T
E
L
K
O
M
NIKA
T
elec
o
mm
un
ica
t
io
n Co
m
pu
t
i
ng
E
lect
ro
nics
a
nd
Co
ntr
o
l
Vo
l.
23
,
No
.
5
,
Octo
b
er
20
25
,
p
p
.
1
188
~1
2
0
0
I
SS
N:
1
6
9
3
-
6
9
3
0
,
DOI
: 1
0
.
1
2
9
2
8
/
T
E
L
KOM
NI
K
A
.
v
23
i
5
.
26
731
1188
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//jo
u
r
n
a
l.u
a
d
.
a
c.
id
/in
d
ex
.
p
h
p
/TELK
OM
N
I
K
A
Subs
trate
t
hic
kne
ss
va
ria
tion o
n t
h
e f
req
uency
r
espo
nse o
f
m
icro
st
rip ant
en
na
f
o
r
mm
-
w
a
v
e
a
pplica
tion
B
ello
Abdu
lla
hi M
uh
a
mm
a
d
1
,
M
o
hd
F
a
dzil Ain
1
,
M
o
hd
Na
zr
i
M
a
h
m
u
d
1
,
M
o
hd
Z
a
mir P
a
k
h
urud
din
2
,
Ah
m
a
du
G
irg
iri
1
,
M
o
ha
m
a
d
F
a
iz
M
a
ha
m
e
d O
m
a
r
3
1
S
c
h
o
o
l
o
f
El
e
c
t
r
i
c
a
l
a
n
d
El
e
c
t
r
o
n
i
c
E
n
g
i
n
e
e
r
i
n
g
,
F
a
c
u
l
t
y
o
f
En
g
i
n
e
e
r
i
n
g
,
U
n
i
v
e
r
si
t
i
S
a
i
n
s
M
a
l
a
y
si
a
,
P
u
l
a
u
P
i
n
a
n
g
,
M
a
l
a
y
si
a
2
S
c
h
o
o
l
o
f
P
h
y
si
c
,
F
a
c
u
l
t
y
o
f
P
u
r
e
S
c
i
e
n
c
e
,
U
n
i
v
e
r
si
t
i
S
a
i
n
s
M
a
l
a
y
si
a
,
P
u
l
a
u
P
i
n
a
n
g
,
M
a
l
a
y
si
a
3
C
o
l
l
a
b
o
r
a
t
i
v
e
M
i
c
r
o
e
l
e
c
t
r
o
n
i
c
D
e
si
g
n
E
x
c
e
l
l
e
n
c
e
C
e
n
t
e
r
(
C
ED
E
C
)
,
P
u
l
a
u
P
i
n
a
n
g
,
M
a
l
a
y
si
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
17
,
2024
R
ev
i
s
ed
A
u
g
24
,
2
0
2
5
A
cc
ep
ted
Sep
10
,
2
0
2
5
S
u
b
stra
te
h
e
ig
h
t
(Hs
)
is
a
n
imp
o
rtan
t
p
a
ra
m
e
ter
th
a
t
in
f
lu
e
n
c
e
s
a
n
ten
n
a
p
ro
p
a
g
a
ti
o
n
.
T
h
is
re
se
a
rc
h
d
e
sig
n
e
d
a
lo
w
-
p
ro
f
il
e
2
8
G
Hz
m
icro
strip
a
n
ten
n
a
o
n
a
p
o
ly
i
m
id
e
su
b
stra
te
w
it
h
v
a
ry
in
g
Hs
u
sin
g
CS
T
S
tu
d
io
so
f
tw
a
r
e
.
T
h
e
sim
u
late
d
re
su
lt
s
a
n
d
M
INIT
AB
so
f
tw
a
r
e
w
e
r
e
u
se
d
t
o
d
e
v
e
lo
p
re
g
re
ss
io
n
m
o
d
e
l
e
q
u
a
ti
o
n
s,
w
h
ich
a
n
a
ly
z
e
d
th
e
im
p
a
c
t
o
f
Hs
v
a
riat
io
n
o
n
t
h
e
a
n
ten
n
a
p
e
rf
o
r
m
a
n
c
e
.
T
h
e
p
ro
p
o
se
d
m
o
d
e
ls
’
e
q
u
a
ti
o
n
s
h
a
v
e
in
d
ica
ted
a
n
i
n
c
re
a
se
in
a
v
e
ra
g
e
re
sp
o
n
se
s
o
f
re
so
n
a
n
t
f
re
q
u
e
n
c
y
(F
r),
p
e
rc
e
n
tag
e
b
a
n
d
w
id
t
h
(
%
BW
),
g
a
in
(G
),
re
tu
rn
lo
ss
(RL
),
a
n
d
e
ff
icie
n
c
y
(ƞ
)
a
s
th
e
Hs
d
e
c
re
a
se
d
.
T
h
e
a
n
ten
n
a
a
c
h
iev
e
d
a
BW
o
f
3
.
8
7
G
Hz
a
t
Hs
0
.
5
2
5
m
m
a
n
d
5
.
5
4
G
Hz
a
t
0
.
0
2
5
m
m
,
a
G
o
f
3
.
8
9
d
Bi
a
t
Hs
0
.
5
2
5
m
m
a
n
d
3
.
9
1
d
Bi
a
t
Hs
0
.
0
2
5
m
m
,
a
n
d
a
n
ƞ
o
f
9
4
.
1
9
%
a
t
Hs
0
.
5
2
5
m
m
a
n
d
9
8
.
2
4
%
a
t
Hs
0
.
0
2
5
m
m
.
T
h
e
a
n
ten
n
a
wa
s
f
a
b
rica
ted
a
n
d
tes
ted
,
a
n
d
th
e
e
x
p
e
rim
e
n
tal
re
su
lt
s
w
e
re
v
a
l
id
a
ted
w
it
h
th
e
m
o
d
e
ls
’
e
q
u
a
ti
o
n
s.
T
h
e
th
in
n
e
r
su
b
stra
te
re
su
l
ted
in
a
n
im
p
ro
v
e
m
e
n
t
in
t
h
e
a
n
te
n
n
a
p
e
r
f
o
r
m
a
n
c
e
.
K
ey
w
o
r
d
s
:
An
te
n
n
a
p
r
o
p
ag
atio
n
L
o
w
p
r
o
f
ile
Mic
r
o
s
tr
ip
an
ten
n
a
R
eg
r
es
s
io
n
m
o
d
el
eq
u
atio
n
s
Su
b
s
tr
ate
h
eig
h
t
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Mo
h
d
Fad
zil
A
i
n
Sch
o
o
l o
f
E
lectr
ical
an
d
E
lectr
o
n
ic
E
n
g
in
ee
r
i
n
g
,
Un
i
v
er
s
it
i S
ain
s
Ma
la
y
s
ia
E
n
g
in
ee
r
i
n
g
C
a
m
p
u
s
1
4
3
0
0
Nib
o
n
g
T
eb
al,
P
u
lau
P
in
an
g
,
Ma
la
y
s
ia
E
m
ail:
ee
m
f
ad
zil@
u
s
m
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
I
n
r
ec
en
t
y
ea
r
s
,
w
ir
eles
s
d
ev
i
ce
s
h
av
e
b
ec
o
m
e
p
o
r
tab
le
an
d
r
eq
u
ir
e
s
m
all
an
te
n
n
as.
T
h
u
s
,
s
u
b
s
tr
ate
h
eig
h
t
(
H
s
)
s
ig
n
i
f
ica
n
tl
y
i
m
p
ac
ts
an
te
n
n
a
p
o
r
tab
ilit
y
an
d
p
er
f
o
r
m
a
n
ce
,
as
t
h
i
n
n
er
s
u
b
s
tr
ate
an
ten
n
as
ar
e
lig
h
t
w
ei
g
h
t
an
d
p
o
r
tab
le
[
1
]
.
T
h
e
Hs
em
p
lo
y
ed
p
r
o
p
ag
atio
n
ch
ar
ac
ter
is
tic
s
,
s
u
c
h
as
el
ec
tr
o
m
a
g
n
etic
f
ield
d
is
t
r
ib
u
tio
n
w
it
h
r
ad
iatio
n
ef
f
icie
n
cies
an
d
r
eso
n
ati
n
g
f
r
eq
u
en
cie
s
[
2
]
.
T
h
e
r
elatio
n
s
h
i
p
b
etw
ee
n
th
e
Hs
v
ar
iatio
n
an
d
m
icr
o
s
tr
ip
an
te
n
n
a
p
er
f
o
r
m
an
ce
is
s
u
ch
t
h
at
lo
w
er
Hs
g
e
n
er
all
y
p
er
f
o
r
m
b
ett
er
at
h
ig
h
f
r
eq
u
e
n
cies
[
3
]
.
T
h
e
lo
w
er
H
s
i
s
ap
p
licab
le
in
h
i
g
h
er
-
f
r
eq
u
e
n
c
y
ap
p
licat
io
n
s
,
i
n
cl
u
d
in
g
a
m
i
lli
m
eter
-
wav
e
(
m
m
-
w
a
v
e)
i
n
th
e
in
ter
n
et
o
f
th
i
n
g
s
(
I
o
T
)
a
n
d
w
ea
r
ab
le
d
ev
ices
[
4
]
.
Var
i
o
u
s
s
u
b
s
tr
ates,
in
cl
u
d
in
g
p
o
l
y
ester
s
,
tex
tile
s
,
an
d
p
o
ly
m
er
s
w
it
h
v
ar
y
i
n
g
th
ic
k
n
e
s
s
es a
n
d
elec
tr
ical
p
r
o
p
er
ties
,
h
av
e
b
ee
n
u
s
ed
i
n
th
e
a
n
te
n
n
a
d
esig
n
[
5
]
.
Ho
w
e
v
er
,
th
e
m
aj
o
r
ch
allen
g
e
o
f
d
esig
n
i
n
g
a
p
r
in
tab
le
m
icr
o
s
tr
ip
an
ten
n
a
is
f
in
d
i
n
g
a
s
u
itab
le
s
u
b
s
tr
ate
an
d
th
ic
k
n
es
s
w
i
th
s
u
itab
le
d
ielec
tr
ic
co
n
s
tan
t
s
.
C
h
an
g
i
n
g
t
h
e
Hs
af
f
ec
ts
t
h
e
ca
p
ac
itan
ce
,
ef
f
ec
t
iv
e
d
ielec
tr
ic
co
n
s
ta
n
t,
a
n
d
in
d
u
ct
iv
e
p
r
o
p
er
ties
,
ca
u
s
in
g
a
s
h
if
t
in
t
h
e
r
eso
n
an
t
f
r
eq
u
e
n
c
y
[
6
]
.
A
s
u
b
s
tr
ate
w
it
h
a
lo
w
er
d
ielec
tr
ic
co
n
s
ta
n
t
(
=2
.
2
,
3
,
o
r
4
)
ac
h
iev
ed
a
w
id
er
b
an
d
w
id
th
o
f
t
h
e
o
p
er
atin
g
m
m
-
w
av
e
f
r
eq
u
e
n
c
y
w
it
h
a
h
i
g
h
g
ain
,
w
h
ile
a
h
i
g
h
d
ielec
tr
ic
co
n
s
tan
t
o
f
=1
0
.
2
lead
s
to
an
in
cr
ea
s
e
in
s
u
r
f
ac
e
w
av
e
lo
s
s
an
d
d
ielec
tr
ic
lo
s
s
[
7
]
.
A
p
o
l
y
m
e
r
-
b
ased
s
u
b
s
tr
ate
s
u
ch
a
s
p
o
ly
i
m
id
e
(
P
I
)
h
as
b
ee
n
co
n
s
id
e
r
ed
f
o
r
lo
w
-
p
r
o
f
ile
an
ten
n
a
s
d
u
e
to
its
lig
h
t
w
e
ig
h
t
an
d
b
etter
p
er
f
o
r
m
a
n
ce
[
8
]
.
P
I
h
as
a
lo
w
d
ielec
tr
ic
p
er
m
itt
iv
it
y
w
i
th
a
r
ed
u
ce
d
d
ielec
tr
ic
co
n
s
tan
t
to
i
m
p
r
o
v
e
cir
cu
it
in
teg
r
atio
n
[
9
]
.
A
p
r
in
tab
le
an
te
n
n
a
u
s
in
g
a
t
h
in
Hs
ex
h
ib
its
a
b
r
o
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
S
u
b
s
tr
a
te
th
ickn
ess
va
r
ia
tio
n
o
n
th
e
fr
eq
u
e
n
cy
r
esp
o
n
s
e
o
f
micro
s
tr
ip
…
(
B
ello
A
b
d
u
lla
h
i
Mu
h
a
mma
d
)
1189
f
r
eq
u
en
c
y
r
an
g
e
an
d
h
i
g
h
p
er
f
o
r
m
a
n
ce
[
1
0
]
.
A
th
in
s
u
b
s
tr
at
e
h
as b
ee
n
r
ep
o
r
ted
to
im
p
r
o
v
e
an
ten
n
a
b
an
d
w
id
t
h
an
d
ef
f
icie
n
c
y
at
h
i
g
h
f
r
eq
u
e
n
cies d
u
e
to
its
d
ielec
tr
ic
p
er
m
i
ttiv
it
y
[
1
1
]
.
A
s
tu
d
y
in
v
e
s
ti
g
ates
t
h
e
d
esi
g
n
o
f
a
n
ten
n
a
s
b
y
s
tac
k
i
n
g
f
o
u
r
d
if
f
er
e
n
t
t
y
p
e
s
o
f
s
u
b
s
tr
ate
s
t
o
i
m
p
r
o
v
e
th
e
an
ten
n
a
p
er
f
o
r
m
a
n
ce
,
in
wh
ich
th
i
n
n
er
s
u
b
s
tr
ates le
ad
to
b
etter
p
er
f
o
r
m
a
n
ce
[
1
2
]
.
A
n
a
n
ten
n
a
ar
r
a
y
w
i
th
a
th
i
n
-
f
il
m
s
u
b
s
tr
ate
s
i
g
n
if
ican
t
l
y
e
n
h
a
n
ce
d
g
ai
n
w
i
th
a
co
m
p
ac
t
s
ize
[
1
3
]
.
T
h
e
P
I
th
in
s
u
b
s
tr
ate
is
lo
w
-
co
s
t
co
m
p
ar
ed
to
th
ic
k
er
s
u
b
s
tr
ates
in
p
r
o
d
u
cin
g
a
lo
w
-
co
s
t
a
n
te
n
n
a
[
1
4
]
.
A
f
ab
r
icate
d
m
icr
o
s
tr
i
p
an
ten
n
a
o
n
a
th
in
P
I
s
u
b
s
tr
ate
d
ec
r
ea
s
ed
an
te
n
n
a
w
ei
g
h
t
b
y
u
p
to
9
2
%
co
m
p
a
r
ed
to
a
th
ick
er
s
u
b
s
tr
ate
a
n
te
n
n
a
[
1
5
]
.
A
th
in
P
I
s
u
b
s
tr
ate
i
m
p
r
o
v
ed
an
te
n
n
a
b
an
d
w
id
th
f
o
r
w
id
eb
an
d
ap
p
licatio
n
s
[
1
6
]
.
A
P
I
s
u
b
s
tr
ate
w
i
th
v
ar
y
i
n
g
th
ic
k
n
e
s
s
e
s
is
p
r
o
p
o
s
ed
in
th
is
r
esear
ch
w
o
r
k
d
u
e
to
its
f
lex
ib
ilit
y
,
li
g
h
t
w
ei
g
h
t,
an
d
lo
w
p
o
w
er
co
n
s
u
m
p
tio
n
.
T
h
is
ar
ticle
ap
p
lied
r
eg
r
ess
io
n
m
o
d
eli
n
g
t
o
in
v
e
s
ti
g
ate
t
h
e
ef
f
ec
t
o
f
H
s
v
ar
iatio
n
o
n
t
h
e
an
te
n
n
a
p
er
f
o
r
m
a
n
ce
u
s
i
n
g
th
e
r
eg
r
ess
io
n
m
o
d
els a
n
d
th
e
m
o
d
els
’
eq
u
atio
n
s
.
Dif
f
er
en
t
r
eg
r
es
s
io
n
m
o
d
els
i
n
clu
d
e
n
o
n
l
in
ea
r
,
li
n
ea
r
,
m
u
l
tip
le
lin
ea
r
,
a
n
d
p
o
ly
n
o
m
ial
r
eg
r
ess
io
n
m
o
d
el
s
.
T
h
e
m
o
d
el
d
esig
n
d
ep
en
d
s
o
n
t
h
e
d
ep
en
d
e
n
t
an
d
in
d
ep
en
d
en
t
v
ar
iab
les
(
x
an
d
y
)
.
T
h
e
x
v
ar
iab
le
p
r
ed
icts
th
e
r
esp
o
n
s
e
o
f
y
.
Sev
er
al
r
ec
en
t
s
t
u
d
ies
[
1
7
]
–
[
2
0
]
illu
s
tr
ated
t
h
e
r
eg
r
es
s
io
n
i
n
(
1
)
-
(
1
5
)
w
i
th
t
h
e
v
ar
io
u
s
m
et
h
o
d
s
.
T
h
is
ar
ticle
w
o
r
k
ed
o
n
p
o
ly
n
o
m
ial
r
eg
r
es
s
io
n
an
d
d
ev
elo
p
ed
th
e
p
r
o
p
o
s
ed
r
eg
r
ess
io
n
m
o
d
els
t
h
at
an
al
y
ze
d
t
h
e
r
elatio
n
s
h
ip
b
et
wee
n
d
ep
en
d
en
t a
n
d
i
n
d
ep
en
d
en
t v
ar
iab
les.
≈
0
+
1
(
1
)
=
0
+
1
+
∈
(
2
)
=
0
+
1
+
⋯
+
+
∈
(
3
)
=
0
+
1
2
+
⋯
+
+
∈
(
4
)
T
h
e
y
is
t
h
e
d
ep
en
d
en
t
v
ar
iab
le
,
x
is
th
e
in
d
ep
en
d
e
n
t
v
ar
iab
le,
an
d
x
p
r
ed
icts
t
h
e
y
r
esp
o
n
s
e.
β
0
is
t
h
e
y
-
i
n
ter
ce
p
t,
an
d
β
1
is
t
h
e
r
eg
r
es
s
io
n
co
e
f
f
ic
ien
t
o
n
t
h
e
v
er
tica
l
ax
i
s
o
f
t
h
e
r
eg
r
ess
io
n
li
n
e,
w
h
ic
h
is
t
h
e
s
lo
p
e
o
f
th
e
r
eg
r
es
s
io
n
lin
e.
ε
r
ep
r
ese
n
ted
th
e
r
an
d
o
m
er
r
o
r
an
d
e
x
p
r
ess
ed
t
h
e
r
a
n
d
o
m
f
ac
to
r
s
’
e
f
f
ec
t
o
n
th
e
d
ep
en
d
en
t
v
ar
iab
le.
≈
r
ep
r
esen
ts
ap
p
r
o
x
i
m
atel
y
,
a
n
d
(
4
)
r
ep
r
esen
ts
t
h
e
p
o
l
y
n
o
m
i
al
eq
u
atio
n
.
̂
=
̂
0
+
̂
1
+
(
5
)
̂
1
=
∑
(
−
̅
)
(
−
̅
)
=
1
∑
(
=
1
(
−
̅
)
2
)
(
6
)
̂
0
=
̅
−
̂
1
̅
(
7
)
=
̃
̃
−
(
8
)
ŷ
r
ep
r
esen
ts
a
p
r
ed
ictio
n
o
f
Y
w
h
er
e
X
r
ep
r
esen
ts
x
an
d
th
e
h
at
s
y
m
b
o
l
d
en
o
tes
t
h
e
esti
m
ate
d
v
alu
e
f
o
r
u
n
k
n
o
w
n
p
ar
am
eter
s
o
r
co
ef
f
icie
n
ts
i
n
t
h
e
p
r
ed
icted
v
al
u
e
o
f
th
e
r
e
s
p
o
n
s
e.
T
h
e
r
eg
r
es
s
io
n
tec
h
n
iq
u
es
w
ill
e
v
al
u
ate
β
0
an
d
β
1
an
d
o
b
s
er
v
e
t
h
e
s
a
m
p
l
e
(
x
i
,
y
i
)
to
th
e
m
o
d
el
p
ar
am
e
ter
s
an
d
th
e
s
ca
tter
d
iag
r
a
m
.
T
h
e
d
eter
m
i
n
atio
n
co
ef
f
icie
n
t
s
(
C
o
ef
)
ar
e
in
(
9
)
an
d
(
10
)
.
=
∑
(
−
̂
)
2
−
1
(
9
)
=
√
1
−
2
(
1
0
)
R
SS
is
a
r
eg
r
ess
io
n
s
u
m
o
f
s
q
u
ar
es,
an
d
R
SE
m
ea
s
u
r
es
f
it
n
ess
,
in
d
icati
n
g
w
h
eth
er
th
e
m
o
d
el
f
its
o
r
d
o
es
n
o
t
f
it
th
e
d
ata.
T
h
e
p
r
e
d
icted
v
alu
e
ŷ
is
th
e
o
r
ig
in
al
v
alu
e
o
f
y
.
T
h
e
C
o
ef
d
eter
m
i
n
ed
R
-
Sq
u
ar
e
(
R
-
Sq
)
an
al
y
ze
s
th
e
r
eg
r
e
s
s
io
n
d
ata
o
f
m
o
d
el
p
er
f
o
r
m
a
n
c
e
an
d
th
e
s
t
r
en
g
t
h
o
f
th
e
r
elatio
n
s
h
ip
b
et
w
ee
n
th
e
m
o
d
el
an
d
th
e
d
ata.
T
h
e
r
an
g
e
o
f
R
-
Sq
is
b
et
w
ee
n
0
an
d
1
.
T
h
e
h
ig
h
er
v
alu
e
o
f
R
-
Sq
in
d
icate
s
t
h
e
m
o
d
el
to
b
e
o
p
ti
m
al.
−
=
1
−
(
1
1
)
=
∑
(
−
)
2
(
1
2
)
=
∑
(
−
̅
)
2
(
1
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
1
6
9
3
-
6930
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
,
Vo
l.
23
,
No
.
5
,
Octo
b
e
r
20
25
:
1
1
8
8
-
1
200
1190
SS
Error
is
th
e
s
u
m
o
f
th
e
r
esid
u
al
s
q
u
ar
es
f
r
o
m
th
e
m
o
d
el,
an
d
SS
Total
is
th
e
s
u
m
o
f
s
q
u
ar
es
o
f
er
r
o
r
s
o
f
th
e
ac
tu
al
o
u
tp
u
t a
n
d
t
h
e
m
ea
n
o
f
t
h
e
o
u
t
p
u
t.
Sin
ce
R
-
Sq
d
eter
m
in
e
s
th
e
f
i
tn
es
s
o
f
d
ata
o
n
th
e
r
eg
r
ess
i
o
n
m
o
d
el,
th
e
m
o
d
el
p
er
f
o
r
m
an
ce
,
t
h
e
ad
j
u
s
ted
R
-
Sq
o
r
m
o
d
if
ied
R
-
Sq
,
is
ca
lled
R
-
Sq
ad
j
u
s
t,
w
h
ic
h
in
cr
ea
s
es
w
it
h
th
e
i
n
cr
ea
s
ed
m
o
d
el
p
er
f
o
r
m
a
n
ce
.
W
h
en
u
n
i
m
p
o
r
ta
n
t
f
ea
t
u
r
es
ar
e
ad
d
e
d
to
th
e
m
o
d
el
an
d
th
e
r
esid
u
al
er
r
o
r
is
r
e
d
u
ce
d
,
th
e
R
-
s
q
u
ar
e
ad
j
u
s
t
m
en
t
(
R
-
S
q
(
a
d
j)
)
w
ill
also
b
e
r
ed
u
ce
d
,
an
d
th
e
R
-
Sq
w
ill i
n
cr
ea
s
e.
−
(
)
=
1
−
(
1
−
−
)
(
−
1
)
−
−
1
(
1
4
)
=
√
(
−
)
r
(
1
5
)
w
h
er
e
N
V
r
ep
r
esen
ts
th
e
n
u
m
b
er
o
f
th
e
d
ata
s
am
p
le,
N
is
th
e
n
u
m
b
er
o
f
f
ea
t
u
r
es,
m
a
k
i
n
g
t
h
e
R
-
S
q
(
a
d
j)
m
o
r
e
r
o
b
u
s
t to
th
e
ch
a
n
g
e
o
f
f
ea
t
u
r
e
s
,
an
d
r
is
t
h
e
m
o
d
el
co
r
r
elatio
n
.
T
h
is
ar
ticle
aim
s
to
ad
d
r
ess
th
e
is
s
u
es
o
f
d
r
a
w
b
ac
k
s
in
th
e
2
8
GHz
p
r
in
tab
le
m
icr
o
s
tr
ip
an
ten
n
a
’
s
p
ar
am
eter
s
p
er
f
o
r
m
an
ce
,
s
u
c
h
as
r
eso
n
an
t
f
r
eq
u
e
n
c
y
(
F
r
)
,
b
an
d
w
id
th
(
BW
)
,
g
ai
n
(
G
)
,
an
d
ef
f
icien
c
y
(
ƞ
)
ca
u
s
ed
b
y
th
e
v
ar
iat
io
n
o
f
Hs.
T
o
in
v
e
s
ti
g
ate,
a
n
al
y
ze
,
ev
al
u
ate,
an
d
v
alid
ate
t
h
e
e
x
p
er
i
m
e
n
t
al
r
esu
l
ts
a
n
d
t
h
e
r
eg
r
ess
io
n
m
o
d
els
’
eq
u
atio
n
s
.
T
h
e
p
r
o
p
o
s
ed
m
o
d
el
an
d
m
ath
e
m
atica
l
m
o
d
el
eq
u
a
tio
n
s
w
er
e
u
s
ed
to
g
iv
e
i
n
s
i
g
h
t
to
th
e
an
te
n
n
a
d
es
ig
n
er
s
o
n
h
o
w
to
en
h
a
n
ce
th
e
a
n
te
n
n
a
’
s
p
a
r
a
m
eter
s
an
d
t
h
e
o
v
er
all
an
ten
n
a
’
s
p
er
f
o
r
m
a
n
ce
.
2.
M
E
T
H
O
D
2
.
1
.
Ant
enna
des
ig
n a
nd
co
nfig
ura
t
io
n
T
h
e
an
ten
n
a
d
esig
n
an
d
co
n
f
i
g
u
r
atio
n
u
s
ed
a
co
p
lan
ar
w
a
v
e
g
u
id
e
(
C
P
W
)
w
i
th
t
w
o
s
lo
ts
o
n
th
e
p
atch
an
d
a
g
ap
b
etw
ee
n
th
e
f
ee
d
li
n
e
an
d
th
e
p
atch
,
as
illu
s
tr
ated
in
Fig
u
r
e
1.
T
h
e
s
u
b
s
tr
ate
th
ic
k
n
e
s
s
w
as
v
ar
ied
to
an
al
y
ze
t
h
e
i
m
p
ac
t
o
f
P
I
s
u
b
s
tr
ate
th
ic
k
n
e
s
s
es
(
H
s
)
o
n
th
e
an
t
en
n
a
’
s
p
er
f
o
r
m
an
ce
.
U
n
d
er
s
ta
n
d
in
g
th
e
d
ielec
tr
ic
m
ater
ial
i
s
n
ec
e
s
s
ar
y
s
i
n
ce
t
h
e
d
ielec
tr
ic
m
ater
ial
h
as
a
s
ig
n
if
ican
t
r
o
le
i
n
t
h
e
a
n
ten
n
a
p
er
f
o
r
m
an
ce
.
T
h
e
p
r
o
p
o
s
ed
an
ten
n
a
h
a
s
a
d
ielec
tr
ic
co
n
s
ta
n
t
o
f
ε
r
=3
.
5
an
d
a
lo
s
s
tan
g
e
n
t,
δ=0
.
0
0
2
7
,
d
esig
n
ed
w
i
th
v
ar
io
u
s
s
u
b
s
tr
ate
th
ic
k
n
es
s
es.
T
h
e
v
ar
iatio
n
o
f
Hs
h
a
s
a
s
ig
n
i
f
ica
n
t
i
m
p
ac
t
o
n
th
e
an
te
n
n
a
’
s
p
er
f
o
r
m
an
ce
.
T
h
e
s
l
o
t
te
d
C
PW
p
r
i
n
ta
b
l
e
an
t
en
n
a
w
i
th
a
c
o
m
p
a
c
t
s
iz
e
o
f
5
×
5
×
0
.
1
2
5
m
m
3
w
a
s
d
es
ig
n
e
d
an
d
f
a
b
r
i
c
at
ed
.
T
h
e
a
n
t
en
n
a
h
as
a
b
i
d
i
r
e
c
t
i
o
n
a
l r
a
d
i
a
ti
o
n
p
a
t
t
e
r
n
s
u
i
ta
b
l
e
f
o
r
I
o
T
a
n
d
b
i
o
m
e
d
i
c
a
l
a
p
p
l
i
c
a
t
i
o
n
s
.
I
t h
a
s
a
b
an
d
w
i
d
th
o
f
(
2
6
.
2
0
0
G
H
z
-
3
0
.
2
4
2
G
H
z
)
w
i
th
a
r
etu
r
n
lo
s
s
(
R
L
)
o
f
2
2
.
6
2
d
B
an
d
ac
h
iev
ed
a
g
ain
o
f
3
.
8
1
d
B
i
an
d
9
6
.
2
1
%
ef
f
icien
c
y
.
T
ab
le
1
s
h
o
w
s
t
h
e
p
r
o
p
o
s
ed
an
ten
n
a
d
i
m
e
n
s
io
n
s
,
a
n
d
Fi
g
u
r
e
1
s
h
o
w
s
t
h
e
p
r
o
p
o
s
ed
an
ten
n
a
d
esig
n
.
T
h
e
i
m
p
ac
t
o
f
Hs
v
ar
iatio
n
o
n
th
e
s
e
p
ar
am
eter
s
w
as i
n
v
esti
g
ated
,
a
n
al
y
ze
d
,
ev
alu
ated
,
a
n
d
v
al
id
ated
b
y
th
e
s
i
m
u
lated
an
d
m
ea
s
u
r
ed
r
esu
lt
s
an
d
r
eg
r
es
s
io
n
m
o
d
eli
n
g
.
Fig
u
r
e
1
.
P
r
o
p
o
s
ed
2
8
GHz
m
i
cr
o
s
tr
ip
an
ten
n
a
T
ab
le
1
.
A
n
t
e
n
n
a
d
i
m
en
s
io
n
s
P
a
r
a
me
t
e
r
Ls
Ws
Mt
Hs
Lf
Wp
Lp
Wf
g
L
W
D
i
me
n
si
o
n
(
mm
)
5
5
0
.
0
3
5
0
.
1
2
5
2
.
1
5
3
.
1
1
.
9
5
0
.
4
0
.
1
5
1
.
0
0
0
.
9
5
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
3
.
1
.
Si
m
ula
t
ed
re
s
u
lt
a
nd
di
s
cus
s
io
n
T
h
e
s
im
u
l
a
t
e
d
r
e
s
u
lt
s
in
F
ig
u
r
es
2
(
a
)
t
o
(
d
)
i
l
l
u
s
t
r
a
te
t
h
e
ef
f
e
ct
o
f
v
a
r
y
in
g
H
s
o
n
th
e
f
r
e
q
u
en
cy
r
es
p
o
n
s
e
c
h
a
r
a
ct
e
r
is
t
i
cs
.
T
h
e
Fig
u
r
e
2
s
h
o
w
th
e
s
im
u
l
at
e
d
r
e
s
u
lt
w
i
th
v
a
r
i
o
u
s
H
s
v
a
lu
es
r
an
g
in
g
f
r
o
m
(
a
)
0
.
0
2
5
m
m
t
o
0
.
0
7
5
m
m
,
(
b
)
0
.
1
0
0
m
m
t
o
0
.
1
5
0
m
m
,
(
c
)
0
.
1
7
5
m
m
t
o
0
.
2
2
5
m
m
,
a
n
d
(
d
)
0
.
2
5
0
m
m
t
o
0
.
3
0
0
m
m
at
w
h
i
ch
t
h
e
f
r
e
q
u
en
c
i
es
r
e
s
o
n
a
t
e
d
.
T
h
e
r
e
s
u
l
t
s
d
em
o
n
s
t
r
at
e
d
h
o
w
Hs
v
a
r
i
a
ti
o
n
c
au
s
es
a
s
h
if
t
in
c
en
t
e
r
f
r
e
q
u
en
cy
,
B
W
a
n
d
R
L
.
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
S
u
b
s
tr
a
te
th
ickn
ess
va
r
ia
tio
n
o
n
th
e
fr
eq
u
e
n
cy
r
esp
o
n
s
e
o
f
micro
s
tr
ip
…
(
B
ello
A
b
d
u
lla
h
i
Mu
h
a
mma
d
)
1191
G
e
n
e
r
a
l
ly
,
th
e
r
esu
l
ts
in
T
a
b
l
e
2
s
h
o
w
th
at
th
e
l
o
w
e
r
th
e
H
s
,
th
e
h
ig
h
e
r
th
e
ƞ
,
w
h
i
l
e
th
e
h
ig
h
e
r
t
h
e
Hs
,
th
e
l
o
w
er
t
h
e
ƞ
.
A
n
d
t
h
e
th
i
ck
e
r
th
e
s
u
b
s
t
r
a
t
e
,
t
h
e
h
ig
h
e
r
th
e
B
W
a
n
d
G
,
b
u
t
a
t
h
in
n
e
r
s
u
b
s
t
r
at
e
o
f
0
.
0
2
5
m
m
t
o
0
.
1
2
5
m
m
lead
s
to
g
o
o
d
im
p
ed
an
ce
m
at
ch
in
g
.
T
h
ese
r
esu
lted
in
an
im
p
r
o
v
e
m
e
n
t
in
t
h
e
B
W
an
d
G
f
r
o
m
3
.
6
GHz
to
5
.
5
4
GHz
an
d
f
r
o
m
3
.
8
d
B
i to
3
.
9
1
d
B
i,
r
esp
ec
tiv
ely
.
(
a)
(
b
)
(
c)
(
d
)
Fig
u
r
e
2
.
Fre
q
u
en
c
y
r
e
s
p
o
n
s
e
ch
ar
ac
ter
is
tic
s
o
n
th
e
f
o
llo
w
i
n
g
s
u
b
s
tr
ate
th
ick
n
es
s
:
(
a)
0
.
0
2
5
m
m
to
0
.
0
7
5
m
m
,
(
b
)
0
.
1
0
0
m
m
to
0
.
1
5
0
m
m
,
(
c)
0
.
1
7
5
m
m
to
0
.
2
2
5
m
m
,
an
d
(
d
)
0
.
2
5
0
m
m
to
0
.
3
0
0
m
m
T
ab
le
2
.
E
f
f
ec
t o
f
s
u
b
s
tr
ate
th
i
ck
n
e
s
s
o
n
t
h
e
a
n
ten
n
a
p
ar
a
m
et
er
s
N
o
.
H
s (m
m)
F
r
(
G
H
z
)
O
p
e
r
a
t
i
n
g
b
a
n
d
s
(
G
H
z
)
B
W
(
G
H
z
)
%
BW
(
G
H
z
)
R
L
(
d
B
)
G
a
i
n
(
d
B
i
)
D
i
r
(
d
B
)
Ƞ
(
%)
1
0
.
0
2
5
3
1
.
7
5
3
2
8
.
5
4
1
-
3
4
.
1
6
4
5
.
5
4
1
7
.
4
5
2
1
.
4
6
3
.
9
1
3
.
9
8
9
8
.
2
4
2
0
.
0
5
0
3
0
.
0
8
4
2
8
.
5
4
1
-
3
4
.
0
8
4
5
.
6
2
1
8
.
6
8
2
8
.
6
7
3
.
8
9
3
.
9
7
9
7
.
9
8
3
0
.
0
7
5
2
9
.
0
5
2
2
7
.
4
4
-
3
2
.
1
1
4
4
.
6
7
1
6
.
0
7
3
6
.
1
9
3
.
8
7
3
.
9
7
9
7
.
4
8
4
0
.
1
0
0
2
8
.
4
4
8
2
6
.
4
7
7
-
3
0
.
9
7
9
4
.
5
0
1
5
.
8
2
3
3
.
8
6
3
.
8
5
3
.
9
7
9
6
.
9
8
5
0
.
1
2
5
2
8
.
0
0
0
2
6
.
2
0
0
-
3
0
.
2
4
2
4
.
0
4
1
4
.
4
3
2
2
.
6
2
3
.
8
1
3
.
9
6
9
6
.
2
1
6
0
.
1
5
0
2
7
.
5
5
5
2
6
.
0
0
4
-
2
9
.
6
0
0
3
.
6
0
1
3
.
0
6
2
4
.
4
6
3
.
8
0
3
.
9
6
9
5
.
9
6
7
0
.
1
7
5
2
7
.
1
9
4
2
5
.
4
6
2
-
2
9
.
1
7
3
3
.
7
1
1
3
.
6
4
2
5
.
9
3
3
.
7
9
3
.
9
7
9
5
.
4
7
8
0
.
2
0
0
2
6
.
8
6
7
2
5
.
1
4
-
2
8
.
7
7
7
3
.
6
4
1
3
.
5
5
2
7
.
1
8
3
.
7
9
3
.
9
7
9
5
.
4
7
9
0
.
2
2
5
2
6
.
6
0
0
2
4
.
5
8
7
-
2
8
.
1
6
4
3
.
5
8
1
3
.
4
6
2
8
.
7
4
3
.
8
0
3
.
9
8
9
5
.
4
8
10
0
.
2
5
0
2
6
.
3
9
1
2
4
.
4
1
-
2
8
.
1
6
4
3
.
7
5
1
4
.
2
1
3
0
.
0
4
3
.
7
9
3
.
9
8
9
5
.
2
3
11
0
.
2
7
5
2
6
.
1
7
2
2
4
.
1
7
1
-
2
7
.
9
1
7
3
.
7
5
1
4
.
3
3
3
0
.
5
9
3
.
8
0
3
.
9
9
9
5
.
2
4
12
0
.
3
0
0
2
5
.
9
9
9
2
3
.
9
9
5
-
2
7
.
7
5
3
.
7
6
1
4
.
4
6
3
1
.
2
4
3
.
8
0
4
.
0
0
9
5
.
0
0
13
0
.
3
2
5
2
5
.
8
4
4
2
3
.
8
3
9
-
2
7
.
5
5
9
3
.
7
2
1
4
.
3
9
3
2
.
0
5
3
.
8
0
4
.
0
1
9
4
.
7
6
14
0
.
3
5
0
2
5
.
7
0
5
2
3
.
6
8
4
-
2
7
.
4
0
4
3
.
7
2
1
4
.
4
7
3
2
.
8
4
3
.
8
1
4
.
0
2
9
4
.
7
8
15
0
.
3
7
5
2
5
.
5
8
5
2
3
.
5
8
-
2
7
.
2
8
3
3
.
7
0
1
4
.
4
6
3
3
.
6
4
3
.
8
2
4
.
0
3
9
4
.
7
9
16
0
.
4
0
0
2
5
.
4
8
1
2
3
.
4
2
5
-
2
7
.
1
7
9
3
.
7
5
1
4
.
7
2
3
5
.
0
0
3
.
8
1
4
.
0
5
9
4
.
0
7
17
0
.
4
2
5
2
5
.
3
6
0
2
3
.
0
7
9
-
2
7
.
0
2
4
3
.
9
5
1
5
.
5
8
3
5
.
3
0
3
.
8
3
4
.
0
6
9
4
.
3
3
18
0
.
4
5
0
2
5
.
2
6
1
2
2
.
9
7
5
-
2
6
.
8
5
1
3
.
8
8
1
5
.
3
6
3
5
.
5
9
3
.
8
4
4
.
0
8
9
4
.
1
2
19
0
.
4
7
5
2
5
.
2
0
4
2
2
.
9
0
6
-
2
6
.
7
4
7
3
.
8
4
1
5
.
2
4
3
6
.
1
9
3
.
8
5
4
.
0
9
9
4
.
1
3
20
0
.
5
0
0
2
5
.
1
3
5
2
2
.
8
3
7
-
2
6
.
6
4
4
3
.
8
1
1
5
.
1
6
3
5
.
7
4
3
.
8
5
4
.
1
1
9
3
.
6
7
21
0
.
5
2
5
2
5
.
0
2
6
2
2
.
7
1
1
-
2
6
.
5
7
7
3
.
8
7
1
5
.
4
6
3
6
.
2
2
3
.
8
9
4
.
1
3
9
4
.
1
9
22
0
.
5
5
0
2
4
.
9
9
5
2
2
.
6
7
2
-
2
6
.
5
9
5
3
.
9
2
1
5
.
6
8
3
6
.
6
5
3
.
9
1
4
.
1
5
9
4
.
2
2
23
0
.
5
7
5
2
4
.
9
0
4
2
2
.
6
0
4
-
2
6
.
4
5
5
3
.
8
5
1
5
.
4
6
3
6
.
8
0
3
.
9
3
4
.
1
8
9
4
.
0
2
24
0
.
6
0
0
2
4
.
8
5
7
2
2
.
5
8
9
-
2
6
.
4
2
5
3
.
8
4
1
5
.
4
5
3
5
.
0
0
3
.
9
3
4
.
2
0
9
3
.
5
7
25
0
.
6
2
5
2
4
.
8
2
3
2
2
.
5
3
7
-
2
6
.
3
3
9
3
.
8
0
1
5
.
3
1
3
1
.
2
3
3
.
9
5
4
.
2
1
9
3
.
8
2
26
0
.
6
5
0
2
4
.
7
7
2
2
2
.
4
3
5
-
2
6
.
3
0
5
3
.
8
7
1
5
.
6
2
3
0
.
6
5
3
.
9
7
4
.
2
4
9
3
.
6
3
27
0
.
6
7
5
2
4
.
7
2
1
2
2
.
3
8
4
-
2
6
.
2
8
8
3
.
9
0
1
5
.
7
8
3
0
.
7
5
4
.
0
1
4
.
2
6
9
4
.
1
3
28
0
.
7
0
0
2
4
.
6
7
0
2
2
.
3
6
7
-
2
6
.
2
3
7
3
.
8
7
1
5
.
6
9
3
0
.
3
5
4
.
0
3
4
.
2
9
9
3
.
9
4
29
0
.
7
2
5
2
4
.
6
3
6
2
2
.
2
6
5
-
2
6
.
1
6
9
3
.
9
0
1
5
.
8
3
2
9
.
2
7
4
.
0
5
4
.
3
1
9
3
.
9
7
30
0
.
7
5
0
2
4
.
5
8
5
2
2
.
2
1
4
-
2
6
.
1
3
5
3
.
9
2
1
5
.
9
4
2
9
.
4
2
4
.
0
8
4
.
3
4
9
4
.
0
1
18
20
22
24
26
28
30
32
34
36
38
-4
0
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Retu
rn
Lo
ss / d
B
Fr
eq
ue
ncy /
GHz
Hs=0
.02
5 m
m
Hs=0
.05
0 m
m
Hs=0
.07
5 m
m
18
20
22
24
26
28
30
32
34
36
38
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Retu
rn
Lo
ss / d
B
Fr
eq
ue
ncy Re
spo
nse
/ G
Hz
Hs=0
.10
0 m
m
Hs=0
.12
5 m
m
Hs=0
.15
0 m
m
18
20
22
24
26
28
30
32
34
36
38
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Retu
rn
Lo
ss / d
B
Fr
eq
ue
ncy /
GHz
Hs=0
.17
5 m
m
Hs=0
.20
0 m
m
Hs=0
22
5 m
m
18
20
22
24
26
28
30
32
34
36
38
-3
5
-3
0
-2
5
-2
0
-1
5
-1
0
-5
0
Retu
rn
Lo
ss / d
B
Fr
eq
ue
ncy /
GHz
Hs=0
.25
0 m
m
Hs=0
.27
5 m
m
Hs=0
.30
0 m
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
1
6
9
3
-
6930
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
,
Vo
l.
23
,
No
.
5
,
Octo
b
e
r
20
25
:
1
1
8
8
-
1
200
1192
T
h
e
an
ten
n
a
ac
h
iev
ed
a
p
ea
k
g
ain
o
f
3
.
8
1
d
B
i,
a
B
W
o
f
(
2
6
.
2
0
0
GHz
-
3
0
.
2
4
2
GHz
)
,
an
d
an
av
er
a
g
e
r
ad
iatio
n
ƞ
o
f
9
6
.
2
1
%
at
th
e
2
8
GHz
ce
n
ter
f
r
eq
u
e
n
c
y
o
n
t
h
e
Hs
0
.
1
2
5
m
m
.
T
h
e
an
ten
n
a
ac
h
iev
ed
a
b
etter
B
W
an
d
r
ad
iatio
n
ƞ
co
m
p
ar
ed
w
it
h
th
e
o
th
er
r
elate
d
w
o
r
k
s
,
as
s
h
o
w
n
in
T
ab
le
3
.
T
h
e
b
id
ir
ec
tio
n
al
r
ad
iatio
n
p
atter
n
en
ab
les
t
h
e
an
te
n
n
a
f
o
r
m
m
-
w
a
v
e
ap
p
licatio
n
s
f
o
r
w
ea
r
ab
le
d
ev
ices.
T
h
ese
m
ad
e
t
h
e
an
ten
n
a
b
e
p
lace
d
in
eith
er
th
e
f
r
o
n
t
o
r
b
ac
k
p
o
s
itio
n
.
T
ab
le
2
s
h
o
w
s
th
e
d
ata
o
b
tain
ed
f
r
o
m
th
e
s
i
m
u
lat
io
n
r
esu
l
t
s
,
w
h
ic
h
w
er
e
u
s
ed
to
d
ev
elo
p
th
e
p
r
o
p
o
s
ed
r
eg
r
ess
io
n
m
o
d
els
’
eq
u
atio
n
s
to
an
al
y
ze
an
d
ev
al
u
ate
th
e
e
f
f
ec
t o
f
Hs v
ar
iatio
n
o
n
Fr,
G,
%
BW
,
R
L
,
an
d
ƞ
.
T
ab
le
3
.
C
o
m
p
ar
is
o
n
o
f
o
th
er
w
o
r
k
w
i
th
t
h
e
p
r
o
p
o
s
ed
d
esig
n
3
.
2
.
F
a
brica
t
io
n r
esu
lt
a
nd
dis
cu
s
s
io
n
A
s
p
u
tter
i
n
g
m
ac
h
in
e
d
ep
o
s
it
s
s
il
v
er
in
k
o
n
a
P
I
s
u
b
s
tr
ate
to
p
r
in
t
th
e
p
r
o
p
o
s
ed
an
ten
n
a.
T
h
e
o
n
e
-
la
y
er
p
r
in
ti
n
g
p
r
o
ce
s
s
,
w
h
ich
u
s
ed
a
co
n
d
u
cto
r
t
h
ick
n
es
s
o
f
o
n
e
m
icr
o
m
eter
(
1
µ
m
)
p
er
r
o
u
n
d
,
lack
ed
t
h
e
r
eq
u
ir
ed
co
n
d
u
ctiv
it
y
.
Dep
o
s
itin
g
ad
d
itio
n
al
la
y
er
s
o
f
p
a
s
te
in
k
i
n
th
e
p
r
in
ted
ar
ea
h
as
i
m
p
r
o
v
ed
th
e
co
n
d
u
cti
v
it
y
.
T
h
e
an
te
n
n
a
p
r
o
to
t
y
p
e
w
a
s
f
ab
r
icate
d
an
d
test
ed
to
ev
alu
ate
th
e
v
alid
it
y
o
f
t
h
e
s
i
m
u
la
ted
r
esu
lt.
T
h
e
p
r
o
ce
s
s
is
co
s
t
-
ef
f
ec
ti
v
e
an
d
s
af
e
to
u
s
e,
as
th
e
s
il
v
er
in
k
is
to
x
i
n
-
f
r
ee
f
o
r
th
e
lu
n
g
s
an
d
s
k
in
.
T
h
e
p
r
in
ted
an
ten
n
a
m
a
in
ta
in
s
f
le
x
ib
ilit
y
w
it
h
o
u
t
cr
ac
k
in
g
th
e
i
n
k
s
u
r
f
a
ce
,
ev
en
at
th
e
p
o
s
s
ib
le
m
ax
i
m
u
m
b
en
d
i
n
g
r
ad
iu
s
.
Fig
u
r
e
3
(
a)
illu
s
tr
ate
t
h
e
p
r
o
p
o
s
ed
an
te
n
n
a
p
r
o
to
t
y
p
e,
an
d
Fi
g
u
r
e
3
(
b
)
th
e
r
etu
r
n
lo
s
s
(
r
ef
lect
io
n
co
ef
f
icie
n
t)
o
f
S1
1
p
ar
am
eter
s
,
s
i
m
u
lated
an
d
m
ea
s
u
r
ed
r
esu
lt
s
.
Fi
g
u
r
es
4
(
a)
an
d
(
b
)
illu
s
tr
ate
th
e
s
i
m
u
late
d
an
d
m
ea
s
u
r
ed
2
D
r
ad
iatio
n
p
atter
n
s
f
o
r
th
e
H
-
p
l
an
e
an
d
E
-
p
lan
e,
r
esp
ec
ti
v
el
y
.
T
h
e
s
i
m
u
lated
an
d
m
ea
s
u
r
ed
r
esu
lt
s
a
r
e
in
g
o
o
d
ag
r
ee
m
e
n
t,
co
n
f
ir
m
i
n
g
th
eir
v
alid
it
y
.
T
h
e
an
ten
n
a
’
s
r
ad
iatio
n
ƞ
,
B
W
,
G
,
an
d
b
id
ir
ec
tio
n
al
r
ad
iatio
n
p
atter
n
s
ig
n
i
f
y
i
ts
s
u
itab
ili
t
y
f
o
r
th
e
p
r
o
p
o
s
ed
m
m
-
w
av
e
ap
p
licatio
n
s
.
(
a)
(
b
)
Fig
u
r
e
3
.
Fab
r
icate
d
an
ten
n
a
a
n
d
its
s
i
m
u
lated
an
d
m
ea
s
u
r
ed
S
11
: (
a)
an
ten
n
a
p
r
o
to
ty
p
e
a
n
d
(
b
)
S
11
p
er
f
o
r
m
a
n
ce
(
a)
(
b
)
Fig
u
r
e
4
.
Si
m
u
lated
an
d
m
ea
s
u
r
ed
2
D
r
ad
iatio
n
p
atter
n
s
: (
a)
H
p
lan
e
an
d
(
b
)
E
p
lan
e
18
20
22
24
26
28
30
32
34
36
38
-2
5
-2
0
-1
5
-1
0
-5
0
Retu
rn
Lo
ss / d
B
Fr
eq
ue
ncy /
GHz
Simulat
ed
Resu
lt
Me
asu
re
d Re
sult
0
30
60
90
120
150
180
210
240
270
300
330
-3
0
-2
0
-1
0
0
10
-30
-20
-10
0
10
E-Pla
ne
Simul
ate
d Re
sul
t
Mea
sus
ed
Resu
lt
0
30
60
90
120
150
180
210
240
270
300
330
-30
-25
-20
-15
-10
-5
0
5
10
-30
-25
-20
-15
-10
-5
0
5
10
H-Pl
an
e
Mea
sure
d Re
sul
t
Simul
ate
d Re
sul
t
R
e
f
.
F
r
G
H
z
S
u
b
.
t
y
p
e
S
u
b
ε
r
S
u
b
.
t
a
n
δ
S
i
z
e
(
mm
2
)
S
H
(
mm
)
B
W
(
G
H
z
)
G
a
i
n
(
d
B
i
)
Ƞ
(
%)
[
2
1
]
28
F
R
4
4
.
4
0
0
.
0
2
0
0
7
×
7
0
.
8
0
0
2
.
6
2
0
6
.
5
9
8
2
.
0
8
[
2
2
]
28
PI
3
.
5
0
0
.
0
0
2
7
5
.
1
9
×
4
.
7
3
0
.
2
7
0
1
.
4
2
7
5
.
3
3
8
6
.
0
0
[
2
3
]
28
R
o
g
e
r
s R
T
6
0
0
2
2
.
9
4
-
6
×
8
1
.
5
2
0
1
.
4
1
0
3
.
1
2
8
9
.
2
5
[
2
4
]
28
R
o
g
e
r
s R
T
4
0
0
3
3
.
5
5
-
1
2
×
1
2
0
.
2
4
0
4
.
5
0
0
4
.
5
0
9
4
.
0
0
[
2
5
]
28
P
o
l
y
p
r
o
p
y
l
e
n
e
2
.
3
4
0
.
0
0
1
0
-
0
.
1
0
0
0
.
5
0
0
5
.
1
4
-
[
2
6
]
28
R
T
D
u
r
o
i
d
5
8
8
0
2
.
2
0
0
.
0
0
4
0
5
×
4
.
4
0
.
5
0
0
0
.
8
5
0
1
.
0
0
9
0
.
0
0
T
h
i
s w
o
r
k
28
PI
3
.
5
0
0
.
0
0
2
7
5
×
5
0
.
1
2
5
4
.
7
1
0
3
.
8
1
9
6
.
4
1
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
S
u
b
s
tr
a
te
th
ickn
ess
va
r
ia
tio
n
o
n
th
e
fr
eq
u
e
n
cy
r
esp
o
n
s
e
o
f
micro
s
tr
ip
…
(
B
ello
A
b
d
u
lla
h
i
Mu
h
a
mma
d
)
1193
3
.
3
.
Resul
t
a
na
ly
s
is
T
h
e
s
i
m
u
lated
r
esu
lt
s
h
a
v
e
d
e
m
o
n
s
tr
ated
th
e
i
m
p
ac
t
o
f
H
s
v
ar
iatio
n
o
n
th
e
f
r
eq
u
e
n
c
y
r
esp
o
n
s
e
ch
ar
ac
ter
is
tic
s
.
T
h
e
av
er
ag
e
r
e
s
u
lt
ill
u
s
tr
ates
h
o
w
t
h
e
av
er
a
g
e
v
alu
e
s
o
f
B
W
an
d
G
i
n
cr
ea
s
ed
as
th
e
H
s
i
n
cr
ea
s
ed
an
d
s
h
i
f
ted
to
lo
w
er
v
alu
e
s
a
s
th
e
Hs
d
ec
r
ea
s
ed
.
Ge
n
er
all
y
,
th
e
r
es
u
lt
s
h
o
w
s
t
h
at
th
e
h
ig
h
er
th
e
H
s
,
t
h
e
lo
w
er
th
e
Fr
an
d
ƞ
,
an
d
th
e
lo
w
er
th
e
Hs,
th
e
h
ig
h
er
th
e
Fr
an
d
ƞ
.
T
h
ese
in
d
icate
th
at
th
i
n
n
er
Hs
in
cr
ea
s
e
th
e
Fr
an
d
r
ad
iatio
n
ƞ
,
w
h
ic
h
i
m
p
r
o
v
es
t
h
e
a
n
ten
n
a
’
s
p
er
f
o
r
m
a
n
ce
.
T
h
e
illu
s
tr
atio
n
o
f
a
b
id
ir
ec
tio
n
a
l
r
ad
iatio
n
p
atter
n
en
ab
les
th
e
a
n
te
n
n
a
to
b
e
p
lace
d
in
eith
er
th
e
b
ac
k
o
r
f
r
o
n
t
p
o
s
itio
n
s
.
T
h
e
P
I
s
u
b
s
tr
ate
is
a
p
o
ly
m
er
-
b
ased
m
ater
ial
th
at
h
as
less
p
o
w
er
co
n
s
u
m
p
tio
n
,
m
ak
i
n
g
th
e
an
t
en
n
a
id
ea
l
f
o
r
m
m
-
w
a
v
e
ap
p
licatio
n
s
in
I
o
T
an
d
w
ea
r
ab
le
d
ev
i
ce
s
.
T
h
e
m
ea
s
u
r
ed
an
d
s
i
m
u
la
ted
S
-
p
ar
a
m
eter
,
E
,
an
d
H
p
lan
es
ar
e
in
g
o
o
d
a
g
r
ee
m
e
n
t.
Sli
g
h
tl
y
d
is
tu
r
b
ed
d
u
e
to
co
n
d
u
cto
r
an
d
d
ielec
tr
ic
e
f
f
ec
t
s
,
ca
u
s
i
n
g
i
m
p
ed
an
ce
m
i
s
m
a
tch
e
s
t
h
at
s
lig
h
tl
y
a
f
f
ec
ted
th
e
f
ab
r
icate
d
r
esu
lts
,
b
u
t
t
h
e
y
ar
e
s
till
in
g
o
o
d
co
r
r
elati
o
n
.
Fu
tu
r
e
w
o
r
k
n
ee
d
s
to
in
v
est
ig
at
e
th
e
i
m
p
ac
t
o
f
H
s
v
ar
iatio
n
o
n
t
h
e
r
ad
iatio
n
p
atte
r
n
s
an
d
i
m
p
ed
an
ce
m
a
tch
i
n
g
o
n
th
e
m
icr
o
s
tr
ip
an
te
n
n
a
’
s
p
er
f
o
r
m
a
n
ce
.
3
.
4
.
Co
m
pa
ra
t
iv
e
a
na
ly
s
is
T
h
e
p
r
o
p
o
s
ed
an
ten
n
a
ac
h
iev
e
d
a
w
id
er
BW
an
d
h
ig
h
er
r
ad
i
atio
n
ƞ
co
m
p
ar
ed
w
it
h
t
h
e
o
th
er
r
elate
d
ar
ticles
r
ep
o
r
ted
in
th
e
liter
atu
r
e,
as
s
h
o
w
n
in
t
h
e
s
u
m
m
ar
y
in
co
m
p
ar
i
s
o
n
T
ab
le
3
.
T
h
e
i
m
p
r
o
v
e
m
e
n
t
i
s
p
r
im
ar
il
y
attr
ib
u
ted
to
th
e
s
elec
tio
n
o
f
a
s
u
itab
le
th
i
n
Hs
,
w
h
ich
en
h
an
ce
d
b
o
th
r
ad
iatio
n
ƞ
an
d
B
W
.
T
h
is
h
as
m
ad
e
th
e
m
icr
o
s
tr
ip
a
n
ten
n
a
s
u
itab
le
f
o
r
th
e
p
r
o
p
o
s
ed
mm
-
w
a
v
e
ap
p
licatio
n
s
.
T
h
e
m
ea
s
u
r
ed
an
d
s
i
m
u
lated
r
esu
lt
s
in
t
h
is
r
e
s
ea
r
ch
w
o
r
k
ar
e
co
r
r
elate
d
,
c
o
n
f
ir
m
in
g
t
h
e
v
alid
it
y
o
f
t
h
e
r
es
u
lts
.
4.
DE
V
E
L
O
P
M
E
NT
O
F
M
AT
H
E
M
AT
I
CAL M
O
DE
L
4
.
1
.
M
o
del
des
ig
n
T
h
e
d
ata
(
s
im
u
latio
n
r
es
u
lt)
was
u
s
ed
to
d
ev
elo
p
th
e
p
r
o
p
o
s
ed
m
o
d
el
eq
u
atio
n
s
u
s
i
n
g
th
e
MI
NI
T
A
B
s
o
f
t
w
ar
e.
T
h
e
Hs
is
t
h
e
p
r
ed
icto
r
v
ar
iab
le,
w
h
ile
t
h
e
Fr,
G,
%
BW
,
R
L
,
an
d
ƞ
ar
e
th
e
r
esp
o
n
s
e
v
ar
iab
les.
Ma
n
y
m
o
d
el
s
w
er
e
d
ev
elo
p
ed
in
li
n
e
ar
,
q
u
ad
r
atic,
an
d
cu
b
ic
f
o
r
m
s
an
d
an
al
y
ze
d
,
ev
al
u
ated
,
an
d
v
alid
ated
.
T
h
e
m
o
d
el
w
it
h
t
h
e
least
r
esid
u
a
l
v
al
u
e
o
n
th
e
f
itted
lin
e
p
lo
ts
a
n
d
r
esid
u
al
p
lo
ts
in
d
icate
s
t
h
e
m
o
d
el
’
s
f
it
n
ess
to
th
e
d
ata
an
d
is
co
n
s
id
er
ed
th
e
p
r
o
p
o
s
ed
r
eg
r
ess
io
n
m
o
d
el.
A
n
d
th
e
m
o
d
el
is
v
al
id
ated
b
y
ch
ec
k
i
n
g
th
e
s
ig
n
i
f
ica
n
ce
o
f
th
e
m
o
d
el
co
ef
f
icien
ts
,
R
-
Sq
a
n
d
R
-
S
q
(
a
d
j)
,
an
d
test
in
g
t
h
e
h
y
p
o
t
h
ese
s
’
P
-
v
al
u
e.
T
h
e
R
-
Sq
an
d
R
-
S
q
(
a
d
j)
v
alu
es
clo
s
er
to
1
an
d
th
e
P
-
v
al
u
e
les
s
th
a
n
t
h
e
s
ig
n
i
f
ica
n
ce
lev
e
l
α
(
0
.
0
5
)
in
d
icate
th
e
m
o
d
el
v
al
i
d
it
y
.
T
h
e
p
r
o
p
o
s
ed
m
o
d
el
s
ar
e
to
in
v
esti
g
ate
t
h
e
i
m
p
ac
t
o
f
t
h
e
p
r
ed
icto
r
v
ar
iab
le
(
Hs)
o
n
th
e
r
esp
o
n
s
e
v
ar
iab
l
es
(
Fr,
G,
B
W
,
R
L
,
an
d
ƞ
)
.
Fig
u
r
e
5
illu
s
tr
ates t
h
e
f
lo
w
ch
ar
t o
f
t
h
e
m
o
d
el
d
esi
g
n
p
r
o
ce
d
u
r
es.
Fig
u
r
e
5
.
Flo
w
c
h
ar
t
4
.
2
.
M
o
del
t
esting
T
h
e
p
r
o
p
o
s
e
d
r
e
g
r
e
s
s
i
o
n
m
o
d
el
s
w
e
r
e
t
es
t
e
d
f
o
r
t
h
ei
r
v
al
i
d
i
ty
a
n
d
a
c
c
e
p
t
a
b
il
i
ty
.
Hy
p
o
th
e
s
e
s
(
P
-
v
a
lu
e)
a
n
d
R
-
Sq
w
e
r
e
t
e
s
t
e
d
t
o
d
e
t
e
r
m
i
n
e
th
e
f
i
tn
es
s
an
d
v
a
l
i
d
i
ty
o
f
th
e
m
o
d
el
s
.
T
h
e
R
-
sq
v
a
lu
e
i
s
b
e
tw
e
en
0
an
d
1
;
th
e
R
-
sq
v
alu
e
th
a
t
is
c
l
o
s
e
r
t
o
1
,
an
d
th
e
P
-
v
al
u
e
i
s
l
e
s
s
th
an
0
.
0
5
,
i
n
d
i
c
at
in
g
th
e
m
o
d
e
l
’
s
f
i
tn
es
s
an
d
v
a
li
d
i
ty
[
2
7
]
.
T
h
e
d
e
v
e
l
o
p
e
d
m
o
d
e
ls
a
ch
i
ev
ed
t
h
e
f
o
ll
o
w
in
g
r
e
s
u
l
t
s
:
R
-
sq
v
al
u
es
a
r
e
9
4
.
6
%
,
7
2
.
1
%
,
9
7
.
9
%
,
4
1
.
5
%
,
a
n
d
9
6
.
1
%
f
o
r
th
e
F
r
,
%
BW
,
G
,
R
L
,
an
d
ƞ
,
r
e
s
p
ec
t
iv
e
ly
.
T
h
e
s
e
r
es
u
l
ts
i
n
d
i
ca
t
e
th
e
v
al
i
d
i
ty
o
f
th
e
m
o
d
e
l
s
ex
ce
p
t
t
h
e
R
L
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
1
6
9
3
-
6930
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
,
Vo
l.
23
,
No
.
5
,
Octo
b
e
r
20
25
:
1
1
8
8
-
1
200
1194
m
o
d
e
l
,
w
h
o
s
e
v
alu
e
i
s
cl
o
s
e
r
to
z
e
r
o
,
4
1
%
(
0
.
4
1
)
,
w
h
i
ch
in
d
ic
a
t
e
s
in
s
u
f
f
i
c
ie
n
t
e
v
i
d
en
c
e
t
o
co
n
c
l
u
d
e
th
e
m
o
d
e
l
’
s
v
a
li
d
i
ty
.
S
ti
l
l
,
th
e
R
L
m
o
d
el
P
-
v
a
lu
e
is
0
.
0
0
,
in
d
i
ca
t
in
g
t
h
e
m
o
d
e
l
’
s
f
it
n
e
s
s
an
d
v
a
l
i
d
ity
.
T
h
e
P
-
v
a
lu
e
o
f
a
ll
th
e
d
e
v
e
l
o
p
e
d
m
o
d
e
ls
is
le
s
s
th
an
0
.
0
5
,
e
x
c
e
p
t
th
a
t
o
f
%
BW
,
w
h
o
s
e
P
-
v
a
lu
e
is
0
.
0
5
9
,
in
d
i
c
at
in
g
in
s
u
f
f
i
c
i
en
t
ev
i
d
en
c
e
t
o
v
a
li
d
a
t
e
th
e
m
o
d
e
l
f
i
tn
es
s
.
I
t
d
o
e
s
n
o
t
ev
alu
a
t
e
th
e
o
v
e
r
al
l
m
o
d
e
l
’
s
f
i
tn
es
s
.
T
h
u
s
,
th
e
%
BW
R
-
Sq
v
a
lu
e
is
0
.
7
2
,
s
ig
n
if
y
in
g
th
e
m
o
d
el
’
s
f
i
tn
ess
a
n
d
a
c
c
e
p
t
a
b
i
l
ity
.
W
e
c
an
,
th
er
e
f
o
r
e
,
c
o
n
c
lu
d
e
th
a
t
a
ll
th
e
p
r
o
p
o
s
e
d
m
o
d
e
ls
a
r
e
v
a
li
d
a
t
e
d
.
T
a
b
l
e
4
s
u
m
m
a
r
i
z
es
th
e
m
o
d
e
ls
’
p
e
r
f
o
r
m
an
c
e
an
d
s
h
o
w
s
th
e
c
o
r
r
e
l
a
ti
o
n
b
e
tw
ee
n
t
h
e
d
e
p
e
n
d
en
t
an
d
i
n
d
e
p
en
d
en
t
v
a
r
i
a
b
l
e
s
.
F
ig
u
r
es
6
(
a
)
t
o
(
e
)
a
n
d
Fi
g
u
r
es
7
(
a
)
t
o
(
e
)
i
l
lu
s
t
r
a
t
e
t
h
e
im
p
a
c
t
o
f
Hs
o
n
t
h
e
f
i
t
t
e
d
lin
e
p
l
o
ts
;
t
h
e
s
t
r
ai
g
h
t
l
in
es
in
d
i
c
at
e
th
e
p
r
o
p
o
s
e
d
m
o
d
e
l
,
w
h
i
l
e
t
h
e
d
o
t
t
e
d
l
i
n
e
s
i
n
d
i
c
a
t
e
t
h
e
d
a
t
a
(
C
S
T
-
s
im
u
l
at
e
d
r
e
s
u
lt
)
.
T
ab
le
4
.
T
h
e
Su
m
m
ar
y
o
f
th
e
m
o
d
el
p
e
r
f
o
r
m
an
ce
R
e
g
r
e
ssi
o
n
f
i
t
n
e
ss
−
−
(
)
C
e
n
t
e
r
f
r
e
q
u
e
n
c
y
0
.
4
2
5
8
6
0
9
4
.
6
%
9
4
.
2
%
0
.
9
7
P
e
r
c
e
n
t
a
g
e
b
a
n
d
w
i
d
t
h
0
.
6
4
0
0
4
3
7
2
.
1
%
6
8
.
9
%
0
.
8
5
G
a
i
n
0
.
0
1
2
8
8
2
9
7
.
9
%
9
7
.
7
%
0
.
9
9
R
e
t
u
r
n
l
o
ss
3
.
3
4
5
3
3
0
4
1
.
5
%
3
7
.
1
%
0
.
6
4
Ef
f
i
c
i
e
n
c
y
0
.
2
6
3
8
7
5
9
6
.
1
%
9
5
.
9
%
0
.
9
8
(
a)
(
b
)
(
c)
(
d
)
(
e)
Fig
u
r
e
6
.
Fit
ted
p
lo
t: (
a)
s
u
b
s
tr
ate
th
ic
k
n
e
s
s
v
er
s
u
s
ce
n
ter
f
r
e
q
u
en
c
y
,
(
b
)
s
u
b
s
tr
ate
th
ic
k
n
es
s
v
er
s
u
s
p
er
ce
n
tag
e
b
an
d
w
id
t
h
,
(
c)
s
u
b
s
tr
ate
th
ic
k
n
ess
v
er
s
u
s
r
et
u
r
n
l
o
s
s
,
(
d
)
s
u
b
s
tr
ate
th
ic
k
n
ess
v
er
s
u
s
g
ai
n
,
an
d
(
e)
s
u
b
s
tr
ate
th
ic
k
n
es
s
v
er
s
u
s
ef
f
icien
c
y
S
u
b
s
t
r
a
t
e
T
h
i
c
k
n
e
s
s
(
H
s
)
/
m
m
R
e
s
o
n
a
n
t
F
r
e
q
u
e
n
c
y
(
f
r
)
/
G
H
z
0
.
8
0
.
7
0
.
6
0
.
5
0
.
4
0
.
3
0
.
2
0
.
1
0
.
0
32
31
30
29
28
27
26
25
24
S
0
.
4
2
5
8
6
0
R
-
S
q
9
4
.
6
%
R
-
S
q
(
a
d
j
)
9
4
.
2
%
F
i
t
t
e
d
L
i
n
e
P
l
o
t
f
r
=
3
0
.
7
1
-
2
0
.
4
5
H
s
+
1
7
.
2
8
H
s
*
*
2
S
u
b
s
t
r
a
t
e
T
h
i
c
k
n
e
s
s
(
H
s
)
m
m
P
e
r
c
e
n
t
a
g
e
B
a
n
d
w
i
d
t
h
(
%
B
W
)
/
G
H
Z
0
.
8
0
.
7
0
.
6
0
.
5
0
.
4
0
.
3
0
.
2
0
.
1
0
.
0
19
18
17
16
15
14
13
S
0
.
6
4
0
0
4
3
R
-
S
q
7
2
.
1
%
R
-
S
q
(
a
d
j
)
6
8
.
9
%
F
i
t
t
e
d
L
i
n
e
P
l
o
t
%
B
W
=
1
8
.
7
9
-
4
3
.
2
0
H
s
+
1
1
5
.
5
H
s
*
*
2
-
8
5
.
6
2
H
s
*
*
3
S
u
b
s
t
r
a
t
e
T
h
i
c
k
n
e
s
s
(
H
s
)
/
m
m
R
e
t
u
r
n
L
o
s
s
(
R
L
)
/
d
B
0
.
8
0
.
7
0
.
6
0
.
5
0
.
4
0
.
3
0
.
2
0
.
1
0
.
0
38
36
34
32
30
28
26
24
22
20
S
3
.
0
1
3
1
2
R
-
S
q
5
4
.
3
%
R
-
S
q
(
a
d
j
)
4
9
.
0
%
F
i
t
t
e
d
L
i
n
e
P
l
o
t
R
L
=
2
8
.
1
3
-
2
3
.
1
2
H
s
+
1
6
9
.
7
H
s
*
*
2
-
1
8
7
.
7
H
s
*
*
3
S
u
b
s
t
r
a
t
e
T
h
i
c
k
n
e
s
s
(
H
s
)
/
m
m
G
a
i
n
(
G
)
/
d
B
i
0
.
8
0
.
7
0
.
6
0
.
5
0
.
4
0
.
3
0
.
2
0
.
1
0
.
0
4
.
1
0
4
.
0
5
4
.
0
0
3
.
9
5
3
.
9
0
3
.
8
5
3
.
8
0
S
0
.
0
1
2
8
8
2
4
R
-
S
q
9
7
.
9
%
R
-
S
q
(
a
d
j
)
9
7
.
7
%
F
i
t
t
e
d
L
i
n
e
P
l
o
t
G
=
3
.
9
0
8
-
0
.
7
7
3
0
H
s
+
1
.
3
5
6
H
s
*
*
2
S
u
b
s
t
r
a
t
e
T
h
i
c
k
n
e
s
s
(
H
s
)
/
m
m
E
f
f
i
c
i
e
n
c
y
(
E
f
f
)
/
%
0
.
8
0
.
7
0
.
6
0
.
5
0
.
4
0
.
3
0
.
2
0
.
1
0
.
0
98
97
96
95
94
93
S
0
.
2
6
3
8
7
5
R
-
S
q
9
6
.
1
%
R
-
S
q
(
a
d
j
)
9
5
.
9
%
F
i
t
t
e
d
L
i
n
e
P
l
o
t
E
f
f
=
9
8
.
3
1
-
1
5
.
1
3
H
s
+
1
2
.
7
8
H
s
*
*
2
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
S
u
b
s
tr
a
te
th
ickn
ess
va
r
ia
tio
n
o
n
th
e
fr
eq
u
e
n
cy
r
esp
o
n
s
e
o
f
micro
s
tr
ip
…
(
B
ello
A
b
d
u
lla
h
i
Mu
h
a
mma
d
)
1195
(
a)
(
b
)
(
c)
(
d
)
(
e)
Fig
u
r
e
7
.
R
esid
u
al
p
lo
ts
o
f
f
o
u
r
-
in
-
o
n
e
a
s
a
f
u
n
c
tio
n
o
f
f
itted
v
alu
e
s
:
(
a)
r
eso
n
an
t f
r
eq
u
e
n
c
y
,
(
b
)
p
er
ce
n
tag
e
b
an
d
w
id
t
h
,
(
c)
r
etu
r
n
lo
s
s
,
(
d
)
g
ain
,
a
n
d
(
e)
ef
f
icie
n
c
y
4
.
3
.
Dev
el
o
ped e
qu
a
t
io
n
An
al
y
s
i
s
o
f
v
ar
ian
ce
(
ANOV
A
)
o
n
th
e
d
e
v
elo
p
ed
p
o
ly
n
o
m
ial
r
eg
r
ess
io
n
m
o
d
el
s
an
d
t
h
e
co
r
r
elatio
n
b
et
w
ee
n
th
e
d
ata
a
n
d
th
e
d
e
v
elo
p
ed
r
eg
r
ess
io
n
m
o
d
els.
T
h
e
p
r
o
p
o
s
ed
m
o
d
els
’
(1
6
)
,
(
1
8
)
,
an
d
(
20
)
a
r
e
q
u
ad
r
atic,
w
h
ile
(
1
7
)
an
d
(
1
9
)
ar
e
cu
b
ic.
T
h
e
d
ev
elo
p
ed
r
eg
r
e
s
s
io
n
m
o
d
els
w
er
e
a
n
al
y
ze
d
u
s
in
g
th
e
MI
NI
T
A
B
s
o
f
t
w
ar
e.
I
n
th
e
p
r
o
p
o
s
ed
eq
u
atio
n
s
,
t
h
e
n
eg
at
iv
e
co
e
f
f
icie
n
ts
o
n
th
e
Hs
i
n
d
icate
t
h
at
t
h
e
a
v
e
r
ag
e
r
esp
o
n
s
e
s
o
f
th
e
a
n
ten
n
a
p
ar
a
m
eter
s
(
Fr,
G
,
%
BW
,
R
L
,
a
n
d
ƞ
)
in
cr
ea
s
e
as
th
e
Hs
d
ec
r
ea
s
es,
a
n
d
th
e
p
o
s
itiv
e
co
e
f
f
icien
t
in
d
icate
s
a
d
ec
r
ea
s
e
in
t
h
e
r
esp
o
n
s
e
v
ar
iab
le
as
t
h
e
Hs
i
n
cr
ea
s
es.
T
h
e
p
r
o
p
o
s
ed
eq
u
atio
n
s
ca
n
p
r
o
v
id
e
ac
cu
r
ate
in
f
o
r
m
atio
n
f
o
r
a
f
ast
s
o
lu
t
io
n
to
f
ilter
i
n
g
th
e
d
es
ig
n
p
ar
a
m
et
er
s
.
T
o
av
o
id
th
e
co
m
p
u
tatio
n
al
co
s
t
an
d
p
r
o
d
u
ce
a
lo
w
-
p
r
o
f
ile
an
te
n
n
a
.
(
)
=
30
.
71
−
20
.
45
+
17
.
28
2
(1
6
)
ℎ
(
)
=
18
.
79
−
43
.
20
+
115
.
5
2
−
85
.
62
3
(1
7
)
(
)
=
32
.
908
−
0
.
7730
+
1
.
356
2
(1
8
)
(
)
=
28
.
13
−
23
.
12
+
169
.
7
2
−
187
.
7
3
(1
9
)
(
%
)
=
98
.
31
−
15
.
13
+
12
.
78
2
(
20
)
4
.
4
.
ANO
VA
o
n t
he
f
it
nes
s
o
f
t
he
dev
elo
ped
m
o
del
T
h
e
A
NO
V
A
tab
le
d
eter
m
in
e
s
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
d
ev
e
lo
p
ed
m
o
d
els,
e
v
al
u
ates
a
n
d
v
alid
ates
t
h
e
r
esu
lt
s
,
an
d
d
eter
m
i
n
es
t
h
e
s
ig
n
if
ic
an
c
e
o
f
th
e
m
o
d
e
ls
.
T
o
a
s
s
e
s
s
th
e
m
o
d
el
s
’
f
i
tn
es
s
t
o
th
e
d
a
t
a
p
r
o
v
i
d
e
d
an
d
t
o
v
a
li
d
a
t
e
th
e
f
i
t
t
e
d
l
in
e
an
d
r
e
s
id
u
a
l
p
l
o
ts
o
f
th
e
m
o
d
e
ls
.
T
a
b
l
e
s
5
a
n
d
6
p
r
es
en
t
th
e
A
N
OVA
r
e
s
u
l
ts
f
o
r
th
e
m
o
d
e
l
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
P
e
r
c
e
n
t
4
2
0
-2
99
90
50
10
1
F
i
t
t
e
d
V
al
u
e
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
2
8
.
8
2
7
.
6
2
6
.
4
2
5
.
2
2
4
.
0
4
2
0
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
F
r
e
q
u
e
n
c
y
4
3
2
1
0
-1
8
6
4
2
0
O
b
s
e
r
v
at
i
o
n
O
r
d
e
r
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
4
2
0
N
o
r
m
a
l
P
r
o
b
a
b
i
l
i
t
y
P
l
o
t
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
F
i
t
t
e
d
V
a
l
u
e
s
H
i
s
t
o
g
r
a
m
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
O
r
d
e
r
o
f
t
h
e
D
a
t
a
R
e
s
i
d
u
al
P
l
o
t
s
f
o
r
R
e
s
o
n
an
t
F
r
e
q
u
e
n
c
y
(
f
r
)
/
G
H
z
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
P
e
r
c
e
n
t
4
2
0
-2
99
90
50
10
1
F
i
t
t
e
d
V
al
u
e
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
1
5
.
4
1
5
.
3
1
5
.
2
1
5
.
1
1
5
.
0
4
2
0
-2
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
F
r
e
q
u
e
n
c
y
3
.
6
2
.
4
1
.
2
0
.
0
-
1
.
2
8
6
4
2
0
O
b
s
e
r
v
at
i
o
n
O
r
d
e
r
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
4
2
0
-2
N
o
r
m
a
l
P
r
o
b
a
b
i
l
i
t
y
P
l
o
t
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
F
i
t
t
e
d
V
a
l
u
e
s
H
i
s
t
o
g
r
a
m
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
O
r
d
e
r
o
f
t
h
e
D
a
t
a
R
e
s
i
d
u
al
P
l
o
t
s
f
o
r
P
e
r
c
e
n
t
ag
e
B
an
d
w
i
d
t
h
(
%B
W
)
/
G
H
z
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
P
e
r
c
e
n
t
2
1
0
-1
-2
99
90
50
10
1
F
i
t
t
e
d
V
al
u
e
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
34
32
30
2
1
0
-1
-2
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
F
r
e
q
u
e
n
c
y
2
1
0
-1
-2
8
6
4
2
0
O
b
s
e
r
v
at
i
o
n
O
r
d
e
r
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
2
1
0
-1
-2
N
o
r
m
a
l
P
r
o
b
a
b
i
l
i
t
y
P
l
o
t
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
F
i
t
t
e
d
V
a
l
u
e
s
H
i
s
t
o
g
r
a
m
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
O
r
d
e
r
o
f
t
h
e
D
a
t
a
R
e
s
i
d
u
al
P
l
o
t
s
f
o
r
R
e
t
u
r
n
L
o
s
s
(
R
L
)
/
d
B
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
P
e
r
c
e
n
t
2
1
0
-1
-2
99
90
50
10
1
F
i
t
t
e
d
V
al
u
e
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
4
.
0
0
3
.
9
5
3
.
9
0
3
.
8
5
3
.
8
0
2
1
0
-1
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
F
r
e
q
u
e
n
c
y
2
.
5
2
.
0
1
.
5
1
.
0
0
.
5
0
.
0
-
0
.
5
-
1
.
0
1
0
.
0
7
.
5
5
.
0
2
.
5
0
.
0
O
b
s
e
r
v
at
i
o
n
O
r
d
e
r
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
2
1
0
-1
N
o
r
m
a
l
P
r
o
b
a
b
i
l
i
t
y
P
l
o
t
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
F
i
t
t
e
d
V
a
l
u
e
s
H
i
s
t
o
g
r
a
m
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
O
r
d
e
r
o
f
t
h
e
D
a
t
a
R
e
s
i
d
u
al
P
l
o
t
s
f
o
r
G
ai
n
(
G
)
/
d
B
i
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
P
e
r
c
e
n
t
2
1
0
-1
-2
99
90
50
10
1
F
i
t
t
e
d
V
al
u
e
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
97
96
95
94
93
2
1
0
-1
S
t
an
d
ar
d
i
z
e
d
R
e
s
i
d
u
al
F
r
e
q
u
e
n
c
y
2
1
0
-1
8
6
4
2
0
O
b
s
e
r
v
at
i
o
n
O
r
d
e
r
S
t
a
n
d
a
r
d
i
z
e
d
R
e
s
i
d
u
a
l
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
2
1
0
-1
N
o
r
m
a
l
P
r
o
b
a
b
i
l
i
t
y
P
l
o
t
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
F
i
t
t
e
d
V
a
l
u
e
s
H
i
s
t
o
g
r
a
m
o
f
t
h
e
R
e
s
i
d
u
a
l
s
R
e
s
i
d
u
a
l
s
V
e
r
s
u
s
t
h
e
O
r
d
e
r
o
f
t
h
e
D
a
t
a
R
e
s
i
d
u
al
P
l
o
t
s
f
o
r
E
f
f
i
c
i
e
n
c
y
(
E
f
f
)
/
%
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
1
6
9
3
-
6930
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
,
Vo
l.
23
,
No
.
5
,
Octo
b
e
r
20
25
:
1
1
8
8
-
1
200
1196
f
it
n
e
s
s
an
d
a
c
c
e
p
ta
b
i
l
ity
.
W
h
en
th
e
P
-
v
a
lu
e
is
<
0
.
0
5
,
th
e
n
u
ll
h
y
p
o
th
es
i
s
(
H0
)
is
r
ej
ec
ted
,
s
ig
n
i
f
y
in
g
t
h
at
t
h
e
m
o
d
el
f
its
t
h
e
d
ata;
f
o
r
th
e
P
-
v
alu
e
>0
.
0
5
,
th
e
H0
is
ac
ce
p
ted
,
m
ea
n
i
n
g
t
h
at
th
e
m
o
d
el
d
o
es
n
o
t
f
it
th
e
d
ata
[
2
7
]
.
T
ab
le
5
.
A
NOV
A
o
n
t
h
e
m
o
d
el
f
it
n
es
s
P
r
e
d
i
c
t
o
r
v
e
r
su
s re
sp
o
n
se
v
a
r
i
a
b
l
e
s
S
o
u
r
c
e
R
e
g
r
e
ssi
o
n
R
e
si
d
u
a
l
e
r
r
o
r
T
o
t
a
l
R
e
so
n
a
n
t
f
r
e
q
u
e
n
c
y
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
1
28
29
SS
7
0
.
1
1
6
2
0
.
5
4
8
9
0
.
6
6
4
MS
7
0
.
1
1
6
0
.
7
3
4
F
9
5
.
5
4
p
0
.
0
0
0
P
e
r
c
e
n
t
a
g
e
b
a
n
d
w
i
d
t
h
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
3
26
29
SS
2
7
.
5
3
0
5
1
0
.
6
5
1
0
3
8
.
1
8
1
5
MS
9
.
1
7
6
8
4
0
.
4
0
9
6
5
F
2
2
.
4
0
P
-
v
a
l
u
e
0
.
0
0
0
R
e
t
u
r
n
l
o
ss v
e
r
su
s su
b
st
r
a
t
e
t
h
i
c
k
n
e
ss
DF
2
27
29
SS
2
1
4
.
0
9
2
3
0
2
.
1
6
3
5
1
6
.
2
5
6
MS
1
0
7
.
0
4
6
1
0
7
.
0
4
6
F
9
.
5
7
P
-
v
a
l
u
e
0
.
0
0
1
G
a
i
n
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
2
27
29
SS
0
.
2
0
4
6
6
6
0
.
0
0
4
4
8
1
0
.
2
0
9
1
4
7
MS
0
.
1
0
2
3
3
3
0
.
0
0
0
1
6
6
F
6
1
6
.
6
2
P
-
v
a
l
u
e
0
.
0
0
0
Ef
f
i
c
i
e
n
c
y
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
2
27
29
SS
4
6
.
9
2
0
8
1
.
8
8
0
0
4
8
.
8
0
0
8
MS
2
3
.
4
6
0
4
0
.
0
6
9
6
F
3
3
6
.
9
3
P
-
v
a
l
u
e
0
.
0
0
0
T
ab
le
6
.
Seq
u
en
tial
A
NOV
A
P
r
e
d
i
c
t
o
r
v
e
r
su
s re
sp
o
n
se
v
a
r
i
a
b
l
e
s
S
o
u
r
c
e
L
i
n
e
a
r
Q
u
a
d
r
a
t
i
c
C
u
b
i
c
R
e
so
n
a
n
t
f
r
e
q
u
e
n
c
y
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
1
1
SS
7
0
.
1
1
5
9
1
5
.
6
5
1
3
F
9
5
.
5
4
p
0
.
0
0
0
0
.
0
0
0
P
e
r
c
e
n
t
a
g
e
b
a
n
d
w
i
d
t
h
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
1
1
1
SS
0
.
4
0
0
2
1
3
.
3
6
8
7
1
3
.
7
6
1
6
F
0
.
3
0
1
4
.
7
9
3
3
.
5
9
P
-
v
a
l
u
e
0
.
5
9
0
0
.
0
0
1
0
.
0
0
0
R
e
t
u
r
n
l
o
ss
v
e
r
su
s su
b
st
r
a
t
e
t
h
i
c
k
n
e
ss
DF
1
1
1
SS
9
0
.
8
0
4
1
2
3
.
2
8
8
6
6
.
1
1
1
F
5
.
9
8
1
1
.
0
2
7
.
2
8
P
-
v
a
l
u
e
0
.
0
2
1
0
.
0
0
3
0
.
0
1
2
G
a
i
n
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
1
1
SS
0
.
1
0
8
2
8
0
0
.
0
9
6
3
8
6
F
3
0
.
0
6
5
8
0
.
7
9
P
-
v
a
l
u
e
0
.
0
0
0
0
.
0
0
0
Ef
f
i
c
i
e
n
c
y
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
DF
1
1
SS
3
8
.
3
5
2
8
8
.
5
6
8
0
F
1
0
2
.
7
8
1
2
3
.
0
5
P
-
v
a
l
u
e
0
.
0
0
0
0
.
0
0
0
4
.
5
.
ANO
VA
o
n t
he
s
equentia
l pre
dict
io
n
T
a
b
l
e
7
s
h
o
w
s
A
NO
VA
o
n
s
e
q
u
en
t
ia
l
p
r
e
d
i
c
ti
o
n
;
Hs
p
r
e
d
i
c
ts
th
e
r
es
p
o
n
s
e
v
a
r
i
a
b
le
s
(
F
r
,
B
W
,
G
,
R
L
,
an
d
ƞ
)
.
I
n
th
e
A
N
OVA
t
a
b
l
e
,
T
-
v
a
lu
es
r
e
p
r
es
en
t
th
e
s
t
an
d
a
r
d
e
r
r
o
r
s
o
f
t
h
e
r
eg
r
es
s
i
o
n
c
o
ef
f
i
c
ie
n
t
,
a
n
d
a
h
i
g
h
T
-
v
a
lu
e
w
ith
t
h
e
le
a
s
t
P
-
v
alu
e
i
n
d
i
c
a
t
es
th
at
th
e
m
o
d
e
l
i
s
o
f
s
u
b
s
t
an
t
ia
l
s
ig
n
if
i
c
an
ce
.
T
h
e
C
o
ef
(
co
ef
f
icien
t)
s
h
o
w
s
t
h
e
d
ir
ec
tio
n
an
d
s
ize
o
f
t
h
e
r
elati
o
n
s
h
ip
b
et
w
ee
n
th
e
p
r
ed
icto
r
an
d
r
esp
o
n
s
e
v
ar
iab
le
s
.
A
p
o
s
it
i
v
e
C
o
e
f
in
d
icate
s
a
p
o
s
itiv
e
r
elatio
n
s
h
ip
,
w
h
ile
a
n
e
g
ati
v
e
C
o
ef
i
n
d
icate
s
a
n
eg
ati
v
e
r
elati
o
n
s
h
ip
b
et
w
ee
n
th
e
v
ar
iab
les.
T
h
is
s
ig
n
i
f
ies
th
at
th
e
n
e
g
ati
v
e
C
o
e
f
i
n
Hs
-
v
al
u
es
o
n
th
e
Fr
an
d
ƞ
r
elatio
n
s
h
ip
in
d
icate
s
a
co
n
t
in
u
o
u
s
d
ec
r
ea
s
e
in
t
h
e
Fr
an
d
ƞ
v
alu
e
s
as
Hs
-
v
al
u
es
i
n
cr
ea
s
e.
SE
C
o
e
f
f
r
ep
r
esen
ts
t
h
e
s
ta
n
d
ar
d
er
r
o
r
o
f
th
e
C
o
ef
;
th
e
h
i
g
h
er
SE
C
o
e
f
in
d
icate
s
le
s
s
co
n
f
id
e
n
ce
i
n
th
e
p
r
ed
icted
v
alu
es,
w
h
ile
t
h
e
s
m
aller
SE
C
o
ef
s
ig
n
i
f
ie
s
a
m
o
r
e
p
r
ec
is
e
p
r
ed
ictio
n
.
A
P
-
v
al
u
e
le
s
s
t
h
a
n
t
h
e
s
i
g
n
i
f
i
ca
n
ce
le
v
el
(
0
.
0
5
)
in
d
icate
s
a
s
ig
n
i
f
ica
n
t
r
elatio
n
s
h
ip
b
et
w
e
en
t
h
e
p
r
ed
icto
r
an
d
r
esp
o
n
s
e
v
ar
iab
le,
an
d
a
P
-
v
alu
e
g
r
ea
ter
th
an
th
e
s
i
g
n
i
f
ica
n
ce
lev
el
o
f
0
.
0
5
in
d
icate
s
an
in
s
i
g
n
i
f
ican
t
Evaluation Warning : The document was created with Spire.PDF for Python.
T
E
L
KOM
NI
K
A
T
elec
o
m
m
u
n
C
o
m
p
u
t E
l
C
o
n
tr
o
l
S
u
b
s
tr
a
te
th
ickn
ess
va
r
ia
tio
n
o
n
th
e
fr
eq
u
e
n
cy
r
esp
o
n
s
e
o
f
micro
s
tr
ip
…
(
B
ello
A
b
d
u
lla
h
i
Mu
h
a
mma
d
)
1197
r
ela
tio
n
s
h
ip
b
et
w
ee
n
t
h
e
v
ar
ia
b
les.
T
o
c
o
n
f
ir
m
th
e
m
o
d
el
’
s
p
r
ec
is
io
n
an
d
v
alid
it
y
.
T
h
e
P
-
v
alu
e
s
o
f
0
.
0
0
0
an
d
0
.
0
2
1
s
ig
n
if
y
t
h
e
m
o
d
el
’
s
s
ig
n
i
f
ican
ce
a
n
d
ac
ce
p
tab
ilit
y
,
w
h
ile
t
h
e
P
-
v
alu
e
o
f
0
.
0
5
9
in
d
icate
s
p
o
o
r
m
o
d
el
f
it
n
es
s
.
A
P
-
v
al
u
e
g
r
ea
ter
th
an
0
.
0
5
in
d
icate
s
in
s
u
f
f
icie
n
t
ev
id
e
n
ce
to
v
alid
ate
th
e
m
o
d
el
f
it
n
es
s
an
d
ac
ce
p
tab
ilit
y
;
it
d
o
es
n
o
t
ev
alu
ate
th
e
o
v
er
all
m
o
d
el
f
itn
e
s
s
an
d
ac
ce
p
tab
ilit
y
.
T
h
e
4
-
in
-
o
n
e
r
esid
u
al
p
lo
ts
ca
n
f
u
r
t
h
er
ass
e
s
s
t
h
e
r
eg
r
es
s
io
n
m
o
d
el
’
s
f
i
tn
e
s
s
a
n
d
ac
ce
p
tab
ilit
y
.
T
ab
le
7
.
Seq
u
en
tial p
r
ed
ictio
n
A
NO
V
A
P
r
e
d
i
c
t
o
r
v
e
r
su
s re
sp
o
n
se
v
a
r
i
a
b
l
e
s
P
r
e
d
i
c
t
o
r
C
o
n
st
a
n
t
Hs
R
e
so
n
a
n
t
f
r
e
q
u
e
n
c
y
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
C
o
e
f
2
8
.
9
2
7
0
-
7
.
0
6
5
1
S
E
C
o
e
f
0
.
3
2
0
8
0
.
7
2
2
8
T
-
v
a
l
u
e
9
0
.
1
7
-
9
.
7
7
P
-
v
a
l
u
e
0
.
0
0
0
0
.
0
0
0
P
e
r
c
e
n
t
a
g
e
b
a
n
d
w
i
d
t
h
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
C
o
e
f
1
4
.
9
5
1
8
0
.
5
3
3
7
S
E
C
o
e
f
0
.
4
3
5
0
0
.
9
8
0
1
T
-
v
a
l
u
e
3
4
.
3
7
0
.
5
4
P
-
v
a
l
u
e
0
.
0
0
0
0
.
5
9
0
R
e
t
u
r
n
l
o
ss v
e
r
su
s su
b
st
r
a
t
e
t
h
i
c
k
n
e
ss
C
o
e
f
2
8
.
3
4
0
8
.
0
4
0
S
E
C
o
e
f
1
.
4
6
0
3
.
2
8
9
T
-
v
a
l
u
e
1
9
.
4
1
2
.
4
4
P
-
v
a
l
u
e
0
.
0
0
0
0
.
0
2
1
G
a
i
n
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
C
o
e
f
3
.
7
6
7
7
5
0
.
2
7
7
6
4
S
E
C
o
e
f
0
.
0
2
2
4
8
0
.
0
5
0
6
4
T
-
v
a
l
u
e
1
6
7
.
6
4
5
.
4
8
P
-
v
a
l
u
e
0
.
0
0
0
0
.
0
0
0
Ef
f
i
c
i
e
n
c
y
v
e
r
su
s su
b
s
t
r
a
t
e
t
h
i
c
k
n
e
ss
C
o
e
f
9
6
.
9
8
7
8
-
5
.
2
2
5
3
S
E
C
o
e
f
0
.
2
2
8
7
0
.
5
1
5
4
T
-
v
a
l
u
e
4
2
3
.
9
9
-
1
0
.
1
4
P
-
v
a
l
u
e
0
.
0
0
0
0
.
0
0
0
4
.
6
.
Resid
ua
l plo
t
T
h
e
r
esid
u
al
p
lo
ts
in
clu
d
e
r
esid
u
al
v
alu
e
v
er
s
u
s
d
ata
o
r
d
e
r
,
i
n
w
h
ic
h
th
e
m
ea
n
v
al
u
es
ar
e
ze
r
o
(
0
)
f
o
r
th
e
m
o
d
el
to
b
e
v
alid
.
Fig
u
r
es
7
(
a)
to
(
e)
in
clu
d
e
a
h
is
to
g
r
a
m
o
f
th
e
r
esid
u
als,
w
h
ic
h
in
d
ica
tes
th
e
d
is
tr
ib
u
t
io
n
o
f
er
r
o
r
s
to
ass
ess
w
h
eth
er
th
e
m
o
d
el
is
ap
p
r
o
p
r
iate
f
o
r
th
e
d
ata,
co
n
f
ir
m
th
e
m
o
d
e
l
’
s
f
itn
e
s
s
,
an
d
its
ac
ce
p
tab
ilit
y
.
T
h
e
m
o
d
el
er
r
o
r
s
ar
e
m
o
r
e
o
n
-
1
,
0
,
1
,
-
1
,
an
d
-
0
.
5
as sh
o
w
n
in
Fi
g
u
r
es 7
(
a)
to
(
e)
,
r
esp
ec
t
iv
el
y
.
T
h
ese
f
all
w
i
th
i
n
th
e
m
o
d
el
er
r
o
r
lim
it
clo
s
e
to
th
e
tr
en
d
lin
e
to
s
ig
n
i
f
y
t
h
e
m
o
d
el
’
s
f
it
n
es
s
an
d
v
alid
it
y
.
T
h
e
h
is
to
g
r
a
m
r
esid
u
al
s
co
n
f
ir
m
t
h
e
n
o
r
m
ali
t
y
a
s
s
u
m
p
tio
n
s
,
as
t
h
e
m
ea
n
v
a
lu
e
s
ar
e
ap
p
r
o
x
i
m
ate
l
y
ze
r
o
an
d
t
h
e
d
ata
p
o
in
ts
ar
e
w
i
th
i
n
±
2
s
tan
d
ar
d
er
r
o
r
s
,
w
h
ich
co
r
r
esp
o
n
d
s
to
a
9
5
%
co
n
f
id
en
ce
in
ter
v
a
l
.
T
h
e
s
tan
d
ar
d
ized
r
esid
u
als,
ca
lcu
la
ted
f
r
o
m
th
e
r
eg
r
ess
io
n
s
tan
d
ar
d
er
r
o
r
s
,
m
u
s
t
b
e
w
i
th
i
n
th
e
r
an
g
e
o
f
±
2
,
w
h
ich
is
ap
p
r
o
x
im
a
tel
y
9
5
% o
f
t
h
e
d
at
a
p
o
in
ts
[
2
8
]
.
5.
CO
NCLU
SI
O
N
T
h
is
r
esear
ch
w
o
r
k
s
i
m
u
lated
a
n
d
f
ab
r
icate
d
a
2
8
GHz
m
icr
o
s
tr
ip
an
ten
n
a
a
n
d
d
ev
elo
p
ed
an
d
p
r
o
p
o
s
ed
r
eg
r
ess
io
n
m
o
d
el
eq
u
atio
n
s
to
in
v
e
s
ti
g
ate
an
d
ev
al
u
ate
th
e
im
p
ac
t o
f
Hs v
ar
iatio
n
o
n
Fr,
G,
%
BW
,
R
L
,
an
d
ƞ
.
T
h
e
f
itted
lin
e
p
lo
ts
a
n
al
y
ze
d
th
e
co
r
r
elatio
n
b
et
w
ee
n
th
e
d
ata
an
d
th
e
d
ev
elo
p
ed
m
o
d
e
ls
.
T
h
e
an
ten
n
a
w
a
s
p
r
in
ted
o
n
a
f
le
x
ib
le
P
I
s
u
b
s
tr
ate
u
s
i
n
g
s
il
v
er
in
k
to
av
o
id
c
o
m
p
u
tatio
n
al
co
s
t
an
d
f
ast
s
o
lu
tio
n
s
f
o
r
f
ilter
in
g
d
esig
n
p
ar
a
m
eter
s
,
w
h
ich
i
s
th
e
m
ain
o
b
j
ec
tiv
e
o
f
th
e
p
r
o
p
o
s
ed
d
esig
n
.
T
h
e
m
o
d
els
’
eq
u
atio
n
s
a
n
d
ex
p
er
i
m
e
n
tal
r
esu
lt
s
w
er
e
v
al
id
ated
.
T
h
is
w
as
d
o
n
e
b
y
co
m
p
ar
i
n
g
th
e
s
i
m
u
lated
an
d
m
ea
s
u
r
ed
r
esu
l
ts
a
n
d
th
e
ANOV
A
o
f
th
e
m
o
d
el
c
h
ar
ac
ter
is
tics
.
T
h
e
m
ea
s
u
r
e
m
e
n
t
s
h
o
w
s
g
o
o
d
ag
r
ee
m
en
t
w
it
h
th
e
s
i
m
u
la
tio
n
r
e
s
u
lt
s
.
T
h
e
lo
w
er
Hs
ac
h
iev
ed
an
i
m
p
r
o
v
ed
B
W
an
d
ƞ
,
a
lo
w
-
co
s
t
a
n
d
lo
w
-
p
r
o
f
il
e
an
ten
n
a
f
o
r
f
u
t
u
r
e
m
m
-
v
al
v
e
ap
p
licatio
n
s
.
T
h
e
m
o
d
el
eq
u
atio
n
s
ca
n
ac
cu
r
atel
y
an
d
f
as
ter
p
r
ed
ict
th
e
a
n
ten
n
a
’
s
p
ar
a
m
eter
s
(
Fr,
B
W
,
G,
R
L
,
a
n
d
ƞ
)
an
d
o
v
er
all
an
ten
n
a
p
er
f
o
r
m
a
n
ce
t
h
a
n
m
a
n
y
co
m
m
er
ciall
y
a
v
ailab
le
ad
v
an
ce
d
s
i
m
u
latio
n
to
o
ls
.
T
h
is
g
iv
e
s
a
n
in
s
i
g
h
t
in
to
h
o
w
a
n
ten
n
a
d
esig
n
er
s
ca
n
p
r
ed
ict
th
e
an
ten
n
a
’
s
p
ar
a
m
eter
s
an
d
p
er
f
o
r
m
a
n
ce
.
T
h
ese
m
e
th
o
d
s
co
u
ld
r
ed
u
ce
th
e
co
s
t
o
f
p
r
o
d
u
ctio
n
an
d
i
m
p
r
o
v
e
th
e
an
te
n
n
a
’
s
o
p
ti
m
u
m
p
er
f
o
r
m
an
ce
.
T
h
is
p
ap
er
s
u
g
g
ested
th
at
t
h
e
r
eg
r
ess
io
n
m
o
d
el
s
ca
n
b
e
ex
p
a
n
d
ed
to
ev
alu
ate
ad
d
itio
n
al
a
n
te
n
n
a
p
ar
a
m
eter
s
,
s
u
c
h
as
r
ad
iatio
n
p
atte
r
n
s
an
d
p
o
lar
izatio
n
,
to
en
h
an
ce
th
e
a
n
ten
n
a
p
er
f
o
r
m
an
ce
.
I
t
also
m
ea
n
t
t
h
e
p
r
o
p
o
s
ed
d
esig
n
s
h
o
u
ld
b
e
u
s
ed
in
f
r
eq
u
en
c
y
-
s
e
n
s
iti
v
e
ap
p
licatio
n
s
.
T
h
is
ar
ticle
is
th
e
f
ir
s
t
to
u
s
e
th
e
p
o
l
y
n
o
m
ial
r
eg
r
ess
io
n
m
o
d
el
eq
u
atio
n
s
to
ev
alu
a
te
th
e
i
m
p
ac
t
o
f
Hs v
ar
iatio
n
o
n
th
e
2
8
GHz
p
r
in
tab
le
m
icr
o
s
tr
ip
an
te
n
n
a
t
o
th
e
b
est o
f
o
u
r
k
n
o
w
led
g
e.
T
h
e
p
ap
er
s
u
g
g
e
s
ted
ex
ten
d
i
n
g
th
e
p
r
o
p
o
s
ed
r
eg
r
e
s
s
io
n
m
o
d
eli
n
g
ap
p
r
o
ac
h
to
ev
alu
a
te
ad
d
itio
n
al
p
ar
am
e
ter
s
s
u
c
h
as
r
ad
iatio
n
p
atter
n
s
,
p
o
lar
izatio
n
,
an
d
im
p
ed
a
n
ce
-
m
a
tch
i
n
g
ch
ar
ac
ter
is
tics
.
I
t
also
s
u
g
g
ested
r
eg
r
ess
io
n
m
o
d
eli
n
g
to
ev
alu
a
te
t
h
e
i
m
p
ac
t
o
f
Hs
o
n
v
ar
io
u
s
p
ar
a
m
eter
s
i
n
t
h
e
T
er
ah
er
t
z
f
r
eq
u
e
n
cies.
Mo
r
eo
v
er
,
it
s
u
g
g
es
ted
th
at
f
u
t
u
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.