I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
wer
E
lect
ro
nics
a
nd
Driv
e
S
y
s
t
em
(
I
J
P
E
DS)
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
,
p
p
.
1
5
6
6
~
1
5
8
5
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/ijp
ed
s
.
v
16
.i
3
.
p
p
1
5
6
6
-
1
5
8
5
1566
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
p
e
d
s
.
ia
esco
r
e.
co
m
Im
pro
v
ed hybrid
DTC te
chno
lo
g
y
f
o
r eCA
R
4
-
whe
el
s driv
e
Nj
o
ck
B
a
t
a
k
e
E
mm
a
nu
el
E
ric,
Ny
o
be
Yo
m
e
J
ea
n M
a
urice
,
Ng
o
ma
J
e
a
n P
ierr
e,
Ndo
um
bé
M
a
t
ék
é
M
a
x
La
b
o
r
a
t
o
r
y
o
f
E
l
e
c
t
r
o
n
i
c
s,
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
,
A
u
t
o
ma
t
i
o
n
a
n
d
Te
l
e
c
o
mm
u
n
i
c
a
t
i
o
n
s
(
LEEAT)
,
N
a
t
i
o
n
a
l
H
i
g
h
e
r
P
o
l
y
t
e
c
h
n
i
c
S
c
h
o
o
l
o
f
D
o
u
a
l
a
,
U
n
i
v
e
r
s
i
t
y
o
f
D
o
u
a
l
a
,
D
o
u
a
l
a
,
C
a
mero
o
n
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
1
0
,
2
0
2
5
R
ev
is
ed
J
u
n
1
8
,
2
0
2
5
Acc
ep
ted
J
u
l 2
3
,
2
0
2
5
Th
is
a
rti
c
le
d
e
a
ls
with
th
e
d
e
sig
n
o
f
a
h
y
b
ri
d
c
o
n
tr
o
ll
e
r
(H
y
C).
It
c
o
m
b
in
e
s
fu
z
z
y
lo
g
ic
(F
L),
a
d
a
p
ti
v
e
n
e
u
r
o
-
fu
z
z
y
i
n
fe
re
n
c
e
sy
ste
m
(AN
F
IS
).
It
is
c
o
m
b
in
e
d
wit
h
d
irec
t
t
o
rq
u
e
c
o
n
t
ro
l
(DTC)
.
T
h
is
Hy
C
-
DTC
c
o
m
b
in
a
ti
o
n
is
d
e
sig
n
e
d
t
o
imp
r
o
v
e
th
e
tec
h
n
ica
l
p
e
rfo
rm
a
n
c
e
o
f
a
04
-
wh
e
e
l
d
r
iv
e
e
lec
tri
c
v
e
h
icle
(EV).
A
stre
ss
tes
t
is
id
e
n
ti
c
a
ll
y
a
p
p
li
e
d
t
o
th
e
DTC
c
o
m
b
in
e
d
wit
h
th
e
F
L
(F
DTC)
a
n
d
to
th
e
H
y
C
-
D
TC
in
o
r
d
e
r
t
o
c
e
rti
fy
th
e
s
u
it
a
b
i
li
ty
o
f
t
h
is
n
e
w
c
o
n
tr
o
l
f
o
ll
o
wi
n
g
a
c
ro
ss
-
v
a
li
d
a
ti
o
n
.
Th
is
is
b
a
se
d
o
n
d
y
n
a
m
ic
sta
b
il
it
y
c
rit
e
ria
(o
v
e
rsh
o
o
t,
rise
ti
m
e
,
a
c
c
u
ra
c
y
),
a
n
a
ly
sis
o
f
to
rq
u
e
a
n
d
flu
x
o
sc
il
latio
n
s,
a
n
d
th
e
EV'
s
ro
b
u
stn
e
ss
sy
m
b
o
l.
Th
e
EV'
s
m
a
g
n
e
ti
c
q
u
a
n
ti
ti
e
s
a
re
m
a
n
a
g
e
d
b
y
a
m
a
ste
r
-
sla
v
e
m
o
d
u
le
(VMS
C).
S
imu
lati
o
n
s
a
re
c
a
rried
o
u
t
u
sin
g
M
AT
LAB/S
imu
l
in
k
so
f
t
wa
re
.
Th
e
H
y
C
-
DTC
a
c
h
iev
e
s
n
e
a
r
-
z
e
ro
a
c
c
u
ra
c
y
li
k
e
th
e
F
DTC,
with
o
v
e
rsh
o
o
t
a
ro
u
n
d
0
.
2
%
les
s
th
a
n
t
h
e
F
DTC,
a
n
d
to
r
q
u
e
o
sc
il
lati
o
n
a
m
p
li
t
u
d
e
a
ro
u
n
d
4
t
ime
s
les
s
th
a
n
th
e
F
DTC.
Ho
we
v
e
r,
it
s
rise
ti
m
e
is
0
.
0
4
5
%
g
re
a
ter
th
a
n
t
h
a
t
o
f
t
h
e
F
DTC.
It
is
th
e
re
fo
re
slo
we
r,
b
u
t
m
o
re
p
re
c
is
e
a
n
d
su
it
a
b
le
fo
r
EV
tran
sm
issio
n
sy
ste
m
s
in
term
s o
f
sa
fe
ty
a
n
d
c
o
m
fo
rt.
K
ey
w
o
r
d
s
:
Dir
ec
t to
r
q
u
e
c
o
n
tr
o
l
E
lectr
ic
v
eh
icle
E
lectr
o
n
ic
d
if
f
e
r
en
tial
I
n
d
u
ctio
n
m
o
to
r
Neu
r
o
-
f
u
zz
y
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Njo
ck
B
atak
e
E
m
m
an
u
el
E
r
ic
L
ab
o
r
ato
r
y
o
f
E
lectr
o
n
ics,
E
le
ctr
ical
E
n
g
in
ee
r
in
g
,
Au
to
m
atio
n
an
d
T
elec
o
m
m
u
n
icatio
n
s
(
L
E
E
AT
)
Natio
n
al
Hig
h
er
Po
ly
tech
n
ic
Sch
o
o
l o
f
Do
u
ala,
U
n
iv
er
s
ity
o
f
Do
u
ala
Do
u
ala,
C
am
er
o
o
n
E
m
ail:
e.
n
jo
ck
b
ata
k
e@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
E
n
v
ir
o
n
m
en
tal
p
o
llu
tio
n
an
d
th
e
en
er
g
y
c
r
is
is
ar
e
n
o
w
two
f
o
ca
l
p
o
i
n
ts
th
at
ar
e
cu
lm
i
n
atin
g
a
n
d
co
n
s
tan
tly
ex
p
an
d
in
g
.
E
lectr
ic
v
eh
icles
(
E
Vs
)
,
wh
ich
ar
e
p
r
o
p
u
ls
io
n
s
y
s
tem
s
wh
o
s
e
ac
tu
ato
r
s
ar
e
m
ain
ly
elec
tr
ic
m
o
to
r
s
(
in
d
u
ctio
n
m
o
t
o
r
,
s
y
n
c
h
r
o
n
o
u
s
an
d
v
a
r
iab
le
r
elu
ctan
ce
m
o
to
r
,
d
i
r
ec
t
cu
r
r
en
t
m
ac
h
in
e)
[
1
]
,
ar
e
a
g
en
u
in
e
m
ea
n
s
o
f
r
e
co
u
r
s
e
th
at
f
o
r
m
s
p
ar
t
o
f
th
e
m
ea
s
u
r
es
tak
en
b
y
th
e
au
to
m
o
tiv
e
in
d
u
s
tr
y
to
c
o
m
b
at
th
ese
th
r
ea
ts
.
T
h
an
k
s
to
th
eir
h
ig
h
ef
f
icien
cy
an
d
v
ir
tu
ally
n
o
n
-
ex
is
ten
t
air
an
d
n
o
is
e
p
o
llu
tio
n
,
th
ey
s
tan
d
o
u
t
f
r
o
m
o
th
e
r
m
ea
n
s
o
f
tr
a
n
s
p
o
r
t
an
d
ar
e
g
ain
i
n
g
in
p
o
p
u
lar
ity
[
2
]
.
T
h
e
r
e
ar
e
4
m
ain
ca
t
eg
o
r
ies
o
f
elec
tr
ic
v
eh
icles:
h
y
b
r
id
elec
tr
ic
v
e
h
icles
(
HE
Vs),
p
lu
g
-
in
elec
tr
i
c
v
eh
icles
(
PEVs)
,
f
u
el
ce
ll
elec
tr
ic
v
e
h
icles
(
FC
E
Vs)
,
an
d
b
atter
y
elec
tr
ic
v
eh
icles
(
B
E
Vs
)
.
T
h
ey
ar
e
all
s
u
b
ject
to
th
e
s
am
e
tech
n
ical
an
d
ec
o
n
o
m
i
c
co
n
s
tr
ain
ts
,
i.e
.
,
d
esig
n
an
d
f
u
el
co
s
ts
,
d
if
f
icu
lt
ac
ce
s
s
to
elec
tr
ic
ch
ar
g
in
g
s
tatio
n
s
,
an
d
b
atter
y
c
h
ar
g
i
n
g
tim
es.
T
h
e
m
o
s
t
co
m
m
e
r
cially
av
ailab
le
E
Vs
ar
e
FC
E
Vs
an
d
B
E
Vs
[
3
]
.
T
h
er
e
ar
e
also
f
o
u
r
ty
p
ical
m
o
to
r
co
n
f
ig
u
r
atio
n
s
in
an
E
V:
s
in
g
le,
d
u
al,
tr
ip
le
,
an
d
f
o
u
r
m
o
to
r
s
.
T
h
e
f
ir
s
t
is
n
o
t
s
u
itab
le
f
o
r
h
ig
h
-
p
o
wer
E
Vs,
wh
ile
d
u
al
an
d
tr
ip
le
ar
e
less
ec
o
n
o
m
ical
an
d
d
o
n
o
t
o
f
f
er
a
s
atis
f
ac
to
r
y
tr
an
s
m
is
s
io
n
r
atio
b
etwe
en
th
e
m
o
to
r
an
d
th
e
wh
ee
l.
T
h
e
f
o
u
r
m
o
to
r
co
n
f
ig
u
r
atio
n
,
o
n
th
e
o
th
er
h
an
d
,
d
o
es
n
o
t
s
u
f
f
er
f
r
o
m
a
n
y
o
f
th
ese
v
ag
a
r
ies,
b
u
t
also
h
as
an
alter
n
atin
g
to
r
q
u
e
f
o
r
ea
ch
m
o
to
r
lin
k
e
d
to
i
ts
wh
ee
l.
T
h
is
g
iv
es
th
e
E
V
g
o
o
d
s
tab
ilit
y
,
a
wid
e
s
p
ee
d
r
an
g
e
,
an
d
h
ig
h
ef
f
icien
cy
[
3
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
I
mp
r
o
ve
d
h
yb
r
id
DTC
tech
n
o
l
o
g
y
fo
r
eCAR
4
-
w
h
ee
ls
d
r
ive
(
N
jo
ck
B
a
ta
ke
E
mma
n
u
el
E
r
ic
)
1567
Du
r
in
g
th
e
d
esig
n
o
f
an
E
V,
th
e
ch
o
ice
o
f
th
e
ch
a
r
ac
ter
is
tics
o
f
its
ac
tu
ato
r
s
i
s
a
k
ey
is
s
u
e
b
ec
au
s
e
it
is
lin
k
ed
to
its
p
e
r
f
o
r
m
an
ce
.
T
h
e
in
d
u
ctio
n
m
ac
h
in
e
(
I
M)
h
a
s
tech
n
ical
an
d
ec
o
n
o
m
ic
ch
a
r
ac
ter
is
tics
th
at
ar
e
p
o
p
u
lar
in
th
e
a
u
to
m
o
tiv
e
in
d
u
s
tr
y
[
4
]
,
[
5
]
.
Ho
wev
er
,
it
ca
n
n
o
t
f
u
n
ctio
n
o
p
tim
ally
with
o
u
t
ap
p
r
o
p
r
iat
e
co
n
tr
o
l.
T
h
at
is
wh
y
th
e
d
ir
ec
t
to
r
q
u
e
co
n
tr
o
l
(
DT
C
)
alg
o
r
ith
m
was
d
ev
elo
p
ed
f
o
r
h
er
.
T
h
is
alg
o
r
ith
m
allo
ws
co
n
tr
o
l
o
f
a
th
r
ee
-
p
h
ase
in
v
e
r
t
er
co
n
n
ec
ted
d
ir
ec
tly
to
th
e
I
M
f
o
r
t
h
e
tr
ac
tio
n
o
f
th
e
E
V.
I
t
p
o
s
es
a
p
r
o
b
lem
,
th
at
o
f
th
e
wid
e
r
an
g
e
o
f
el
ec
tr
o
m
ag
n
etic
to
r
q
u
e
r
ip
p
le,
lar
g
e
cu
r
r
en
ts
o
f
h
ar
m
o
n
ic
d
is
to
r
tio
n
s
an
d
th
e
v
ar
iatio
n
o
f
th
e
s
witch
in
g
f
r
eq
u
en
cy
[
2
]
.
Ar
ti
f
i
cia
l
i
n
t
ell
ig
e
n
ce
d
u
r
i
n
g
t
h
es
e
p
r
e
v
i
o
u
s
y
ea
r
s
is
co
n
s
i
d
e
r
a
b
l
y
im
p
l
em
en
te
d
i
n
t
h
e
f
i
el
d
o
f
a
ct
u
at
o
r
co
n
t
r
o
l
o
f
E
Vs.
I
t
is
c
o
n
ti
n
u
o
u
s
ly
v
al
u
e
d
f
o
r
its
s
ig
n
i
f
i
ca
n
t
i
m
p
ac
t
i
n
i
m
p
r
o
v
i
n
g
t
h
e
e
n
e
r
g
y
m
a
n
a
g
e
m
e
n
t
o
f
a
n
E
V.
I
t
is
th
en
th
at
i
n
[
6
]
s
h
e
i
n
te
r
v
e
n
es
in
th
e
i
n
d
ir
ec
t
f
i
el
d
co
n
t
r
o
l
(
I
FOC
)
f
o
ll
o
wi
n
g
th
e
in
t
r
o
d
u
cti
o
n
o
f
tw
o
n
e
u
r
o
-
f
u
zz
y
c
o
n
tr
o
l
le
r
s
.
T
h
e
E
V
p
r
es
e
n
te
d
h
er
e
h
as
a
tw
o
-
wh
ee
l
d
r
iv
e
co
n
f
i
g
u
r
at
io
n
.
A
n
ele
ct
r
o
n
i
c
d
i
f
f
er
e
n
ti
al,
w
h
ic
h
ta
k
es
i
n
t
o
a
cc
o
u
n
t
t
h
e
r
o
a
d
p
r
o
f
i
le
,
a
ll
o
ws
to
c
o
n
tr
o
l
e
f
f
ec
ti
v
el
y
th
e
t
o
r
q
u
e
a
n
d
s
p
ee
d
s
o
f
t
h
e
two
d
r
i
v
i
n
g
w
h
ee
ls
i
n
d
e
p
e
n
d
e
n
tl
y
i
n
o
r
d
er
t
o
o
b
t
ai
n
s
a
tis
f
ac
t
o
r
y
p
e
r
f
o
r
m
a
n
c
e.
Ho
we
v
e
r
,
t
h
e
im
p
l
em
e
n
ta
ti
o
n
o
f
th
is
m
ast
er
p
i
ec
e
r
e
q
u
i
r
es
a
lg
o
r
ith
m
i
c
an
d
a
r
c
h
i
te
ct
u
r
al
c
o
m
p
l
ex
i
ties
r
el
at
ed
t
o
a
ct
u
at
o
r
p
ar
a
m
et
er
s
,
w
h
ic
h
c
an
af
f
e
ct
th
e
s
ta
b
il
it
y
o
f
th
e
E
V
.
Ho
u
a
ci
n
e
et
a
l.
[
7
]
p
r
o
v
i
d
e
a
n
el
em
en
t
o
f
s
o
l
u
t
io
n
t
o
th
is
p
r
o
b
le
m
;
a
c
ar
ef
u
l
ly
p
r
o
f
il
e
d
m
e
th
o
d
i
n
v
o
l
v
es
f
u
zz
y
lo
g
i
c
i
n
a
d
a
p
ti
v
e
m
o
m
en
t
u
m
a
n
d
c
o
m
p
e
n
s
a
ti
o
n
.
T
h
is
i
n
c
r
e
ases
t
h
e
m
a
n
e
u
v
e
r
a
b
il
it
y
an
d
s
ta
b
il
it
y
o
f
t
h
e
E
V
u
n
d
e
r
v
ar
i
o
u
s
co
n
s
t
r
ai
n
ts
.
T
h
e
f
i
n
i
te
c
o
n
tr
o
l
s
et
d
ir
e
ct
to
r
q
u
e
c
o
n
tr
o
l
(
FDTC
)
a
n
d
s
p
a
ce
v
e
ct
o
r
m
o
d
u
la
ti
o
n
-
d
i
r
e
ct
t
o
r
q
u
e
c
o
n
tr
o
l
(
SVM
-
DT
C
)
c
o
n
tr
o
ls
f
o
r
a
t
wi
n
-
e
n
g
in
e
v
e
h
ic
le
ar
e
p
e
r
f
o
r
m
e
d
a
n
d
th
e
n
c
o
m
p
a
r
e
d
i
n
te
r
m
s
o
f
p
er
f
o
r
m
a
n
ce
[
8
]
.
T
h
e
r
esu
lts
i
n
te
r
m
s
o
f
s
p
e
ed
,
r
o
b
u
s
t
n
ess
,
a
n
d
en
er
g
y
s
a
v
i
n
g
s
p
u
t
th
e
FD
T
C
in
p
o
l
e
p
o
s
iti
o
n
co
m
p
a
r
e
d
to
th
e
SV
M
-
DT
C
co
n
t
r
o
l
.
H
o
w
ev
er
,
t
h
e
s
u
p
p
l
y
o
f
ea
c
h
e
n
g
i
n
e
b
y
a
c
o
n
v
er
te
r
is
q
u
it
e
ex
p
en
s
iv
e
a
n
d
i
n
c
r
e
ases
t
h
e
s
i
ze
o
f
t
h
e
t
r
ac
ti
o
n
s
y
s
te
m
.
I
n
th
e
s
am
e
v
ein
,
m
a
n
y
s
y
s
tem
s
h
av
e
b
ee
n
d
e
v
elo
p
e
d
with
s
ev
er
al
m
ac
h
in
es
th
at
ar
e
p
o
wer
ed
b
y
a
s
in
g
le
co
n
v
e
r
ter
th
is
to
s
ig
n
if
i
ca
n
tly
r
ed
u
ce
th
e
s
ize
an
d
co
s
t
o
f
th
e
s
y
s
tem
.
T
h
u
s
,
in
[
9
]
,
a
b
r
ief
p
r
esen
tatio
n
o
f
th
e
lo
n
g
itu
d
in
al
c
o
n
tr
o
l
b
y
ac
ce
ler
atio
n
s
lip
co
n
tr
o
l
a
n
d
a
n
ti
-
lo
ck
b
r
a
k
in
g
s
y
s
tem
is
p
r
e
s
en
ted
.
I
t
is
b
ased
o
n
th
e
DT
C
co
m
b
in
ed
with
a
n
o
n
-
lin
ea
r
p
r
ed
ictiv
e
s
y
s
tem
f
o
r
a
m
u
lti
-
m
ac
h
in
e
s
y
s
tem
.
T
h
is
co
m
b
in
atio
n
lead
s
to
ad
v
an
ce
d
co
n
tr
o
l
f
o
r
E
Vs.
T
h
e
f
u
zz
y
lo
g
ic
allo
ws
th
e
v
alu
es
o
f
th
e
in
-
lin
e
weig
h
tin
g
f
ac
to
r
s
to
b
e
d
eter
m
in
ed
an
d
th
e
o
p
tim
al
s
witch
in
g
s
tates
to
b
e
g
en
er
ate
d
,
o
p
tim
izin
g
t
h
e
E
V
d
r
iv
es
p
r
ec
is
ely
.
T
h
e
m
ajo
r
d
r
awb
ac
k
is
th
e
c
o
m
p
lex
ity
o
f
th
e
co
n
t
r
o
l
s
y
s
tem
illu
s
tr
ated
.
T
h
e
[
1
0
]
,
a
co
n
tr
o
l
b
ased
o
n
th
e
co
n
v
en
tio
n
al
DT
C
,
is
d
ev
elo
p
ed
f
o
r
th
e
c
o
n
tr
o
l
o
f
0
4
PMSM
-
ty
p
e
en
g
in
es
f
o
r
o
n
e
E
V.
Her
e,
th
er
e
ar
e
0
2
th
r
ee
-
p
h
ase
in
v
er
ter
s
,
s
o
ea
ch
f
ee
d
s
two
en
g
in
es
o
n
eith
e
r
s
id
e
o
f
t
h
e
v
eh
icle.
T
h
is
in
clu
d
es
a
m
aster
-
s
lav
e
co
n
tr
o
l
m
o
d
u
le.
T
h
is
m
o
d
u
le
s
witch
es
b
etwe
en
m
ac
h
in
es
an
d
u
s
es
an
ad
ap
tiv
e
m
o
d
el
r
e
f
er
en
ce
s
y
s
tem
f
o
r
s
p
ee
d
s
.
I
t
is
r
em
ar
k
ab
ly
e
f
f
icien
t
,
alth
o
u
g
h
it a
llo
ws f
o
r
s
tr
o
n
g
o
s
cillatio
n
s
o
f
to
r
q
u
e
a
n
d
s
tato
r
f
l
o
w.
I
n
a
d
d
itio
n
,
Ma
x
et
a
l.
[1
0
]
p
er
f
o
r
m
e
d
a
c
o
m
p
ar
is
o
n
b
etwe
en
th
e
FDTC,
th
e
DT
C
co
m
b
in
ed
with
ar
tific
ial
n
eu
r
al
n
etwo
r
k
s
(
DT
C
-
ANNs)
,
an
d
th
e
co
n
v
en
tio
n
al
DT
C
is
p
er
f
o
r
m
ed
f
o
r
a
4
-
wh
ee
l
d
r
iv
e
to
2
-
in
v
er
ter
m
u
lti
-
m
ac
h
in
e
ar
c
h
itectu
r
e
,
ea
ch
f
ee
d
i
n
g
two
wh
ee
ls
lo
ca
ted
o
n
th
e
s
am
e
s
id
e.
T
h
e
f
ir
s
t
two
s
tr
ateg
ies
ar
e
u
s
ed
to
ad
ju
s
t
th
e
ac
cu
r
ac
y
er
r
o
r
o
n
elec
tr
o
m
a
g
n
etic
f
lu
x
an
d
to
r
q
u
e
,
an
d
r
e
d
u
ce
th
e
am
p
litu
d
e
o
f
o
s
cillatio
n
s
in
th
e
s
y
s
tem
em
itted
b
y
co
n
v
e
n
tio
n
al
DT
C
.
Af
ter
in
v
esti
g
atio
n
,
it
ap
p
ea
r
s
in
th
is
ca
s
e
th
at
th
e
FDTC
p
r
o
v
i
d
es
b
etter
r
e
s
u
lts
th
an
th
e
o
th
er
two
tech
n
iq
u
es
u
s
ed
in
ter
m
s
o
f
E
V
p
er
f
o
r
m
an
ce
.
T
h
e
p
r
o
b
lem
th
at
r
em
ain
s
is
a
co
n
s
id
er
ab
le
an
d
v
is
ib
le
am
p
lit
u
d
e
o
f
to
r
q
u
e
o
s
cillatio
n
s
in
th
e
p
r
esen
tatio
n
o
f
s
im
u
latio
n
g
r
ap
h
s
.
Fu
r
th
er
,
m
an
y
h
y
b
r
id
co
n
t
r
o
l
ler
s
h
av
e
b
ee
n
cr
ea
ted
b
y
co
m
b
in
in
g
v
a
r
io
u
s
alg
o
r
ith
m
s
to
im
p
r
o
v
e
DT
C
co
n
tr
o
l
o
f
I
M.
T
h
is
is
t
h
e
ca
s
e
o
f
th
e
f
u
zz
y
co
n
tr
o
ll
er
to
im
p
r
o
v
e
m
o
to
r
’
s
ef
f
icien
cy
[
1
1
],
[1
2
]
,
th
e
d
ev
elo
p
m
e
n
t
o
f
s
ev
er
al
f
u
zz
y
co
n
tr
o
ller
s
[1
3
]
,
an
d
th
e
f
u
s
io
n
o
f
s
lid
in
g
m
o
d
e
c
o
n
tr
o
ller
s
with
FL
to
p
er
f
ec
t
th
e
p
er
f
o
r
m
a
n
ce
s
o
f
I
Ms
is
ex
am
in
ed
in
[
1
4
]
.
T
h
e
p
r
esen
t
s
t
u
d
y
p
r
o
p
o
s
es
th
e
d
esig
n
o
f
a
h
y
b
r
id
co
n
tr
o
ller
f
o
r
a
Hy
C
-
DT
C
s
tr
ateg
y
.
th
is
FDTC
-
in
s
p
ir
ed
co
n
tr
o
ller
is
,
in
t
u
r
n
,
i
n
teg
r
ated
i
n
to
an
E
V
ar
c
h
itectu
r
e
id
en
tical
to
th
at
o
f
th
e
FDTC
[
8
]
with
a
v
i
ew
to
o
b
s
er
v
in
g
th
e
r
ea
ctio
n
o
f
th
e
w
h
o
le
b
ec
au
s
e
an
d
th
e
n
cr
o
s
s
-
v
alid
atin
g
th
e
two
tech
n
o
l
o
g
ies
to
h
ig
h
lig
h
t
th
e
r
elev
an
ce
o
f
th
e
n
e
ws
o
n
th
e
d
y
n
am
ic
s
y
s
tem
p
er
f
o
r
m
an
ce
.
T
h
is
co
m
p
ar
is
o
n
allo
ws
n
o
t
o
n
ly
to
v
alid
ate
th
e
p
r
o
p
o
s
ed
h
y
b
r
id
co
n
tr
o
ller
,
b
u
t
also
to
h
ig
h
lig
h
t
th
e
lim
its
an
d
th
e
ad
d
ed
v
alu
e
f
o
r
th
e
tr
a
ctio
n
ch
ain
o
f
a
4
-
wh
ee
l
m
u
lti
-
m
ac
h
in
e
s
y
s
tem
o
f
E
Vs.
T
h
e
two
c
o
n
tr
o
ller
s
ar
e
ea
ch
in
tu
r
n
in
th
e
s
am
e
ar
c
h
itectu
r
e,
ass
o
ciate
d
with
a
VM
S
C
m
o
d
u
le.
T
h
is
m
o
d
u
le
f
a
cilitates
th
e
p
r
o
p
er
m
an
ag
em
en
t
o
f
m
ag
n
etic
ac
tu
ato
r
q
u
a
n
titi
es
(
I
M)
a
n
d
h
as
b
ee
n
d
ev
el
o
p
ed
in
[
8
]
.
I
t
s
h
o
u
l
d
also
b
e
n
o
ted
th
at
th
e
d
esig
n
o
f
th
e
h
y
b
r
id
co
n
tr
o
ller
is
d
o
n
e
in
o
r
d
er
to
p
r
o
v
i
d
e
an
ef
f
ec
tiv
e
r
esp
o
n
s
e
to
th
e
d
if
f
icu
lties
ca
u
s
ed
b
y
a
co
n
s
id
er
a
b
le
m
ag
n
itu
d
e
o
f
th
e
r
ip
p
les
o
f
t
h
e
ch
a
r
ac
ter
is
tic
s
izes
o
f
E
V
en
g
in
es
(
m
a
g
n
etic
f
lu
x
,
to
r
q
u
e
)
,
an
d
th
eir
d
y
n
am
ic
p
ar
am
eter
s
(
o
v
er
s
h
o
o
t,
r
is
in
g
tim
e,
s
tead
y
s
tate
er
r
o
r
)
th
e
p
r
e
v
io
u
s
m
e
th
o
d
[
1
0
]
.
T
h
e
two
m
eth
o
d
s
d
is
cu
s
s
ed
a
b
o
v
e
d
if
f
er
f
r
o
m
th
e
p
r
ev
io
u
s
class
ic
DT
C
in
th
e
u
s
e
o
f
c
o
n
tr
o
l
an
d
m
an
ag
e
m
en
t
m
ec
h
an
is
m
s
,
s
u
ch
as
th
e
PI
r
eg
u
lato
r
f
o
r
s
p
ee
d
co
n
tr
o
l
an
d
an
elec
tr
o
n
ic
d
if
f
er
e
n
tial
(
E
D)
.
T
h
ese
m
ec
h
an
is
m
s
allo
w
f
o
r
g
r
ea
ter
f
lex
ib
ilit
y
,
r
esp
o
n
s
iv
en
ess
,
p
r
ec
is
io
n
,
an
d
s
im
p
licity
o
f
im
p
lem
en
tatio
n
.
T
h
e
o
v
er
all
p
er
f
o
r
m
a
n
ce
s
ar
e
s
atis
f
ac
to
r
y
,
a
n
d
alth
o
u
g
h
th
e
h
y
b
r
id
co
n
tr
o
ller
p
r
o
v
id
es
a
s
lig
h
tly
lo
n
g
er
r
esp
o
n
s
e
tim
e
th
an
th
e
FDTC,
h
e
is
in
d
ee
d
p
r
ac
ticed
in
u
s
in
g
tr
ac
tio
n
o
n
m
u
lti
-
m
ac
h
in
e
s
y
s
tem
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1566
-
1
5
8
5
1568
2.
ARCH
I
T
E
C
T
URA
L
SCH
E
M
E
AN
D
M
O
D
E
L
L
I
NG
O
F
T
H
E
E
V
D
YNA
M
I
C
S
2
.
1
.
Descript
io
n o
f
t
he
a
rc
hite
ct
ure
T
h
e
d
iag
r
am
b
el
o
w
o
f
Fig
u
r
e
1
s
h
o
ws
an
E
V
with
f
o
u
r
-
wh
e
el
d
r
iv
e.
I
t
co
n
s
is
ts
o
f
s
p
ee
d
co
n
v
er
ter
s
,
f
lu
x
esti
m
ato
r
s
,
th
r
ee
-
p
h
ase
t
o
two
-
p
h
ase
(
3
to
2
)
tr
an
s
f
o
r
m
atio
n
m
o
d
u
les,
two
co
n
tr
o
ll
er
s
(
h
y
b
r
id
o
r
f
u
zz
y
lo
g
ic
)
,
ea
ch
o
f
wh
ich
in
tu
r
n
f
ee
d
s
an
in
v
er
ter
th
at
p
r
o
d
u
ce
s
th
e
v
o
ltag
es
r
eq
u
ir
ed
(
Sa,
Sb
,
Sc)
f
o
r
th
e
r
o
tatio
n
o
f
two
m
o
t
o
r
s
lo
ca
ted
o
n
th
e
s
am
e
s
id
e,
wh
ile
av
o
id
i
n
g
th
e
m
o
p
er
atin
g
in
s
atu
r
atio
n
m
o
d
e.
T
h
e
E
D
g
e
n
er
ates
th
e
s
p
ee
d
p
r
o
f
ile
ac
co
r
d
in
g
to
th
e
s
teer
in
g
an
g
les.
T
wo
VM
SC
m
o
d
u
les
f
ee
d
th
e
FL
(
r
esp
ec
tiv
ely
Hy
C
)
co
n
tr
o
ller
w
h
ich
h
as
as
in
p
u
ts
th
e
er
r
o
r
s
o
f
elec
tr
o
m
ag
n
etic
to
r
q
u
es,
f
lu
x
es
,
a
n
d
a
n
g
les
p
r
o
d
u
ce
d
r
esp
ec
tiv
ely
b
y
ea
ch
o
f
th
e
later
al
ac
tu
at
o
r
s
(
I
M)
,
wh
o
s
e
o
u
tp
u
ts
ar
e
f
lu
x
an
d
an
g
le
v
alu
es
m
a
n
a
g
ed
b
y
th
e
h
y
b
r
id
co
n
tr
o
ller
o
r
th
e
f
u
zz
y
c
o
n
tr
o
ll
er
to
p
r
o
d
u
ce
ad
eq
u
ate
o
u
tp
u
ts
f
o
r
th
e
o
p
er
atio
n
o
f
th
e
in
v
er
t
er
s
.
Fig
u
r
e
1
.
Ar
c
h
itectu
r
al
s
y
n
o
p
t
ic
d
iag
r
am
o
f
th
e
elec
tr
ic
v
eh
i
cle
2
.
2
.
Descript
io
n o
f
t
he
E
V
d
y
na
m
ics
T
h
e
p
a
r
am
eter
s
th
at
e
x
p
licit
ly
d
escr
ib
e
th
e
v
eh
icle
d
y
n
am
ics
ar
e
th
e
later
al
an
d
l
o
n
g
itu
d
i
n
al
v
elo
cities an
d
th
e
r
a
d
iu
s
o
f
c
u
r
v
atu
r
e
[
1
5
]
,
[1
6
]
.
T
h
eir
ex
p
r
e
s
s
io
n
s
ar
e
as
(
1
)
-
(
3
)
.
=
+
1
+
2
+
3
+
4
−
+
∗
∗
(
+
∗
−
)
(1
)
=
(
−
+
∗
)
∗
+
(
∗
+
∗
∗
−
)
∗
+
∗
(
2
)
=
(
∗
−
∗
∗
)
∗
−
(
∗
2
−
∗
2
∗
)
∗
+
∗
+
(
1
+
2
+
3
+
4
)
(
3)
Du
r
in
g
its
m
o
v
e
m
en
t,
th
e
v
eh
i
cle
is
s
u
b
ject
to
f
o
r
ce
s
[
1
7
]
-
[
19
]
an
d
s
tr
ess
es,
as sh
o
wn
in
Fi
g
u
r
e
2
.
T
ir
e
r
o
llin
g
r
esis
tan
ce
:
=
∗
∗
∗
c
os
(
)
(
4
)
Aer
o
d
y
n
a
m
ic
r
esis
tan
ce
in
d
r
a
g
:
=
0
.
5
∗
∗
∗
∗
(
ℎ
−
)
2
(
5
)
L
ev
ellin
g
r
esis
tan
ce
:
=
∗
∗
s
in
(
)
(
6
)
Acc
eler
atio
n
r
esis
tan
ce
:
=
∗
(
7)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
I
mp
r
o
ve
d
h
yb
r
id
DTC
tech
n
o
l
o
g
y
fo
r
eCAR
4
-
w
h
ee
ls
d
r
ive
(
N
jo
ck
B
a
ta
ke
E
mma
n
u
el
E
r
ic
)
1569
T
o
tal
f
o
r
ce
s
r
esis
tan
ce
s
:
=
+
+
+
(
8
)
Fig
u
r
e
2
.
Fo
r
ce
s
a
p
p
lied
o
n
th
e
E
V
[
19
]
T
h
e
lo
n
g
itu
d
in
al
f
o
r
ce
s
o
f
th
e
f
o
u
r
d
r
iv
e
wh
ee
ls
ar
e
ca
lc
u
lated
as
(
9
)
[
10
]
.
=
∗
4
∗
∗
(
)
[
1
,
4
]
(
9
)
T
h
e
r
esis
tiv
e
to
r
q
u
e
is
ca
lcu
lat
ed
as
(
1
0
)
an
d
(
1
1
)
[
10
]
.
=
∗
−
∗
[
1
,
3
]
(
1
0
)
=
∗
−
∗
[
2
,
4
]
(
1
1
)
W
h
er
e
an
d
ar
e
d
eter
m
in
e
d
b
y
(
1
2
)
a
n
d
(
1
3
)
[
10
]
.
=
∗
2
(
−
ℎ
∗
∗
−
ℎ
∗
)
(
1
2
)
=
∗
2
(
+
ℎ
∗
∗
−
ℎ
∗
)
(
1
3
)
T
h
e
lin
ea
r
m
o
d
el
g
iv
es th
e
f
r
o
n
t a
n
d
r
ea
r
f
o
r
ce
s
[
10
]
.
=
−
∗
(
1
4
)
=
−
∗
(
1
5
)
T
h
e
ex
p
r
ess
io
n
s
o
f
s
id
esli
p
an
g
les,
lo
n
g
itu
d
in
al
s
lip
,
a
n
d
th
e
r
elatio
n
b
etwe
en
th
e
s
lid
in
g
a
n
d
ten
s
ile
f
o
r
ce
s
ar
e
g
iv
en
as
(
1
6
)
an
d
(
1
7
)
[
10
]
.
=
−
+
−
1
(
+
∗
)
(
1
6
)
=
−
1
(
−
∗
)
(
1
7
)
T
h
er
ef
o
r
e,
th
e
lo
n
g
itu
d
i
n
al
s
lip
is
g
iv
en
as
(
1
8
)
.
=
∗
−
m
ax
(
∗
−
)
[
1
,
4
]
(
1
8
)
T
h
en
,
th
e
r
elatio
n
s
h
ip
b
etwe
e
n
an
d
(
tr
ac
tio
n
c
o
ef
f
icien
t)
ca
n
b
e
ex
p
r
ess
ed
as
(
1
9
)
[2
0
]
-
[
2
3
]
.
=
1
∗
[
s
in
(
2
∗
−
1
(
−
4
∗
(
3
∗
−
−
1
(
3
∗
)
)
)
)
]
(
1
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1566
-
1
5
8
5
1570
2
.
3
.
T
he
I
M
t
ra
ct
io
n schem
e
T
h
e
to
r
q
u
e
f
u
n
ctio
n
d
ep
en
d
s
o
n
th
e
s
tato
r
s
an
d
r
o
to
r
’
s
cu
r
r
en
ts
as in
d
icate
d
in
[
8
]
:
̇
=
.
+
.
̇
=
(
̇
̇
∅
̇
∅
̇
)
;
=
(
1
σ
∗
L
s
0
0
1
σ
∗
L
s
0
0
0
0
)
;
=
(
V
s
α
V
s
β
)
;
=
(
I
s
α
I
s
β
∅
r
α
∅
r
β
)
=
(
−
1
σ
∗
L
s
(
R
s
+
L
2
T
r
∗
L
r
)
0
1
σ
∗
L
s
(
L
T
r
∗
L
r
)
1
σ
∗
L
s
(
L
L
r
)
ω
0
−
1
σ
∗
L
s
(
R
s
+
L
2
T
r
∗
L
r
)
−
1
σ
∗
L
s
(
L
T
r
∗
L
r
)
ω
1
σ
∗
L
s
(
L
T
r
∗
L
r
)
L
T
r
0
−
1
T
r
−
ω
0
L
T
r
ω
̇
−
1
T
r
)
T
h
e
elec
tr
o
m
ag
n
etic
to
r
q
u
e
C
em
an
d
th
e
m
ec
h
an
ical
e
q
u
ati
o
n
ar
e
g
iv
en
in
[
8
]
:
C
em
=
3
2
p
L
L
r
(
∅
̇
.
̇
−
∅
̇
.
̇
)
1
d
ω
dt
=
C
em
−
C
r
−
C
f
2
.
4
.
T
he
inv
er
t
er
mo
del
T
h
e
in
v
er
ter
w
h
ich
h
as
b
ee
n
u
s
e
is
u
s
ed
f
o
r
th
e
E
V
is
t
h
e
two
-
v
o
ltag
e
ty
p
e.
I
t
allo
ws
o
b
tain
in
g
b
alan
ce
d
alter
n
atin
g
cu
r
r
en
ts
f
o
r
v
ar
i
o
u
s
f
r
e
q
u
en
cies.
T
h
e
f
o
llo
win
g
m
atr
ix
f
o
r
m
g
iv
es
d
et
ails
o
f
th
e
v
o
ltag
es
g
en
er
ated
a
n
d
th
e
l
o
g
ical
s
witch
es'
v
alu
es a
s
g
iv
en
in
[
8
]
:
(
V
an
V
bn
V
cn
)
=
1
3
U
dc
(
2
−
1
−
1
−
1
2
−
1
−
1
−
1
2
)
(
S
a
S
b
S
c
)
2
.
5
.
T
he
elec
t
ro
nic dif
f
er
ent
ia
l m
o
del
T
h
e
elec
tr
ic
v
eh
icle
,
as
s
ee
n
in
Fig
u
r
e
3
,
m
ain
tain
s
th
e
s
p
ee
d
s
o
f
b
o
t
h
d
r
iv
e
wh
ee
ls
at
th
e
s
am
e
v
alu
e.
I
n
th
e
ca
s
e
o
f
a
c
u
r
v
ili
n
ea
r
p
ath
(
lef
t
o
r
r
ig
h
t
b
en
d
)
,
th
e
wh
ee
l
s
teer
in
g
a
n
g
le
is
δ,
wh
ich
in
cr
ea
s
es
th
e
s
p
ee
d
o
f
th
e
wh
ee
l
o
n
th
e
o
u
ts
id
e
o
f
th
e
cu
r
v
e.
I
n
th
is
way
,
th
e
tire
s
d
o
n
o
t
lo
s
e
g
r
ip
[
8
]
.
T
h
e
p
a
r
am
eter
s
∗
an
d
∗
r
ep
r
esen
t
th
e
d
r
iv
e
s
p
ee
d
s
o
f
th
e
ac
tu
ato
r
s
,
r
esp
ec
tiv
el
y
[
1
2
],
[1
3
]
.
Fo
r
δ
<
0
,
th
e
E
V
tu
r
n
s
to
th
e
lef
t,
δ
>
0
tu
r
n
s
to
th
e
r
ig
h
t,
δ
=
0
g
o
es
s
tr
aig
h
t a
h
ea
d
.
T
h
e
a
n
g
u
lar
v
elo
cities o
f
th
e
d
r
iv
e
wh
ee
ls
ar
e:
∗
=
(
ℎ
−
∆
2
)
(
2
0
)
∗
=
(
ℎ
+
∆
2
)
(
2
1
)
T
h
u
s
,
th
e
d
if
f
er
en
ce
b
etwe
en
t
h
e
an
g
u
lar
s
p
ee
d
o
f
th
e
wh
ee
l
s
is
g
iv
en
b
y
(
2
2
)
[2
4
]
,
[
2
5
]
.
∆
=
∗
t
an
(
)
(
+
)
∗
ℎ
(
2
2
)
2
.
6
.
T
he
v
a
ria
ble
m
a
s
t
er
s
la
v
e
co
ntr
o
l
m
o
del
T
h
is
s
witch
ab
le
co
n
tr
o
l
s
y
s
te
m
o
f
f
er
s
th
e
p
o
s
s
ib
ilit
y
to
r
eg
u
late
th
e
s
tato
r
f
lo
w
o
f
th
e
I
M
p
lace
d
in
p
ar
allel
,
th
an
k
s
to
a
p
o
wer
s
u
p
p
ly
to
th
e
wh
ee
ls
b
y
a
s
in
g
le
co
n
v
er
ter
.
I
n
s
o
m
e
ca
s
es,
I
M
s
m
ay
b
e
s
u
b
ject
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
I
mp
r
o
ve
d
h
yb
r
id
DTC
tech
n
o
l
o
g
y
fo
r
eCAR
4
-
w
h
ee
ls
d
r
ive
(
N
jo
ck
B
a
ta
ke
E
mma
n
u
el
E
r
ic
)
1571
d
if
f
er
en
t
c
h
ar
g
es.
Fo
r
th
is
p
u
r
p
o
s
e,
o
n
e
o
f
th
e
m
ac
h
in
es
c
an
s
ee
its
s
atu
r
ated
m
ag
n
etic
cir
cu
it.
I
n
o
r
d
er
to
av
o
id
th
is
f
ate,
it
is
im
p
er
ati
v
e
th
at
th
e
s
tr
ateg
y
b
ein
g
u
s
ed
b
e
an
e
f
f
ec
tiv
e
m
ea
n
s
b
y
wh
ich
th
e
v
o
lta
g
e
v
ec
to
r
s
d
eliv
er
e
d
b
y
th
e
co
n
v
er
ter
ar
e
d
is
tr
ib
u
te
d
to
ea
c
h
m
ac
h
in
e
in
a
f
air
way
,
allo
win
g
th
em
t
o
d
e
v
elo
p
ad
eq
u
ate
s
p
ee
d
s
an
d
to
r
q
u
es [
1
0
]
.
I
t
is
th
er
ef
o
r
e
a
q
u
esti
o
n
h
e
r
e
to
r
eg
u
latin
g
t
h
e
f
lo
w
o
f
t
h
e
s
tato
r
o
f
o
n
e
m
ac
h
in
e
at
a
tim
e.
On
e
m
ac
h
in
e
will
b
e
ca
lled
th
e
m
aster
,
an
d
th
u
s
m
ak
es
th
e
o
th
er
a
s
lav
e.
T
h
e
m
ac
h
i
n
e
wh
o
s
e
f
lo
w
will
b
e
co
n
tr
o
lled
will
b
e
ca
lled
th
e
m
aster
,
an
d
th
e
o
th
er
th
e
s
lav
e.
T
h
e
to
r
q
u
e
o
f
th
e
m
aster
m
ac
h
in
e
is
th
e
wea
k
est.
T
h
u
s
,
in
cr
ea
s
in
g
th
e
t
o
r
q
u
e
o
f
a
m
ac
h
in
e
is
f
o
llo
wed
b
y
a
d
e
cr
ea
s
e
in
its
s
tato
r
f
lu
x
an
d
v
ic
e
v
er
s
a
,
as
f
o
llo
ws
in
Fig
u
r
e
4
.
Fig
u
r
e
3
.
Fo
r
ce
s
a
p
p
lied
o
n
th
e
E
V
[
1
0
]
Fig
u
r
e
4
.
VM
SC
s
ch
em
e
3.
H
YB
RID
A
RCH
I
T
E
C
T
UR
E
AND
CO
N
T
RO
L
S
T
RA
T
E
G
Y
T
h
i
s
p
r
o
p
o
s
e
d
s
t
r
a
t
e
g
y
c
o
m
b
i
n
e
s
f
u
z
z
y
l
o
g
i
c
a
n
d
a
n
a
d
a
p
t
i
v
e
n
e
u
r
o
-
f
u
z
z
y
i
n
f
e
r
e
n
c
e
s
y
s
t
e
m
(
A
N
F
I
S
)
.
I
t
s
h
o
u
l
d
b
e
n
o
t
e
d
h
e
r
e
t
h
a
t
it
is
d
e
v
e
l
o
p
e
d
f
o
r
t
w
o
m
o
t
o
r
s
l
o
ca
t
e
d
o
n
ei
t
h
e
r
s
i
d
e
(
r
i
g
h
t
o
r
l
e
f
t)
o
f
t
h
e
E
V
,
a
n
d
t
h
e
e
n
t
r
i
e
s
o
f
t
h
e
h
y
b
r
i
d
c
o
n
t
r
o
l
le
r
a
r
e
t
h
e
o
u
t
p
u
t
o
f
t
h
e
V
MS
C
.
F
ig
u
r
e
5
s
h
o
w
s
i
ts
g
e
n
e
r
a
l
a
r
c
h
i
te
c
t
u
r
e
.
3
.
1
.
T
he
a
da
ptiv
e
neuro
-
f
uz
zy
infe
re
nce
s
y
s
t
em
(
ANF
I
S)
co
ncept
a
nd
lea
rning
a
lg
o
rit
hm
T
h
e
g
en
er
ic
ANFI
S
co
n
tr
o
l
s
tr
u
ctu
r
e
h
as
s
o
m
e
co
m
p
o
n
e
n
ts
as
a
T
ak
ag
i
-
Su
g
en
o
f
u
zz
y
in
f
er
en
ce
s
y
s
tem
(
FIS)
wi
th
th
e
ex
ce
p
tio
n
o
f
th
e
n
eu
r
al
n
etwo
r
k
b
lo
c
k
.
T
h
e
n
etwo
r
k
s
tr
u
ctu
r
e
co
n
s
is
ts
o
f
f
iv
e
lay
er
s
o
f
u
n
its
(
an
d
co
n
n
ec
tio
n
s
)
.
Fu
zz
i
f
icatio
n
,
k
n
o
wled
g
e
b
ase,
n
eu
r
al
n
etwo
r
k
,
an
d
d
ef
u
zz
if
icatio
n
ar
e
th
e
f
o
u
r
m
ai
n
co
m
p
o
n
en
ts
o
f
t
h
e
p
r
o
p
o
s
ed
ANFI
S
co
n
tr
o
ller
.
T
h
e
p
r
o
p
o
s
ed
ANFI
S
co
n
tr
o
ller
h
as
two
i
n
p
u
ts
e
an
d
ed
,
an
d
o
n
e
o
u
t
p
u
t
u
.
T
h
e
c
o
r
r
esp
o
n
d
i
n
g
ANFI
S a
r
ch
itectu
r
e
is
s
h
o
wn
in
Fig
u
r
e
6
[
2
6
]
.
T
h
u
s
,
th
e
r
u
le
b
ase
co
n
tain
s
i f
u
zz
y
r
u
les o
f
T
ak
a
g
i
-
Su
g
en
o
t
y
p
e:
R
u
le
1
: I
f
is
1
an
d
is
1
,
th
en
:
1
=
1
∗
+
1
∗
+
1
,
(
2
3
)
R
u
le
1
: I
f
is
an
d
is
,
th
en
:
=
∗
+
∗
+
,
(
2
4
)
L
ay
er
1
: I
n
th
e
s
am
e
lay
e
r
,
th
e
f
u
n
ctio
n
s
o
f
th
e
n
o
d
e
r
em
ain
t
h
e
s
am
e
f
u
n
ctio
n
f
am
ily
,
as sh
o
wn
:
1
;
=
(
)
(
2
5
)
wh
er
e
is
th
e
n
o
d
e
in
p
u
t
an
d
is
th
e
lin
g
u
is
tic
lab
el
f
o
r
th
is
n
o
d
e.
I
n
o
th
e
r
wo
r
d
s
,
1
;
is
th
e
m
em
b
er
s
h
ip
f
u
n
ctio
n
(
MFs)
o
f
,
an
d
it
s
p
ec
if
ies
th
e
m
em
b
er
s
h
ip
d
eg
r
ee
o
f
to
.
T
r
ap
ez
o
id
al,
T
r
ia
n
g
u
lar
,
o
r
Gau
s
s
ian
ar
e
th
e
m
o
s
t M
Fs
u
s
ed
.
L
ay
er
2
:
E
ac
h
n
o
d
e
in
th
is
lay
er
is
a
cir
cle
n
o
d
e
lab
eled
Ⅱ
,
wh
ich
is
u
s
ed
to
o
b
tain
th
e
ac
tiv
atio
n
d
eg
r
ee
o
f
th
e
p
r
em
is
es.
Fo
r
in
s
tan
ce
:
=
(
)
∗
(
)
(
2
6
)
th
is
lay
er
'
s
n
o
d
e
f
u
n
ctio
n
ca
n
b
e
an
y
T
-
n
o
r
m
o
p
er
ato
r
t
h
at
p
er
f
o
r
m
s
g
e
n
er
alize
d
AND.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1566
-
1
5
8
5
1572
L
a
y
e
r
3
:
T
h
i
s
l
a
y
e
r
h
a
s
t
h
e
r
u
l
e
t
o
n
o
r
m
a
l
i
z
e
t
h
e
d
e
g
r
e
e
o
f
a
c
t
i
v
a
t
i
o
n
o
f
t
h
e
r
u
l
e
s
.
I
n
i
t
,
e
a
c
h
n
e
u
r
o
n
i
s
a
c
i
r
c
l
e
n
e
u
r
o
n
n
o
t
e
d
N
.
T
h
e
ℎ
n
e
u
r
o
n
c
a
l
c
u
l
a
t
e
s
t
h
e
r
a
t
i
o
b
e
t
w
e
e
n
ℎ
r
u
l
e
w
e
i
g
h
t
s
a
n
d
t
h
e
s
u
m
o
f
a
l
l
r
u
l
e
w
e
i
g
h
t
s
.
̅
=
1
+
2
+
⋯
+
=
1
,
2
…
,
(
2
7
)
T
h
e
o
p
e
r
atio
n
ab
o
v
e
is
th
e
n
o
r
m
aliza
tio
n
o
f
th
e
r
u
les o
f
weig
h
ts
.
L
ay
er
4
:
T
h
is
lay
er
is
u
s
ed
to
o
b
tain
t
h
e
p
ar
a
m
eter
s
et
(
p
,
q
,
r
)
o
f
th
e
r
u
les.
T
h
e
f
u
n
ctio
n
o
f
th
is
n
eu
r
o
n
is
:
1
,
4
=
̅
∗
=
̅
(
∗
+
∗
+
)
(
2
8
)
L
ay
er
5
:
it
is
r
ep
r
esen
ted
b
y
a
cir
cle
n
o
d
e
lab
eled
,
wh
ich
co
m
p
u
tes
th
e
to
tal
o
u
tp
u
t
as
th
e
s
u
m
o
f
in
co
m
in
g
s
ig
n
als.
T
h
u
s
:
1
,
5
=
=
∑
̅
∗
=
∑
∗
∑
(
2
9
)
w
e
n
o
te
th
at
ANFI
S
is
an
F
I
S,
wh
o
s
e
MF
p
a
r
am
eter
s
ar
e
ad
ju
s
ted
u
s
in
g
th
e
b
ac
k
-
p
r
o
p
ag
atio
n
lear
n
in
g
alg
o
r
ith
m
,
o
r
h
y
b
r
i
d
m
eth
o
d
alg
o
r
ith
m
(
co
m
b
in
atio
n
o
f
B
AC
K
PR
O
PAGAT
I
ON
A
N
D
L
E
AST
ME
AN
SQUAR
E
D
E
R
R
O
R
ME
T
HOD
in
tr
ain
i
n
g
FIS
Op
tim
a
)
o
p
tio
n
in
MA
T
L
AB
/Si
m
u
lin
k
wh
en
wr
itin
g
“a
n
f
is
ed
it”
in
th
e
co
m
m
an
d
w
in
d
o
w
b
lo
ck
.
Af
ter
a
p
p
ly
in
g
th
e
h
y
b
r
i
d
m
eth
o
d
,
th
e
R
MSE
allo
ws
u
s
to
ju
d
g
e
th
e
q
u
ality
o
f
th
e
ef
f
ec
tiv
en
ess
o
f
th
e
m
et
h
o
d
u
s
ed
[
1
0
]
.
Fig
u
r
e
5
.
Ar
c
h
itectu
r
e
o
f
th
e
h
y
b
r
id
c
o
n
tr
o
ller
p
ar
t
s
ch
em
e
Fig
u
r
e
6
.
Stru
ctu
r
e
o
f
ANFI
S c
o
n
tr
o
ller
[
26
]
3
.
2
.
H
y
brid co
ntr
o
l m
e
t
ho
d pa
rt
T
h
e
co
n
tr
o
l
tech
n
iq
u
e
p
r
o
p
o
s
ed
in
th
is
ar
ticle
is
th
e
DT
C
ass
o
ciate
d
with
A
NFI
S
an
d
f
u
zz
y
lo
g
ic.
T
h
e
b
lo
ck
is
s
h
o
wn
in
Fig
u
r
e
1
ab
o
v
e.
T
h
e
h
y
b
r
id
r
e
g
u
lato
r
is
m
ad
e
o
f
4
in
p
u
ts
,
wh
ich
ar
e
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
I
mp
r
o
ve
d
h
yb
r
id
DTC
tech
n
o
l
o
g
y
fo
r
eCAR
4
-
w
h
ee
ls
d
r
ive
(
N
jo
ck
B
a
ta
ke
E
mma
n
u
el
E
r
ic
)
1573
−
: D
if
f
er
en
ce
b
etwe
en
th
e
r
ef
er
en
ce
esti
m
ated
s
tato
r
f
lu
x
a
n
d
th
e
s
tato
r
f
lu
x
.
−
1
: D
if
f
er
en
ce
b
etwe
en
th
e
r
ef
er
en
ce
to
r
q
u
e
an
d
th
e
elec
tr
o
m
a
g
n
etic
to
r
q
u
e
o
f
m
o
to
r
1
.
−
2
: D
if
f
er
en
ce
b
etwe
en
th
e
r
ef
er
en
ce
to
r
q
u
e
an
d
th
e
elec
tr
o
m
a
g
n
etic
to
r
q
u
e
o
f
m
o
to
r
2
.
−
: Po
s
itio
n
o
f
th
e
s
tato
r
f
l
u
x
.
T
h
e
Hy
C
-
DT
C
h
as
its
s
tr
u
ctu
r
e
as sh
o
wn
in
Fig
u
r
e
5
ab
o
v
e.
I
t
is
m
ad
e
o
f
a
n
elec
tr
o
m
a
g
n
e
tic
to
r
q
u
e
r
e
g
u
latio
n
b
ased
o
n
a
Ma
n
d
an
i
-
t
y
p
e
f
u
zz
y
r
eg
u
lat
o
r
FL
co
n
tr
o
ller
1
.
T
h
u
s
,
it in
clu
d
es two
in
p
u
ts
:
−
1
= C
1
–
C
1
f
o
r
m
o
t
o
r
1
−
2
= C
2
-
C
2
f
o
r
m
o
t
o
r
2
−
=
-
−
T
h
e
u
n
iv
e
r
s
e
o
f
d
is
co
u
r
s
es set is:
Fo
r
we
h
av
e:
=
{
N
(
n
e
g
a
tive
)
,
z
(
Z
e
r
o
)
,
P
(
positive
)
.
}
Fo
r
1
,
2
we
h
av
e:
=
{
NG
,
NP
,
Z
,
PP
,
PG
.
}
W
h
er
e
elem
en
ts
o
f
E
ar
e
m
em
b
er
s
h
ip
f
u
n
ctio
n
s
o
f
a
l
g
o
r
ith
m
p
ar
a
m
eter
s
o
f
Hy
C
-
DT
C
g
iv
en
f
o
r
th
e
f
u
zz
if
icatio
n
as
f
o
llo
ws:
[In
p
u
t1
]
Na
m
e
=
'
E_
{p
h
i}'
Ra
n
g
e
=
[
-
1
.
5
1
.
5
]
Nu
m
M
F
s =
3
M
F
1
=
'
N'
:'
trap
m
f'
,
[
-
2
-
1
.
5
-
0
.
0
1
0
]
M
F
2
=
'
Z'
:'
tri
m
f'
,
[
-
0
.
0
1
0
0
.
0
1
]
M
F
3
=
'
P
'
:'
trap
m
f'
,
[0
0
.
0
1
1
.
5
2
]
[In
p
u
t
1
OR 2
]
I
=
{
1
,
2
}
Na
m
e
=
'
E_
{Ce
m
i}
'
Ra
n
g
e
=
[
-
1
0
0
0
0
1
0
0
0
0
]
Nu
m
M
F
s =
5
M
F
1
=
'
NG
'
:'
tr
a
p
m
f'
,
[
-
1
5
0
0
0
-
1
0
0
0
0
-
2
-
1]
M
F
2
=
'
NP'
:'
tri
m
f'
,
[
-
2
-
1
0
]
M
F
3
=
'
Z'
:'
tri
m
f'
,
[
-
1
0
1
]
M
F
4
=
'
P
P
'
:'
tri
m
f'
,
[0
1
2
]
M
F
5
=
'
P
G
'
:'
trap
m
f'
,
[1
2
1
0
0
0
0
1
5
0
0
0
]
T
h
e
h
y
b
r
id
m
eth
o
d
p
r
o
p
o
s
ed
h
er
e
is
in
s
p
ir
ed
b
y
th
e
FDTC
o
f
[
8
]
.
I
n
t
h
e
FDTC,
we
d
is
tin
g
u
is
h
o
n
e
co
n
tr
o
ller
o
f
f
u
zz
y
Ma
m
d
an
i
t
y
p
e
,
w
h
ich
h
as
2
in
p
u
ts
1
an
d
2
f
o
r
2
m
o
to
r
s
o
n
th
e
s
am
e
s
id
e
an
d
r
etu
r
n
s
an
o
u
t
p
u
t
V.
A
s
ec
o
n
d
f
u
zz
y
Ma
m
d
an
i
-
ty
p
e
co
n
tr
o
ller
th
at
tak
es
in
p
u
t
an
d
r
etu
r
n
s
an
o
u
tp
u
t
U.
A
s
ec
to
r
g
en
er
ato
r
th
at
tak
es
at
its
in
p
u
t
th
e
a
n
g
le
an
d
r
et
u
r
n
s
a
n
o
u
tp
u
t
N.
I
t
is
q
u
ick
ly
n
o
tice
d
f
r
o
m
th
e
tab
le
o
f
b
ases
ad
o
p
ted
in
t
h
e
FDTC th
at
all
th
e
v
alu
es tak
en
b
y
V
ar
e
f
o
u
n
d
in
E
.
Fo
r
th
e
Hy
C
-
DT
C
1
,
2
,
ar
e
th
e
in
p
u
ts
o
f
a
f
u
zz
y
Ma
m
d
a
n
i
co
n
t
r
o
ller
ty
p
e
FL1
.
FL1
r
etu
r
n
s
an
o
u
tp
u
t
V.
A
s
ec
to
r
s
elec
to
r
g
iv
es
th
e
o
u
tp
u
ts
m
e
m
b
er
s
h
i
p
f
u
n
ctio
n
s
(
MFs)
θ
b
y
tak
in
g
t
h
e
in
p
u
t
v
alu
es
o
f
th
e
s
tato
r
f
lu
x
p
o
s
itio
n
.
T
o
b
etter
u
n
d
e
r
s
tan
d
th
e
p
r
ev
io
u
s
co
m
m
en
ts
an
d
estab
lis
h
th
e
laws
o
f
FL1
,
it
s
h
o
u
ld
b
e
n
o
ted
t
h
at
f
o
r
th
e
H
y
C
-
DT
C
,
th
e
co
m
b
in
atio
n
1
an
d
2
ar
e
th
o
s
e
g
iv
en
i
n
T
ab
le
1
.
I
n
ad
d
itio
n
,
th
er
e
ar
e
also
s
o
m
e
co
m
b
in
atio
n
s
b
etwe
en
1
an
d
2
in
T
ab
le
1
,
wh
ic
h
ar
e
g
i
v
e
n
th
e
s
am
e
v
alu
es
o
f
V
o
r
w
h
ich
ar
e
r
ep
ea
ted
.
Fo
r
ex
a
m
p
le
,
if
b
o
th
co
m
b
in
atio
n
s
(
1
=
an
d
2
=
th
en
=
)
;
if
(
1
=
an
d
2
=
th
en
=
)
will
g
et
th
e
s
am
e
n
u
m
b
er
as 5
,
f
o
r
e
x
am
p
le.
L
aws
ca
n
th
u
s
b
e
m
ad
e
to
FL1
,
wh
ich
ar
e
tr
ip
lets
(
,
1
,
2
)
∈
∗
∗
.
An
y
tr
ip
let
o
f
wh
ich
co
m
b
in
atio
n
o
f
1
an
d
2
h
av
e
th
e
s
am
e
n
u
m
b
er
s
will
b
e
g
r
o
u
p
ed
i
n
m
em
b
er
s
h
ip
C
las
s
es
.
W
e
th
u
s
ca
n
m
ak
e
a
g
r
o
u
p
o
f
co
u
p
le
s
(
1
,
2
)
ac
co
r
d
i
n
g
to
th
e
n
u
m
b
er
s
=
{
1
,
2
,
3
,
4
,
5
}
an
d
tr
ip
lets
(
,
1
,
2
)
ac
co
r
d
i
n
g
to
C
lass
e
s
(
{
1
,
2
;
…
,
15
}
)
f
o
llo
win
g
Fig
u
r
e
7
a
n
d
T
a
b
le
2
.
T
h
u
s
,
it
ca
n
b
e
r
em
a
r
k
ed
t
h
at
th
e
tr
ip
lets
(
N,
NG,
PG)
,
(
N,
Z
,
Z
)
,
(
N,
PG,
NG)
h
av
e
t
h
e
s
am
e
class
3
,
b
ec
au
s
e
t
h
e
th
r
ee
co
u
p
les
(
N
G,
PG)
,
(
Z
,
Z
)
,
an
d
(
PG,
NG)
h
av
e
th
e
s
am
e
n
u
m
b
er
3
in
Fi
g
u
r
e
7
.
I
t
s
h
o
u
l
d
also
b
e
m
en
tio
n
ed
th
at
th
e
n
u
m
b
er
o
f
th
e
class
an
d
th
e
n
u
m
b
er
g
iv
en
to
a
co
u
p
le
th
at
is
in
clu
d
ed
in
th
is
tr
ip
let
ar
e
n
o
t
n
ec
ess
ar
ily
th
e
s
am
e.
Fo
r
ex
am
p
le,
(
NG,
NG)
an
d
(
NG,
NP)
h
av
e
th
e
s
am
e
n
u
m
b
er
af
f
ec
ted
,
5
,
b
u
t
(
N,
NG,
NG)
an
d
(
N,
NG,
NP)
h
av
e
th
e
s
am
e
m
em
b
er
s
h
i
p
C
las
s
3
.
T
ab
le
1
.
C
o
m
b
i
n
atio
n
tab
le
f
o
r
to
r
q
u
e
er
r
o
r
MFs
=
+
1
⁄
NG
NP
Z
PP
PG
NG
<
N
G
>
<
N
G
>
<
N
P
>
<
N
P
>
<
Z>
NP
<
N
G
>
<
N
P
>
<
N
P
>
<
Z>
<
P
P
>
Z
<
N
P
>
<
N
P
>
<
Z>
<
P
P
>
<
P
P
>
PP
<
N
P
>
<
Z>
<
P
P
>
<
P
P
>
<
P
G
>
PG
<
Z>
<
P
P
>
<
P
P
>
<
P
G
>
<
P
G
>
T
ab
le
2
.
MFs
g
en
er
ate
d
b
y
Fu
zz
y
1
⁄
<
N
G
>
<
N
P
>
<
Z>
<
P
P
>
<
P
G
>
N
1
2
3
4
5
Z
6
7
8
9
10
P
11
12
13
14
15
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
3
,
Sep
tem
b
er
20
25
:
1566
-
1
5
8
5
1574
Fig
u
r
e
7
.
I
ll
u
s
tr
atio
n
o
f
t
r
ip
lets
(
,
1
,
2
)
,
th
e
n
u
m
b
er
in
g
o
f
a
c
o
u
p
le
(
1
,
2
)
an
d
th
e
class
es
T
h
u
s
,
th
e
ch
a
n
g
e
t
o
an
o
t
h
er
tr
ip
let
tr
ee
o
f
ty
p
e
(
,
1
,
2
)
o
r
(
,
1
,
2
)
lik
e
∈
o
cc
u
r
s
.
O
n
e
in
cr
em
en
ts
th
e
lay
er
o
f
a
lar
g
er
n
u
m
b
er
o
f
th
e
p
r
e
v
i
o
u
s
lay
er
.
T
h
e
s
am
e
r
ea
s
o
n
in
g
s
tar
ts
ag
ain
.
Fig
u
r
es 8
an
d
9
ar
e
as f
o
llo
ws
:
Fig
u
r
e
8
.
T
r
ip
lets
(
,
1
,
2
)
an
d
th
eir
class
es
Fig
u
r
e
9
.
T
r
ip
lets
(
,
1
,
2
)
an
d
th
eir
class
es
T
h
e
co
r
r
esp
o
n
d
i
n
g
d
ata
f
o
r
t
h
e
o
u
tp
u
ts
(
{
1
,
2
;
…
,
15
}
)
ar
e
m
ad
e
u
p
as
f
o
llo
ws:
[
Ou
tp
u
t1
]
Nam
e=
'
O
'
R
an
g
e=
[
0
1
6
]
Nu
m
MFs=1
5
MF1
='
O1
'
:
'
tr
im
f
'
,
[
0
.
5
1
1
.
5
]
MF2
='
O2
'
:
'
tr
im
f
'
,
[
1
.
5
2
.
0
0
1
2
.
5
]
MF3
='
O3
'
:
'
tr
im
f
'
,
[
2
.
5
3
3
.
5
]
MF4
='
O4
'
:
'
tr
im
f
'
,
[
3
.
5
4
4
.
5
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
I
mp
r
o
ve
d
h
yb
r
id
DTC
tech
n
o
l
o
g
y
fo
r
eCAR
4
-
w
h
ee
ls
d
r
ive
(
N
jo
ck
B
a
ta
ke
E
mma
n
u
el
E
r
ic
)
1575
W
e
r
em
ar
k
ed
th
at
e
v
er
y
C
lass
(
{
1
,
2
;
…
,
15
}
)
is
lin
k
ed
to
an
i
n
ter
v
al
[
i
-
0
.
5
i
i+0
.
5
]
.
T
h
u
s
,
f
o
r
th
e
clas
s
15
we
h
av
e:
MF1
5
='
O1
5
'
:
'
tr
im
f
',
[
1
4
.
5
1
5
1
5
.
5
]
.
Fu
r
th
er
,
th
e
d
e
v
elo
p
m
e
n
t
o
f
t
h
is
wo
r
k
h
as
en
co
u
n
ter
e
d
a
p
r
o
b
lem
th
at
h
ad
to
b
e
s
o
lv
e
d
.
I
n
d
ee
d
,
th
e
co
n
tr
o
ller
FL
1
o
r
f
u
zz
y
c
o
n
tr
o
ller
1
d
o
es
n
o
t
p
r
o
v
i
d
e
in
its
laws
v
alu
es
o
f
co
u
p
les
th
at
e
x
is
t
f
in
e
an
d
well
in
th
e
in
s
tr
u
ctio
n
s
b
u
t
w
h
o
s
e
o
c
cu
r
r
en
ce
ca
n
n
o
t
m
ater
ialize.
T
o
o
v
er
co
m
e
t
h
is
r
an
d
o
m
d
i
s
co
n
tin
u
ity
,
it
was
n
ec
ess
ar
y
to
u
s
e
a
s
ec
o
n
d
B
lu
r
co
n
tr
o
ller
o
f
ty
p
e
Su
g
e
n
o
,
t
h
is
tim
e
if
wh
ich
will
tak
e
th
e
o
u
tp
u
ts
o
f
FL1
as
in
p
u
ts
an
d
g
e
n
er
ate
a
n
ew
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
tak
in
g
in
to
ac
co
u
n
t
th
e
in
ter
v
als
in
wh
ich
f
u
zz
if
icatio
n
is
n
o
t
ca
r
r
ied
o
u
t.
I
t
s
h
o
u
ld
b
e
n
o
te
d
th
at,
th
is
Su
g
en
o
co
n
tr
o
ller
w
ill
th
en
b
e
co
u
p
le
d
to
a
b
lo
c
k
“T
o
W
o
r
k
s
p
ac
e”
to
g
en
er
ate
th
e
co
r
r
esp
o
n
d
in
g
A
NFI
S
-
ty
p
e
co
n
tr
o
ller
co
m
p
ati
b
le
with
Su
g
en
o
ty
p
e
an
d
v
alid
ated
f
u
r
th
er
th
an
k
s
to
a
co
n
s
is
ten
t
R
MSE
an
d
th
e
Sav
e
2
-
D
s
ig
n
als
a
s
:
3
-
D
ar
r
ay
(
co
n
ca
ten
ate
alo
n
g
th
ir
d
d
im
en
s
io
n
)
.
T
h
is
is
illu
s
tr
ated
in
Fig
u
r
e
1
0
.
Fig
u
r
e
1
0
.
A
g
iv
en
asp
ec
t o
f
t
h
e
Su
g
en
o
f
u
zz
y
co
n
t
r
o
ller
T
h
en
we
p
r
o
ce
ed
ed
to
a
r
ea
d
alg
o
r
ith
m
u
s
in
g
t
h
e
ANFI
S
m
o
d
el.
T
h
e
in
p
u
ts
o
f
th
e
ANFI
S
co
n
tr
o
ller
ar
e
th
e
(
{
0
,
1
,
2
;
…
,
15
,
16
}
)
as
s
h
o
wn
in
Fig
u
r
e
1
0
o
n
th
e
le
f
t,
an
d
th
e
o
u
tp
u
ts
o
f
th
e
c
o
n
tr
o
ller
ar
e
th
e
f
u
n
ctio
n
(
{
0
,
1
,
2
;
…
,
15
,
16
}
)
as
s
h
o
wn
in
Fig
u
r
e
1
0
o
n
th
e
r
i
g
h
t.
T
h
is
is
an
ANFI
S
1
co
n
tr
o
ller
th
at
o
v
er
co
m
es so
m
e
o
f
th
e
FL1
’
s
d
ef
ec
ts
.
Fig
u
r
e
1
1
g
iv
es th
e
in
p
u
ts
an
d
o
u
tp
u
ts
MFs ty
p
e
an
d
r
an
g
e
o
f
th
e
ANFI
S
2
co
n
tr
o
ller
.
I
n
a
d
d
itio
n
,
as
in
s
p
ir
ed
b
y
[
8
]
,
th
e
g
e
n
er
atio
n
o
f
s
ec
to
r
s
θ_
k
o
r
θ_
j
is
d
o
n
e
ac
co
r
d
in
g
to
1
2
MFs,
as
s
ee
n
o
n
Fig
u
r
e
1
1
(
a)
.
T
h
ese
MFs
ar
e
th
e
1
2
class
es
o
f
v
alu
es
tak
en
b
y
th
e
o
u
tp
u
ts
f
r
o
m
th
e
s
ec
to
r
s
elec
t
io
n
b
lo
ck
s
h
o
wn
in
Fig
u
r
e
1
1
(
b
)
.
A
s
ec
o
n
d
alg
o
r
ith
m
th
at
u
s
es
th
e
h
y
b
r
id
o
p
tio
n
an
d
R
MSE
in
MA
T
L
AB
/Si
m
u
lin
k
2
0
2
1
a
allo
ws
to
d
esig
n
o
f
th
e
s
ec
o
n
d
ANFI
S
co
n
tr
o
ller
n
am
ed
A
NFI
S
2
.
T
h
is
lear
n
in
g
alg
o
r
it
h
m
h
as
2
in
p
u
ts
,
θ_
j
o
f
th
e
b
lo
c
s
ec
to
r
s
elec
to
r
e
x
p
r
ess
ed
o
n
Fig
u
r
e
1
1
(
b
)
(
MFs o
f
r
an
g
e
[
0
1
2
]
)
an
d
e_
i (
wh
ich
is
th
e
o
u
tp
u
t o
f
th
e
b
lo
c
ANFI
S
1
)
ex
p
r
ess
ed
o
n
Fig
u
r
e
1
1
(
c)
(
MFs
o
f
r
a
n
g
e
[
0
1
5
]
)
.
T
h
e
o
u
tp
u
t
“e
”
o
f
A
NFI
S
2
,
as
s
ee
n
o
n
Fig
u
r
e
1
1
(
d
)
(
MFs
o
f
r
an
g
e
[
0
7
]
)
,
a
r
e
v
ec
to
r
s
V_
i
wh
ic
h
co
m
e
f
r
o
m
th
e
co
m
b
i
n
atio
n
s
o
f
a
q
u
ad
r
u
p
let
(
ε_
T
1
,
ε
_
T
2
,
〖
ε
〗
_
φ,
θ_
k
)
.
E
ac
h
v
ec
to
r
v
alu
e
V_
i
co
r
r
esp
o
n
d
s
to
a
tr
ip
let
(
U_
a,
U_
b
,
U
_
c
)
wh
ich
is
th
e
o
u
tp
u
t
o
f
th
e
2
-
le
v
el
in
v
eter
.
I
t
s
h
o
u
ld
b
e
r
em
ar
k
e
d
th
at
th
e
u
s
e
o
f
th
e
lear
n
in
g
alg
o
r
ith
m
o
f
th
e
h
y
b
r
id
an
d
R
MSE
o
f
ANFI
S
will
n
o
t
b
e
p
o
s
s
ib
le
with
o
u
t
t
h
e
u
s
e
o
f
th
e
b
lo
c
k
to
wo
r
k
s
p
ac
e,
a
n
d
th
e
s
av
e
2
-
D
s
ig
n
als
as:
3
-
D
ar
r
ay
(
co
n
c
aten
ated
alo
n
g
th
e
th
ir
d
d
im
en
s
io
n
)
.
All th
ese
p
u
r
p
o
s
es a
r
e
s
h
o
wn
in
Fig
u
r
e
1
1
.
T
ab
le
3
s
u
m
m
ar
izes
th
e
s
tate
o
f
th
e
o
u
t
p
u
t
v
ec
to
r
o
b
tain
ed
f
r
o
m
v
alu
es
d
eliv
e
r
ed
b
y
ANFI
S1
an
d
th
e
s
ec
to
r
s
elec
tio
n
b
lo
c
k
u
s
ed
to
p
o
wer
th
e
in
v
e
r
ter
.
T
h
is
is
u
s
ed
to
m
o
d
el
ANFI
S
2
u
s
in
g
t
h
e
h
y
b
r
id
lear
n
in
g
m
eth
o
d
,
t
h
an
k
s
to
t
h
e
b
lo
ck
u
s
ed
af
ter
en
te
r
in
g
‘
’
an
f
is
ed
it‘’
in
MA
T
L
AB
f
o
r
a
p
r
o
g
r
am
=
.
T
h
er
ef
o
r
e,
f
o
r
it
ca
n
b
e
estab
lis
h
ed
a
co
r
r
esp
o
n
d
en
ce
b
etwe
en
v
alu
es
an
d
tr
ip
let
(
,
,
)
o
f
th
e
in
v
er
ter
.
T
h
en
we
h
a
v
e
q
u
ad
r
u
p
let
:
(
V0
,
0
;0
;0
)
;
(
V1
,
2
*
U/3
;
-
U/3
;
-
U/3
)
;(
V2
,
U/3
;U/3
;
-
2
*
U/3
)
;(
V3
,
-
U/3
;2
*
U/3
;
-
U/3
)
;(
V4
,
-
2
*
U/3
;U/3
;U/3
)
;(
V5
,
-
U/3
;
U/3
;2
*
U/3
)
;(
V6
,
U/3
;
-
2
*
U/3
;Vc=
U/3
)
;(
V7
,
0
;0
;0
)
.
U
is
a
co
n
tin
u
o
u
s
v
o
ltag
e
at
th
e
e
n
t
r
an
ce
to
t
h
e
in
v
er
ter
.
Ge
n
er
a
ted
R
u
les
o
f
ANFI
S
2
c
o
n
tr
o
ller
m
ad
e
b
y
th
e
lear
n
in
g
alg
o
r
ith
m
o
f
th
e
Su
g
e
n
o
f
ile
f
r
o
m
ANFI
S:
1
.
I
f
(
in
p
u
t1
is
in
1
m
f
1
)
an
d
(
i
n
p
u
t2
is
in
2
m
f
1
)
th
en
(
o
u
tp
u
t
is
o
u
t1
m
f
1
)
(
1
)
2
.
I
f
(
in
p
u
t1
is
in
1
m
f
1
)
an
d
(
i
n
p
u
t2
is
in
2
m
f
2
)
th
en
(
o
u
tp
u
t
is
o
u
t1
m
f
2
)
(
1
)
3
.
I
f
(
in
p
u
t1
is
in
1
m
f
1
)
an
d
(
i
n
p
u
t2
is
in
2
m
f
3
)
th
en
(
o
u
tp
u
t
is
o
u
t1
m
f
3
)
(
1
)
...
1
7
8
.
I
f
(
in
p
u
t1
is
in
1
m
f
1
2
)
an
d
(
in
p
u
t2
is
in
2
m
f
1
3
)
t
h
en
(
o
u
tp
u
t is o
u
t1
m
f
1
7
8
)
(
1
)
1
7
9
.
I
f
(
in
p
u
t1
is
in
1
m
f
1
2
)
an
d
(
in
p
u
t2
is
in
2
m
f
1
4
)
t
h
en
(
o
u
tp
u
t is o
u
t1
m
f
1
7
9
)
(
1
)
1
8
0
.
I
f
(
in
p
u
t1
is
in
1
m
f
1
2
)
an
d
(
in
p
u
t2
is
in
2
m
f
1
5
)
t
h
en
(
o
u
tp
u
t is o
u
t1
m
f
1
8
0
)
(
1
)
I
t c
an
b
e
r
em
ar
k
e
d
th
at,
b
ac
k
p
r
o
p
a
g
atio
n
,
least sq
u
ar
e
al
g
o
r
ith
m
ar
e
d
escr
ib
ed
in
MA
T
L
A
B
/Si
m
u
lin
k
.
Evaluation Warning : The document was created with Spire.PDF for Python.