I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
2
,
A
p
r
il
201
7
,
p
p
.
81
8
~
8
2
2
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
2
.
p
p
8
1
8
-
8
2
2
818
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
H
y
brid Lo
w
Co
m
plex
nea
r
O
pti
m
a
l Det
e
ctor
for Spa
tial
M
o
dula
tion
P.
Ra
j
a
ni K
u
m
a
ri
1
,
K.
Chen
na
K
esa
v
a
Reddy
2
,
K
.
S.
Ra
m
e
s
h
3
1
,3
De
p
a
rtm
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
K.
L
Un
iv
e
rsit
y
,
In
d
ia
2
De
p
a
rtme
n
t
o
f
El
e
c
tro
n
ics
a
n
d
C
o
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
A
d
a
m
a
Un
iv
e
rsit
y
,
Et
h
io
p
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
1
4
,
2
0
1
6
R
ev
i
s
ed
Feb
2
2
,
2
0
1
7
A
cc
ep
ted
Ma
r
6
,
2
0
1
7
In
o
u
r
p
re
v
io
u
s
w
o
rk
m
a
x
i
m
u
m
th
ro
u
g
h
p
u
t
in
m
u
lt
i
stre
a
m
M
IM
O
is
a
n
a
ly
z
e
d
b
y
o
v
e
rc
o
m
in
g
th
e
in
ter
a
n
ten
n
a
in
terf
e
re
n
c
e
.
T
o
m
it
ig
a
t
e
th
e
In
ter
a
n
ten
n
a
in
terf
e
re
n
c
e
sp
a
ti
a
l
m
o
d
u
lati
o
n
c
a
n
b
e
u
se
d
.
S
p
a
ti
a
l
M
o
d
u
latio
n
(S
M
)
a
id
e
d
M
IM
O
sy
ste
m
s
a
re
t
h
e
e
m
e
r
g
in
g
M
IM
O
s
y
ste
m
s
w
h
ich
a
re
lo
w
c
o
m
p
lex
a
n
d
e
n
e
rg
y
e
ff
icie
n
t.
T
h
e
se
s
y
st
e
m
s
a
d
d
it
io
n
a
ll
y
u
se
sp
a
ti
a
l
d
im
e
n
sio
n
s
f
o
r
tran
s
m
it
ti
n
g
in
fo
rm
a
ti
o
n
.
In
th
is
p
a
p
e
r
a
lo
w
c
o
m
p
le
x
d
e
tec
to
r
b
a
se
d
o
n
m
a
tch
e
d
f
il
ter i
s p
ro
p
o
se
d
f
o
r
sp
a
ti
a
l
m
o
d
u
lat
io
n
to
a
c
h
iev
e
n
e
a
r
m
a
x
i
m
u
m
li
k
e
li
h
o
o
d
p
e
rf
o
rm
a
n
c
e
w
h
il
e
a
v
o
id
in
g
e
x
h
a
u
stiv
e
M
L
se
a
rc
h
sin
c
e
M
F
b
a
se
d
d
e
tec
to
r
e
x
h
i
b
it
s
a
c
o
n
sid
e
ra
b
le
re
d
u
c
e
d
c
o
m
p
lex
it
y
sin
c
e
a
c
ti
v
a
ted
tran
sm
it
ti
n
g
a
n
ten
n
a
a
n
d
m
o
d
u
late
d
a
m
p
li
tu
d
e
p
h
a
se
m
o
d
u
latio
n
c
o
n
ste
ll
a
ti
o
n
a
re
e
sti
m
a
t
e
d
s
e
p
a
ra
tel
y
.
S
i
m
u
latio
n
re
su
lt
s
sh
o
w
th
e
p
e
rf
o
r
m
a
n
c
e
o
f
th
e
p
ro
p
o
se
d
m
e
th
o
d
w
it
h
o
p
ti
m
a
l
M
L
d
e
tec
to
r,
M
RC
a
n
d
c
o
n
v
e
n
ti
o
n
a
l
m
a
tch
e
d
f
il
ter
m
e
th
o
d
s.
K
ey
w
o
r
d
:
E
n
er
g
y
e
f
f
icie
n
t
L
o
w
co
m
p
le
x
Ma
tch
ed
f
il
ter
Ma
x
i
m
u
m
li
k
eli
h
o
o
d
MRC
Sp
atial
Mo
d
u
latio
n
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
P
.
R
aj
an
i K
u
m
ar
i,
Dep
ar
t
m
en
t o
f
E
lectr
ical
an
d
C
o
m
p
u
ter
E
n
g
in
ee
r
i
n
g
,
K.
L
U
n
iv
er
s
it
y
,
Gr
ee
n
Field
s
,
Vad
d
es
w
ar
a
m
,
Gu
n
tu
r
,
An
d
h
r
a
P
r
ad
esh
,
I
n
d
ia
5
2
2
5
0
2
.
E
m
ail:
p
r
aj
an
ik
u
m
ar
i.k
l
@
g
m
a
il.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
w
ir
eless
co
m
m
u
n
icat
io
n
s
y
s
te
m
s
ca
n
b
e
e
n
h
an
ce
d
b
y
u
s
i
n
g
m
u
ltip
le
an
ten
n
a
s
at
t
h
e
tr
an
s
m
i
tter
,
r
ec
eiv
er
,
o
r
b
o
th
,
th
is
s
i
g
n
al
p
r
o
ce
s
s
in
g
tec
h
n
iq
u
e
i
s
k
n
o
w
n
as
M
u
ltip
le
I
n
p
u
t
Mu
ltip
le
Ou
tp
u
t
(
MI
MO
)
[
1
]
,
[
2
]
.
T
h
is
s
i
g
n
a
l
p
r
o
ce
s
s
i
n
g
t
ec
h
n
iq
u
e
ca
n
b
e
u
s
ed
to
o
v
er
co
m
e
t
h
e
m
u
ltip
at
h
s
ca
tter
in
g
e
f
f
ec
t.
MI
MO
u
s
es
r
an
d
o
m
f
ad
i
n
g
an
d
m
u
ltip
ath
p
r
o
p
ag
atio
n
to
in
cr
ea
s
e
t
h
e
tr
a
n
s
m
i
s
s
io
n
r
ate
a
n
d
ca
n
ac
h
ie
v
e
ca
p
ac
i
t
y
g
ai
n
o
r
d
iv
er
s
it
y
g
ai
n
.
I
n
[
3
]
,
[
4
]
tr
an
s
m
i
s
s
io
n
tech
n
iq
u
es
i
n
MI
MO
ca
n
b
e
ex
ten
d
ed
to
t
i
m
e
-
d
o
m
ai
n
,
f
r
eq
u
e
n
c
y
d
o
m
a
in
o
r
co
m
b
i
n
atio
n
o
f
b
o
th
ti
m
e
-
d
o
m
ai
n
a
n
d
f
r
eq
u
en
c
y
d
o
m
ain
.
T
o
ac
h
iev
e
t
h
e
f
r
ee
d
o
m
o
f
f
er
ed
b
y
MI
MO
c
h
an
n
el
s
,
a
tr
an
s
m
i
s
s
io
n
tec
h
n
iq
u
e
as
to
b
e
d
esi
g
n
ed
to
ac
h
iev
e
th
e
d
iv
er
s
e
r
an
g
e
o
f
r
ea
l
ti
m
e
r
eq
u
ir
e
m
e
n
ts
a
n
d
to
o
v
er
co
m
e
t
h
e
tr
a
d
eo
f
f
a
m
o
n
g
co
m
p
u
tatio
n
al
co
m
p
le
x
it
y
an
d
th
e
ac
h
iev
ab
le
b
it e
r
r
o
r
r
ate
(
B
E
R
)
an
d
m
ax
i
m
u
m
tr
a
n
s
m
i
s
s
io
n
r
ate
[
5
]
.
R
ec
en
t
l
y
p
r
o
p
o
s
ed
s
in
g
le
R
F
ch
ain
[
6
]
,
s
p
atial
m
o
d
u
latio
n
(
SM)
is
a
p
r
o
m
is
i
n
g
a
m
o
n
g
t
h
e
MI
MO
tech
n
iq
u
es.
Sp
atial
Mo
d
u
late
d
MI
MO
u
s
es
th
e
in
d
ices
o
f
th
e
tr
an
s
m
it
tin
g
an
te
n
n
as
(
T
As)
f
o
r
tr
an
s
m
itti
n
g
in
f
o
r
m
atio
n
,
ap
ar
t
f
r
o
m
tr
ad
iti
o
n
al
Am
p
li
tu
d
e
a
n
d
P
h
ase
M
o
d
u
latio
n
(
A
P
M)
[
7
]
.
P
o
ten
tialit
y
o
f
SM
-
MI
MO
is
h
i
g
h
er
w
h
e
n
co
m
p
ar
ed
to
th
at
o
f
s
p
ac
e
-
ti
m
e
co
d
in
g
at
a
g
i
v
en
SN
R
[
8
]
.
SM
-
MI
MO
u
s
e
s
o
n
l
y
s
i
n
g
le
T
A
at
an
y
i
n
s
ta
n
t
w
h
ich
is
t
h
e
m
o
s
t
p
r
o
m
i
n
en
t
b
en
e
f
it.
Si
n
ce
o
n
l
y
s
i
n
g
le
T
A
is
ac
ti
v
e
SM
ca
n
o
v
er
co
m
e
th
e
m
u
ltip
le
r
ad
io
f
r
eq
u
e
n
c
y
ch
ai
n
s
o
t
h
at
I
n
ter
-
An
te
n
n
a
s
y
n
ch
r
o
n
izatio
n
a
n
d
th
e
in
ter
a
n
te
n
n
a
i
n
ter
f
er
e
n
ce
ca
n
b
e
m
i
tig
a
ted
,
w
h
ich
h
as
a
g
r
ea
t
ef
f
ec
t
in
tr
a
d
itio
n
al
MI
MO
t
ec
h
n
iq
u
es
[
9
]
.
T
h
e
ad
d
itio
n
al
b
en
ef
it
o
f
SM
is
,
a
s
it
is
u
s
in
g
o
n
l
y
s
i
n
g
le
R
F
c
h
a
in
to
tal
p
o
w
er
co
n
s
u
m
p
tio
n
c
an
b
e
r
ed
u
ce
d
[
1
0
]
,
[
1
1
]
.
I
n
f
ac
t,
o
n
l
y
a
s
i
n
g
le
p
o
w
er
a
m
p
li
f
ier
is
n
ee
d
ed
f
o
r
i
m
p
le
m
en
t
in
g
SM
-
MI
MO
s
y
s
te
m
s
,
w
h
ich
i
s
t
y
p
icall
y
r
e
s
p
o
n
s
ib
le
f
o
r
t
h
e
v
a
s
t
m
aj
o
r
ity
o
f
p
o
w
er
d
is
s
ip
atio
n
at
th
e
tr
an
s
m
itter
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
2
,
A
p
r
il 2
0
1
7
:
81
8
–
822
819
I
n
th
is
p
ap
er
s
ec
tio
n
2
d
ea
ls
with
s
p
atial
m
o
d
u
latio
n
s
y
s
te
m
m
o
d
el,
o
p
ti
m
al
d
etec
to
r
an
d
s
u
b
o
p
ti
m
al
d
etec
to
r
f
o
r
d
ec
o
d
in
g
s
p
atial
m
o
d
u
lated
d
ata.
I
n
s
ec
tio
n
3
h
y
b
r
id
lo
w
co
m
p
le
x
n
ea
r
o
p
tim
a
l
d
etec
to
r
is
p
r
o
p
o
s
ed
f
o
r
SM.
Sectio
n
4
d
e
als
w
it
h
th
e
s
i
m
u
lat
io
n
r
es
u
lts
an
d
its
d
is
c
u
s
s
io
n
.
2.
SPATI
AL
M
O
DULAT
I
O
N
2
.
1
.
Sy
s
t
e
m
M
o
del
C
o
n
s
id
er
N
t
an
d
N
r
ar
e
th
e
n
o
o
f
tr
an
s
m
itt
in
g
a
n
ten
n
as
a
n
d
th
e
r
ec
eiv
i
n
g
an
te
n
n
as
r
esp
ec
tiv
el
y
.
I
n
ca
s
e
o
f
co
n
v
e
n
tio
n
a
l
MI
MO
s
y
s
te
m
s
tak
e
s
ad
v
a
n
ta
g
e
o
f
all
tr
an
s
m
itti
n
g
a
n
ten
n
a
s
an
d
tr
a
n
s
m
i
t
m
u
l
tip
le
d
ata
s
tr
ea
m
s
th
r
o
u
g
h
th
e
m
s
i
m
u
lta
n
eo
u
s
l
y
.
I
n
ca
s
e
o
f
SM
-
MI
MO
b
it
s
tr
ea
m
s
g
e
n
er
ated
b
y
s
o
u
r
ce
ar
e
d
iv
id
ed
in
to
,
s
p
atial
s
y
m
b
o
l
s
an
d
co
n
s
tellat
io
n
s
y
m
b
o
l
s
.
No
o
f
b
its
u
s
ed
to
r
ep
r
esen
t
s
p
a
tial
s
y
m
b
o
l
is
g
i
v
en
b
y
an
d
b
its
f
o
r
co
n
s
tellat
io
n
s
y
m
b
o
l
is
g
i
v
en
b
y
w
h
er
e
M
is
m
o
d
u
latio
n
in
d
ex
.
Sp
atial
b
its
ar
e
u
s
ed
to
d
en
o
te
th
e
ac
tiv
e
an
ten
n
a
an
d
t
h
e
b
its
i
n
t
h
e
co
n
s
te
llatio
n
s
y
m
b
o
l a
r
e
u
s
ed
to
ch
o
o
s
e
s
y
m
b
o
l in
s
i
g
n
al
co
n
s
tellat
io
n
.
I
n
th
is
p
ap
er
is
u
s
ed
to
d
en
o
t
e
th
e
ac
tiv
e
tr
an
s
m
itti
n
g
an
te
n
n
a
w
h
er
e
*
+
an
d
s
y
m
b
o
l
tr
an
s
m
itted
t
h
r
o
u
g
h
is
d
en
o
te
d
b
y
w
h
er
e
*
+
.
T
h
e
tr
an
s
m
itte
d
v
ec
to
r
f
o
r
g
iv
e
n
an
d
is
g
i
v
e
n
b
y
(
1
)
[
]
(
1
)
w
h
er
e
[
.
]
T
d
en
o
tes tr
an
s
p
o
s
e
o
f
th
e
m
atr
i
x
.
T
h
e
r
ec
eiv
ed
v
ec
to
r
is
g
iv
e
n
b
y
(
2
)
(
2
)
w
h
er
e
H
is
t
h
e
ch
a
n
n
el
m
atr
i
x
an
d
n
-
1
x
Nr
A
d
d
iti
v
e
W
h
ite
Gau
s
s
ia
n
No
is
e
(
A
W
GN)
w
it
h
ze
r
o
m
ea
n
a
n
d
as v
ar
ian
ce
.
E
q
u
a
tio
n
2
ca
n
b
e
m
o
d
if
ied
as
E
q
u
atio
n
3.
(
3
)
2
.
2
.
M
L
Det
ec
t
o
r
ML
al
g
o
r
ith
m
h
a
s
an
o
p
ti
m
a
l
p
er
f
o
r
m
a
n
ce
f
o
r
SM
s
y
s
te
m
.
B
u
t
th
e
co
m
p
le
x
it
y
o
f
M
L
d
etec
to
r
is
v
er
y
h
ig
h
w
it
h
ex
h
au
s
ti
v
e
s
ea
r
ch
f
o
r
„
l
‟
i.e
.
,
ac
tiv
e
tr
an
s
m
itt
in
g
an
te
n
n
a
an
d
„
s
‟
i.e
.
,
m
o
d
u
lated
A
P
M
co
n
s
tellat
io
n
.
E
s
ti
m
ated
„
l‟
a
n
d
„
s
‟
is
g
iv
e
n
as
(
)
‖
‖
(
4
)
w
h
er
e
„
l
‟
i
s
tr
an
s
m
it
tin
g
a
n
ten
n
a,
Nt
n
u
m
b
er
o
f
tr
a
n
s
m
itt
in
g
an
ten
n
a
s
,
S d
en
o
tes s
y
m
b
o
l a
l
p
h
ab
et.
2
.
3
.
M
RC
Det
ec
t
o
r
T
h
e
MRC
[
1
2
]
b
ased
s
u
b
-
o
p
tim
a
l
SM
d
etec
to
r
d
ec
o
u
p
les
th
e
tr
an
s
m
it
an
ten
n
a
a
n
d
s
y
m
b
o
l
esti
m
atio
n
p
r
o
ce
s
s
es.
T
h
e
tr
an
s
m
it
a
n
ten
n
a
i
n
d
ex
is
e
s
ti
m
ated
f
i
r
s
t
f
o
llo
w
ed
b
y
s
y
m
b
o
l
e
s
ti
m
atio
n
.
I
n
g
en
er
al,
t
h
ese
t
w
o
e
s
ti
m
atio
n
p
r
o
ce
s
s
es
ar
e
in
ter
d
ep
en
d
en
t
an
d
th
eir
s
u
b
s
eq
u
e
n
t
d
ec
o
u
p
li
n
g
d
u
r
in
g
d
etec
tio
n
lead
s
to
r
ed
u
ce
d
p
er
f
o
r
m
a
n
ce
.
I
n
t
h
is
m
e
th
o
d
t
h
e
Her
m
itia
n
tr
an
s
p
o
s
e
o
f
t
h
e
c
h
an
n
el
m
at
r
ix
H
i
s
m
u
ltip
lied
b
y
t
h
e
r
ec
eiv
ed
s
i
g
n
al
Y
i
n
o
r
d
er
to
f
o
r
m
u
late
t
h
e
d
ec
is
io
n
m
etr
ic
o
f
Z
.
(
5
)
T
h
en
,
th
e
in
d
e
x
q
o
f
th
e
ac
ti
v
a
ted
d
is
p
er
s
io
n
m
atr
i
x
is
g
iv
e
n
as
(
6
)
T
r
an
s
m
it
an
ten
n
a
est
i
m
a
te
is
ass
u
m
ed
to
b
e
co
r
r
ec
t
an
d
b
ased
o
n
th
is
a
s
s
u
m
p
tio
n
co
m
b
i
n
ed
s
y
m
b
o
l
is
g
i
v
e
n
b
y
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Hyb
r
id
Lo
w
C
o
mp
lex
n
ea
r
Op
tima
l D
etec
to
r
fo
r
S
p
a
tia
l Mo
d
u
la
tio
n
(
P
.
R
a
j
a
n
i Ku
ma
r
i
)
820
2
.
4
.
M
F
Det
ec
t
o
r
I
n
th
is
m
et
h
o
d
s
a
m
e
li
k
e
M
R
C
t
h
e
Her
m
itia
n
tr
a
n
s
p
o
s
e
o
f
t
h
e
c
h
an
n
el
m
atr
i
x
H
is
m
u
ltip
lied
b
y
t
h
e
r
ec
eiv
ed
s
ig
n
al
Y
i
n
o
r
d
er
to
f
o
r
m
u
late
t
h
e
d
ec
is
io
n
m
etr
ic
o
f
Z
.
(
8
)
T
h
en
,
th
e
in
d
e
x
q
o
f
th
e
ac
tiv
ated
d
is
p
er
s
io
n
m
atr
i
x
an
d
th
e
tr
an
s
m
itted
s
y
m
b
o
l
i
n
d
ex
l
ar
e
esti
m
ated
s
ep
ar
ate
l
y
,
as f
o
llo
w
s
:
(
9
)
‖
‖
(
1
0
)
3.
M
O
DIFIE
D
M
AT
CH
E
D
F
I
L
T
E
R
B
ASE
D
DE
T
E
CT
O
R
I
n
th
i
s
m
et
h
o
d
ea
ch
co
lu
m
n
in
ch
an
n
el
m
atr
ix
H
i
s
n
o
r
m
aliz
ed
an
d
tr
an
s
f
o
r
m
ed
as s
h
o
w
n
b
elo
w
̂
[
‖
‖
‖
‖
]
(
1
1
)
MF
d
etec
to
r
d
ec
is
io
n
m
etr
ic
is
g
iv
e
n
as
̂
(
1
2
)
T
h
en
a
v
ec
to
r
b
y
v
ec
to
r
ex
h
au
s
ti
v
e
s
ea
r
c
h
is
d
o
n
e
o
n
th
e
d
ec
is
io
n
m
e
tr
ic
f
o
r
th
e
e
s
ti
m
atio
n
o
f
t
h
e
ac
tiv
e
tr
an
s
m
itti
n
g
an
te
n
n
a.
(
̂
̂
)
‖
‖
‖
‖
(
1
3
)
(
̂
̂
)
,
‖
‖
{
(
)
(
)
(
)
(
)
}
‖
‖
-
(
1
4
)
w
h
er
e
r
ea
l(
)
,
im
a
g
(
)
r
ep
r
esen
t
r
ea
l
an
d
i
m
ag
in
ar
y
p
ar
t
r
esp
e
ctiv
el
y
.
I
n
o
r
d
er
to
r
e
d
u
ce
th
e
co
m
p
le
x
it
y
o
f
t
h
e
d
etec
tio
n
r
el
y
in
g
o
n
ab
o
v
e
E
q
u
atio
n
,
w
e
i
n
tr
o
d
u
ce
d
t
h
e
s
ep
ar
ate
d
etec
tio
n
o
f
q
a
n
d
l.
ac
ti
v
e
tr
a
n
s
m
it
an
ten
n
a
is
g
i
v
e
n
b
y
̂
,
‖
‖
{
(
)
(
)
(
)
(
)
}
‖
‖
-
(
1
5
)
B
y
u
s
i
n
g
ab
o
v
e
d
etec
ted
tr
an
s
m
it a
n
ten
n
a,
s
y
m
b
o
l i
n
d
ex
s
i
s
d
etec
ted
as
̂
‖
̂
‖
(
1
6
)
T
h
e
co
m
p
lex
it
y
o
f
d
etec
tio
n
o
f
̂
o
f
ab
o
v
e
m
o
d
i
f
ied
MF
d
etec
to
r
ca
n
f
u
t
u
r
e
b
e
r
ed
u
ce
d
as
̂
[
(
)
|
(
)
|
|
|
(
)
(
)
|
|
]
(
1
7
)
Fo
r
d
etec
tio
n
o
f
s
y
m
b
o
l in
d
e
x
l,
s
a
m
e
E
q
u
atio
n
u
s
ed
in
d
ete
ctio
n
o
f
l i
n
m
o
d
if
ie
d
MF
is
u
s
ed
.
4.
RE
SU
L
T
S AN
D
AN
AL
Y
SI
S
B
it
E
r
r
o
r
R
ate
(
B
E
R
)
p
er
f
o
r
m
an
ce
o
f
t
h
e
s
p
atial
m
o
d
u
latio
n
b
ased
MI
MO
o
v
er
v
ar
io
u
s
d
e
tecto
r
s
is
an
al
y
ze
d
a
n
d
co
m
p
ar
ed
w
ith
th
e
m
o
d
i
f
ied
m
atc
h
ed
f
il
ter
I
an
d
I
I
.
A
2
x
2
MI
MO
co
n
f
ig
u
r
atio
n
w
it
h
v
ar
io
u
s
m
o
d
u
latio
n
s
ch
e
m
e
s
lik
e
4
-
Q
A
M,
8
-
Q
AM
,
1
6
-
Q
A
M
an
d
3
2
-
QAM
is
i
m
p
le
m
e
n
ted
u
n
d
er
R
a
y
lei
g
h
f
ad
in
g
ch
an
n
el,
h
er
e
o
n
e
b
it
is
u
s
ed
t
o
s
elec
t
th
e
tr
an
s
m
itti
n
g
a
n
te
n
n
a
an
d
r
e
m
ai
n
i
n
g
b
it
s
ar
e
tr
an
s
m
i
tted
th
r
o
u
g
h
t
h
e
s
elec
ted
an
te
n
n
a.
B
E
R
p
er
f
o
r
m
an
ce
o
f
2
x
2
SM
b
ased
MI
M
O
w
i
th
m
a
x
i
m
u
m
li
k
eli
h
o
o
d
d
etec
to
r
is
s
h
o
w
n
i
n
f
i
g
u
r
e,
at
B
E
R
=1
0
-
3
f
r
o
m
th
e
s
i
m
u
lat
io
n
r
es
u
lt
e
f
f
ec
t
o
f
m
o
d
u
latio
n
s
c
h
e
m
es
ca
n
b
e
clea
r
l
y
s
ee
n
.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
MR
C
d
ete
cto
r
is
illu
s
tr
ated
in
Fi
g
u
r
e
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
2
,
A
p
r
il 2
0
1
7
:
81
8
–
822
821
Fig
u
r
e
3
s
h
o
w
t
h
e
B
E
R
p
er
f
o
r
m
an
ce
o
f
t
h
e
s
y
s
te
m
w
i
th
co
n
v
e
n
tio
n
al
m
atc
h
ed
f
ilter
b
ase
d
d
etec
to
r
o
v
er
d
if
f
er
en
t
m
o
d
u
latio
n
s
ch
e
m
es
f
o
r
a
2
x
2
SM
b
ased
M
I
MO
.
Fig
u
r
e
4
an
d
5
s
h
o
w
th
e
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
th
e
m
o
d
i
f
ied
MF
d
etec
to
r
I
a
n
d
I
I
o
v
er
d
if
f
er
en
t
m
o
d
u
lati
o
n
s
ch
e
m
es.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
m
o
d
if
ied
MF
d
etec
t
o
r
I
an
d
m
o
d
if
ied
MF
d
etec
to
r
I
I
o
v
er
d
if
f
er
en
t
m
o
d
u
latio
n
s
ch
e
m
e
s
is
s
h
o
w
n
i
n
f
i
g
u
r
e
4
an
d
5
.
W
h
en
co
m
p
ar
ed
to
m
o
d
i
f
ied
MF
I
a
n
d
m
o
d
if
ied
MF
I
I
,
MF
I
I
is
less
co
m
p
lex
t
h
an
M
F
I
an
d
p
e
r
f
o
r
m
an
ce
w
i
s
e
MF
I
is
d
o
m
i
n
a
n
t th
a
n
MF
I
I
.
Fig
u
r
e
6
s
h
o
w
s
th
e
B
E
R
p
e
r
f
o
r
m
an
ce
co
m
p
ar
i
s
o
n
o
f
th
e
p
r
o
p
o
s
ed
m
o
d
if
ied
MF
d
etec
to
r
w
it
h
ex
is
t
in
g
o
p
ti
m
a
l
M
L
d
etec
to
r
,
s
u
b
o
p
ti
m
al
MR
C
d
etec
to
r
an
d
co
n
v
e
n
tio
n
al
MF
d
etec
to
r
.
W
h
en
co
m
p
ar
ed
w
it
h
t
h
e
e
x
is
t
in
g
M
R
C
a
n
d
co
n
v
e
n
tio
n
al
MF,
p
er
f
o
r
m
a
n
ce
o
f
m
o
d
i
f
ied
MF
i
s
s
u
p
er
io
r
an
d
w
h
e
n
co
m
p
ar
ed
to
o
p
tim
a
l M
L
d
etec
to
r
,
m
o
d
if
ie
d
MF
ac
h
iev
e
s
n
ea
r
o
p
ti
m
al
s
o
lu
tio
n
.
Fig
u
r
e
1
.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
2
x
2
SM
b
ased
MI
MO
w
it
h
Ma
x
i
m
u
m
li
k
eli
h
o
o
d
d
etec
to
r
o
v
er
R
a
y
lei
g
h
f
ad
in
g
ch
a
n
n
el
u
n
d
er
d
if
f
er
en
t
m
o
d
u
latio
n
s
ch
e
m
e
s
Fig
u
r
e
2
.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
2
x
2
SM
b
ased
MI
MO
w
it
h
M
R
C
d
etec
to
r
o
v
er
R
a
y
lei
g
h
f
ad
i
n
g
ch
an
n
el
u
n
d
er
d
if
f
er
en
t
m
o
d
u
l
atio
n
s
c
h
e
m
e
s
Fig
u
r
e
3
.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
2
x
2
SM
b
ased
MI
MO
w
it
h
MF
d
etec
to
r
o
v
er
R
a
y
lei
g
h
f
ad
in
g
c
h
an
n
el
u
n
d
er
d
if
f
er
en
t
m
o
d
u
lat
io
n
s
c
h
e
m
e
s
Fig
u
r
e
4
.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
2
x
2
SM
b
ased
MI
MO
w
it
h
MF
I
d
etec
to
r
o
v
er
R
a
y
le
ig
h
f
ad
i
n
g
c
h
an
n
el
u
n
d
er
d
if
f
er
en
t
m
o
d
u
lat
io
n
s
c
h
e
m
e
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Hyb
r
id
Lo
w
C
o
mp
lex
n
ea
r
Op
tima
l D
etec
to
r
fo
r
S
p
a
tia
l Mo
d
u
la
tio
n
(
P
.
R
a
j
a
n
i Ku
ma
r
i
)
822
Fig
u
r
e
5
.
B
E
R
p
er
f
o
r
m
a
n
ce
o
f
2
x
2
SM
b
ased
MI
MO
w
it
h
MF
I
I
d
etec
to
r
o
v
er
R
a
y
l
eig
h
f
ad
i
n
g
c
h
an
n
el
u
n
d
er
d
if
f
er
en
t
m
o
d
u
lat
io
n
s
c
h
e
m
e
s
F
ig
u
r
e
6
.
B
E
R
p
er
f
o
r
m
a
n
ce
c
o
m
p
ar
is
o
n
o
f
M
L
,
MRC
,
MF
a
n
d
Mo
d
if
ied
MF
I
5.
CO
NCLU
SI
O
N
Fro
m
th
e
s
i
m
u
latio
n
r
e
s
u
l
t
we
ca
n
co
n
cl
u
d
e
th
a
t
th
e
m
o
d
i
f
ied
v
er
s
io
n
o
f
th
e
m
atc
h
ed
f
ilter
b
ased
d
etec
to
r
ac
h
iev
es
n
ea
r
o
p
ti
m
a
l
s
o
lu
tio
n
.
A
s
t
h
e
d
etec
tio
n
o
f
th
e
ac
ti
v
e
an
te
n
n
a
ele
m
e
n
t
an
d
th
e
tr
an
s
m
i
tted
d
ata
ar
e
esti
m
ated
s
ep
ar
atel
y
d
o
n
e
in
m
o
d
if
ied
M
F
t
h
e
co
m
p
lex
it
y
o
f
t
h
e
d
etec
to
r
is
r
ed
u
ce
d
w
h
en
co
m
p
ar
ed
w
it
h
t
h
e
o
p
ti
m
al
d
etec
to
r
.
W
h
en
th
e
t
w
o
d
if
f
er
en
t
v
ar
ian
t
s
o
f
th
e
MF
d
etec
to
r
s
ar
e
co
m
p
ar
ed
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
m
o
d
if
ied
MF
I
is
b
ette
r
th
an
t
h
e
s
ec
o
n
d
o
n
e
w
er
e
a
s
th
e
co
m
p
lex
i
t
y
o
f
m
o
d
i
f
ied
MF
I
is
h
ig
h
w
h
e
n
co
m
p
ar
ed
to
MF
I
I
.
RE
F
E
R
E
NC
E
S
[1
]
P
.
Ra
jan
i
Ku
m
a
ri,
Dr.
K.
Ch
e
n
n
a
Ke
sa
v
a
Re
d
d
y
a
n
d
Dr.
K.
S
.
Ra
m
e
sh
,
“
Ord
e
re
d
S
u
c
c
e
s
siv
e
In
terfe
re
n
c
e
Ca
n
c
e
ll
a
ti
o
n
f
o
r
M
a
x
i
m
u
m
T
h
r
o
u
g
h
p
u
t
in
M
u
lt
i
S
trea
m
M
IM
O
u
sin
g
Diffe
re
n
t
M
o
d
u
lati
o
n
S
c
h
e
m
e
s
”
,
In
d
ia
n
J
o
u
rn
a
l
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
,
V
o
l
9
(9
)
,
M
a
rc
h
2
0
1
6
.
[2
]
Ke
h
in
d
e
Od
e
y
e
m
i,
Eras
tu
s
O
g
u
n
ti
,
“
Ca
p
a
c
it
y
En
h
a
n
c
e
m
e
n
t
f
o
r
Hi
g
h
Da
ta
Ra
te
W
irel
e
ss
Co
m
m
u
n
ica
ti
o
n
S
y
ste
m
”
,
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
,
2
0
1
4
;
4
(
5
),
8
0
0
-
8
0
9
.
[3
]
S
.
S
u
g
iu
ra
,
S
.
Ch
e
n
,
a
n
d
L
.
Ha
n
z
o
,
“
M
I
M
O
-
a
id
e
d
n
e
a
rc
a
p
a
c
it
y
tu
r
b
o
t
ra
n
sc
e
iv
e
rs:
T
a
x
o
n
o
m
y
a
n
d
p
e
rf
o
rm
a
n
c
e
v
e
rsu
s co
m
p
lex
it
y
”
,
IEE
E
Co
mm
u
n
.
S
u
rv
e
y
s T
u
t
o
ria
ls
.
2
0
1
2
;
1
4
(
2
),
4
2
1
-
4
4
2
.
[4
]
S
.
S
u
g
iu
ra
,
S
.
Ch
e
n
,
a
n
d
L
.
Ha
n
z
o
,
“
A
u
n
iv
e
rsa
l
sp
a
c
e
-
ti
m
e
a
rc
h
it
e
c
tu
re
f
o
r
m
u
lt
ip
le
-
a
n
ten
n
a
a
id
e
d
s
y
ste
m
s
”
,
IEE
E
Co
mm
u
n
.
S
u
rv
e
y
s T
u
to
ri
a
ls
.
2
0
1
2
;
1
4
(
2
),
4
0
1
-
4
2
0
.
[5
]
J.
M
ie
tzn
e
r,
R.
S
c
h
o
b
e
r,
L
.
La
m
p
e
,
W
.
H.
G
e
r
sta
c
k
e
r,
a
n
d
P
.
A
.
Ho
e
h
e
r
,
“
M
u
lt
i
p
le
-
A
n
ten
n
a
T
e
c
h
n
iq
u
e
s
f
o
r
W
irele
ss
Co
m
m
u
n
ica
ti
o
n
s
-
A
Co
m
p
re
h
e
n
siv
e
L
it
e
ra
tu
re
S
u
rv
e
y
”
,
IEE
E
Co
mm
u
n
ica
ti
o
n
s
S
u
rv
e
y
s
&
T
u
to
ria
ls
,
2
0
0
9
;
1
1
(2
)
,
87
-
1
0
5
.
[6
]
R.
Y.
M
e
sle
h
,
H.
Ha
a
s,
S
.
S
i
n
a
n
o
v
ic,
C.
W
.
A
h
n
,
a
n
d
S
.
Yu
n
,
“
S
p
a
ti
a
l
M
o
d
u
lati
o
n
”
,
I
EE
E
T
ra
n
s.
Veh
.
T
e
c
h
n
o
l
.
2
0
0
8
;
5
7
(
4
),
2
2
2
8
-
2
2
4
1
.
[7
]
L
.
Ha
n
z
o
,
S
.
X
.
Ng
,
T
.
Ke
ll
e
r,
a
n
d
W
.
Web
b
,
“
Qu
a
d
ra
tu
re
Am
p
li
tu
d
e
M
o
d
u
lati
o
n
:
F
ro
m
Ba
sic
s
to
Ad
a
p
ti
v
e
T
re
ll
is
-
Co
d
e
d
,
T
u
rb
o
-
Eq
u
a
li
se
d
a
n
d
S
p
a
c
e
-
T
i
m
e
Co
d
e
d
OFDM
,
CD
M
A
a
n
d
M
C
-
CD
M
A
S
y
ste
m
s
”
,
J
o
h
n
W
il
e
y
a
n
d
IE
EE
Pre
ss
,
2
0
0
4
.
[8
]
M
.
Di
Re
n
z
o
,
H.
Ha
a
s,
a
n
d
P
.
M
.
G
ra
n
t,
“
S
p
a
ti
a
l
Mo
d
u
latio
n
f
o
r
M
u
lt
i
p
le
-
A
n
ten
n
a
W
irele
ss
S
y
ste
m
s:
A
S
u
rv
e
y
”
,
IEE
E
Co
mm
u
n
.
M
a
g
.
2
0
1
1
;
4
9
(1
2
),
1
8
2
-
1
9
1
.
[9
]
M
.
Di
Re
n
z
o
,
H.
Ha
a
s,
A
.
G
h
r
a
y
e
b
,
S
.
S
u
g
iu
ra
,
a
n
d
L
.
Ha
n
z
o
,
“
S
p
a
ti
a
l
M
o
d
u
l
a
ti
o
n
fo
r
Ge
n
e
ra
li
ze
d
M
IM
O:
Ch
a
ll
e
n
g
e
s,
Op
p
o
rt
u
n
i
ti
e
s
a
n
d
Im
p
lem
e
n
ta
ti
o
n
”
,
P
r
o
c
e
e
d
in
g
s o
f
th
e
IEE
E
,
2
0
1
4
;
1
0
2
(1
)
,
5
6
-
1
0
3
.
[1
0
]
A
.
S
tav
rid
is,
S
.
S
in
a
n
o
v
ic,
M
.
D
i
Re
n
z
o
,
H.
Ha
a
s,
a
n
d
P
.
M
.
G
ra
n
t,
“
An
E
n
e
rg
y
S
a
v
i
n
g
b
a
se
S
ta
t
io
n
Em
p
lo
y
i
n
g
S
p
a
ti
a
l
M
o
d
u
l
a
ti
o
n
”
,
IEE
E
In
t.
W
o
rk
sh
o
p
o
n
Co
m
p
u
ter
-
A
id
e
d
M
o
d
e
li
n
g
A
n
a
l
y
sis
a
n
d
De
si
g
n
o
f
Co
m
m
u
n
ica
ti
o
n
L
in
k
s an
d
Ne
tw
o
rk
s
,
Ba
rc
e
lo
n
a
,
S
p
a
in
,
S
e
p
t
.
2
0
1
2
;
1
-
6.
[1
1
]
A
.
S
tav
rid
is,
S
.
S
in
a
n
o
v
ic,
M
.
Di
Re
n
z
o
,
a
n
d
H
.
Ha
a
s,
“
En
e
rg
y
Eva
lu
a
t
io
n
o
f
S
p
a
ti
a
l
M
o
d
u
l
a
t
io
n
a
t
a
M
u
lt
i
-
An
ten
n
a
b
a
se
St
a
t
io
n
”
,
I
EE
E
V
e
h
.
T
e
c
h
n
o
l.
C
o
n
f
.
-
F
a
ll
,
Ba
rc
e
lo
n
a
,
S
p
a
in
,
S
e
p
t.
2
0
1
3
,
1
-
5.
[1
2
]
V
a
ib
h
a
v
.
S
.
He
n
d
re
,
M
.
M
u
r
u
g
a
n
,
S
n
e
h
a
Ka
m
th
e
,
P
”
e
rf
o
rm
a
n
c
e
A
n
a
l
y
sis
o
f
T
r
a
n
s
m
it
A
n
ten
n
a
S
e
lec
ti
o
n
w
it
h
M
RC
in
M
IM
O
f
o
r
Im
a
g
e
T
ra
n
s
m
is
sio
n
in
M
u
lt
i
p
a
th
F
a
d
in
g
Ch
a
n
n
e
ls
Us
in
g
S
im
u
li
n
k
”
,
I
n
ter
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
te
r E
n
g
in
e
e
rin
g
,
2
0
1
5
;
5
(
1
),
1
1
9
-
1
2
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.