I
nd
o
ne
s
ia
n J
o
urna
l o
f
E
lect
rica
l En
g
ineering
a
nd
Co
m
pu
t
er
Science
Vo
l.
3
9
,
No
.
3
,
Sep
tem
b
er
2
0
2
5
,
p
p
.
1
7
8
7
~
1
794
I
SS
N:
2
5
0
2
-
4
7
5
2
,
DOI
: 1
0
.
1
1
5
9
1
/ijeecs.v
3
9
.i
3
.
pp
1
7
8
7
-
1
7
9
4
1787
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ee
cs.ia
esco
r
e.
co
m
Predic
tion o
f
b
ro
iler shea
r
force usi
ng
near infrar
ed
spectros
co
py
wit
h
seco
nd deriva
tive
linear mo
deling
Ra
s
hid
a
h G
ha
za
li,
H
er
lin
a
Abdu
l R
a
h
im
,
Sy
a
hid
a
h Nu
ra
ni Z
ulk
if
li
D
e
p
a
r
t
me
n
t
o
f
C
o
n
t
r
o
l
a
n
d
M
e
c
h
a
t
r
o
n
i
c
s
,
F
a
c
u
l
t
y
of
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
,
U
n
i
v
e
r
s
i
t
i
T
e
k
n
o
l
o
g
i
M
a
l
a
y
si
a
,
S
k
u
d
a
i
,
M
a
l
a
y
si
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l
31
,
2
0
2
4
R
ev
is
ed
Ap
r
6
,
2
0
2
5
Acc
ep
ted
J
u
l
2
,
2
0
2
5
Th
is
st
u
d
y
e
x
p
l
o
re
s
th
e
u
se
o
f
li
n
e
a
r
p
re
d
ictiv
e
m
o
d
e
ls,
sp
e
c
ifi
c
a
ll
y
p
rin
c
i
p
a
l
c
o
m
p
o
n
e
n
t
re
g
re
ss
io
n
(
P
CR)
a
n
d
p
a
rti
a
l
lea
st
sq
u
a
re
s
(P
LS
),
in
c
o
m
b
in
a
ti
o
n
with
a
c
o
st
-
e
ffe
c
ti
v
e
n
e
a
r
in
fra
re
d
sp
e
c
tro
sc
o
p
y
(NIRS)
s
y
ste
m
to
n
o
n
-
in
v
a
siv
e
l
y
a
ss
e
ss
th
e
tex
t
u
re
o
f
r
a
w
b
ro
il
e
r
m
e
a
t.
T
h
e
fi
n
d
i
n
g
s
d
e
m
o
n
stra
te
th
a
t
a
p
p
r
o
p
riate
p
re
-
p
r
o
c
e
ss
in
g
tec
h
n
iq
u
e
s,
su
c
h
a
s
e
x
c
lu
d
in
g
t
h
e
v
isi
b
le
sp
e
c
tru
m
a
n
d
a
p
p
l
y
in
g
t
h
e
se
c
o
n
d
-
o
r
d
e
r
S
a
v
it
z
k
y
-
G
o
lay
(S
G
)
d
e
riv
a
ti
v
e
with
a
n
o
p
ti
m
a
l
fil
ter
len
g
th
(F
L)
,
e
n
h
a
n
c
e
m
o
d
e
l
p
e
rf
o
rm
a
n
c
e
.
No
ta
b
l
y
,
th
e
P
LS
m
o
d
e
l
o
u
t
p
e
rfo
rm
e
d
P
CR,
re
q
u
iri
n
g
fe
we
r
late
n
t
v
a
riab
les
(LVs)
to
a
c
h
iev
e
a
c
c
u
ra
te
p
re
d
ictio
n
s.
T
h
is
su
g
g
e
sts
t
h
a
t
P
LS
m
o
re
e
ffe
c
ti
v
e
ly
c
a
p
tu
re
s
k
e
y
sp
e
c
tral
fe
a
tu
re
s
a
ss
o
c
iate
d
with
m
e
a
t
tex
t
u
re
,
m
a
k
in
g
i
t
a
p
ro
m
isin
g
a
p
p
ro
a
c
h
fo
r
a
ss
e
ss
in
g
r
a
w
b
r
o
il
e
r
m
e
a
t
q
u
a
li
t
y
i
n
a
p
ra
c
ti
c
a
l,
c
o
st
-
e
fficie
n
t,
a
n
d
n
o
n
-
i
n
v
a
siv
e
m
a
n
n
e
r.
T
h
e
se
re
su
lt
s
h
i
g
h
li
g
h
t
t
h
e
p
o
ten
t
ial
o
f
i
n
teg
ra
ti
n
g
li
n
e
a
r
p
re
d
icti
v
e
m
o
d
e
ls
wit
h
NIRS
tec
h
n
o
l
o
g
y
f
o
r
re
li
a
b
le
tex
tu
re
a
n
a
l
y
sis in
th
e
p
o
u
lt
ry
in
d
u
stry
.
K
ey
w
o
r
d
s
:
Nea
r
in
f
r
a
r
e
d
s
p
ec
tr
o
s
co
p
y
Par
tial le
ast s
q
u
ar
es
Prin
cip
al
co
m
p
o
n
en
t r
e
g
r
ess
io
n
R
aw
b
o
iler
s
h
ea
r
f
o
r
ce
T
ex
tu
r
e
an
al
y
ze
r
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Her
lin
a
Ab
d
u
l Rah
im
Dep
ar
tm
en
t o
f
C
o
n
tr
o
l a
n
d
M
ec
h
atr
o
n
ics,
Facu
lty
o
f
E
lectr
i
ca
l E
n
g
in
ee
r
in
g
,
Un
iv
e
r
s
iti T
ek
n
o
lo
g
i
Ma
lay
s
ia
8
1
3
1
0
Sk
u
d
ai,
J
o
h
o
r
,
Ma
lay
s
ia
E
m
ail: h
er
lin
a@
u
tm
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
r
ap
id
g
r
o
wth
o
f
th
e
p
o
u
ltry
in
d
u
s
tr
y
is
d
r
iv
en
b
y
th
e
lo
w
co
s
t
o
f
ch
ick
en
m
ea
t
as
a
p
r
o
tein
s
o
u
r
ce
.
Ho
wev
er
,
en
s
u
r
in
g
m
ea
t
q
u
ality
is
cr
u
cial
to
m
in
i
m
izin
g
f
in
an
cial
lo
s
s
es
an
d
p
r
o
v
id
in
g
co
n
s
u
m
er
s
with
h
ig
h
-
q
u
ality
p
r
o
d
u
cts.
T
h
e
q
u
ality
o
f
m
ea
t
is
d
eter
m
in
ed
b
y
m
u
ltip
le
f
ac
to
r
s
,
in
clu
d
in
g
its
ap
p
ea
r
an
ce
,
ju
icin
ess
,
f
lav
o
r
,
n
u
tr
itio
n
al
v
alu
e,
wh
o
leso
m
en
ess
,
an
d
t
ex
tu
r
e
[
1
]
.
Am
o
n
g
th
ese,
ten
d
er
n
ess
h
as
b
ee
n
id
en
tifie
d
as
th
e
m
o
s
t
cr
itical
f
ac
to
r
in
f
l
u
en
cin
g
co
n
s
u
m
er
s
atis
f
ac
tio
n
[
2
]
.
T
en
d
e
r
n
ess
is
d
ef
in
ed
as
t
h
e
f
o
r
ce
r
eq
u
ir
ed
to
ac
h
iev
e
a
ce
r
tain
l
ev
el
o
f
d
e
f
o
r
m
atio
n
o
r
p
en
etr
a
tio
n
in
m
ea
t [
3
]
.
Desp
ite
th
e
im
p
o
r
tan
ce
o
f
m
ea
t
ten
d
er
n
ess
,
tr
a
d
itio
n
al
m
eth
o
d
s
f
o
r
ass
ess
in
g
it
p
r
e
s
en
t
s
ev
er
al
ch
allen
g
es.
T
h
ese
in
clu
d
e
v
i
s
u
al
in
s
p
ec
tio
n
b
y
h
u
m
an
g
r
ad
er
s
[
4
]
,
in
s
tr
u
m
e
n
tal
tech
n
iq
u
es
s
u
ch
as
th
e
W
ar
n
er
-
B
r
atzle
r
s
h
ea
r
f
o
r
ce
an
d
Vo
lo
d
k
e
v
ich
B
ite
J
aw
s
te
x
tu
r
e
an
aly
ze
r
,
s
en
s
o
r
y
ev
alu
atio
n
,
an
d
ch
em
ical
test
in
g
[
2
]
,
[
5
]
,
[
6
]
.
W
h
ile
t
h
e
s
e
m
eth
o
d
s
p
r
o
v
id
e
ac
cu
r
ate
r
esu
lt
s
,
th
ey
ar
e
lab
o
r
-
in
ten
s
iv
e,
tim
e
-
co
n
s
u
m
in
g
,
d
estru
ctiv
e
to
s
am
p
les,
an
d
u
n
s
u
itab
le
f
o
r
r
ea
l
-
tim
e
o
n
lin
e
as
s
ess
m
en
t [
2
]
,
[
6
]
.
An
alter
n
ativ
e
s
o
lu
tio
n
is
n
ea
r
-
in
f
r
ar
e
d
s
p
ec
tr
o
s
co
p
y
(
NI
R
S),
wh
ich
h
as
em
er
g
ed
as
a
p
r
o
m
is
in
g
,
non
-
in
v
asiv
e,
an
d
r
a
p
id
tech
n
i
q
u
e
f
o
r
m
o
n
ito
r
in
g
an
d
co
n
tr
o
llin
g
f
o
o
d
p
r
o
d
u
ct
q
u
ality
.
NI
R
S h
as b
ee
n
wid
ely
u
s
e
d
i
n
t
h
e
f
o
o
d
a
n
d
a
g
r
i
c
u
l
t
u
r
e
i
n
d
u
s
t
r
i
e
s
f
o
r
e
v
a
l
u
a
t
i
n
g
v
a
r
i
o
u
s
p
r
o
p
e
r
t
i
e
s
,
i
n
c
l
u
d
i
n
g
f
a
t
t
y
a
c
i
d
c
o
m
p
o
s
i
t
i
o
n
[
7
]
,
f
at
co
n
ten
t
[
8
]
,
m
o
is
tu
r
e
lev
els,
an
d
p
r
o
tein
co
n
ce
n
tr
atio
n
[
9
]
i
n
b
o
t
h
r
aw
an
d
co
o
k
ed
m
ea
t
p
r
o
d
u
cts.
T
h
is
tech
n
iq
u
e
o
f
f
e
r
s
s
ev
er
a
l
ad
v
an
tag
es,
s
u
c
h
as
h
ig
h
m
ea
s
u
r
em
en
t
s
p
ee
d
,
co
s
t
-
ef
f
ec
tiv
en
ess
,
m
in
im
al
s
am
p
le
p
r
ep
a
r
atio
n
,
an
d
p
r
ec
i
s
e
r
esu
lts
[
1
0
]
,
[
1
1
]
.
Ad
d
itio
n
ally
,
NI
R
S
en
ab
les
d
ir
ec
t
ev
al
u
atio
n
o
f
r
aw
m
ea
t
tex
tu
r
e
with
o
u
t
r
eq
u
ir
in
g
co
o
k
in
g
o
r
d
am
ag
in
g
s
am
p
les.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
3
,
Sep
tem
b
er
20
25
:
1
7
8
7
-
1
7
9
4
1788
Desp
ite
its
p
o
ten
tial,
th
e
ap
p
licatio
n
o
f
NI
R
S
in
p
r
e
d
ictin
g
b
r
o
iler
m
ea
t
ten
d
er
n
ess
r
em
ain
s
u
n
d
er
e
x
p
lo
r
e
d
.
E
x
is
tin
g
s
tu
d
ies
h
av
e
d
em
o
n
s
tr
ated
its
f
ea
s
ib
ilit
y
f
o
r
m
ea
t
q
u
ality
ass
ess
m
en
t,
b
u
t
f
u
r
t
h
er
r
esear
ch
is
n
ee
d
ed
to
o
p
tim
ize
its
ef
f
ec
tiv
en
ess
f
o
r
ten
d
er
n
ess
p
r
ed
ictio
n
.
Ma
jo
r
co
n
s
tr
ain
ts
in
clu
d
e
v
ar
iatio
n
s
in
m
ea
t
co
m
p
o
s
itio
n
,
d
if
f
er
en
ce
s
in
s
p
ec
tr
al
d
ata
in
ter
p
r
etatio
n
s
,
an
d
th
e
n
ee
d
f
o
r
r
o
b
u
s
t
p
r
ed
ictiv
e
m
o
d
els
th
at
ca
n
h
an
d
le
s
u
ch
v
a
r
iab
ilit
y
.
T
h
is
s
tu
d
y
aim
s
t
o
ad
d
r
ess
t
h
ese
ch
allen
g
es
b
y
i
n
v
esti
g
atin
g
th
e
ca
p
ab
ilit
y
o
f
lo
w
-
co
s
t,
p
o
r
ta
b
le
s
p
ec
tr
o
s
co
p
y
d
ev
ices
in
p
r
e
d
ictin
g
th
e
ten
d
er
n
ess
o
f
b
r
o
iler
m
ea
t
ea
r
ly
in
th
e
p
r
o
ce
s
s
in
g
s
tag
e.
Sp
ec
if
ically
,
it
an
aly
ze
s
NI
R
s
p
ec
tr
a
f
r
o
m
b
o
t
h
b
r
ea
s
t
an
d
d
r
u
m
s
tic
k
m
ea
t
u
s
in
g
lin
ea
r
m
o
d
els
s
u
ch
as
p
r
i
n
cip
al
co
m
p
o
n
en
t
r
eg
r
ess
io
n
(
PC
R
)
an
d
p
ar
tial
least
s
q
u
ar
es
(
PLS)
.
Ad
d
itio
n
ally
,
th
is
s
t
u
d
y
co
m
p
ar
es
th
e
p
er
f
o
r
m
an
ce
o
f
two
wav
ele
n
g
th
r
a
n
g
es
(
6
6
2
-
1
0
0
5
n
m
an
d
7
0
0
-
1
0
0
5
n
m
)
with
th
r
ee
s
p
ec
tr
al
p
r
o
ce
s
s
in
g
tech
n
iq
u
es (
ze
r
o
-
o
r
d
er
,
f
ir
s
t
-
o
r
d
er
,
a
n
d
s
ec
o
n
d
-
o
r
d
er
Sav
itzk
y
-
Go
lay
(
SG)
d
er
iv
ativ
es).
B
y
d
ev
elo
p
in
g
a
f
ast,
n
o
n
-
in
v
asiv
e,
an
d
r
ea
l
-
tim
e
m
eth
o
d
f
o
r
ev
alu
atin
g
b
r
o
iler
m
ea
t te
n
d
er
n
ess
,
th
is
r
esear
ch
s
ee
k
s
to
en
h
a
n
ce
q
u
a
lity
co
n
tr
o
l
p
r
o
ce
s
s
es
in
th
e
m
ea
t
in
d
u
s
tr
y
.
T
h
e
f
in
d
in
g
s
co
u
l
d
en
a
b
le
p
r
o
d
u
ce
r
s
to
m
o
n
ito
r
an
d
m
ai
n
tain
p
r
o
d
u
ct
q
u
ality
m
o
r
e
ef
f
icien
tly
,
r
ed
u
ce
f
in
an
cial
lo
s
s
es,
an
d
im
p
r
o
v
e
co
n
s
u
m
er
s
atis
f
ac
tio
n
.
T
h
e
s
u
b
s
eq
u
en
t
s
ec
tio
n
s
o
f
th
is
p
ap
er
will
el
ab
o
r
ate
o
n
th
e
m
eth
o
d
o
l
o
g
y
,
ex
p
er
im
en
tal
s
etu
p
,
d
ata
an
aly
s
is
tec
h
n
iq
u
es,
r
esu
l
ts
,
an
d
th
eir
im
p
licatio
n
s
f
o
r
m
ea
t q
u
ality
ass
ess
m
en
t.
2.
M
E
T
H
O
D
T
h
is
s
tu
d
y
co
n
s
is
ts
o
f
d
ata
ac
q
u
is
itio
n
o
f
s
h
ea
r
f
o
r
ce
u
s
in
g
th
e
co
n
v
e
n
tio
n
al
tex
tu
r
e
an
aly
ze
r
as
a
r
ef
er
en
ce
a
n
d
NI
R
s
p
ec
tr
o
s
c
o
p
y
s
p
ec
tr
u
m
as
th
e
in
p
u
t
d
ata.
T
h
e
co
r
r
elatio
n
b
etwe
en
th
e
in
p
u
t
a
n
d
t
h
e
r
ef
er
en
ce
d
ata
was
a
n
aly
ze
d
u
s
in
g
two
lin
ea
r
m
o
d
els,
PC
R
an
d
PLS,
to
in
v
esti
g
ate
t
h
eir
co
m
p
ete
n
ce
in
p
r
ed
ictin
g
th
e
s
h
ea
r
f
o
r
ce
v
al
u
e
u
s
in
g
th
e
NI
R
s
p
ec
tr
u
m
.
T
h
ese
m
o
d
els we
r
e
ch
o
s
en
d
u
e
t
o
th
eir
ef
f
ec
tiv
en
ess
in
h
an
d
lin
g
m
u
ltico
ll
in
ea
r
ity
,
ex
tr
ac
tin
g
r
elev
a
n
t
s
p
ec
tr
al
in
f
o
r
m
atio
n
,
an
d
en
h
an
cin
g
p
r
e
d
ictiv
e
ac
cu
r
ac
y
i
n
s
p
ec
tr
al
d
ata
an
aly
s
is
.
2
.
1
.
Da
t
a
a
cquis
it
io
n
R
o
s
s
b
r
o
iler
s
wer
e
b
r
ed
an
d
p
r
o
d
u
ce
d
co
m
m
er
cially
at
a
b
r
o
iler
f
ar
m
in
L
en
tan
g
,
Du
n
g
u
n
,
T
er
en
g
g
a
n
u
,
Ma
lay
s
ia.
T
we
n
ty
-
s
ev
en
b
r
o
iler
s
wer
e
r
a
n
d
o
m
ly
s
elec
ted
a
n
d
s
lau
g
h
ter
ed
at
3
9
d
ay
s
o
ld
f
o
l
l
o
w
i
n
g
t
h
e
M
a
l
a
y
s
i
a
n
s
t
a
n
d
a
r
d
1
5
0
0
:
2
0
0
9
f
o
r
h
a
l
a
l
f
o
o
d
p
r
o
d
u
c
t
i
o
n
,
p
r
e
p
a
r
a
t
i
o
n
,
h
a
n
d
l
i
n
g
,
a
n
d
s
t
o
r
a
g
e
[
1
2
]
.
Sam
p
les
o
f
t
h
e
lef
t
-
s
id
e
b
r
ea
s
ts
(
p
ec
to
r
alis
m
ajo
r
m
u
s
cle)
an
d
b
o
th
d
r
u
m
s
tick
s
wer
e
o
b
tain
ed
,
v
ac
u
u
m
-
p
ac
k
ed
,
an
d
s
to
r
ed
at
-
20
°C
[
1
3
]
.
B
ef
o
r
e
ex
p
e
r
im
en
tatio
n
,
t
h
e
s
am
p
les
wer
e
d
ef
r
o
s
ted
o
v
er
n
ig
h
t
at
4
°C
.
On
th
e
ex
p
er
im
en
t
d
ay
,
th
e
u
n
co
o
k
ed
ch
ick
en
m
ea
t
s
p
ec
im
en
s
wer
e
s
liced
in
to
r
ec
tan
g
u
lar
s
h
ap
es
m
ea
s
u
r
in
g
1
0
m
m
th
ick
,
1
0
m
m
wid
e,
an
d
2
0
m
m
lo
n
g
,
with
t
h
e
lo
n
g
est
s
id
e
alig
n
ed
with
th
e
m
u
s
cle
f
ib
er
s
[
1
4
]
,
[
1
5
]
.
A
to
tal
o
f
1
6
2
s
am
p
les
o
f
u
n
co
o
k
ed
b
r
ea
s
t
m
ea
t
an
d
1
6
2
d
r
u
m
s
tick
s
wer
e
p
r
ep
ar
e
d
f
o
r
s
p
ec
tr
al
d
ata
co
llectio
n
an
d
tex
tu
r
e
m
ea
s
u
r
em
en
t.
T
h
e
s
am
p
le
p
r
ep
ar
at
io
n
m
eth
o
d
e
n
s
u
r
es
u
n
if
o
r
m
i
ty
an
d
m
in
im
izes
v
ar
iab
ilit
y
in
m
ea
s
u
r
e
m
en
t o
u
tco
m
es.
2
.
2
.
Nea
r
infr
a
re
d sp
ec
t
ro
s
co
py
m
ea
s
urem
ent
A
VI
S
-
NI
R
s
p
ec
tr
o
m
eter
(
Oc
ea
n
o
p
tics
USB
4
0
0
0
m
in
iatu
r
e
f
ib
r
e
o
p
tic
s
p
ec
tr
o
m
eter
,
O
R
NE
T
Sd
n
B
h
d
,
Selan
g
o
r
,
Ma
la
y
s
ia)
was
u
s
ed
to
o
b
tain
th
e
r
ef
lecta
n
c
e
s
p
ec
tr
u
m
.
T
h
e
s
p
ec
tr
o
m
eter
co
v
e
r
s
a
s
p
ec
tr
u
m
r
an
g
e
o
f
6
5
0
t
o
1
3
1
8
n
m
,
b
u
t
d
u
e
to
s
ig
n
if
ican
t
n
o
is
e
at
th
e
s
p
ec
tr
u
m
’
s
s
tar
t
an
d
en
d
,
o
n
l
y
3
4
4
wav
elen
g
th
s
b
e
t
w
e
e
n
6
6
2
a
n
d
1
0
0
5
n
m
a
t
1
n
m
i
n
t
e
r
v
a
l
s
w
e
r
e
r
e
t
a
i
n
e
d
.
A
r
e
f
l
e
c
t
i
o
n
p
r
o
b
e
w
a
s
p
o
s
i
t
i
o
n
e
d
a
t
a
9
0
°
a
n
g
l
e
[
1
6
]
,
5
m
m
awa
y
f
r
o
m
th
e
c
h
ick
en
’
s
s
u
r
f
ac
e
to
m
ea
s
u
r
e
t
h
e
d
i
f
f
u
s
e
r
ef
lectio
n
.
T
h
e
i
n
s
tr
u
m
en
t
was
o
p
er
ated
u
s
in
g
th
e
s
o
f
twar
e
p
a
ck
ag
e
NI
R
S2
v
er
s
io
n
3
.
0
1
(
I
n
f
r
aSo
f
t
I
n
te
r
n
atio
n
al,
State
C
o
lleg
e,
PA,
USA)
.
T
h
e
NI
R
m
eth
o
d
was
s
elec
ted
f
o
r
its
r
ap
id
,
n
o
n
-
d
estru
ctiv
e
n
atu
r
e
an
d
its
s
u
itab
ilit
y
f
o
r
r
ea
l
-
tim
e
m
ea
t
q
u
ality
ass
es
s
m
en
t.
Ad
d
itio
n
ally
,
its
ab
ilit
y
to
ca
p
tu
r
e
ch
e
m
ical
an
d
p
h
y
s
i
ca
l
p
r
o
p
er
ties
o
f
m
ea
t
m
ak
es
it
a
v
alu
a
b
le
to
o
l f
o
r
ev
alu
atin
g
ten
d
er
n
ess
.
2
.
3
.
T
ex
t
ure
a
na
l
y
ze
r
m
e
a
s
urem
ent
T
h
e
tex
tu
r
e
o
f
u
n
co
o
k
ed
c
h
ick
en
m
ea
t
s
am
p
les
was
ev
alu
ated
u
s
in
g
a
T
A.
HD
p
lu
s
tex
tu
r
e
an
aly
ze
r
(
s
tab
le
m
icr
o
s
y
s
tem
s
,
UK)
eq
u
ip
p
ed
with
a
Vo
l
o
d
k
e
v
ich
b
it
e
jaws
s
et
[
1
]
.
B
ef
o
r
e
m
ea
s
u
r
i
n
g
,
ea
ch
s
am
p
le
o
f
r
aw
ch
ick
en
m
ea
t
was
p
lace
d
in
th
e
tex
tu
r
e
an
aly
ze
r
’
s
s
lo
t.
E
ac
h
s
p
ec
im
en
was
cu
t
an
d
c
o
m
p
r
ess
ed
o
n
ce
at
th
e
m
id
p
o
i
n
t
an
d
at
a
r
ig
h
t
an
g
le
to
th
e
m
u
s
cle
f
ib
er
s
u
s
in
g
a
Vo
lo
d
k
e
v
ich
b
ite
jaw
(
a
s
tain
le
s
s
s
teel
p
r
o
b
e
r
esem
b
lin
g
a
to
o
th
)
attac
h
ed
t
o
th
e
tex
tu
r
e
an
aly
ze
r
at
a
9
0
°
an
g
le
[
1
5
]
.
T
h
e
s
h
ea
r
f
o
r
ce
d
ata
was
r
ec
o
r
d
ed
in
k
ilo
g
r
am
s
(
k
g
)
.
T
h
e
u
s
e
o
f
th
e
Vo
lo
d
k
e
v
ich
b
ite
jaw
was
ch
o
s
en
d
u
e
to
its
ef
f
ec
tiv
en
es
s
in
s
im
u
latin
g
th
e
b
itin
g
ac
tio
n
o
f
h
u
m
an
t
ee
th
an
d
its
well
-
estab
lis
h
ed
r
o
le
in
m
ea
t
ten
d
er
n
ess
s
tu
d
ies.
T
h
e
m
ea
s
u
r
em
en
t
p
r
o
ce
s
s
was stan
d
ar
d
ized
to
e
n
s
u
r
e
co
n
s
is
ten
cy
an
d
r
ed
u
ce
ex
p
er
im
en
tal
er
r
o
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
P
r
ed
ictio
n
o
f b
r
o
iler
s
h
ea
r
fo
r
ce
u
s
in
g
n
ea
r
in
fr
a
r
ed
s
p
ec
tr
o
s
co
p
y
w
ith
s
ec
o
n
d
…
(
R
a
s
h
i
d
a
h
Gh
a
z
a
li
)
1789
2
.
4
.
Da
t
a
p
re
pro
ce
s
s
ing
Data
p
r
ep
r
o
ce
s
s
in
g
was c
ar
r
ied
o
u
t to
im
p
r
o
v
e
s
p
ec
tr
al
d
ata
q
u
ality
an
d
en
h
an
ce
th
e
r
eliab
ilit
y
o
f
th
e
p
r
ed
ictiv
e
m
o
d
els.
R
ef
lecta
n
ce
s
p
ec
tr
a
wer
e
co
n
v
er
ted
t
o
ab
s
o
r
b
an
ce
b
y
ap
p
ly
i
n
g
th
e
lo
g
ar
ith
m
o
f
th
e
r
ec
ip
r
o
ca
l
o
f
r
ef
lecta
n
ce
.
T
o
r
ef
in
e
th
e
d
ata,
an
o
m
alies
wer
e
r
em
o
v
ed
,
an
d
n
o
is
e
was
m
in
i
m
ized
u
s
in
g
th
e
SG
s
m
o
o
th
in
g
f
ilter
.
B
aselin
e
s
h
if
ts
an
d
s
lo
p
e
v
ar
iatio
n
s
w
er
e
co
r
r
ec
te
d
u
s
in
g
th
e
s
ec
o
n
d
-
o
r
d
er
d
er
iv
ativ
e
m
eth
o
d
.
Ou
tlier
s
wer
e
id
en
tif
ied
an
d
ex
clu
d
ed
b
ased
o
n
e
x
ter
n
ally
s
tu
d
en
tized
r
esid
u
als
an
d
leav
e
-
one
-
o
u
t
cr
o
s
s
-
v
alid
atio
n
.
T
h
e
d
ataset
was
th
en
r
an
d
o
m
l
y
d
i
v
id
e
d
in
to
ca
lib
r
atio
n
an
d
p
r
e
d
ictio
n
s
u
b
s
ets
in
a
2
:1
r
atio
u
s
in
g
h
o
ld
-
o
u
t
cr
o
s
s
-
v
alid
atio
n
to
en
s
u
r
e
an
u
n
b
iased
ev
alu
atio
n
.
T
h
ese
p
r
ep
r
o
ce
s
s
in
g
s
tep
s
ar
e
ess
en
tial
f
o
r
im
p
r
o
v
in
g
m
o
d
el
ac
cu
r
ac
y
an
d
m
ain
tain
in
g
r
eliab
le
s
p
ec
tr
al
d
ata
f
o
r
r
eg
r
ess
io
n
a
n
aly
s
is
.
2
.
5
.
P
CR
a
nd
P
L
S
T
h
is
s
tu
d
y
em
p
lo
y
ed
PC
R
a
n
d
PLS
f
o
r
p
r
ed
ictin
g
th
e
s
h
ea
r
f
o
r
ce
v
alu
e
o
f
r
aw
b
r
ea
s
t
m
ea
t
an
d
d
r
u
m
s
tick
s
am
p
les.
T
h
ese
m
o
d
els
wer
e
s
elec
ted
d
u
e
to
th
eir
ef
f
ec
tiv
en
ess
in
h
an
d
lin
g
h
ig
h
-
d
im
en
s
io
n
a
l
s
p
ec
tr
al
d
ata
b
y
r
ed
u
cin
g
r
ed
u
n
d
an
c
y
a
n
d
ex
tr
ac
tin
g
m
ea
n
i
n
g
f
u
l
in
f
o
r
m
atio
n
.
T
h
e
m
ath
em
atica
l
r
ep
r
esen
tatio
n
o
f
th
ese
m
o
d
els is
s
h
o
wn
in
(
1
)
an
d
(
2
)
:
=
+
E
(
1
)
=
+
(
2
)
wh
er
e
is
th
e
m
atr
ix
o
f
p
r
ed
icto
r
s
,
is
th
e
m
atr
ix
o
f
r
ef
er
en
ce
s
,
is
th
e
s
co
r
e
m
atr
ix
,
an
d
ar
e
th
e
lo
ad
in
g
m
atr
ices,
an
d
r
ep
r
esen
t e
r
r
o
r
ter
m
s
.
T
h
e
ac
cu
r
ac
y
o
f
th
e
m
o
d
els
r
elies
o
n
th
e
ap
p
r
o
p
r
iate
s
elec
tio
n
o
f
p
r
in
cip
al
co
m
p
o
n
en
ts
(
PC
s
)
an
d
laten
t
v
ar
iab
les
(
L
Vs).
Mo
n
te
c
ar
lo
cr
o
s
s
-
v
alid
atio
n
(
MCC
V)
was
em
p
lo
y
ed
to
o
p
tim
ize
th
e
n
u
m
b
e
r
o
f
PC
s
an
d
L
Vs.
An
in
s
u
f
f
icien
t
n
u
m
b
er
o
f
PC
s
an
d
L
Vs
m
ay
r
esu
lt
in
u
n
d
er
f
itti
n
g
,
lead
in
g
to
p
o
o
r
p
r
e
d
ictio
n
ac
cu
r
ac
y
.
C
o
n
v
er
s
ely
,
an
e
x
c
ess
iv
e
n
u
m
b
er
o
f
PC
s
o
r
L
Vs
m
ay
lead
to
o
v
e
r
f
itti
n
g
,
r
ed
u
cin
g
th
e
m
o
d
el
’
s
g
en
er
aliza
b
ilit
y
.
B
y
s
y
s
tem
atica
lly
tu
n
in
g
th
ese
p
ar
am
eter
s
,
th
e
s
tu
d
y
aim
e
d
to
estab
lis
h
a
r
o
b
u
s
t
p
r
e
d
ictiv
e
m
o
d
el
f
o
r
r
ea
l
-
tim
e,
n
o
n
-
d
est
r
u
ctiv
e
ass
ess
m
en
t
o
f
b
r
o
iler
m
ea
t
ten
d
er
n
ess
.
T
h
e
v
alid
ati
o
n
p
r
o
ce
s
s
en
s
u
r
es
th
at
th
e
m
o
d
els
p
r
o
v
i
d
e
r
eliab
le
an
d
r
ep
r
o
d
u
ci
b
le
r
esu
lts
s
u
itab
le
f
o
r
p
r
ac
tical
ap
p
licat
io
n
s
in
th
e
p
o
u
ltry
in
d
u
s
tr
y
.
T
h
is
s
tu
d
y
co
n
s
is
ts
o
f
d
ata
a
cq
u
is
itio
n
o
f
s
h
ea
r
f
o
r
ce
u
s
in
g
th
e
co
n
v
en
tio
n
al
tex
tu
r
e
a
n
aly
ze
r
as
r
ef
er
en
ce
a
n
d
NI
R
s
p
ec
tr
o
s
c
o
p
y
s
p
ec
tr
u
m
as
th
e
in
p
u
t
d
ata.
T
h
e
co
r
r
elatio
n
b
etwe
en
th
e
in
p
u
t
a
n
d
t
h
e
r
ef
er
en
ce
d
ata
was
an
aly
ze
d
u
s
in
g
two
li
n
ea
r
m
o
d
els,
wh
ic
h
ar
e
PC
R
an
d
PLS
to
in
v
esti
g
ate
th
e
co
m
p
eten
ce
o
f
th
e
lin
ea
r
m
o
d
els in
p
r
ed
ict
in
g
th
e
s
h
ea
r
f
o
r
ce
v
alu
e
u
s
in
g
NI
R
s
p
ec
tr
u
m
.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
e
SG
s
m
o
o
th
in
g
p
ar
am
eter
s
,
in
clu
d
in
g
d
er
iv
ativ
e
o
r
d
er
(
DO)
,
p
o
ly
n
o
m
ial
o
r
d
er
(
PO)
,
an
d
f
ilter
len
g
th
(
FL)
,
p
la
y
a
cr
u
cial
r
o
l
e
in
m
ai
n
tain
in
g
s
ig
n
al
in
teg
r
ity
wh
ile
m
in
im
izin
g
n
o
is
e
am
p
lific
atio
n
.
Hig
h
e
r
PO
s
ten
d
to
p
r
eser
v
e
s
ig
n
al
h
eig
h
ts
an
d
wid
th
s
m
o
r
e
ef
f
ec
tiv
ely
b
u
t
ca
n
am
p
lify
n
o
is
e
an
d
r
ed
u
ce
s
m
o
o
th
i
n
g
ef
f
icien
cy
[
1
7
]
.
Ad
d
itio
n
ally
,
f
o
r
an
y
g
iv
en
DO
,
co
n
s
ec
u
ti
v
e
PO
s
y
ield
id
en
tical
co
ef
f
i
cien
t
esti
m
ates.
Fo
r
in
s
tan
ce
,
a
ze
r
o
-
o
r
d
er
d
er
iv
ati
v
e
r
esu
lts
in
t
h
e
s
am
e
o
u
tco
m
e
f
o
r
f
ir
s
t
-
a
n
d
ze
r
o
-
o
r
d
er
p
o
ly
n
o
m
ials
,
s
im
ilar
t
o
th
e
eq
u
iv
ale
n
ce
b
etwe
en
th
ir
d
-
an
d
s
ec
o
n
d
-
o
r
d
er
p
o
ly
n
o
m
ials
.
L
ik
ewi
s
e,
f
o
r
th
e
f
ir
s
t
d
er
iv
ativ
e,
f
ir
s
t
-
an
d
s
ec
o
n
d
-
o
r
d
er
p
o
ly
n
o
m
ials
p
r
o
d
u
ce
s
im
ilar
r
esu
lts
,
as
d
o
th
ir
d
-
an
d
f
o
u
r
th
-
o
r
d
er
p
o
l
y
n
o
m
ials
[
1
8
]
.
T
h
e
s
elec
tio
n
o
f
an
a
p
p
r
o
p
r
iate
FL
is
cr
itical
to
m
in
im
izin
g
er
r
o
r
s
an
d
p
r
eser
v
in
g
s
p
ec
tr
al
in
f
o
r
m
atio
n
[
1
9
]
,
[
2
0
]
.
I
n
th
is
s
tu
d
y
,
DO
s
o
f
0
,
1
,
a
n
d
2
wer
e
em
p
l
o
y
ed
,
with
PO
s
s
et
at
1
,
2
,
an
d
3
.
T
h
e
FL
was
s
y
s
tem
atica
lly
v
ar
ied
f
r
o
m
5
to
3
1
in
in
c
r
e
m
en
ts
o
f
2
.
T
h
e
MA
T
L
AB
f
u
n
ctio
n
s
g
o
la
y
f
ilt
was
u
tili
ze
d
to
im
p
lem
e
n
t
SG
s
m
o
o
th
in
g
.
T
ab
le
1
p
r
esen
ts
th
e
o
p
tim
al
FL
s
f
o
r
ab
s
o
r
b
an
ce
in
PC
R
m
o
d
elin
g
an
d
MCC
V
f
o
r
b
r
ea
s
t
m
ea
t
an
d
d
r
u
m
s
tick
s
am
p
les.
T
h
e
f
in
d
i
n
g
s
h
ig
h
lig
h
t
th
at
th
e
o
p
tim
al
s
p
ec
tr
al
r
an
g
e
f
o
r
b
r
ea
s
t
m
ea
t
f
alls
with
in
th
e
s
h
o
r
twav
e
n
ea
r
-
i
n
f
r
ar
ed
(
SW
NI
R
)
r
eg
io
n
(
7
0
1
-
1
0
0
5
n
m
)
.
C
o
n
v
er
s
ely
,
f
o
r
d
r
u
m
s
tick
m
ea
t,
th
e
o
p
tim
al
s
p
ec
tr
al
r
an
g
e
e
x
ten
d
s
ac
r
o
s
s
b
o
th
th
e
v
is
ib
le
(
VI
S)
an
d
SW
NI
R
r
eg
io
n
s
(
6
6
2
-
1
0
0
5
n
m
)
.
T
h
e
ac
cu
r
ac
y
in
th
e
SW
NI
R
r
eg
io
n
f
o
r
b
r
ea
s
t
m
e
at
s
u
r
p
ass
es
th
at
in
th
e
VI
S
-
S
W
NI
R
r
eg
io
n
,
with
co
e
f
f
icien
t
v
alu
es
o
f
0
.
5
2
7
3
,
0
.
5
3
0
8
,
an
d
0
.
5
5
9
8
f
o
r
ze
r
o
,
f
ir
s
t,
an
d
s
ec
o
n
d
DO
s
,
r
esp
ec
tiv
ely
.
T
h
e
o
p
tim
al
FL
s
co
r
r
e
s
p
o
n
d
in
g
to
th
ese
DO
s
ar
e
2
3
,
1
9
,
an
d
2
1
.
I
n
co
n
tr
ast,
d
r
u
m
s
tick
s
am
p
les
ex
h
ib
it
g
r
ea
ter
ac
cu
r
ac
y
in
t
h
e
V
I
S
-
SW
NI
R
r
eg
io
n
,
with
r
esp
e
ctiv
e
co
ef
f
icien
t
v
alu
es
o
f
0
.
5
0
1
6
,
0
.
5
1
5
5
,
an
d
0
.
5
8
4
3
f
o
r
ze
r
o
,
f
ir
s
t,
an
d
s
ec
o
n
d
DO
.
T
h
e
co
r
r
esp
o
n
d
i
n
g
o
p
tim
al
FL
s
f
o
r
th
ese
r
esu
lts
ar
e
2
1
,
1
9
,
a
n
d
1
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
3
,
Sep
tem
b
er
20
25
:
1
7
8
7
-
1
7
9
4
1790
T
ab
le
1
.
T
h
e
o
p
tim
izatio
n
s
elec
tio
n
o
f
n
u
m
b
e
r
o
f
FL
s
f
o
r
ab
s
o
r
b
an
ce
f
o
r
b
r
ea
s
t m
ea
t a
n
d
d
r
u
m
s
tick
S
p
e
c
t
r
a
r
e
g
i
o
n
(
n
m)
DO
PO
FL
PC
RCV
R
M
S
E
C
V
B
r
e
a
s
t
m
eat
V
I
S
-
S
W
N
I
R
0
1
17
9
0
.
4
9
8
0
0
.
8
6
7
2
6
6
2
-
1
0
0
5
1
2
9
8
0
.
5
2
5
2
0
.
8
5
1
0
2
3
29
8
0
.
5
4
7
6
0
.
8
3
6
7
S
WN
IR
0
1
23
10
0
.
5
2
7
3
0
.
8
4
6
9
7
0
0
-
1
0
0
5
1
2
19
8
0
.
5
3
0
8
0
.
8
4
7
5
2
3
21
6
0
.
5
5
9
8
0
.
8
2
8
6
D
r
u
msti
c
k
V
IS
-
S
WN
IR
0
1
21
4
0
.
5
0
1
6
0
.
8
6
5
1
6
6
2
-
1
0
0
5
1
2
19
2
0
.
5
1
5
5
0
.
8
5
6
9
2
3
17
9
0
.
5
8
4
3
0
.
8
1
1
5
S
W
N
I
R
0
1
11
1
0
.
4
9
2
0
0
.
8
7
4
0
7
0
0
-
1
0
0
5
1
2
25
2
0
.
5
0
0
3
0
.
8
6
5
8
2
3
19
8
0
.
5
6
5
9
0
.
8
2
4
5
Fig
u
r
e
1
illu
s
tr
ates
th
e
m
ea
n
ab
s
o
r
b
a
n
ce
s
p
ec
tr
a
f
o
llo
w
in
g
SG
f
ilter
in
g
f
o
r
b
r
ea
s
t
m
ea
t
an
d
d
r
u
m
s
tick
s
am
p
les.
A
p
r
o
n
o
u
n
ce
d
p
ea
k
is
o
b
s
er
v
ed
b
etwe
e
n
9
4
0
an
d
9
9
0
n
m
,
wh
ich
is
lik
ely
attr
ib
u
tab
le
to
th
e
th
ir
d
o
v
er
to
n
e
o
f
OH
o
r
wate
r
ab
s
o
r
p
tio
n
[
2
]
,
[
2
1
]
,
[
2
2
]
.
Pre
v
io
u
s
s
tu
d
ies
b
y
[
2
]
an
d
[
2
3
]
in
d
icate
th
at
ab
s
o
r
p
tio
n
b
an
d
s
i
n
th
e
4
3
0
-
7
0
0
n
m
r
a
n
g
e
c
o
r
r
esp
o
n
d
t
o
m
y
o
g
l
o
b
in
,
o
x
y
m
y
o
g
lo
b
in
,
m
etm
y
o
g
lo
b
in
,
a
n
d
d
eo
x
y
m
y
o
g
l
o
b
in
-
t
h
e
p
r
im
ar
y
h
em
e
p
ig
m
en
ts
r
esp
o
n
s
ib
le
f
o
r
m
ea
t
co
lo
r
atio
n
[
2
3
]
.
T
h
e
ab
s
en
ce
o
f
th
e
v
is
ib
le
r
eg
io
n
in
b
r
ea
s
t
m
ea
t
s
p
ec
tr
a
alig
n
s
with
its
p
in
k
is
h
-
to
-
wh
ite
co
lo
r
atio
n
,
in
co
n
t
r
ast
to
d
r
u
m
s
tick
m
ea
t,
wh
ich
r
etain
s
v
is
ib
le
ab
s
o
r
b
a
n
ce
.
A
d
d
itio
n
ally
,
th
e
lo
wer
f
at
co
n
te
n
t
o
f
b
r
ea
s
t
m
ea
t
co
m
p
ar
ed
to
d
r
u
m
s
tick
s
am
p
les
is
a
co
n
tr
ib
u
tin
g
f
ac
to
r
t
o
th
ese
s
p
ec
tr
al
d
if
f
er
en
ce
s
.
Fig
u
r
e
1
.
A
v
e
r
ag
e
f
ilter
e
d
ab
s
o
r
b
an
ce
s
p
ec
tr
a
f
o
r
b
r
ea
s
t m
ea
t a
n
d
d
r
u
m
s
tick
B
aselin
e
s
h
if
ts
an
d
s
p
ec
tr
al
s
lo
p
e
v
a
r
iatio
n
s
wer
e
m
itig
ated
u
s
in
g
s
ec
o
n
d
-
o
r
d
er
d
er
iv
ativ
e
p
r
o
ce
s
s
in
g
,
as
illu
s
tr
ated
in
Fi
g
u
r
e
2
f
o
r
b
o
th
m
ea
t
ty
p
es.
N
o
tab
ly
,
d
r
u
m
s
tick
s
am
p
les
ex
h
ib
it
p
ea
k
ab
s
o
r
p
tio
n
n
ea
r
6
7
8
n
m
,
wh
ic
h
co
r
r
esp
o
n
d
s
to
h
em
o
g
lo
b
i
n
p
r
esen
ce
.
F
u
r
th
er
m
o
r
e,
c
h
ar
ac
ter
is
tic
wate
r
ab
s
o
r
p
tio
n
b
a
n
d
s
ap
p
ea
r
at
ap
p
r
o
x
i
m
ately
8
4
2
n
m
an
d
9
8
0
n
m
,
r
ep
r
esen
tin
g
th
e
OH
s
ec
o
n
d
s
tr
etch
in
g
o
v
er
to
n
e
[
2
4]
-
[
2
6
]
.
Ad
d
itio
n
al
ab
s
o
r
p
tio
n
b
an
d
s
in
th
e
9
2
0
-
9
5
0
n
m
r
an
g
e
ar
e
lin
k
ed
to
t
h
e
th
ir
d
s
tr
etch
in
g
o
v
er
to
n
es
o
f
C
H
b
o
n
d
s
[
2
6
]
,
[
2
7
]
,
wh
ile
C
H
b
o
n
d
ab
s
o
r
p
tio
n
b
a
n
d
s
also
ap
p
e
ar
in
th
e
7
1
8
-
7
6
0
n
m
r
an
g
e,
c
o
r
r
esp
o
n
d
in
g
to
th
e
th
ir
d
o
v
e
r
to
n
e
[
2
8
]
.
T
h
ese
f
in
d
in
g
s
s
u
p
p
o
r
t
t
h
e
s
tu
d
y
’
s
o
b
jectiv
es
b
y
co
n
f
ir
m
in
g
th
e
s
p
ec
tr
al
d
if
f
e
r
en
ce
s
b
etw
ee
n
b
r
ea
s
t
m
ea
t
an
d
d
r
u
m
s
tick
s
am
p
les,
wh
ich
ar
e
attr
ib
u
ted
t
o
v
ar
iati
o
n
s
in
m
y
o
g
lo
b
in
c
o
n
ten
t,
f
at
co
m
p
o
s
itio
n
,
a
n
d
wate
r
ab
s
o
r
p
tio
n
p
r
o
p
er
ties
.
C
o
m
p
ar
ed
to
p
r
e
v
io
u
s
s
tu
d
ie
s
,
th
e
o
b
s
er
v
ed
s
p
ec
tr
al
b
a
n
d
s
ali
g
n
with
estab
lis
h
ed
liter
atu
r
e,
r
ein
f
o
r
cin
g
th
e
r
elia
b
ilit
y
o
f
th
e
SG sm
o
o
t
h
in
g
a
p
p
r
o
ac
h
u
s
ed
in
th
is
r
esear
ch
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
P
r
ed
ictio
n
o
f b
r
o
iler
s
h
ea
r
fo
r
ce
u
s
in
g
n
ea
r
in
fr
a
r
ed
s
p
ec
tr
o
s
co
p
y
w
ith
s
ec
o
n
d
…
(
R
a
s
h
i
d
a
h
Gh
a
z
a
li
)
1791
F
ig
u
r
e
2
.
A
v
e
r
ag
e
f
ilter
e
d
s
ec
o
n
d
d
e
r
iv
ativ
e
ab
s
o
r
b
an
ce
s
p
e
ctr
a
f
o
r
b
r
ea
s
t m
ea
t
a
n
d
d
r
u
m
s
tick
T
ab
le
2
s
u
m
m
ar
izes
th
e
r
esu
lts
o
f
p
r
ed
ictin
g
s
h
ea
r
f
o
r
ce
in
b
r
ea
s
t
m
ea
t
an
d
d
r
u
m
s
tick
s
u
s
in
g
PC
R
an
d
PLS
m
o
d
els.
T
h
e
o
p
tim
al
n
u
m
b
er
o
f
PC
s
an
d
L
Vs
f
o
r
PC
R
an
d
PLS
was
d
eter
m
in
ed
b
ased
o
n
th
e
lo
west
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
v
alu
es
o
b
tain
ed
th
r
o
u
g
h
MCC
V
(
R
MSE
C
<
R
MSE
P
<
R
MSE
C
V)
.
Ad
d
itio
n
ally
,
to
p
r
ev
en
t
o
v
er
f
itti
n
g
an
d
u
n
d
er
f
itti
n
g
,
th
e
r
o
o
t
m
ea
n
s
q
u
ar
e
er
r
o
r
o
f
ca
lib
r
atio
n
h
a
d
to
b
e
lo
wer
th
an
th
at
o
f
p
r
ed
ictio
n
an
d
cr
o
s
s
-
v
alid
atio
n
.
T
h
e
f
in
d
in
g
s
in
d
icate
th
at
PLS
o
u
tp
er
f
o
r
m
s
PC
R
in
p
r
e
d
ictio
n
ac
cu
r
ac
y
f
o
r
b
o
th
b
r
ea
s
t
m
ea
t
a
n
d
d
r
u
m
s
tick
s
am
p
les,
ac
h
iev
in
g
p
r
ed
ictio
n
co
ef
f
icien
ts
o
f
0
.
6
4
0
1
an
d
0
.
6
4
9
4
,
r
esp
ec
tiv
ely
.
Mo
r
eo
v
er
,
th
e
P
L
S
m
o
d
el
r
eq
u
ir
es
s
ig
n
if
ican
tly
f
ewe
r
L
Vs
co
m
p
ar
ed
to
t
h
e
n
u
m
b
e
r
o
f
PC
s
u
s
ed
in
PC
R
,
f
u
r
th
er
estab
lis
h
in
g
PLS a
s
th
e
m
o
r
e
e
f
f
ec
tiv
e
p
r
ed
ictiv
e
a
p
p
r
o
ac
h
.
A
p
o
ten
tial
lim
itatio
n
o
f
th
is
s
tu
d
y
is
th
e
r
elian
ce
o
n
SG
s
m
o
o
th
in
g
as
th
e
p
r
im
ar
y
p
r
e
p
r
o
ce
s
s
in
g
m
eth
o
d
.
Alth
o
u
g
h
ef
f
ec
tiv
e
in
en
h
an
cin
g
s
p
ec
tr
al
f
e
atu
r
es,
alter
n
ativ
e
m
eth
o
d
s
s
u
ch
as
wav
elet
tr
an
s
f
o
r
m
atio
n
o
r
s
tan
d
ar
d
n
o
r
m
al
v
a
r
iate
(
SNV)
co
r
r
ec
ti
o
n
co
u
ld
f
u
r
th
e
r
im
p
r
o
v
e
m
o
d
el
p
e
r
f
o
r
m
an
ce
.
Fu
tu
r
e
r
esear
ch
s
h
o
u
ld
e
x
p
lo
r
e
a
co
m
b
i
n
atio
n
o
f
p
r
ep
r
o
ce
s
s
in
g
tech
n
i
q
u
es
to
d
eter
m
in
e
t
h
e
o
p
tim
al
s
tr
ateg
y
f
o
r
m
ea
t
q
u
ality
ass
ess
m
en
t.
T
ab
le
2
.
T
h
e
r
esu
lts
o
f
p
r
ed
ict
io
n
o
f
s
h
ea
r
f
o
r
ce
f
o
r
b
r
ea
s
t m
ea
t a
n
d
d
r
u
m
s
tick
u
s
in
g
PC
R
an
d
PLS
S
a
mp
l
e
s
Li
n
e
a
r
m
o
d
e
l
s
P
C
/
LV
C
r
o
ss
v
a
l
i
d
a
t
i
o
n
M
C
C
V
C
a
l
i
b
r
a
t
i
o
n
P
r
e
d
i
c
t
i
o
n
R
M
S
E
C
V
RC
R
M
S
E
C
RP
R
M
S
EP
B
r
e
a
s
t
m
eat
P
C
R
6
0
.
8
5
8
1
0
.
6
3
9
8
0
.
7
6
8
5
0
.
6
3
0
6
0
.
7
7
6
1
P
LS
3
0
.
8
3
9
0
0
.
6
5
2
8
0
.
7
5
7
5
0
.
6
4
0
1
0
.
7
6
8
3
D
r
u
msti
c
k
P
C
R
9
0
.
8
6
5
6
0
.
6
5
5
7
0
.
7
5
5
1
0
.
6
3
7
7
0
.
7
7
0
3
P
LS
5
0
.
8
6
6
1
0
.
6
9
8
1
0
.
7
1
6
0
0
.
6
4
9
4
0
.
7
6
0
4
T
h
is
s
tu
d
y
u
n
d
er
s
co
r
es
th
e
im
p
o
r
tan
ce
o
f
s
elec
tin
g
a
p
p
r
o
p
r
iate
SG
s
m
o
o
t
h
in
g
p
ar
a
m
eter
s
to
o
p
tim
ize
s
p
ec
tr
al
p
r
e
p
r
o
ce
s
s
in
g
f
o
r
m
ea
t
q
u
ality
ass
ess
m
e
n
t.
T
h
e
f
i
n
d
in
g
s
h
ig
h
lig
h
t
t
h
e
s
ig
n
if
ican
ce
o
f
th
e
SW
NI
R
r
eg
io
n
i
n
b
r
ea
s
t
m
ea
t
ev
alu
atio
n
an
d
th
e
VI
S
-
SW
NI
R
r
eg
io
n
f
o
r
d
r
u
m
s
tick
an
a
ly
s
is
.
Fu
r
th
er
m
o
r
e,
PLS
r
eg
r
ess
io
n
o
u
tp
er
f
o
r
m
s
PC
R
in
s
h
ea
r
f
o
r
ce
p
r
e
d
ictio
n
d
u
e
to
i
ts
h
ig
h
e
r
ac
cu
r
ac
y
an
d
lo
wer
m
o
d
el
co
m
p
lex
ity
.
Fu
t
u
r
e
r
esear
ch
s
h
o
u
ld
f
o
cu
s
o
n
r
ef
i
n
in
g
s
p
ec
tr
al
p
r
ep
r
o
ce
s
s
in
g
tech
n
iq
u
es,
e
x
p
lo
r
in
g
alter
n
ativ
e
m
ac
h
in
e
lear
n
i
n
g
a
p
p
r
o
ac
h
es,
an
d
in
c
o
r
p
o
r
atin
g
ad
v
a
n
ce
d
v
alid
atio
n
m
eth
o
d
o
l
o
g
ies
to
en
h
an
ce
p
r
ed
ictio
n
r
eliab
il
ity
.
Ad
d
itio
n
ally
,
i
n
v
esti
g
atin
g
th
e
im
p
ac
t
o
f
d
if
f
er
e
n
t
p
r
ep
r
o
ce
s
s
in
g
s
tr
ateg
ies
o
n
o
th
er
m
ea
t
q
u
ality
p
ar
am
eter
s
co
u
ld
f
u
r
t
h
er
im
p
r
o
v
e
s
p
ec
tr
o
s
co
p
ic
a
n
aly
s
is
in
f
o
o
d
s
cien
ce
ap
p
licatio
n
s
.
Fu
r
th
er
m
o
r
e
,
ex
p
l
o
r
in
g
th
e
in
f
lu
en
ce
o
f
ex
ter
n
al
f
ac
to
r
s
s
u
c
h
as
s
to
r
ag
e
co
n
d
itio
n
s
,
m
ea
t
ag
in
g
,
a
n
d
p
r
o
ce
s
s
in
g
tech
n
iq
u
es
o
n
s
p
e
ctr
al
p
r
o
p
e
r
ties
co
u
ld
p
r
o
v
i
d
e
a
m
o
r
e
c
o
m
p
r
eh
en
s
iv
e
u
n
d
er
s
tan
d
in
g
o
f
m
ea
t
q
u
ality
v
a
r
iatio
n
s
.
E
x
p
an
d
in
g
th
e
d
ataset
to
i
n
clu
d
e
d
iv
er
s
e
m
ea
t
s
o
u
r
ce
s
a
n
d
in
teg
r
at
in
g
d
ee
p
lear
n
in
g
m
o
d
els f
o
r
s
p
ec
tr
al
d
ata
an
aly
s
is
m
ay
also
en
h
an
ce
p
r
ed
ictiv
e
ac
cu
r
ac
y
a
n
d
g
e
n
er
aliza
b
ilit
y
in
f
u
t
u
r
e
s
tu
d
ies.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
3
,
Sep
tem
b
er
20
25
:
1
7
8
7
-
1
7
9
4
1792
4.
CO
NCLU
SI
O
N
T
h
e
f
in
d
in
g
s
f
r
o
m
th
is
s
tu
d
y
i
n
d
icate
th
at
wh
ile
th
e
p
o
p
u
lar
lin
ea
r
p
r
ed
ictiv
e
m
o
d
els,
PC
R
an
d
PLS,
h
av
e
d
e
m
o
n
s
tr
ated
s
atis
f
ac
to
r
y
p
er
f
o
r
m
a
n
ce
in
p
r
ed
ictin
g
th
e
s
h
ea
r
f
o
r
ce
o
f
r
aw
b
r
o
iler
m
ea
t
(
b
o
th
b
r
ea
s
t
an
d
d
r
u
m
s
tick
)
u
s
in
g
n
ea
r
i
n
f
r
ar
e
d
(
NI
R
)
s
p
ec
tr
o
s
co
p
y
,
th
e
ac
c
u
r
ac
y
ac
h
iev
ed
was
o
n
ly
ar
o
u
n
d
4
0
%.
T
h
is
le
v
el
o
f
ac
cu
r
ac
y
,
th
o
u
g
h
r
esp
ec
t
ab
le,
is
s
till
m
u
ch
lo
wer
th
an
th
e
d
esire
d
8
0
%
tar
g
et
f
o
r
r
e
liab
le
tex
t
u
r
e
ass
es
s
m
en
t.
T
h
e
ap
p
licatio
n
o
f
s
ec
o
n
d
-
o
r
d
er
d
er
i
v
ativ
e
p
r
e
-
p
r
o
ce
s
s
in
g
tec
h
n
iq
u
es,
s
u
ch
as
th
e
SG
m
eth
o
d
,
was
s
h
o
wn
to
b
e
ef
f
ec
tiv
e
in
e
lim
in
atin
g
th
e
b
aselin
e
s
h
if
t
a
n
d
s
lo
p
e
ef
f
ec
ts
i
n
th
e
s
p
ec
tr
o
s
co
p
ic
d
ata,
th
er
eb
y
im
p
r
o
v
in
g
th
e
co
r
r
elati
o
n
co
ef
f
icien
t
b
etwe
en
th
e
NI
R
s
p
ec
tr
a
an
d
th
e
s
h
ea
r
f
o
r
ce
m
ea
s
u
r
em
en
ts
.
T
h
is
h
ig
h
lig
h
ts
th
e
im
p
o
r
tan
ce
o
f
ap
p
r
o
p
r
iate
d
ata
p
r
e
-
p
r
o
ce
s
s
in
g
f
o
r
en
h
an
cin
g
t
h
e
p
er
f
o
r
m
an
ce
o
f
lin
ea
r
p
r
ed
ictiv
e
m
o
d
els.
Ho
wev
er
,
th
e
r
elativ
ely
lo
w
ac
cu
r
ac
y
ac
h
iev
ed
b
y
th
e
lin
ea
r
m
o
d
els
s
u
g
g
ests
th
at
th
er
e
is
r
o
o
m
f
o
r
im
p
r
o
v
em
en
t
in
th
e
p
r
ed
ictiv
e
ca
p
ab
ilit
y
f
o
r
r
aw
b
r
o
iler
m
ea
t
tex
tu
r
e
ass
ess
m
en
t.
T
h
er
ef
o
r
e,
th
e
n
ex
t
s
tep
in
th
is
r
esear
ch
wo
u
l
d
b
e
to
e
x
p
lo
r
e
th
e
u
s
e
o
f
n
o
n
-
lin
ea
r
p
r
e
d
ictiv
e
m
o
d
els,
s
u
ch
as
ar
tific
ial
n
eu
r
al
n
etw
o
r
k
s
o
r
s
u
p
p
o
r
t
v
ec
t
o
r
m
ac
h
in
es,
to
s
ee
if
th
ey
ca
n
p
r
o
v
id
e
a
s
ig
n
if
ican
t
en
h
a
n
ce
m
en
t
in
t
h
e
ac
c
u
r
ac
y
o
f
s
h
ea
r
f
o
r
ce
p
r
e
d
ictio
n
u
s
in
g
NI
R
s
p
ec
tr
o
s
co
p
y
.
W
h
ile
t
h
e
lin
ea
r
m
o
d
els
o
f
PC
R
an
d
PLS
h
av
e
s
h
o
wn
p
r
o
m
is
in
g
r
esu
lts
,
th
e
u
ltima
te
g
o
al
o
f
ac
h
iev
in
g
an
a
cc
u
r
ac
y
o
f
8
0
%
o
r
h
ig
h
e
r
in
p
r
e
d
ictin
g
r
aw
b
r
o
iler
m
ea
t
tex
tu
r
e
h
as
n
o
t
y
et
b
ee
n
m
et.
T
h
e
in
v
esti
g
atio
n
o
f
n
o
n
-
lin
ea
r
p
r
ed
ictiv
e
m
o
d
els
h
o
ld
s
th
e
p
o
ten
tial
to
f
u
r
th
e
r
im
p
r
o
v
e
th
e
ca
p
ab
ilit
y
o
f
NI
R
s
p
ec
tr
o
s
co
p
y
as a
f
ast,
n
o
n
-
d
e
s
tr
u
ctiv
e,
an
d
r
eliab
le
tech
n
i
q
u
e
f
o
r
ass
ess
in
g
th
e
tex
tu
r
e
an
d
q
u
ality
o
f
r
aw
b
r
o
iler
m
ea
t
p
r
o
d
u
cts.
Fu
tu
r
e
s
tu
d
ies
s
h
o
u
ld
f
o
c
u
s
o
n
e
v
alu
ati
n
g
th
e
p
er
f
o
r
m
an
ce
o
f
n
o
n
-
lin
ea
r
m
o
d
els
in
o
r
d
e
r
to
ac
h
iev
e
th
e
d
esire
d
ac
cu
r
ac
y
lev
els
f
o
r
p
r
ac
tical
im
p
l
em
en
tatio
n
in
th
e
p
o
u
ltry
i
n
d
u
s
tr
y
.
Ad
d
itio
n
ally
,
f
u
tu
r
e
r
esear
ch
s
h
o
u
ld
e
x
p
lo
r
e
h
y
b
r
id
m
o
d
eli
n
g
ap
p
r
o
ac
h
es
th
at
in
te
g
r
ate
b
o
th
lin
ea
r
an
d
n
o
n
-
lin
ea
r
m
o
d
els
to
m
ax
im
ize
p
r
ed
ictio
n
ac
cu
r
ac
y
.
I
n
v
esti
g
atin
g
th
e
r
o
le
o
f
d
ee
p
lear
n
in
g
tech
n
iq
u
es,
s
u
ch
as
co
n
v
o
lu
tio
n
al
n
eu
r
a
l
n
etwo
r
k
s
(
C
NNs),
m
ay
al
s
o
p
r
o
v
id
e
f
u
r
th
e
r
in
s
ig
h
ts
in
to
s
p
ec
tr
al
d
ata
in
ter
p
r
etatio
n
an
d
im
p
r
o
v
e
p
r
ed
ictiv
e
ca
p
ab
ilit
ies.
Mo
r
eo
v
e
r
,
ex
p
an
d
in
g
th
e
d
ataset
to
in
clu
d
e
v
ar
iatio
n
s
in
m
ea
t
p
r
o
ce
s
s
in
g
co
n
d
itio
n
s
,
s
to
r
ag
e
d
u
r
atio
n
,
an
d
d
if
f
e
r
en
t
p
o
u
ltry
b
r
ee
d
s
m
ay
h
e
lp
en
h
an
ce
m
o
d
el
ge
n
er
aliza
b
ilit
y
.
Ad
d
r
ess
in
g
th
ese
asp
ec
ts
will
co
n
tr
ib
u
te
to
th
e
d
ev
elo
p
m
en
t
o
f
a
m
o
r
e
r
o
b
u
s
t
an
d
s
ca
lab
le
NI
R
-
b
ased
m
ea
t
q
u
ality
ass
es
s
m
en
t
s
y
s
tem
,
u
ltima
tely
b
en
ef
itin
g
th
e
p
o
u
ltr
y
in
d
u
s
tr
y
b
y
en
s
u
r
in
g
co
n
s
is
ten
t
m
ea
t q
u
ality
an
d
r
ed
u
cin
g
t
h
e
r
elian
ce
o
n
tr
a
d
itio
n
al,
tim
e
-
c
o
n
s
u
m
in
g
te
x
tu
r
e
e
v
alu
atio
n
m
eth
o
d
s
.
ACK
NO
WL
E
DG
E
M
E
NT
S
T
h
e
au
t
h
o
r
s
wo
u
ld
lik
e
to
th
an
k
s
th
e
f
ac
u
lty
,
s
taf
f
,
an
d
s
tu
d
en
ts
at
t
h
e
Me
at
Scien
ce
L
ab
o
r
ato
r
y
,
Dep
ar
tm
en
t
o
f
A
n
im
al
Scien
c
e,
Facu
lty
o
f
Ag
r
icu
ltu
r
e,
Un
i
v
er
s
iti
Pu
tr
a
Ma
lay
s
ia,
f
o
r
th
e
ir
g
u
i
d
an
ce
an
d
f
o
r
p
r
o
v
id
i
n
g
th
e
n
ec
ess
ar
y
f
ac
ilit
ies d
u
r
in
g
th
e
ex
p
e
r
im
e
n
ts
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
T
h
is
r
esear
ch
was f
u
n
d
e
d
b
y
Un
iv
er
s
iti T
ek
n
o
lo
g
i M
ala
y
s
ia
(
UT
M)
u
n
d
er
Vo
te
No
.
(
2
2
H0
1
)
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT
)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
R
ash
id
ah
Gh
az
ali
✓
✓
✓
✓
✓
✓
✓
Her
lin
a
Ab
d
u
l Rah
im
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
Sy
ah
id
ah
Nu
r
a
n
i
Z
u
lk
if
li
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
I
SS
N:
2502
-
4
7
5
2
P
r
ed
ictio
n
o
f b
r
o
iler
s
h
ea
r
fo
r
ce
u
s
in
g
n
ea
r
in
fr
a
r
ed
s
p
ec
tr
o
s
co
p
y
w
ith
s
ec
o
n
d
…
(
R
a
s
h
i
d
a
h
Gh
a
z
a
li
)
1793
I
NF
O
RM
E
D
CO
NS
E
N
T
W
e
h
av
e
o
b
tain
ed
in
f
o
r
m
ed
c
o
n
s
en
t f
r
o
m
all
in
d
iv
id
u
als in
c
lu
d
ed
in
t
h
is
s
tu
d
y
.
DATA AV
AI
L
AB
I
L
I
T
Y
D
a
t
a
a
v
a
il
a
b
i
li
t
y
is
n
o
t
a
p
p
l
i
ca
b
l
e
t
o
t
h
is
p
a
p
e
r
a
s
n
o
n
e
w
d
at
a
w
e
r
e
c
r
e
a
t
e
d
o
r
a
n
al
y
z
e
d
i
n
t
h
is
s
t
u
d
y
.
RE
F
E
R
E
NC
E
S
[
1
]
R
.
G
h
a
z
a
l
i
,
H
.
A
.
R
a
h
i
m
,
M
.
S
.
M
a
i
d
i
n
,
a
n
d
S
.
S
a
h
l
a
n
,
“
Lo
w
c
o
s
t
v
i
si
b
l
e
/
n
e
a
r
-
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
s
p
e
c
t
r
o
sc
o
p
y
f
o
r
r
a
w
p
o
u
l
t
r
y
mea
t
t
e
x
t
u
r
e
p
r
e
d
i
c
t
i
o
n
,
”
W
o
rl
d
Ac
a
d
e
m
y
o
f
S
c
i
e
n
c
e
,
En
g
i
n
e
e
ri
n
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
7
7
,
p
p
.
4
8
6
–
4
9
1
,
2
0
1
3
.
[
2
]
Y
.
L
i
u
,
B
.
G
.
L
y
o
n
,
W
.
R
.
W
i
n
d
h
a
m
,
C
.
E.
R
e
a
l
i
n
i
,
T.
D
.
D
.
P
r
i
n
g
l
e
,
a
n
d
S
.
D
u
c
k
e
t
t
,
“
P
r
e
d
i
c
t
i
o
n
o
f
c
o
l
o
r
,
t
e
x
t
u
r
e
,
a
n
d
s
e
n
s
o
r
y
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
o
f
b
e
e
f
s
t
e
a
k
s
b
y
v
i
si
b
l
e
a
n
d
n
e
a
r
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
s
p
e
c
t
r
o
s
c
o
p
y
.
A
f
e
a
si
b
i
l
i
t
y
s
t
u
d
y
,
”
M
e
a
t
S
c
i
e
n
c
e
,
v
o
l
.
6
5
,
n
o
.
3
,
p
p
.
1
1
0
7
–
1
1
1
5
,
N
o
v
.
2
0
0
3
,
d
o
i
:
1
0
.
1
0
1
6
/
S
0
3
0
9
-
1
7
4
0
(
0
2
)
0
0
3
2
8
-
5.
[
3
]
H
.
A
.
R
a
h
i
m
a
n
d
R
.
G
h
a
z
a
l
i
,
“
T
h
e
a
p
p
l
i
c
a
t
i
o
n
o
f
N
e
a
r
-
I
n
f
r
a
r
e
d
S
p
e
c
t
r
o
sc
o
p
y
f
o
r
p
o
u
l
t
r
y
me
a
t
g
r
a
d
i
n
g
,
”
i
n
Pr
o
c
e
e
d
i
n
g
s
-
2
0
1
2
I
EEE
8
t
h
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
l
l
o
q
u
i
u
m
o
n
S
i
g
n
a
l
Pr
o
c
e
ssi
n
g
a
n
d
I
t
s
A
p
p
l
i
c
a
t
i
o
n
s,
C
S
PA
2
0
1
2
,
M
a
r
.
2
0
1
2
,
p
p
.
58
–
6
2
,
d
o
i
:
1
0
.
1
1
0
9
/
C
S
P
A
.
2
0
1
2
.
6
1
9
4
6
9
1
.
[
4
]
K
.
S
h
i
r
a
n
i
t
a
,
T
.
M
i
y
a
j
i
ma
,
a
n
d
R
.
Ta
k
i
y
a
m
a
,
“
D
e
t
e
r
mi
n
a
t
i
o
n
o
f
m
e
a
t
q
u
a
l
i
t
y
b
y
t
e
x
t
u
r
e
a
n
a
l
y
si
s
,
”
P
a
t
t
e
rn
Re
c
o
g
n
i
t
i
o
n
L
e
t
t
e
rs
,
v
o
l
.
1
9
,
n
o
.
1
4
,
p
p
.
1
3
1
9
–
1
3
2
4
,
D
e
c
.
1
9
9
8
,
d
o
i
:
1
0
.
1
0
1
6
/
S
0
1
6
7
-
8
6
5
5
(
9
8
)
0
0
1
1
3
-
5.
[
5
]
H
.
A
b
d
u
l
R
a
h
i
m,
R
.
G
h
a
z
a
l
i
,
S
.
S
a
h
l
a
n
,
a
n
d
M
.
S
.
M
a
i
d
i
n
,
“
P
r
e
d
i
c
t
i
o
n
o
f
t
e
x
t
u
r
e
o
f
r
a
w
p
o
u
l
t
r
y
mea
t
b
y
v
i
si
b
l
e
a
n
d
n
e
a
r
-
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
s
p
e
t
r
o
s
c
o
p
y
,
”
J
u
r
n
a
l
T
e
k
n
o
l
o
g
i
(
S
c
i
e
n
c
e
s
a
n
d
En
g
i
n
e
e
r
i
n
g
)
,
v
o
l
.
6
4
,
n
o
.
5
,
p
p
.
5
9
–
6
2
,
S
e
p
.
2
0
1
3
,
d
o
i
:
1
0
.
1
1
1
1
3
/
j
t
.
v
6
4
.
2
1
3
3
.
[
6
]
Y
.
T.
Li
a
o
,
Y
.
X
.
F
a
n
,
a
n
d
F
.
C
h
e
n
g
,
“
O
n
-
l
i
n
e
p
r
e
d
i
c
t
i
o
n
o
f
f
r
e
s
h
p
o
r
k
q
u
a
l
i
t
y
u
si
n
g
v
i
s
i
b
l
e
/
n
e
a
r
-
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
sp
e
c
t
r
o
sc
o
p
y
,
”
M
e
a
t
S
c
i
e
n
c
e
,
v
o
l
.
8
6
,
n
o
.
4
,
p
p
.
9
0
1
–
9
0
7
,
D
e
c
.
2
0
1
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
me
a
t
s
c
i
.
2
0
1
0
.
0
7
.
0
1
1
.
[
7
]
M
.
V
e
n
t
u
r
a
,
A
.
D
e
Ja
g
e
r
,
H
.
D
e
P
u
t
t
e
r
,
a
n
d
F
.
P
.
m.
m.
R
o
e
l
o
f
s,
“
N
o
n
-
d
e
st
r
u
c
t
i
v
e
d
e
t
e
r
mi
n
a
t
i
o
n
o
f
s
o
l
u
b
l
e
s
o
l
i
d
s
i
n
a
p
p
l
e
f
r
u
i
t
b
y
n
e
a
r
i
n
f
r
a
r
e
d
sp
e
c
t
r
o
sc
o
p
y
(
N
I
R
S
)
,
”
P
o
st
h
a
rv
e
st
B
i
o
l
o
g
y
a
n
d
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
1
4
,
n
o
.
1
,
p
p
.
2
1
–
2
7
,
S
e
p
.
1
9
9
8
,
d
o
i
:
1
0
.
1
0
1
6
/
S
0
9
2
5
-
5
2
1
4
(
9
8
)
0
0
0
3
0
-
1.
[
8
]
K
.
S
.
C
h
i
a
,
H
.
A
b
d
u
l
R
a
h
i
m,
a
n
d
R
.
A
b
d
u
l
R
a
h
i
m
,
“
P
r
e
d
i
c
t
i
o
n
o
f
s
o
l
u
b
l
e
so
l
i
d
s
c
o
n
t
e
n
t
o
f
p
i
n
e
a
p
p
l
e
v
i
a
n
o
n
-
i
n
v
a
si
v
e
l
o
w
c
o
st
v
i
s
i
b
l
e
a
n
d
s
h
o
r
t
w
a
v
e
n
e
a
r
i
n
f
r
a
r
e
d
sp
e
c
t
r
o
s
c
o
p
y
a
n
d
a
r
t
i
f
i
c
i
a
l
n
e
u
r
a
l
n
e
t
w
o
r
k
,
”
B
i
o
s
y
st
e
m
s
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
1
3
,
n
o
.
2
,
p
p
.
1
5
8
–
1
6
5
,
O
c
t
.
2
0
1
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
b
i
o
sy
s
t
e
ms
e
n
g
.
2
0
1
2
.
0
7
.
0
0
3
.
[
9
]
M
.
P
l
a
,
P
.
H
e
r
n
á
n
d
e
z
,
B
.
A
r
i
ñ
o
,
J.
A
.
R
a
mí
r
e
z
,
a
n
d
I
.
D
í
a
z
,
“
P
r
e
d
i
c
t
i
o
n
o
f
f
a
t
t
y
a
c
i
d
c
o
n
t
e
n
t
i
n
r
a
b
b
i
t
m
e
a
t
a
n
d
d
i
scr
i
mi
n
a
t
i
on
b
e
t
w
e
e
n
c
o
n
v
e
n
t
i
o
n
a
l
a
n
d
o
r
g
a
n
i
c
p
r
o
d
u
c
t
i
o
n
s
y
s
t
e
ms
b
y
N
I
R
S
me
t
h
o
d
o
l
o
g
y
,
”
Fo
o
d
C
h
e
m
i
s
t
ry
,
v
o
l
.
1
0
0
,
n
o
.
1
,
p
p
.
1
6
5
–
1
7
0
,
Jan
.
2
0
0
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
f
o
o
d
c
h
e
m.
2
0
0
5
.
0
9
.
0
2
9
.
[
1
0
]
A
.
V
i
l
l
a
r
,
E
.
G
o
r
r
i
t
x
a
t
e
g
i
,
E
.
A
r
a
n
z
a
b
e
,
S
.
F
e
r
n
á
n
d
e
z
,
D
.
O
t
a
d
u
y
,
a
n
d
L.
A
.
F
e
r
n
á
n
d
e
z
,
“
L
o
w
-
c
o
st
v
i
s
i
b
l
e
-
n
e
a
r
i
n
f
r
a
r
e
d
se
n
s
o
r
f
o
r
on
-
l
i
n
e
m
o
n
i
t
o
r
i
n
g
o
f
f
a
t
a
n
d
f
a
t
t
y
a
c
i
d
s
c
o
n
t
e
n
t
d
u
r
i
n
g
t
h
e
ma
n
u
f
a
c
t
u
r
i
n
g
p
r
o
c
e
ss
o
f
t
h
e
mi
l
k
,
”
F
o
o
d
C
h
e
m
i
st
r
y
,
v
o
l
.
1
3
5
,
n
o
.
4
,
p
p
.
2
7
5
6
–
2
7
6
0
,
D
e
c
.
2
0
1
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
f
o
o
d
c
h
e
m.
2
0
1
2
.
0
7
.
0
7
4
.
[
1
1
]
F
.
A
b
e
n
i
a
n
d
G
.
B
e
r
g
o
g
l
i
o
,
“
C
h
a
r
a
c
t
e
r
i
z
a
t
i
o
n
o
f
d
i
f
f
e
r
e
n
t
s
t
r
a
i
n
s
o
f
b
r
o
i
l
e
r
c
h
i
c
k
e
n
b
y
c
a
r
c
a
ss
mea
s
u
r
e
m
e
n
t
s,
c
h
e
m
i
c
a
l
a
n
d
p
h
y
s
i
c
a
l
p
a
r
a
me
t
e
r
s
a
n
d
N
I
R
S
o
n
b
r
e
a
s
t
m
u
s
c
l
e
,
”
M
e
a
t
S
c
i
e
n
c
e
,
v
o
l
.
5
7
,
n
o
.
2
,
p
p
.
1
3
3
–
1
3
7
,
2
0
0
1
,
d
o
i
:
1
0
.
1
0
1
6
/
S
0
3
0
9
-
1
7
4
0
(
0
0
)
0
0
0
8
4
-
X.
[
1
2
]
D
e
p
a
r
t
me
n
t
o
f
I
sl
a
m
i
c
D
e
v
e
l
o
p
m
e
n
t
M
a
l
a
y
si
a
,
“
M
a
l
a
y
s
i
a
n
p
r
o
t
o
c
o
l
f
o
r
t
h
e
h
a
l
a
l
m
e
a
t
a
n
d
p
o
u
l
t
r
y
p
r
o
d
u
c
t
i
o
n
s,
”
p
p
.
1
–
3
0
,
2
0
1
1
,
[
O
n
l
i
n
e
]
.
A
v
a
i
l
a
b
l
e
:
h
t
t
p
:
/
/
w
w
w
.
h
a
l
a
l
.
g
o
v
.
m
y
/
v
4
/
i
ma
g
e
s/
p
d
f
/
p
r
o
t
o
c
o
l
h
a
l
a
l
mea
t
p
o
u
l
t
r
y
.
p
d
f
.
[
1
3
]
L.
C
.
C
a
v
i
t
t
,
G
.
W
.
Y
o
u
m
,
J.
F
.
M
e
u
l
l
e
n
e
t
,
C
.
M
.
O
w
e
n
s,
a
n
d
R
.
X
i
o
n
g
,
“
P
r
e
d
i
c
t
i
o
n
o
f
p
o
u
l
t
r
y
mea
t
t
e
n
d
e
r
n
e
ss
u
si
n
g
r
a
z
o
r
b
l
a
d
e
sh
e
a
r
,
a
l
l
o
-
k
r
a
mer
s
h
e
a
r
,
a
n
d
s
a
r
c
o
mere
l
e
n
g
t
h
,
”
J
o
u
rn
a
l
o
f
F
o
o
d
S
c
i
e
n
c
e
,
v
o
l
.
6
9
,
n
o
.
1
,
Ja
n
.
2
0
0
4
,
d
o
i
:
1
0
.
1
1
1
1
/
j
.
1
3
6
5
-
2
6
2
1
.
2
0
0
4
.
t
b
1
7
8
7
9
.
x
.
[
1
4
]
N
.
R
.
L
a
m
b
e
,
E.
A
.
N
a
v
a
j
a
s,
L
.
B
ü
n
g
e
r
,
A
.
V
.
F
i
sh
e
r
,
R
.
R
o
e
h
e
,
a
n
d
G
.
S
i
mm
,
“
P
r
e
d
i
c
t
i
o
n
o
f
l
a
mb
c
a
r
c
a
ss
c
o
m
p
o
s
i
t
i
o
n
a
n
d
m
e
a
t
q
u
a
l
i
t
y
u
s
i
n
g
c
o
m
b
i
n
a
t
i
o
n
s
o
f
p
o
s
t
-
mo
r
t
e
m
me
a
su
r
e
me
n
t
s
,
”
M
e
a
t
S
c
i
e
n
c
e
,
v
o
l
.
8
1
,
n
o
.
4
,
p
p
.
7
1
1
–
7
1
9
,
A
p
r
.
2
0
0
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
m
e
a
t
sc
i
.
2
0
0
8
.
1
0
.
0
2
5
.
[
1
5
]
M
.
S
.
S
a
l
w
a
n
i
,
A
.
Q
.
S
a
z
i
l
i
,
L
.
Z
u
l
k
i
f
l
i
,
Z.
N
i
z
a
m,
a
n
d
W
.
Z
u
l
E
d
h
a
m
,
“
E
f
f
e
c
t
s
o
f
h
e
a
d
-
o
n
l
y
e
l
e
c
t
r
i
c
a
l
st
u
n
n
i
n
g
o
n
t
h
e
p
h
y
s
i
c
o
-
c
h
e
mi
c
a
l
c
h
a
r
a
c
t
e
r
i
st
i
c
s
a
n
d
d
e
s
mi
n
d
e
g
r
a
d
a
t
i
o
n
o
f
b
r
o
i
l
e
r
b
r
e
a
st
m
u
sc
l
e
s
a
t
d
i
f
f
e
r
e
n
t
t
i
me
p
o
st
m
o
r
t
e
m,”
J
o
u
r
n
a
l
o
f
A
n
i
m
a
l
a
n
d
Ve
t
e
ri
n
a
r
y
A
d
v
a
n
c
e
s
,
v
o
l
.
1
1
,
n
o
.
1
4
,
p
p
.
2
4
0
9
–
2
4
1
6
,
D
e
c
.
2
0
1
2
,
d
o
i
:
1
0
.
3
9
2
3
/
j
a
v
a
a
.
2
0
1
2
.
2
4
0
9
.
2
4
1
6
.
[
1
6
]
I
.
O
c
e
a
n
O
p
t
i
c
s,
“
N
o
n
-
i
n
v
a
s
i
v
e
r
e
f
l
e
c
t
i
o
n
mea
s
u
r
e
m
e
n
t
s
o
f
t
h
e
sk
i
n
,
a
ssess
i
n
g
sam
p
l
i
n
g
d
e
p
t
h
b
y
u
si
n
g
sk
i
n
su
r
r
o
g
a
t
e
s
o
v
e
r
v
i
e
w
,
”
P
h
o
t
o
n
i
c
s
O
n
l
i
n
e
,
2
0
1
2
.
h
t
t
p
s:
/
/
w
w
w
.
r
k
t
e
c
h
.
h
u
/
d
o
k
u
m
e
n
t
a
c
i
o
k
/
O
c
e
a
n
O
p
t
i
c
s/
A
p
p
l
i
c
a
t
i
o
n
_
n
o
t
e
/
sk
i
n
_
k
p
.
p
d
f
.
[
1
7
]
W
.
H
.
P
r
e
ss,
S
.
A
.
T
e
u
k
o
l
s
k
y
,
W
.
T
.
V
e
t
t
e
r
l
i
n
g
,
a
n
d
B
.
P
.
F
l
a
n
n
e
r
y
,
“
S
a
v
i
t
z
k
y
-
g
o
l
a
y
sm
o
o
t
h
i
n
g
f
i
l
t
e
r
s
,
”
C
a
mb
r
i
d
g
e
U
n
i
v
e
r
si
t
y
P
r
e
ss,
1
9
9
2
.
[
1
8
]
Å
.
R
i
n
n
a
n
,
F
.
v
a
n
d
e
n
B
e
r
g
,
a
n
d
S
.
B
.
En
g
e
l
se
n
,
“
R
e
v
i
e
w
o
f
t
h
e
m
o
st
c
o
mm
o
n
p
r
e
-
p
r
o
c
e
ss
i
n
g
t
e
c
h
n
i
q
u
e
s
f
o
r
n
e
a
r
-
i
n
f
r
a
r
e
d
sp
e
c
t
r
a
,
”
T
r
AC
-
T
re
n
d
s
i
n
A
n
a
l
y
t
i
c
a
l
C
h
e
m
i
st
ry
,
v
o
l
.
2
8
,
n
o
.
1
0
,
p
p
.
1
2
0
1
–
1
2
2
2
,
N
o
v
.
2
0
0
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
t
r
a
c
.
2
0
0
9
.
0
7
.
0
0
7
.
[
1
9
]
H
.
C
h
e
n
,
T.
P
a
n
,
J.
C
h
e
n
,
a
n
d
Q
.
L
u
,
“
W
a
v
e
b
a
n
d
se
l
e
c
t
i
o
n
f
o
r
N
I
R
sp
e
c
t
r
o
sc
o
p
y
a
n
a
l
y
si
s
o
f
so
i
l
o
r
g
a
n
i
c
mat
t
e
r
b
a
s
e
d
o
n
S
G
smo
o
t
h
i
n
g
a
n
d
M
W
P
LS
me
t
h
o
d
s,”
C
h
e
m
o
m
e
t
r
i
c
s
a
n
d
I
n
t
e
l
l
i
g
e
n
t
L
a
b
o
ra
t
o
ry
S
y
s
t
e
m
s
,
v
o
l
.
1
0
7
,
n
o
.
1
,
p
p
.
1
3
9
–
1
4
6
,
M
a
y
2
0
1
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
h
e
mo
l
a
b
.
2
0
1
1
.
0
2
.
0
0
8
.
[
2
0
]
K
.
S
.
C
h
i
a
,
H
.
A
.
R
a
h
i
m,
a
n
d
R
.
A
.
R
a
h
i
m
,
“
E
v
a
l
u
a
t
i
o
n
o
f
c
o
mm
o
n
p
r
e
-
p
r
o
c
e
ss
i
n
g
a
p
p
r
o
a
c
h
e
s
f
o
r
v
i
s
i
b
l
e
(
V
I
S
)
a
n
d
s
h
o
r
t
w
a
v
e
n
e
a
r
i
n
f
r
a
r
e
d
(
S
W
N
I
R
)
sp
e
c
t
r
o
sc
o
p
y
i
n
s
o
l
u
b
l
e
s
o
l
i
d
s
c
o
n
t
e
n
t
(
S
S
C
)
a
ssessme
n
t
,
”
Bi
o
s
y
st
e
m
s
E
n
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
1
5
,
n
o
.
1
,
p
p
.
8
2
–
8
8
,
M
a
y
2
0
1
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
b
i
o
s
y
st
e
mse
n
g
.
2
0
1
3
.
0
2
.
0
0
8
.
[
2
1
]
D
.
C
o
z
z
o
l
i
n
o
a
n
d
I
.
M
u
r
r
a
y
,
“
I
d
e
n
t
i
f
i
c
a
t
i
o
n
o
f
a
n
i
mal
me
a
t
m
u
s
c
l
e
s
b
y
v
i
s
i
b
l
e
a
n
d
n
e
a
r
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
sp
e
c
t
r
o
s
c
o
p
y
,
”
L
w
t
,
v
o
l
.
3
7
,
n
o
.
4
,
p
p
.
4
4
7
–
4
5
2
,
J
u
n
.
2
0
0
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
l
w
t
.
2
0
0
3
.
1
0
.
0
1
3
.
[
2
2
]
R
.
R
i
o
v
a
n
t
o
,
M
.
D
e
M
a
r
c
h
i
,
M
.
C
a
ss
a
n
d
r
o
,
a
n
d
M
.
P
e
n
a
s
a
,
“
U
se
o
f
n
e
a
r
i
n
f
r
a
r
e
d
t
r
a
n
smi
t
t
a
n
c
e
s
p
e
c
t
r
o
sc
o
p
y
t
o
p
r
e
d
i
c
t
f
a
t
t
y
a
c
i
d
c
o
m
p
o
si
t
i
o
n
o
f
c
h
i
c
k
e
n
mea
t
,
”
F
o
o
d
C
h
e
m
i
st
ry
,
v
o
l
.
1
3
4
,
n
o
.
4
,
p
p
.
2
4
5
9
–
2
4
6
4
,
O
c
t
.
2
0
1
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
f
o
o
d
c
h
e
m
.
2
0
1
2
.
0
4
.
0
3
8
.
[
2
3
]
L.
W
.
M
a
ma
n
i
-
L
i
n
a
r
e
s,
C
.
G
a
l
l
o
,
a
n
d
D
.
A
l
o
m
a
r
,
“
I
d
e
n
t
i
f
i
c
a
t
i
o
n
o
f
c
a
t
t
l
e
,
l
l
a
ma
a
n
d
h
o
r
se
m
e
a
t
b
y
n
e
a
r
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
o
r
t
r
a
n
sf
l
e
c
t
a
n
c
e
s
p
e
c
t
r
o
sc
o
p
y
,
”
Me
a
t
S
c
i
e
n
c
e
,
v
o
l
.
9
0
,
n
o
.
2
,
p
p
.
3
7
8
–
3
8
5
,
F
e
b
.
2
0
1
2
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
me
a
t
s
c
i
.
2
0
1
1
.
0
8
.
0
0
2
.
[
2
4
]
D
.
C
o
z
z
o
l
i
n
o
,
D
.
D
e
M
a
t
t
o
s,
a
n
d
D
.
V
a
z
M
a
r
t
i
n
s,
“
V
i
s
i
b
l
e
/
n
e
a
r
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
s
p
e
c
t
r
o
sc
o
p
y
f
o
r
p
r
e
d
i
c
t
i
n
g
c
o
m
p
o
si
t
i
o
n
a
n
d
t
r
a
c
i
n
g
s
y
st
e
m
o
f
p
r
o
d
u
c
t
i
o
n
o
f
b
e
e
f
m
u
sc
l
e
,
”
A
n
i
m
a
l
S
c
i
e
n
c
e
,
v
o
l
.
7
4
,
n
o
.
3
,
p
p
.
4
7
7
–
4
8
4
,
Ju
n
.
2
0
0
2
,
d
o
i
:
1
0
.
1
0
1
7
/
S
1
3
5
7
7
2
9
8
0
0
0
5
2
6
3
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
5
0
2
-
4
7
5
2
I
n
d
o
n
esian
J
E
lec
E
n
g
&
C
o
m
p
Sci
,
Vo
l.
3
9
,
No
.
3
,
Sep
tem
b
er
20
25
:
1
7
8
7
-
1
7
9
4
1794
[
2
5
]
R
.
G
r
a
u
,
A
.
J.
S
á
n
c
h
e
z
,
J
.
G
i
r
ó
n
,
E.
I
b
o
r
r
a
,
A
.
F
u
e
n
t
e
s
,
a
n
d
J
.
M
.
B
a
r
a
t
,
“
N
o
n
d
e
st
r
u
c
t
i
v
e
a
sse
ssm
e
n
t
o
f
f
r
e
sh
n
e
ss
i
n
p
a
c
k
a
g
e
d
sl
i
c
e
d
c
h
i
c
k
e
n
b
r
e
a
st
s
u
si
n
g
S
W
-
N
I
R
sp
e
c
t
r
o
sc
o
p
y
,
”
F
o
o
d
Re
s
e
a
r
c
h
I
n
t
e
r
n
a
t
i
o
n
a
l
,
v
o
l
.
4
4
,
n
o
.
1
,
p
p
.
3
3
1
–
3
3
7
,
Ja
n
.
2
0
1
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
f
o
o
d
r
e
s
.
2
0
1
0
.
1
0
.
0
1
1
.
[
2
6
]
N
.
M
o
r
sy
a
n
d
D
.
W
.
S
u
n
,
“
R
o
b
u
st
l
i
n
e
a
r
a
n
d
n
o
n
-
l
i
n
e
a
r
m
o
d
e
l
s
o
f
N
I
R
sp
e
c
t
r
o
s
c
o
p
y
f
o
r
d
e
t
e
c
t
i
o
n
a
n
d
q
u
a
n
t
i
f
i
c
a
t
i
o
n
o
f
a
d
u
l
t
e
r
a
n
t
s
i
n
f
r
e
s
h
a
n
d
f
r
o
z
e
n
-
t
h
a
w
e
d
m
i
n
c
e
d
b
e
e
f
,
”
M
e
a
t
S
c
i
e
n
c
e
,
v
o
l
.
9
3
,
n
o
.
2
,
p
p
.
2
9
2
–
3
0
2
,
F
e
b
.
2
0
1
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
me
a
t
sc
i
.
2
0
1
2
.
0
9
.
0
0
5
.
[
2
7
]
S
.
A
n
d
r
é
s
,
I
.
M
u
r
r
a
y
,
E.
A
.
N
a
v
a
j
a
s,
A
.
V
.
F
i
s
h
e
r
,
N
.
R
.
L
a
m
b
e
,
a
n
d
L
.
B
ü
n
g
e
r
,
“
P
r
e
d
i
c
t
i
o
n
o
f
se
n
so
r
y
c
h
a
r
a
c
t
e
r
i
st
i
c
s
o
f
l
a
mb
mea
t
sa
mp
l
e
s
b
y
n
e
a
r
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
s
p
e
c
t
r
o
sc
o
p
y
,
”
Me
a
t
S
c
i
e
n
c
e
,
v
o
l
.
7
6
,
n
o
.
3
,
p
p
.
5
0
9
–
5
1
6
,
Ju
l
.
2
0
0
7
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
me
a
t
sc
i
.
2
0
0
7
.
0
1
.
0
1
1
.
[
2
8
]
F
.
G
u
y
,
S
.
P
r
a
c
h
e
,
A
.
Th
o
m
a
s,
D
.
B
a
u
c
h
a
r
t
,
a
n
d
D
.
A
n
d
u
e
z
a
,
“
P
r
e
d
i
c
t
i
o
n
o
f
l
a
mb
me
a
t
f
a
t
t
y
a
c
i
d
c
o
m
p
o
s
i
t
i
o
n
u
si
n
g
n
e
a
r
-
i
n
f
r
a
r
e
d
r
e
f
l
e
c
t
a
n
c
e
s
p
e
c
t
r
o
sc
o
p
y
(
N
I
R
S
)
,
”
F
o
o
d
C
h
e
m
i
st
r
y
,
v
o
l
.
1
2
7
,
n
o
.
3
,
p
p
.
1
2
8
0
–
1
2
8
6
,
A
u
g
.
2
0
1
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
f
o
o
d
c
h
e
m.
2
0
1
1
.
0
1
.
0
8
4
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Ra
shi
d
a
h
G
h
a
z
a
li
is
a
r
e
se
a
rc
h
e
r
th
a
t
h
o
l
d
s
a
Ba
c
h
e
lo
r
in
El
e
c
t
rica
l
En
g
i
n
e
e
rin
g
(In
stru
m
e
n
tati
o
n
a
n
d
C
o
n
tr
o
l)
a
n
d
Do
c
t
o
r
o
f
P
h
il
o
s
o
p
h
y
(
El
e
c
tri
c
a
l
En
g
in
e
e
ri
n
g
)
fr
o
m
Un
iv
e
rsiti
Tek
n
o
lo
g
i
M
a
lay
sia
in
2
0
1
1
a
n
d
2
0
2
0
,
re
sp
e
c
ti
v
e
l
y
.
He
r
re
se
a
rc
h
a
re
a
s
o
f
in
tere
st
in
c
lu
d
e
a
p
p
l
ied
a
rti
ficia
l
in
telli
g
e
n
c
e
,
se
n
so
r
tec
h
n
o
lo
g
y
,
m
a
c
h
in
e
lea
rn
i
n
g
,
c
o
n
tro
l
a
n
d
in
stru
m
e
n
tati
o
n
,
s
p
e
c
tro
sc
o
p
y
,
si
g
n
a
l
d
a
ta
p
r
o
c
e
ss
in
g
,
c
h
e
m
o
m
e
tri
c
s,
a
n
d
d
a
ta
s
c
ien
c
e
.
S
h
e
is
a
m
e
m
b
e
r
o
f
Bo
a
rd
o
f
En
g
i
n
e
e
rs
M
a
lay
sia
(BEM
).
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
ra
sh
id
a
h
2
9
@li
v
e
.
u
tm.m
y
.
H
e
r
li
n
a
Abd
u
l
Ra
h
i
m
h
o
ld
s
a
b
a
c
h
e
lo
r
o
f
E
n
g
i
n
e
e
rin
g
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
(Co
n
tr
o
l
a
n
d
In
str
u
m
e
n
tatio
n
)
a
n
d
a
M
a
ste
r
o
f
S
c
ien
c
e
in
E
lec
tri
c
a
l
En
g
in
e
e
rin
g
fr
o
m
Un
iv
e
rsiti
Te
k
n
o
lo
g
i
M
a
lay
sia
,
o
b
tai
n
e
d
i
n
1
9
9
8
a
n
d
2
0
0
0
,
re
s
p
e
c
ti
v
e
ly
.
S
h
e
su
b
se
q
u
e
n
tl
y
e
a
rn
e
d
h
e
r
Do
c
to
r
o
f
P
h
il
o
so
p
h
y
in
El
e
c
tri
c
a
l
En
g
i
n
e
e
rin
g
fro
m
Un
iv
e
rsiti
Tek
n
o
lo
g
i
M
ARA
in
2
0
0
9
.
C
u
rre
n
tl
y
,
s
h
e
se
rv
e
s
a
s
a
P
ro
fe
ss
o
r
a
t
th
e
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
En
g
i
n
e
e
rin
g
,
Un
iv
e
rsiti
Tek
n
o
l
o
g
i
M
a
lay
sia
.
He
r
a
re
a
s
o
f
re
se
a
rc
h
i
n
tere
st
i
n
c
lu
d
e
S
e
n
so
r
Tec
h
n
o
l
o
g
y
a
n
d
Artifi
c
ial
In
telli
g
e
n
c
e
S
y
ste
m
s.
S
h
e
h
a
s
b
e
e
n
a
c
ti
v
e
ly
i
n
v
o
l
v
e
d
in
re
se
a
rc
h
a
n
d
d
e
v
e
lo
p
m
e
n
t
,
with
a
to
tal
o
f
7
2
in
tellec
tu
a
l
p
r
o
p
e
rty
ri
g
h
ts
(IP
R)
fil
e
d
,
i
n
c
lu
d
i
n
g
p
a
ten
t
fil
i
n
g
s
a
n
d
c
o
p
y
ri
g
h
ts
.
Ad
d
i
ti
o
n
a
ll
y
,
sh
e
h
a
s
p
u
b
li
sh
e
d
o
v
e
r
2
0
0
re
se
a
rc
h
a
rti
c
les
in
v
a
rio
u
s
i
n
tern
a
ti
o
n
a
l
jo
u
r
n
a
ls,
c
o
n
fe
re
n
c
e
p
ro
c
e
e
d
in
g
s
,
b
o
o
k
c
h
a
p
ters
,
a
n
d
re
se
a
rc
h
m
o
n
o
g
ra
p
h
s.
S
h
e
is
a
se
n
io
r
m
e
m
b
e
r
o
f
th
e
In
stit
u
te
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
E
n
g
i
n
e
e
rs
(IE
EE
),
a
P
ro
fe
ss
io
n
a
l
En
g
i
n
e
e
r
wit
h
t
h
e
B
o
a
rd
o
f
En
g
in
e
e
rs
M
a
lay
sia
(BE
M
),
a
n
d
a
C
h
a
rtere
d
E
n
g
i
n
e
e
r
wit
h
t
h
e
In
stit
u
te
o
f
E
n
g
in
e
e
rin
g
a
n
d
Tec
h
n
o
l
o
g
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
h
e
rli
n
a
@
u
tm.m
y
.
S
y
a
h
id
a
h
N
u
r
a
n
i
Zu
lk
ifl
i
is
a
r
e
se
a
rc
h
e
r
t
h
a
t
h
o
l
d
s
h
e
r
B.
En
g
.
d
e
g
re
e
(
Ho
n
o
u
rs)
i
n
El
e
c
tri
c
a
l
E
n
g
i
n
e
e
rin
g
(
El
e
c
tro
n
ics
)
fr
o
m
Un
i
v
e
rsiti
Tek
n
o
lo
g
i
M
a
lay
sia
(UT
M
)
,
S
k
u
d
a
i,
M
a
lay
sia
,
M
.
S
c
.
i
n
In
n
o
v
a
ti
o
n
E
n
g
i
n
e
e
rin
g
De
sig
n
fr
o
m
Un
iv
e
rsiti
P
u
tra
M
a
lay
sia
(UPM
)
a
n
d
D
o
c
to
r
o
f
P
h
il
o
so
p
h
y
(El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
)
fr
o
m
Un
i
v
e
rsiti
Tek
n
o
lo
g
i
M
a
lay
sia
,
in
2
0
1
2
,
2
0
1
4
a
n
d
2
0
2
4
,
re
sp
e
c
ti
v
e
ly
.
Th
r
o
u
g
h
o
u
t
h
e
r
s
tu
d
y
a
n
d
re
se
a
rc
h
,
s
h
e
h
a
s
a
n
in
tere
st
in
m
o
n
i
to
ri
n
g
a
n
d
c
o
n
tro
l
sy
ste
m
,
se
n
so
r
tec
h
n
o
l
o
g
y
a
n
d
so
ftwa
re
e
n
g
in
e
e
ri
n
g
.
P
re
v
io
u
sly
,
sh
e
h
a
s
wo
r
k
e
d
wit
h
M
a
lay
sia
n
Nu
c
lea
r
Ag
e
n
c
y
fo
r
in
d
u
strialtrain
in
g
a
n
d
wa
s
e
x
p
o
se
d
t
o
v
a
rio
u
s
c
h
e
m
ica
l
a
n
a
ly
ti
c
a
l
tec
h
n
iq
u
e
s
in
c
lu
d
e
Ra
m
a
n
,
X
-
ra
y
d
iffr
a
c
ti
o
n
,
NIR,
G
CM
S
a
n
d
ICP
M
S
.
Sh
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
sn
u
ra
n
i
2
@g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.