
n
d
in
g
s
lo
p
e
E
an
d
its
v
ar
iatio
n
CE
.
T
h
is
p
r
o
ce
s
s
allo
wed
u
s
to
cr
ea
te
a
co
m
p
ar
ativ
e
tab
le
o
f
th
e
d
ata
a
n
d
to
d
ef
in
e
th
e
tab
le
o
f
in
f
er
e
n
ce
r
u
l
es.
T
o
p
er
f
o
r
m
th
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
P
r
a
ctica
l sp
ec
ifica
tio
n
o
f th
e
s
p
ee
ch
u
n
ivers
e
o
f th
e
ma
ximu
m
p
o
w
er p
o
in
t …
(
A
h
me
d
A
min
e
B
a
r
a
ka
te
)
4359
s
tep
o
f
e
x
tr
ac
tin
g
d
ata
E
an
d
CE
f
r
o
m
t
h
e
p
h
o
to
v
o
ltaic
p
an
el,
it
is
n
ec
ess
ar
y
to
m
ain
tain
th
e
i
n
p
u
ts
(
tem
p
er
atu
r
e
an
d
ir
r
ad
iatio
n
)
an
d
th
eir
co
r
r
esp
o
n
d
i
n
g
d
u
ty
cy
cle
D
f
ix
e
d
in
Fig
u
r
e
5
.
T
h
e
v
alu
es
o
f
th
e
s
lo
p
e
an
d
its
v
ar
iatio
n
ar
e
th
en
r
ec
o
r
d
ed
in
r
e
g
is
ter
s
f
o
r
s
u
b
s
eq
u
e
n
t
d
ata
ex
tr
ac
tio
n
.
Fig
u
r
e
5
.
Ph
o
to
v
o
ltaic
s
y
s
tem
co
n
tr
o
lled
b
y
p
u
ls
e
g
en
er
ato
r
T
o
s
et
th
e
d
u
ty
c
y
cle
(
D)
,
we
r
ep
lace
d
th
e
o
u
tp
u
t
o
f
th
e
MPPT
co
n
tr
o
ller
with
a
p
u
ls
e
g
en
er
ato
r
th
at
g
en
er
ates
an
ap
p
r
o
p
r
iate
co
m
m
an
d
s
ig
n
al
b
ased
o
n
th
e
p
r
o
p
o
s
ed
tem
p
er
atu
r
e
a
n
d
ir
r
ad
ia
n
ce
co
n
d
itio
n
s
,
as
o
u
tlin
ed
in
T
ab
le
3
.
T
h
e
d
ata
an
aly
ze
d
co
n
s
titu
tes
a
s
am
p
l
e
b
ec
au
s
e
th
e
n
u
m
b
er
o
f
r
ec
o
r
d
ed
d
ata
is
v
e
r
y
lar
g
e.
T
h
e
d
ata
ac
q
u
ir
e
d
f
r
o
m
th
e
r
eg
is
ter
s
at
ir
r
ad
ian
ce
lev
els
o
f
1
,
0
0
0
,
8
0
0
,
6
0
0
a
n
d
4
0
0
W
/m
2
at
a
tem
p
er
atu
r
e
s
et
at
2
5
°C
,
ar
e
c
ateg
o
r
ized
b
ased
o
n
t
h
e
s
ig
n
o
f
th
e
v
ar
iatio
n
in
t
h
e
s
lo
p
e
C
E
an
d
th
en
s
o
r
ted
b
y
s
lo
p
e
E
.
T
h
ese
d
ata
ar
e
p
r
ese
n
ted
s
id
e
-
by
-
s
id
e
in
T
ab
les
4
an
d
5
to
d
ef
i
n
e
th
e
r
an
g
es
o
f
th
e
in
p
u
t
v
a
r
iab
les
u
s
ed
in
th
e
m
em
b
er
s
h
ip
f
u
n
cti
o
n
s
f
o
r
t
h
e
f
u
zz
if
icatio
n
s
tep
.
T
ab
le
4
.
Data
(
E
a
n
d
C
E
)
f
o
r
v
ar
iatio
n
s
o
f
th
e
p
o
s
itiv
e
s
lo
p
e
at
T
=2
5
°C
S
l
o
p
e
E
G
=
1
0
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
S
l
o
p
e
E
G
=
8
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
S
l
o
p
e
E
G
=
6
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
S
l
o
p
e
E
G
=
4
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
8
.
70
-
0
.
0
0
0
4
2
1
0
1
8
.
50
-
0
.
0
0
1
6
7
8
4
4
8
.
00
-
1
.
0
4
E
-
05
7
.
50
-
0
.
0
0
0
1
4
8
3
3
7
.
00
-
0
.
0
0
0
3
2
2
2
6
.
50
-
0
.
0
0
0
3
6
7
8
9
6
.
09
-
0
.
0
0
0
5
2
2
7
2
6
.
00
-
0
.
0
0
0
6
6
3
7
6
6
.
00
-
0
.
0
0
1
2
3
7
7
4
5
.
50
-
0
.
0
0
1
0
0
1
1
1
5
.
50
-
3
.
4
3
E
-
05
5
.
00
-
0
.
0
0
1
2
8
4
4
3
5
.
00
-
0
.
0
0
0
2
4
3
2
9
4
.
50
-
0
.
0
0
1
5
6
7
7
5
4
.
50
-
0
.
0
0
0
6
2
3
6
9
4
.
20
-
0
.
0
0
0
6
1
4
9
9
4
.
00
-
0
.
0
0
2
1
3
8
2
4
4
.
00
-
0
.
0
0
1
1
4
3
8
1
4
.
00
-
4
.
7
9
E
-
06
3
.
50
-
0
.
0
0
2
6
7
6
3
4
3
.
50
-
0
.
0
0
0
4
0
3
3
8
3
.
50
-
0
.
0
0
0
3
0
5
1
5
3
.
49
-
3
.
1
7
E
-
05
3
.
00
-
0
.
0
0
3
3
1
8
8
8
3
,
0
0
-
0
.
0
0
2
9
7
6
1
8
3
.
00
-
0
.
0
0
0
6
7
2
6
3
3
.
00
-
0
.
0
0
0
1
1
8
2
6
2
.
50
-
0
.
0
0
3
3
2
4
0
6
2
.
50
-
0
.
0
0
4
4
9
4
3
7
2
.
50
-
0
.
0
0
1
2
5
5
8
2
.
50
-
0
.
0
0
0
8
5
9
2
3
2
.
00
-
0
.
0
0
4
8
6
6
4
9
2
.
00
-
0
.
0
0
3
4
1
6
5
1
2
.
00
-
0
.
0
0
2
9
1
5
9
8
2
.
00
-
0
.
0
0
0
9
7
6
0
6
1
.
60
-
0
.
0
0
6
4
5
3
2
3
1
.
60
-
0
.
0
0
2
0
8
8
5
7
1
.
60
-
0
.
0
0
1
3
2
0
3
5
1
.
60
-
0
.
0
0
3
7
8
0
5
4
1
.
20
-
0
.
0
0
9
0
8
1
8
7
1
.
20
-
0
.
0
2
2
5
1
8
2
7
1
.
20
-
0
.
0
0
1
7
0
4
3
9
1
.
20
-
0
.
0
1
5
4
8
9
6
1
.
00
-
0
.
0
1
0
3
6
3
7
2
1
.
00
-
0
.
0
2
0
8
6
1
3
7
1
.
00
-
0
.
0
0
2
7
1
2
3
8
1
.
00
-
0
.
0
2
3
8
2
8
8
5
0
.
80
-
0
.
0
1
1
4
9
5
8
9
0
.
80
-
0
.
0
2
6
1
2
2
4
3
0
.
80
-
0
.
0
0
2
8
1
3
5
0
.
80
-
0
.
0
0
4
2
1
2
9
7
0
.
60
-
0
.
0
1
3
5
1
1
7
7
0
.
61
-
0
.
0
0
4
3
7
4
0
7
0
.
60
-
0
.
0
0
1
2
4
7
4
0
.
60
-
0
.
0
0
2
3
7
9
4
3
0
.
41
-
0
.
0
0
4
7
2
3
8
3
0
.
40
-
0
.
0
0
3
4
3
0
7
7
0
.
40
-
0
.
0
3
9
6
9
7
1
8
0
.
40
-
0
.
0
0
3
5
7
5
5
4
0
.
20
-
0
.
0
1
7
0
8
2
1
0
.
20
-
0
.
0
1
6
9
5
1
4
9
0
.
20
-
0
.
0
3
9
4
6
0
7
0
.
20
-
0
.
0
3
1
2
9
3
1
2
0
.
01
-
0
.
0
1
0
9
0
4
6
5
0
.
01
-
0
.
0
0
8
1
6
9
8
5
0
.
01
-
0
.
0
0
1
6
5
3
2
9
0
.
01
-
0
.
0
0
4
5
7
9
8
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
3
5
5
-
4
3
6
5
4360
T
ab
le
5
.
Data
(
E
a
n
d
C
E
)
f
o
r
v
ar
iatio
n
s
in
th
e
n
eg
ativ
e
s
lo
p
e
at
T
=2
5
°C
S
l
o
p
e
E
G
=
1
0
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
S
l
o
p
e
E
G
=
8
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
S
l
o
p
e
E
G
=
6
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
S
l
o
p
e
E
G
=
4
0
0
V
a
r
i
a
t
i
o
n
o
f
sl
o
p
e
C
E
6
.
00
0
.
0
0
0
6
2
9
9
8
5
.
50
0
.
0
0
0
6
6
2
6
9
5
.
00
0
.
0
0
0
9
6
5
1
4
5
.
00
0
.
0
0
0
1
3
2
5
3
4
.
50
0
.
0
0
2
0
4
8
8
4
4
.
50
0
.
0
0
0
6
2
1
7
4
.
00
0
.
0
0
2
4
4
0
9
5
4
.
00
0
.
0
0
0
6
1
6
8
6
3
.
50
0
.
0
0
2
2
6
2
1
1
3
.
50
0
.
0
0
0
7
4
2
4
9
3
.
50
0
.
0
0
0
1
8
6
6
3
3
.
00
0
.
0
0
3
9
4
6
8
4
3
.
00
0
.
0
0
5
3
5
2
0
7
3
.
00
0
.
0
0
0
9
6
8
4
2
3
.
00
7
.
0
5
E
-
05
2
.
50
0
.
0
0
8
3
3
8
2
2
2
.
50
0
.
0
0
7
7
4
6
0
3
2
.
50
0
.
0
0
0
4
6
3
2
7
2
.
50
0
.
0
0
0
5
0
3
0
4
4
2
.
00
0
.
0
0
3
8
8
6
8
5
2
.
00
0
.
0
0
5
2
4
1
4
7
2
.
00
0
.
0
0
1
8
0
2
6
2
2
.
00
0
.
0
0
2
0
6
1
2
9
2
1
.
60
0
.
0
0
5
9
9
5
6
2
1
.
60
0
.
0
3
3
9
5
0
7
7
1
.
60
0
.
0
0
3
6
6
0
5
1
1
.
60
0
.
0
0
0
7
6
7
4
9
3
1
.
20
0
.
0
0
7
1
5
9
7
8
1
.
20
0
.
0
0
0
8
3
5
8
6
1
.
20
0
.
0
1
5
8
8
6
1
1
.
20
0
.
0
0
6
5
2
6
6
1
8
1
.
00
0
.
0
1
8
5
9
2
6
5
1
.
00
0
.
0
0
8
9
9
4
6
9
1
.
00
0
.
0
2
2
0
6
5
3
2
1
.
00
0
.
0
0
4
1
5
2
7
7
1
0
.
80
0
.
0
0
2
4
6
7
8
0
.
80
0
.
0
3
4
4
2
1
9
6
0
.
80
0
.
0
2
0
3
9
3
2
5
0
.
80
0
.
0
0
5
3
7
8
4
8
8
0
.
60
0
.
0
0
2
7
8
3
3
7
0
.
60
0
.
0
2
1
0
4
4
8
6
0
.
60
0
.
0
0
0
2
8
1
6
7
0
.
60
0
.
0
0
1
0
9
2
5
1
9
0
.
40
0
.
0
1
5
3
7
8
4
2
0
.
40
0
.
0
0
2
6
1
8
1
4
0
.
40
0
.
0
1
2
8
2
3
5
8
0
.
40
0
.
0
3
1
5
3
2
0
7
5
0
.
21
0
.
0
0
1
0
7
1
9
4
0
.
21
0
.
0
0
7
3
2
0
7
6
0
.
20
0
.
0
0
8
9
9
5
9
7
0
.
20
0
.
0
3
9
7
7
2
2
5
7
0
.
01
0
.
0
0
1
1
6
5
4
2
0
.
01
0
.
0
0
5
4
1
1
3
1
0
.
01
0
.
0
0
1
1
3
6
1
9
0
.
01
0
.
0
0
2
2
3
0
9
8
7
3
.
3
.
F
uzzif
ica
t
io
n
Fu
zz
if
icatio
n
is
a
p
r
elim
in
ar
y
s
tep
th
at
d
eter
m
in
es
th
e
s
u
b
s
ets
o
r
in
ter
v
als
o
f
m
ax
im
u
m
v
ar
iatio
n
allo
wed
in
th
e
in
p
u
t
v
ar
iab
le
s
.
T
h
e
p
u
r
p
o
s
e
o
f
f
u
zz
if
icatio
n
is
to
co
n
v
er
t
th
e
i
n
p
u
t
v
ar
i
ab
les
in
to
f
u
zz
y
o
r
lin
g
u
is
tic
v
ar
iab
les.
I
n
o
u
r
ca
s
e,
we
h
av
e
two
in
p
u
t
v
ar
iab
le
s
:
s
lo
p
e
E
an
d
th
e
v
ar
iatio
n
o
f
th
e
s
lo
p
e
C
E
.
Fo
r
m
o
r
e
p
r
ec
is
e
r
esu
lts
we
h
av
e
d
esig
n
ated
s
ev
en
,
in
s
tead
o
f
f
iv
e,
in
ter
v
als
o
f
th
e
in
p
u
t
v
a
r
i
ab
les
ca
lled
:
lar
g
e
n
eg
ativ
e
(
NB
)
,
m
e
d
iu
m
n
eg
ati
v
e
(
NM
)
,
s
m
all
n
e
g
ativ
e
(
NS)
,
z
er
o
(
Z
E
)
,
s
m
all
p
o
s
itiv
e
(
PS
)
,
m
ed
iu
m
p
o
s
itiv
e
(
PM)
an
d
lar
g
e
p
o
s
itiv
e
(
PB
)
[
2
3
]
–
[
2
6
]
.
Fig
u
r
es
6
an
d
7
s
h
o
w
th
e
m
em
b
er
s
h
ip
f
u
n
ct
io
n
s
o
f
th
e
in
p
u
t
v
ar
iab
les f
u
zz
y
s
u
b
s
ets d
ed
u
c
ed
f
r
o
m
T
ab
les 4
a
n
d
5
.
Fig
u
r
e
6
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
in
p
u
t v
a
r
iab
les E
Fig
u
r
e
7
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
in
p
u
t v
a
r
iab
les C
E
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
P
r
a
ctica
l sp
ec
ifica
tio
n
o
f th
e
s
p
ee
ch
u
n
ivers
e
o
f th
e
ma
ximu
m
p
o
w
er p
o
in
t …
(
A
h
me
d
A
min
e
B
a
r
a
ka
te
)
4361
3
.
4
.
I
nfe
re
nce
a
nd
def
uzzif
ica
t
io
n
I
n
f
er
en
ce
is
th
e
d
ec
is
io
n
s
tag
e
b
ec
au
s
e
we
estab
lis
h
lo
g
ical
r
elatio
n
s
h
ip
s
b
etwe
en
in
p
u
ts
a
n
d
o
u
tp
u
ts
wh
ile
d
eter
m
in
in
g
th
e
r
u
les
o
f
in
f
er
en
ce
.
Fig
u
r
e
8
d
ef
in
es
th
e
m
em
b
er
s
h
ip
f
u
n
ctio
n
o
f
th
e
o
u
tp
u
t
v
a
r
iab
le
D.
A
th
o
r
o
u
g
h
u
n
d
er
s
tan
d
in
g
o
f
th
e
s
y
s
tem
is
es
s
en
tial
f
o
r
d
ev
elo
p
in
g
s
u
ch
a
c
o
n
tr
o
ller
.
Sp
e
cif
ically
,
th
e
in
p
u
t
v
alu
e
is
r
e
p
r
esen
ted
b
y
two
f
u
zz
y
f
u
n
ctio
n
s
with
d
i
f
f
er
en
t
d
eg
r
ee
s
,
an
d
th
e
o
u
tp
u
t
is
d
ef
in
ed
b
y
s
ev
er
al
f
u
n
ctio
n
s
.
Sev
er
al
m
eth
o
d
s
ca
n
f
u
lf
ill th
is
task
.
W
e
h
av
e
ch
o
s
en
th
e
Ma
m
d
an
i
m
eth
o
d
f
o
r
f
u
zz
y
in
f
er
en
ce
,
u
s
in
g
MA
X
-
MI
N
o
p
er
atio
n
s
,
wh
er
e
th
e
MI
N
o
p
er
ato
r
is
ap
p
lied
f
o
r
A
ND
th
e
MA
X
o
p
er
ato
r
f
o
r
O
R
.
B
ased
o
n
th
ese
r
u
les,
an
in
f
er
en
ce
tab
le
ca
n
b
e
d
r
awn
u
p
as
p
r
esen
ted
in
T
ab
le
6
.
Fin
ally
,
it
i
s
n
ec
es
s
ar
y
to
ca
r
r
y
o
u
t
th
e
in
v
er
s
e
o
p
e
r
atio
n
o
f
f
u
zz
if
icatio
n
an
d
ca
lcu
late
a
n
u
m
er
ical
v
alu
e
u
n
d
er
s
tan
d
a
b
le
b
y
th
e
ex
t
er
n
al
en
v
ir
o
n
m
en
t
f
r
o
m
a
f
u
z
zy
d
ef
in
itio
n
.
T
h
is
p
r
o
ce
s
s
is
k
n
o
wn
as
d
ef
u
zz
i
f
icatio
n
.
T
h
e
ta
b
le
o
f
in
f
er
e
n
ce
r
u
les
o
b
tain
e
d
f
r
o
m
th
e
b
eh
av
io
r
al
s
tu
d
y
is
asy
m
m
etr
ical,
in
co
n
tr
ast
to
t
h
e
o
n
e
d
er
iv
ed
f
r
o
m
th
e
p
=
f
(
v
)
cu
r
v
e,
wh
ich
is
s
y
m
m
etr
ical.
T
h
e
s
im
u
latio
n
r
esu
lts
o
f
th
ese
two
m
eth
o
d
s
will b
e
p
r
esen
ted
in
th
e
n
ex
t s
ec
tio
n
f
o
r
co
m
p
a
r
is
o
n
.
Fig
u
r
e
8
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
o
u
tp
u
t
v
ar
iab
les D
T
ab
le
6
.
I
n
f
er
e
n
ce
tab
le
f
o
r
Asy
m
m
etr
ical
FLC
CE
E
PB
PM
PS
ZE
NS
NM
NB
PB
P
P
P
P
P
P
P
PM
Z
N
Z
Z
Z
P
Z
PS
N
Z
N
N
N
N
P
ZE
Z
N
Z
P
N
P
P
NS
Z
Z
P
P
P
P
Z
NM
P
P
P
P
P
P
P
NB
P
P
P
P
P
P
P
4.
SI
M
UL
A
T
I
O
N
A
ND
RE
SU
L
T
4
.
1
.
Sim
ula
t
i
o
n
e
nv
iro
nm
en
t
T
h
e
co
m
p
lete
ar
c
h
itectu
r
e
o
f
t
h
e
s
im
u
lated
s
y
s
tem
is
s
h
o
wn
in
Fig
u
r
e
9
,
wh
ic
h
p
r
o
v
id
es a
n
o
v
er
v
iew
o
f
th
e
in
ter
c
o
n
n
ec
tio
n
b
etwe
en
th
e
m
ain
f
u
n
ctio
n
al
b
lo
ck
s
.
T
o
ev
al
u
ate
th
e
p
er
f
o
r
m
a
n
ce
o
f
MPPT
alg
o
r
ith
m
s
b
ased
o
n
s
y
m
m
etr
ical
a
n
d
asy
m
m
etr
ical
f
u
zz
y
lo
g
ic,
a
s
er
ie
s
o
f
n
u
m
er
ical
s
im
u
latio
n
s
wa
s
ca
r
r
ied
o
u
t
u
s
in
g
th
e
MA
T
L
AB
/Si
m
u
lin
k
en
v
ir
o
n
m
en
t.
T
h
e
s
im
u
lated
s
y
s
te
m
in
clu
d
es
a
p
h
o
to
v
o
ltaic
p
a
n
el
co
n
n
ec
ted
to
a
DC
/D
C
co
n
v
er
ter
B
o
o
s
t,
co
n
t
r
o
lled
b
y
a
n
MPPT
co
n
tr
o
ller
im
p
lem
en
ted
u
s
in
g
a
f
u
zz
y
lo
g
ic
s
y
s
tem
.
4
.
2
.
Sim
ula
t
i
o
n
re
s
ults un
de
r
v
a
ry
ing
c
o
nd
it
io
ns
T
h
e
p
er
f
o
r
m
an
ce
o
f
th
e
MPPT
alg
o
r
ith
m
s
was
ev
alu
ated
b
y
an
aly
zin
g
th
eir
r
esp
o
n
s
e
in
ter
m
s
o
f
m
ax
im
u
m
p
o
wer
p
o
in
t
(
MPP)
tr
ac
k
in
g
tim
e
an
d
o
v
er
all
s
y
s
tem
p
o
wer
ef
f
icien
c
y
.
T
h
e
s
im
u
latio
n
s
co
n
s
id
er
e
d
v
ar
iatio
n
s
in
en
v
ir
o
n
m
en
tal
p
a
r
am
eter
s
,
s
u
ch
as
tem
p
e
r
atu
r
e
an
d
ir
r
a
d
ian
ce
.
I
n
itially
,
th
e
s
y
s
tem
was
test
ed
at
a
co
n
s
tan
t
ir
r
ad
ian
ce
o
f
1
0
0
0
W
/m
²
wh
ile
th
e
tem
p
er
atu
r
e
r
an
g
ed
f
r
o
m
5
5
°C
d
o
wn
to
5
°
C
.
T
h
e
e
v
o
lu
tio
n
o
f
th
e
o
u
tp
u
t
p
o
wer
f
o
r
b
o
th
t
h
e
s
y
m
m
etr
ical
an
d
asy
m
m
etr
ical
f
u
zz
y
lo
g
ic
co
n
tr
o
ller
s
is
illu
s
tr
ated
in
Fig
u
r
e
1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
3
5
5
-
4
3
6
5
4362
W
e
ca
n
clea
r
ly
s
ee
th
at
th
e
o
u
tp
u
t
p
o
wer
b
ased
o
n
asy
m
m
etr
ical
FLC
is
g
r
ea
ter
th
an
th
at
o
f
s
y
m
m
etr
ical
FLC,
th
e
latter
p
r
esen
tin
g
an
o
m
alies
in
ter
m
s
o
f
s
tab
ilit
y
,
esp
ec
ially
at
h
ig
h
tem
p
e
r
atu
r
es.
Ad
d
itio
n
ally
,
we
ca
r
r
ied
o
u
t
s
im
u
latio
n
s
at
a
tem
p
er
atu
r
e
o
f
2
5
°C
,
with
lu
m
i
n
o
s
ity
v
ar
y
in
g
f
r
o
m
1
0
0
0
W
/m
2
to
5
0
0
W
/m
2
,
as
s
h
o
wn
in
Fi
g
u
r
e
1
1
.
T
h
e
o
u
tp
u
t
p
o
wer
e
v
o
lu
tio
n
s
o
f
th
e
two
s
y
s
tem
s
,
b
ased
o
n
th
e
FLC
s
y
m
m
etr
ical
an
d
th
e
FLC
as
y
m
m
etr
ical
m
eth
o
d
s
,
ar
e
p
r
e
s
en
ted
in
Fig
u
r
e
1
2
.
T
h
e
p
o
wer
b
eh
av
io
r
at
a
tem
p
er
atu
r
e
o
f
2
5
°C
,
with
i
r
r
ad
ian
ce
c
h
an
g
i
n
g
e
v
er
y
2
0
0
m
s
f
r
o
m
1
0
0
0
W
/m
2
to
5
0
0
W
/m
2
.
T
h
e
o
u
tp
u
t
p
o
wer
g
en
er
ate
d
b
y
s
y
m
m
etr
i
ca
l
FLC
is
lo
wer
th
an
th
at
g
e
n
er
ated
b
y
asy
m
m
etr
ical
FLC,
esp
ec
ially
in
th
e
lu
m
in
o
s
ity
r
an
g
e
f
r
o
m
7
0
0
W
/m
2
to
5
0
0
w/m
2
at
s
tead
y
s
tate.
T
h
e
p
er
f
o
r
m
an
ce
o
f
th
e
s
y
s
tem
u
s
in
g
s
y
m
m
etr
ical
f
u
zz
y
l
o
g
ic
is
in
co
m
p
lete
in
ter
m
s
o
f
p
o
wer
,
wh
ich
h
ig
h
lig
h
ts
th
e
s
u
p
er
io
r
ity
o
f
th
e
asy
m
m
etr
ical
FLC
m
eth
o
d
in
ter
m
s
o
f
o
u
tp
u
t
p
o
wer
a
n
d
s
tab
ilit
y
,
esp
ec
ially
in
lo
w
-
l
ig
h
t
co
n
d
itio
n
s
,
as
s
h
o
wn
in
T
ab
le
7
.
I
t
is
im
p
o
r
tan
t
to
n
o
te
th
at
th
e
asy
m
m
etr
ic
FLC
s
y
s
tem
im
p
r
o
v
es
th
e
ef
f
icien
cy
lev
el
o
f
t
h
e
s
y
s
tem
,
esp
ec
ially
at
h
ig
h
tem
p
er
atu
r
e
s
an
d
lo
w
lu
m
in
o
s
ities
[
2
6
]
.
T
h
e
asy
m
m
etr
ical
m
o
d
e
g
e
n
er
at
es h
ig
h
er
an
d
m
o
r
e
s
tab
le
o
u
tp
u
t
p
o
wer
s
th
an
t
h
e
s
y
m
m
etr
ic
m
o
d
e
in
d
if
f
er
en
t
co
n
d
itio
n
s
(
clim
ate
o
f
tem
p
er
atu
r
e
an
d
lu
m
in
o
s
ity
)
.
Ho
wev
er
,
th
e
asy
m
m
etr
ical
m
o
d
e
is
m
o
r
e
s
u
itab
le
f
o
r
u
s
e
in
war
m
er
r
eg
io
n
s
an
d
ar
ea
s
with
lo
w
lig
h
t.
Fig
u
r
e
9
.
Ar
c
h
itectu
r
e
o
f
th
e
s
im
u
lated
PV sy
s
tem
an
d
f
u
zz
y
lo
g
ic
MPPT
co
n
tr
o
l sch
em
e
Fig
u
r
e
1
0
.
Ou
tp
u
t
p
o
wer
with
a
d
ec
r
ea
s
e
in
tem
p
er
atu
r
e
f
o
r
Sy
m
m
etr
ical
FLC an
d
Asy
m
m
etr
ical
FLC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
P
r
a
ctica
l sp
ec
ifica
tio
n
o
f th
e
s
p
ee
ch
u
n
ivers
e
o
f th
e
ma
ximu
m
p
o
w
er p
o
in
t …
(
A
h
me
d
A
min
e
B
a
r
a
ka
te
)
4363
Fig
u
r
e
1
1
.
C
h
an
g
e
o
f
lu
m
in
o
s
ity
at
2
5
°C
Fig
u
r
e
1
2
.
Ou
tp
u
t
p
o
wer
with
a
d
ec
r
ea
s
e
o
f
lu
m
in
o
s
ity
f
o
r
s
y
m
m
etr
ical
FLC an
d
a
s
y
m
m
et
r
ical
FLC
T
ab
le
7
.
S
h
o
ws th
e
a
v
er
ag
e
p
o
wer
an
d
ef
f
icien
cy
o
f
ea
ch
m
e
th
o
d
u
n
d
er
d
if
f
er
e
n
t c
lim
atic
co
n
d
itio
n
s
Lu
m
i
n
o
si
t
y
Te
mp
e
r
a
t
u
r
e
P
max
P
o
u
t
F
L
C
A
sy
mm
e
t
r
i
c
a
l
Ef
f
i
c
i
e
n
c
y
A
sy
mm
e
t
r
i
c
a
l
P
o
u
t
F
L
C
S
y
mm
e
t
r
i
c
a
l
Ef
f
i
c
i
e
n
c
y
S
y
mm
e
t
r
i
c
a
l
1
0
0
0
5
2
1
6
2
0
5
94
.
9
1
%
1
9
5
.
3
90
.
4
2
%
1
0
0
0
15
2
0
7
1
9
7
.
1
95
.
2
2
%
1
8
5
.
9
89
.
8
1
%
1
0
0
0
25
1
9
9
.
2
1
8
9
.
5
95
.
1
3
%
1
7
6
88
.
3
5
%
1
0
0
0
35
1
9
0
.
9
1
8
2
95
.
3
4
%
1
6
5
.
5
86
.
6
9
%
1
0
0
0
45
1
8
0
.
6
1
7
1
.
5
94
.
9
6
%
1
5
4
85
.
2
7
%
1
0
0
0
55
1
6
9
.
2
1
6
1
95
.
1
5
%
1
4
2
.
7
84
.
3
4
%
9
0
0
25
1
8
0
.
3
1
7
1
.
9
95
.
3
4
%
1
6
1
.
6
89
.
6
3
%
8
0
0
25
1
6
1
.
2
1
5
3
.
6
95
.
2
9
%
1
4
5
.
5
90
.
2
6
%
7
0
0
25
1
4
1
.
3
1
3
4
.
5
95
.
1
9
%
1
2
0
.
8
85
.
4
9
%
6
0
0
25
1
1
9
.
8
1
1
4
.
2
95
.
3
3
%
90
.
4
75
.
4
6
%
5
0
0
25
92
.
3
86
.
8
94
.
0
4
%
63
.
65
68
.
9
6
%
5.
CO
NCLU
SI
O
N
I
n
o
r
d
er
to
d
eter
m
i
n
e
th
e
in
p
u
t
an
d
o
u
tp
u
t
s
p
ee
ch
u
n
i
v
er
s
e
o
f
th
e
f
u
zz
y
lo
g
ic
-
b
ased
co
n
tr
o
ller
,
we
ca
r
r
ied
o
u
t
a
s
tu
d
y
o
f
th
e
d
y
n
am
ic
b
eh
av
io
r
o
f
th
e
PV
s
y
s
t
em
.
T
h
is
allo
wed
u
s
to
ex
tr
ac
t
th
e
d
ata
f
r
o
m
th
e
s
tan
d
-
alo
n
e
PV
p
an
el
an
d
d
ef
i
n
e
th
e
m
em
b
er
s
h
ip
f
u
n
ctio
n
s
f
o
r
th
e
m
ax
im
u
m
p
o
wer
p
o
i
n
t
tr
ac
k
in
g
co
n
t
r
o
ller
alg
o
r
ith
m
.
W
e
co
m
p
ar
e
d
th
e
r
esu
lts
o
f
th
e
Sy
m
m
etr
ic
in
f
er
en
ce
tab
le,
d
er
iv
e
d
f
r
o
m
th
e
PV
p
o
wer
v
er
s
u
s
v
o
ltag
e
ch
ar
ac
ter
is
tic
cu
r
v
e,
with
th
o
s
e
o
f
th
e
asy
m
m
etr
ic
in
f
er
en
ce
tab
le,
o
b
tain
ed
f
r
o
m
th
e
PV
b
eh
av
io
r
al
s
tu
d
y
.
T
h
is
co
m
p
a
r
is
o
n
le
d
u
s
to
co
n
clu
d
e
th
at
t
h
e
asy
m
m
etr
ic
FLC
m
eth
o
d
is
m
o
r
e
r
eliab
le
in
ter
m
s
o
f
p
o
wer
ef
f
icien
cy
a
n
d
s
tab
ilit
y
(
9
5
%)
u
n
d
er
a
d
v
er
s
e
c
o
n
d
i
tio
n
s
,
s
u
ch
as
h
i
g
h
tem
p
er
atu
r
es,
lo
w
lig
h
t,
an
d
s
h
ad
in
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
5
,
Octo
b
e
r
20
25
:
4
3
5
5
-
4
3
6
5
4364
RE
F
E
R
E
NC
E
S
[
1
]
S
o
e
d
i
b
y
o
,
B
.
A
mr
i
,
a
n
d
M
.
A
sh
a
r
i
,
“
Th
e
c
o
mp
a
r
a
t
i
v
e
st
u
d
y
o
f
B
u
c
k
-
b
o
o
st
,
C
u
k
,
S
e
p
i
c
a
n
d
Z
e
t
a
c
o
n
v
e
r
t
e
r
s
f
o
r
max
i
mu
m
p
o
w
e
r
p
o
i
n
t
t
r
a
c
k
i
n
g
p
h
o
t
o
v
o
l
t
a
i
c
u
si
n
g
P
&
;
O
m
e
t
h
o
d
,
”
i
n
2
0
1
5
2
n
d
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
I
n
f
o
rm
a
t
i
o
n
T
e
c
h
n
o
l
o
g
y
,
C
o
m
p
u
t
e
r
,
a
n
d
El
e
c
t
r
i
c
a
l
E
n
g
i
n
e
e
r
i
n
g
(
I
C
I
T
A
C
EE)
,
I
EEE,
O
c
t
.
2
0
1
5
,
p
p
.
3
2
7
–
3
3
2
.
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
TA
C
EE.
2
0
1
5
.
7
4
3
7
8
2
3
.
[
2
]
N
.
K
a
r
a
m
i
,
N
.
M
o
u
b
a
y
e
d
,
a
n
d
R
.
O
u
t
b
i
b
,
“
G
e
n
e
r
a
l
r
e
v
i
e
w
a
n
d
c
l
a
ss
i
f
i
c
a
t
i
o
n
o
f
d
i
f
f
e
r
e
n
t
M
P
P
T
t
e
c
h
n
i
q
u
e
s
,
”
R
e
n
e
w
a
b
l
e
a
n
d
S
u
s
t
a
i
n
a
b
l
e
E
n
e
rg
y
R
e
v
i
e
w
s
,
v
o
l
.
6
8
,
p
p
.
1
–
1
8
,
F
e
b
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
r
ser.2
0
1
6
.
0
9
.
1
3
2
.
[
3
]
M
.
K
e
r
m
a
d
i
a
n
d
E.
M
.
B
e
r
k
o
u
k
,
“
A
r
t
i
f
i
c
i
a
l
i
n
t
e
l
l
i
g
e
n
c
e
-
b
a
se
d
ma
x
i
m
u
m
p
o
w
e
r
p
o
i
n
t
t
r
a
c
k
i
n
g
c
o
n
t
r
o
l
l
e
r
s
f
o
r
P
h
o
t
o
v
o
l
t
a
i
c
sy
st
e
ms:
c
o
m
p
a
r
a
t
i
v
e
s
t
u
d
y
,
”
Re
n
e
w
a
b
l
e
a
n
d
S
u
s
t
a
i
n
a
b
l
e
En
e
rg
y
Re
v
i
e
w
s
,
v
o
l
.
6
9
,
p
p
.
3
6
9
–
3
8
6
,
M
a
r
.
2
0
1
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
r
ser.
2
0
1
6
.
1
1
.
1
2
5
.
[
4
]
M
.
Za
n
g
e
n
e
h
,
E.
A
g
h
a
j
a
r
i
,
a
n
d
M
.
F
o
r
o
u
z
a
n
f
a
r
,
“
A
su
r
v
e
y
:
f
u
z
z
i
f
y
p
a
r
a
me
t
e
r
s
a
n
d
mem
b
e
r
sh
i
p
f
u
n
c
t
i
o
n
i
n
e
l
e
c
t
r
i
c
a
l
a
p
p
l
i
c
a
t
i
o
n
s,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
D
y
n
a
m
i
c
s a
n
d
C
o
n
t
ro
l
,
v
o
l
.
8
,
n
o
.
3
,
p
p
.
1
0
4
0
–
1
0
5
1
,
S
e
p
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
0
7
/
s4
0
4
3
5
-
020
-
0
0
6
2
2
-
1.
[
5
]
A
.
E
l
-
R
a
y
y
e
s
a
n
d
M
.
R
.
El
m
o
r
sy
,
“
N
e
w
3
-
a
r
y
l
-
2
-
c
y
a
n
o
-
a
c
r
y
l
o
h
y
d
r
a
z
i
d
e
c
o
m
p
o
u
n
d
s
a
s
e
f
f
e
c
t
i
v
e
s
e
n
si
t
i
z
e
r
s
f
o
r
d
y
e
-
se
n
si
t
i
z
e
d
so
l
a
r
c
e
l
l
s:
p
h
o
t
o
v
o
l
t
a
i
c
p
e
r
f
o
r
ma
n
c
e
o
v
e
r
t
h
e
st
a
n
d
a
r
d
d
y
e
N
7
1
9
u
p
o
n
c
o
-
sen
s
i
t
i
z
a
t
i
o
n
,
”
O
p
t
i
c
a
l
Ma
t
e
r
i
a
l
s
,
v
o
l
.
1
3
2
,
p
.
1
1
2
8
6
6
,
O
c
t
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
o
p
t
ma
t
.
2
0
2
2
.
1
1
2
8
6
6
.
[
6
]
S
.
D
a
v
o
o
d
a
b
a
d
i
F
a
r
a
h
a
n
i
,
B
.
K
a
z
e
m
i
M
a
j
d
,
a
n
d
A
.
M
.
A
b
e
d
,
“
C
o
n
t
r
o
l
o
f
t
h
e
r
mal
a
n
d
f
l
u
i
d
f
l
o
w
c
h
a
r
a
c
t
e
r
i
st
i
c
s
o
f
a
n
o
s
c
i
l
l
a
t
i
n
g
c
y
l
i
n
d
e
r
b
y
p
o
r
o
u
s
me
d
i
a
,
”
Al
e
x
a
n
d
r
i
a
E
n
g
i
n
e
e
ri
n
g
J
o
u
rn
a
l
,
v
o
l
.
6
5
,
p
p
.
9
5
1
–
9
6
1
,
F
e
b
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
e
j
.
2
0
2
2
.
1
0
.
0
0
3
.
[
7
]
M
.
H
e
mm
a
t
Esf
e
a
n
d
D
.
T
o
g
h
r
a
i
e
,
“
N
u
meri
c
a
l
i
n
v
e
s
t
i
g
a
t
i
o
n
o
f
w
i
n
d
v
e
l
o
c
i
t
y
e
f
f
e
c
t
s
o
n
e
v
a
p
o
r
a
t
i
o
n
r
a
t
e
o
f
p
a
ssi
v
e
s
i
n
g
l
e
-
sl
o
p
e
so
l
a
r
st
i
l
l
s
i
n
K
h
u
z
e
st
a
n
p
r
o
v
i
n
c
e
i
n
I
r
a
n
,
”
A
l
e
x
a
n
d
r
i
a
E
n
g
i
n
e
e
ri
n
g
J
o
u
r
n
a
l
,
v
o
l
.
6
2
,
p
p
.
1
4
5
–
1
5
6
,
Jan
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
e
j
.
2
0
2
2
.
0
7
.
0
1
5
.
[
8
]
N
.
H
a
sh
i
m,
Z.
S
a
l
a
m,
D
.
J
o
h
a
r
i
,
a
n
d
N
.
F
.
N
i
k
I
smai
l
,
“
D
C
-
D
C
b
o
o
st
c
o
n
v
e
r
t
e
r
d
e
si
g
n
f
o
r
f
a
st
a
n
d
a
c
c
u
r
a
t
e
M
P
P
T
a
l
g
o
r
i
t
h
ms
i
n
st
a
n
d
-
a
l
o
n
e
p
h
o
t
o
v
o
l
t
a
i
c
s
y
st
e
m,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
P
o
w
e
r E
l
e
c
t
r
o
n
i
c
s a
n
d
D
ri
v
e
S
y
s
t
e
m
s
(
I
J
PED
S
)
,
v
o
l
.
9
,
n
o
.
3
,
p
.
1
0
3
8
,
S
e
p
.
2
0
1
8
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s.
v
9
.
i
3
.
p
p
1
0
3
8
-
1
0
5
0
.
[
9
]
A
.
E
l
-
Le
a
t
h
e
y
,
A
.
N
e
d
e
l
c
u
,
S
.
N
i
c
o
l
a
i
e
,
a
n
d
R
.
A
.
C
h
i
h
a
i
a
,
“
La
b
v
i
e
w
d
e
s
i
g
n
a
n
d
si
mu
l
a
t
i
o
n
o
f
a
sma
l
l
sc
a
l
e
mi
c
r
o
g
r
i
d
,
”
S
e
ri
e
s
C
:
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
,
v
o
l
.
7
8
,
n
o
.
1
,
p
p
.
2
3
5
–
2
4
6
,
2
0
1
6
.
[
1
0
]
I
.
V
.
B
a
n
u
,
M
.
I
st
r
a
t
e
,
D
.
M
a
c
h
i
d
o
n
,
a
n
d
R
.
P
a
n
t
e
l
i
mo
n
,
“
S
t
u
d
y
r
e
g
a
r
d
i
n
g
m
o
d
e
l
i
n
g
p
h
o
t
o
v
o
l
t
a
i
c
a
r
r
a
y
s
u
si
n
g
t
e
s
t
d
a
t
a
i
n
M
A
TLA
B
/
S
i
mu
l
i
n
k
,
”
U
n
i
v
e
rs
i
t
y
P
o
l
i
t
e
h
n
i
c
a
of
B
u
c
h
a
res
t
S
c
i
e
n
t
i
f
i
c
B
u
l
l
e
t
i
n
S
e
r
i
e
s
C
-
E
l
e
c
t
ri
c
a
l
En
g
i
n
e
e
ri
n
g
a
n
d
C
o
m
p
u
t
e
r
S
c
i
e
n
c
E
,
v
o
l
.
7
7
,
n
o
.
2
,
p
p
.
2
2
7
–
2
3
4
,
2
0
1
5
.
[
1
1
]
S
.
M
.
B
e
l
h
a
d
j
,
B
.
M
e
l
i
a
n
i
,
H
.
B
e
n
b
o
u
h
e
n
n
i
,
I
.
C
o
l
a
k
,
Z.
M
.
S
.
El
b
a
r
b
a
r
y
,
a
n
d
S
.
F
.
A
l
-
G
a
h
t
a
n
i
,
“
C
o
n
t
r
o
l
o
f
t
h
r
e
e
-
l
e
v
e
l
q
u
a
d
r
a
t
i
c
DC
-
D
C
b
o
o
s
t
c
o
n
v
e
r
t
e
r
s
f
o
r
e
n
e
r
g
y
sy
st
e
ms
u
s
i
n
g
v
a
r
i
o
u
s
t
e
c
h
n
i
q
u
e
-
b
a
se
d
M
P
P
T
me
t
h
o
d
s,
”
S
c
i
e
n
t
i
f
i
c
R
e
p
o
rt
s
,
v
o
l
.
1
5
,
n
o
.
1
,
p
.
1
4
6
3
1
,
A
p
r
.
2
0
2
5
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
9
8
-
025
-
9
9
5
5
1
-
2.
[
1
2
]
S
.
M
i
r
e
t
a
l
.
,
“
Ef
f
e
c
t
s
o
f
c
u
r
v
a
t
u
r
e
e
x
i
st
e
n
c
e
,
a
d
d
i
n
g
o
f
n
a
n
o
p
a
r
t
i
c
l
e
s
a
n
d
c
h
a
n
g
i
n
g
t
h
e
c
i
r
c
u
l
a
r
mi
n
i
c
h
a
n
n
e
l
sh
a
p
e
o
n
b
e
h
a
v
i
o
r
o
f
t
w
o
-
p
h
a
se
l
a
m
i
n
a
r
m
i
x
e
d
c
o
n
v
e
c
t
i
o
n
o
f
A
g
/
w
a
t
e
r
n
a
n
o
f
l
u
i
d
,
”
Al
e
x
a
n
d
ri
a
E
n
g
i
n
e
e
r
i
n
g
J
o
u
r
n
a
l
,
v
o
l
.
6
6
,
p
p
.
7
0
7
–
7
3
0
,
M
a
r
.
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
e
j
.
2
0
2
2
.
1
0
.
0
5
9
.
[
1
3
]
O
.
D
i
o
u
r
i
,
N
.
Es
-
S
b
a
i
,
F
.
Er
r
a
h
i
m
i
,
A
.
G
a
g
a
,
a
n
d
C
.
A
l
a
o
u
i
,
“
M
o
d
e
l
i
n
g
a
n
d
d
e
si
g
n
o
f
s
i
n
g
l
e
-
p
h
a
se
P
V
i
n
v
e
r
t
e
r
w
i
t
h
M
P
P
T
a
l
g
o
r
i
t
h
m
a
p
p
l
i
e
d
t
o
t
h
e
b
o
o
s
t
c
o
n
v
e
r
t
e
r
u
si
n
g
b
a
c
k
-
s
t
e
p
p
i
n
g
c
o
n
t
r
o
l
i
n
s
t
a
n
d
a
l
o
n
e
mo
d
e
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
P
h
o
t
o
e
n
e
r
g
y
,
v
o
l
.
2
0
1
9
,
p
p
.
1
–
1
6
,
N
o
v
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
1
9
/
7
0
2
1
5
7
8
.
[
1
4
]
R
.
A
y
o
p
a
n
d
C
.
W
.
T
a
n
,
“
D
e
s
i
g
n
o
f
b
o
o
s
t
c
o
n
v
e
r
t
e
r
b
a
s
e
d
o
n
ma
x
i
m
u
m
p
o
w
e
r
p
o
i
n
t
r
e
si
s
t
a
n
c
e
f
o
r
p
h
o
t
o
v
o
l
t
a
i
c
a
p
p
l
i
c
a
t
i
o
n
s,
”
S
o
l
a
r E
n
e
r
g
y
,
v
o
l
.
1
6
0
,
p
p
.
3
2
2
–
3
3
5
,
Jan
.
2
0
1
8
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
s
o
l
e
n
e
r
.
2
0
1
7
.
1
2
.
0
1
6
.
[
1
5
]
A
.
P
r
a
d
h
a
n
a
n
d
B
.
P
a
n
d
a
,
“
A
si
m
p
l
i
f
i
e
d
d
e
si
g
n
a
n
d
m
o
d
e
l
i
n
g
o
f
b
o
o
st
c
o
n
v
e
r
t
e
r
f
o
r
p
h
o
t
o
v
o
l
t
a
i
c
sy
s
t
e
m
,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r E
n
g
i
n
e
e
ri
n
g
(
I
J
EC
E)
,
v
o
l
.
8
,
n
o
.
1
,
p
.
1
4
1
,
F
e
b
.
2
0
1
8
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
8
i
1
.
p
p
1
4
1
-
1
4
9
.
[
1
6
]
M
.
A
.
S
o
l
i
m
a
n
,
H
.
M
.
H
a
sa
n
i
e
n
,
H
.
Z.
A
z
a
z
i
,
E
.
E.
El
-
K
h
o
l
y
,
a
n
d
S
.
A
.
M
a
h
m
o
u
d
,
“
A
n
a
d
a
p
t
i
v
e
f
u
z
z
y
l
o
g
i
c
c
o
n
t
r
o
l
st
r
a
t
e
g
y
f
o
r
p
e
r
f
o
r
m
a
n
c
e
e
n
h
a
n
c
e
me
n
t
o
f
a
g
r
i
d
-
c
o
n
n
e
c
t
e
d
P
M
S
G
-
b
a
s
e
d
w
i
n
d
t
u
r
b
i
n
e
,
”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
I
n
d
u
st
r
i
a
l
I
n
f
o
rm
a
t
i
c
s
,
v
o
l
.
1
5
,
n
o
.
6
,
p
p
.
3
1
6
3
–
3
1
7
3
,
J
u
n
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
I
.
2
0
1
8
.
2
8
7
5
9
2
2
.
[
1
7
]
C.
-
L.
L
i
u
,
J.
-
H
.
C
h
e
n
,
Y
.
-
H
.
L
i
u
,
a
n
d
Z.
-
Z
.
Y
a
n
g
,
“
A
n
a
s
y
mm
e
t
r
i
c
a
l
f
u
z
z
y
-
l
o
g
i
c
-
c
o
n
t
r
o
l
-
b
a
s
e
d
M
P
P
T
a
l
g
o
r
i
t
h
m
f
o
r
p
h
o
t
o
v
o
l
t
a
i
c
sy
st
e
ms,
”
E
n
e
r
g
i
e
s
,
v
o
l
.
7
,
n
o
.
4
,
p
p
.
2
1
7
7
–
2
1
9
3
,
A
p
r
.
2
0
1
4
,
d
o
i
:
1
0
.
3
3
9
0
/
e
n
7
0
4
2
1
7
7
.
[
1
8
]
C
.
B
.
N
.
F
a
p
i
,
P
.
W
i
r
a
,
M
.
K
a
m
t
a
,
a
n
d
B
.
C
o
l
i
c
c
h
i
o
,
“
D
e
si
g
n
a
n
d
h
a
r
d
w
a
r
e
r
e
a
l
i
z
a
t
i
o
n
o
f
a
n
a
sy
mm
e
t
r
i
c
a
l
f
u
z
z
y
l
o
g
i
c
-
b
a
s
e
d
M
P
P
T
c
o
n
t
r
o
l
f
o
r
p
h
o
t
o
v
o
l
t
a
i
c
a
p
p
l
i
c
a
t
i
o
n
s,
”
i
n
I
EC
O
N
2
0
2
1
–
4
7
t
h
A
n
n
u
a
l
C
o
n
f
e
r
e
n
c
e
o
f
t
h
e
I
EEE
I
n
d
u
s
t
ri
a
l
E
l
e
c
t
r
o
n
i
c
s
S
o
c
i
e
t
y
,
I
EEE,
O
c
t
.
2
0
2
1
,
p
p
.
1
–
6
.
d
o
i
:
1
0
.
1
1
0
9
/
I
EC
O
N
4
8
1
1
5
.
2
0
2
1
.
9
5
8
9
2
8
7
.
[
1
9
]
S
.
S
.
K
u
mar
a
n
d
K
.
B
a
l
a
k
r
i
s
h
n
a
,
“
A
n
o
v
e
l
d
e
s
i
g
n
a
n
d
a
n
a
l
y
si
s
o
f
h
y
b
r
i
d
f
u
z
z
y
l
o
g
i
c
M
P
P
T
c
o
n
t
r
o
l
l
e
r
f
o
r
s
o
l
a
r
P
V
sy
st
e
m
u
n
d
e
r
p
a
r
t
i
a
l
s
h
a
d
i
n
g
c
o
n
d
i
t
i
o
n
s
,
”
S
c
i
e
n
t
i
f
i
c
Re
p
o
r
t
s
,
v
o
l
.
1
4
,
n
o
.
1
,
p
.
1
0
2
5
6
,
M
a
y
2
0
2
4
,
d
o
i
:
1
0
.
1
0
3
8
/
s
4
1
5
9
8
-
0
2
4
-
6
0
8
7
0
-
5.
[
2
0
]
S
.
Lo
s
a
d
a
,
D
.
F
.
M
u
r
c
i
a
,
a
n
d
S
.
O
.
G
a
r
c
í
a
,
“
D
e
s
i
g
n
a
n
d
i
mp
l
e
m
e
n
t
a
t
i
o
n
o
f
a
p
h
o
t
o
v
o
l
t
a
i
c
so
l
a
r
t
r
a
c
k
e
r
u
si
n
g
f
u
z
z
y
c
o
n
t
r
o
l
f
o
r
S
u
r
C
o
l
o
m
b
i
a
n
a
,
”
ARP
N
J
E
n
g
A
p
p
l
S
c
i
,
v
o
l
.
1
2
,
n
o
.
7
,
p
.
6
,
2
0
1
7
.
[
2
1
]
Y
.
R
a
v
i
n
d
r
a
n
a
t
h
Ta
g
o
r
e
,
K
.
R
a
j
a
n
i
,
a
n
d
K
.
A
n
u
r
a
d
h
a
,
“
D
y
n
a
m
i
c
a
n
a
l
y
si
s
o
f
so
l
a
r
p
o
w
e
r
e
d
t
w
o
-
st
a
g
e
d
c
–
d
c
c
o
n
v
e
r
t
e
r
w
i
t
h
M
P
P
T
a
n
d
v
o
l
t
a
g
e
r
e
g
u
l
a
t
i
o
n
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
D
y
n
a
m
i
c
s
a
n
d
C
o
n
t
r
o
l
,
v
o
l
.
1
0
,
n
o
.
6
,
p
p
.
1
7
4
5
–
1
7
5
9
,
D
e
c
.
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s
4
0
4
3
5
-
0
2
2
-
0
0
9
3
0
-
8.
[
2
2
]
B
.
A
.
A
mi
n
e
,
“
C
o
n
t
r
i
b
u
t
i
o
n
t
o
t
h
e
i
mp
r
o
v
e
m
e
n
t
o
f
ma
x
i
m
u
m
p
o
w
e
r
p
o
i
n
t
t
r
a
c
k
i
n
g
c
o
n
t
r
o
l
a
n
d
o
p
t
i
mi
z
a
t
i
o
n
o
f
t
h
e
c
o
n
t
r
o
l
l
e
r
o
f
a
n
a
u
t
o
n
o
m
o
u
s
p
h
o
t
o
v
o
l
t
a
i
c
s
y
st
e
m
,”
(
i
n
F
r
a
n
c
e
)
I
b
n
T
o
f
a
i
l
U
n
i
v
e
r
si
t
y
,
2
0
2
3
.
[
2
3
]
S
.
A
l
a
m,
S
.
S
u
l
i
s
t
y
o
,
I
.
W
.
M
u
s
t
i
k
a
,
a
n
d
R
.
A
d
r
i
a
n
,
“
F
u
z
z
y
a
d
a
p
t
i
v
e
h
y
s
t
e
r
e
si
s
o
f
R
S
S
f
o
r
h
a
n
d
o
v
e
r
d
e
c
i
s
i
o
n
i
n
V
2
V
V
A
N
ET,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
C
o
m
m
u
n
i
c
a
t
i
o
n
N
e
t
w
o
rks
a
n
d
I
n
f
o
rm
a
t
i
o
n
S
e
c
u
r
i
t
y
(
I
J
C
N
I
S
)
,
v
o
l
.
1
2
,
n
o
.
3
,
p
p
.
4
3
3
–
4
3
9
,
2
0
2
0
.
[
2
4
]
M
.
H
a
d
d
i
n
,
A
.
M
a
r
w
a
n
t
o
,
A
.
S
u
p
r
a
j
i
t
n
o
,
a
n
d
M
.
I
smai
l
,
“
F
u
z
z
y
l
o
g
i
c
a
p
p
l
i
c
a
t
i
o
n
s
f
o
r
d
a
t
a
a
c
q
u
i
si
t
i
o
n
s
y
s
t
e
ms
o
f
p
r
a
c
t
i
c
a
l
mea
s
u
r
e
me
n
t
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
t
ri
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
ri
n
g
(
I
J
E
C
E)
,
v
o
l
.
1
0
,
n
o
.
4
,
p
.
3
4
4
1
,
A
u
g
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
0
i
4
.
p
p
3
4
4
1
-
3
4
5
0
.
[
2
5
]
S
.
M
.
B
e
l
h
a
d
j
,
B
.
M
e
l
i
a
n
i
,
H
.
B
e
n
b
o
u
h
e
n
n
i
,
S
.
Za
i
d
i
,
Z
.
M
.
S
.
El
b
a
r
b
a
r
y
,
a
n
d
M
.
M
.
A
l
a
mm
a
r
,
“
C
o
n
t
r
o
l
o
f
m
u
l
t
i
-
l
e
v
e
l
q
u
a
d
r
a
t
i
c
DC
-
D
C
b
o
o
st
c
o
n
v
e
r
t
e
r
f
o
r
p
h
o
t
o
v
o
l
t
a
i
c
sy
s
t
e
ms
u
s
i
n
g
t
y
p
e
-
2
f
u
z
z
y
l
o
g
i
c
t
e
c
h
n
i
q
u
e
-
b
a
s
e
d
M
P
P
T
a
p
p
r
o
a
c
h
e
s,
”
H
e
l
i
y
o
n
,
v
o
l
.
1
1
,
n
o
.
3
,
p
.
e
4
2
1
8
1
,
F
e
b
.
2
0
2
5
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
h
e
l
i
y
o
n
.
2
0
2
5
.
e
4
2
1
8
1
.
[
2
6
]
S
.
R
.
P
.
C
h
i
t
t
u
r
i
,
E.
S
h
a
r
ma,
a
n
d
W
.
El
me
n
r
e
i
c
h
,
“
Ef
f
i
c
i
e
n
c
y
o
f
p
h
o
t
o
v
o
l
t
a
i
c
s
y
st
e
ms
i
n
m
o
u
n
t
a
i
n
o
u
s
a
r
e
a
s,
”
i
n
2
0
1
8
I
E
EE
I
n
t
e
r
n
a
t
i
o
n
a
l
En
e
r
g
y
C
o
n
f
e
re
n
c
e
(
E
N
ERG
Y
C
O
N
)
,
I
EEE,
J
u
n
.
2
0
1
8
,
p
p
.
1
–
6
.
d
o
i
:
1
0
.
1
1
0
9
/
EN
E
R
G
Y
C
O
N
.
2
0
1
8
.
8
3
9
8
7
6
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.