I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
6
,
Decem
b
er
20
25
,
p
p
.
5
1
3
0
~
5
1
4
3
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
6
.
pp
5
1
3
0
-
5
1
4
3
5130
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Fraction
a
l f
u
zzy
ba
sed
sta
tic
v
a
r c
o
mpens
a
tor
co
ntr
o
l
for
da
mping
enha
ncement
of
in
ter
-
a
rea o
scilla
tions
T
a
rik
Z
a
ba
io
u,
K
ha
did
j
a
B
ena
y
a
d
La
b
o
r
a
t
o
i
r
e
G
é
n
i
e
Él
e
c
t
r
i
q
u
e
P
o
l
y
t
e
c
h
C
o
n
st
a
n
t
i
n
e
(
LG
EPC
)
,
D
é
p
a
r
t
e
me
n
t
d’
É
l
e
c
t
r
o
n
i
q
u
e
,
É
l
e
c
t
r
o
t
e
c
h
n
i
q
u
e
e
t
A
u
t
o
ma
t
i
q
u
e
(
E
EA
)
,
Éc
o
l
e
N
a
t
i
o
n
a
l
e
P
o
l
y
t
e
c
h
n
i
q
u
e
d
e
C
o
n
st
a
n
t
i
n
e
,
C
o
n
st
a
n
t
i
n
e
,
A
l
g
e
r
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
1
6
,
2
0
2
5
R
ev
is
ed
J
u
l 2
8
,
2
0
2
5
Acc
ep
ted
Sep
1
6
,
2
0
2
5
Ov
e
r
ti
m
e
,
t
h
e
in
se
rti
o
n
o
f
flex
i
b
le
a
lt
e
rn
a
ti
n
g
c
u
rre
n
t
tran
sm
issio
n
s
y
ste
m
(F
ACTS
)
c
o
m
p
o
n
e
n
ts
i
n
th
e
p
o
we
r
g
rid
b
e
c
a
m
e
p
rimo
r
d
ial
to
m
a
in
tain
th
e
o
v
e
ra
ll
sy
ste
m
sta
b
il
i
ty
.
Th
is
p
a
p
e
r
p
ro
p
o
se
d
a
n
in
n
o
v
a
ti
v
e
a
p
p
ro
a
c
h
c
a
ll
e
d
h
y
b
rid
a
u
x
il
iar
y
d
a
m
p
in
g
c
o
n
tr
o
l
b
a
se
d
wid
e
-
a
re
a
m
e
a
su
re
m
e
n
ts
fo
r
th
e
sta
ti
c
v
a
r
c
o
m
p
e
n
sa
to
r
(S
VC).
T
h
e
p
re
se
n
ted
c
o
n
tro
ll
e
r
is
a
fra
c
ti
o
n
a
l
-
o
r
d
e
r
fu
z
z
y
p
ro
p
o
rt
io
n
a
l
in
teg
ra
l
d
e
ri
v
a
ti
v
e
(F
OFP
ID).
Its
p
rin
c
i
p
a
l
tas
k
is
to
d
a
m
p
in
ter
-
a
re
a
lo
w freq
u
e
n
c
y
o
s
c
il
latio
n
s (L
F
Os
)
a
n
d
t
o
imp
r
o
v
e
th
e
p
o
we
r
sy
ste
m
sta
b
il
it
y
o
v
e
r
t
h
e
tran
sie
n
t
d
y
n
a
m
ics
.
Th
e
n
,
a
m
e
tah
e
u
risti
c
g
re
y
wo
lf
o
p
ti
m
iza
ti
o
n
(G
WO)
m
e
th
o
d
is
a
p
p
li
e
d
t
o
a
d
ju
st
t
h
e
c
o
n
tro
l
ler’s
g
a
in
s.
T
h
e
S
VC
-
b
a
se
d
F
OFP
ID
c
o
n
tro
l
sc
h
e
m
e
is
imp
lem
e
n
ted
in
a
two
-
a
re
a
fo
u
r
-
m
a
c
h
in
e
tes
t
sy
ste
m
e
m
p
lo
y
i
n
g
t
h
e
ro
t
o
r
s
p
e
e
d
d
e
v
iatio
n
s
o
f
g
e
n
e
ra
to
rs
a
s
in
p
u
t
si
g
n
a
l.
A
c
o
m
p
a
ra
ti
v
e
a
n
a
ly
sis
o
f
t
h
e
e
lab
o
ra
te
d
c
o
n
tro
ll
e
r
with
th
e
in
teg
e
r
P
ID an
d
t
h
e
fra
c
ti
o
n
a
l
-
o
r
d
e
r
P
ID (F
OPID)
is p
e
rfo
rm
e
d
to
e
m
p
h
a
siz
e
it
s
e
ffe
c
ti
v
e
n
e
ss
u
n
d
e
r
a
t
h
re
e
-
p
h
a
se
p
e
rt
u
rb
a
ti
o
n
.
F
u
rt
h
e
rm
o
re
,
a
l
o
a
d
v
a
riatio
n
e
ffe
c
t
tes
t
is
c
o
m
p
lete
d
to
a
tt
e
st
t
h
e
c
o
n
t
ro
l
stra
teg
y
r
o
b
u
st
n
e
ss
.
Ba
se
d
o
n
d
y
n
a
m
ic
sim
u
latio
n
re
s
u
lt
s
a
n
d
p
e
rfo
rm
a
n
c
e
in
d
ice
s,
th
e
su
g
g
e
ste
d
c
o
n
tro
ll
e
r
sh
o
ws
i
ts
ro
b
u
st
n
e
ss
a
n
d
p
ro
v
id
e
s
i
n
c
re
a
se
d
e
fficie
n
c
y
fo
r
i
n
ter
-
a
re
a
o
sc
il
latio
n
s d
a
m
p
in
g
.
K
ey
w
o
r
d
s
:
Au
x
iliar
y
d
am
p
in
g
c
o
n
tr
o
ller
Flex
ib
le
alter
n
atin
g
cu
r
r
en
t
tr
an
s
m
is
s
io
n
s
y
s
tem
Fra
ctio
n
al
-
o
r
d
e
r
f
u
zz
y
PID
co
n
tr
o
ller
Po
wer
s
y
s
tem
Static v
ar
co
m
p
en
s
ato
r
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
T
ar
ik
Z
ab
aio
u
L
a
b
o
r
at
o
ir
e
Gé
n
i
e
É
le
ct
r
i
q
u
e
Po
l
y
t
ec
h
C
o
n
s
ta
n
t
in
e
(
L
GE
PC
)
,
Dé
p
ar
te
m
e
n
t
d’
É
le
ct
r
o
n
i
q
u
e
,
É
le
ct
r
o
te
ch
n
i
q
u
e
et
Au
to
m
a
ti
q
u
e
(
E
E
A
)
,
É
c
o
le
Nati
o
n
al
e
P
o
l
y
t
ec
h
n
i
q
u
e
d
e
C
o
n
s
ta
n
ti
n
e
C
o
n
s
tan
tin
e,
Alg
er
ia
E
m
ail: tz
ab
aio
u
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Su
s
tain
in
g
th
e
s
tab
ilit
y
o
f
th
e
elec
tr
ic
en
er
g
y
s
y
s
tem
s
h
as
b
ec
o
m
e
an
ess
en
tial
o
b
lig
atio
n
d
u
e
to
th
e
s
ig
n
if
ican
t
in
cr
ea
s
e
in
elec
tr
ici
ty
co
n
s
u
m
p
tio
n
ac
r
o
s
s
v
ar
io
u
s
s
ec
to
r
s
.
Oscill
ato
r
y
s
tab
ilit
y
,
a
m
ajo
r
co
n
ce
r
n
in
in
ter
co
n
n
ec
ted
p
o
wer
g
r
id
s
,
c
o
n
tr
ib
u
tes
to
s
tab
ilit
y
an
aly
s
is
an
d
co
n
tr
o
l
[
1
]
b
y
ad
d
r
ess
in
g
th
e
d
am
p
in
g
o
f
in
ter
-
ar
ea
lo
w
f
r
eq
u
e
n
cy
o
s
cillatio
n
s
(
L
FOs
)
,
ty
p
ically
o
cc
u
r
r
in
g
with
in
0
.
1
to
1
Hz
[
2
]
.
T
h
ese
o
s
cillatio
n
s
ar
e
ca
u
s
ed
b
y
d
ef
au
lts
,
f
lu
ct
u
a
tio
n
in
lo
ad
d
em
an
d
,
g
en
er
atio
n
alter
in
g
a
n
d
d
is
tu
r
b
an
ce
s
[
3
]
.
T
h
e
r
ef
o
r
e
,
th
er
e
is
s
tr
o
n
g
in
ce
n
tiv
e
to
d
e
v
elo
p
en
h
an
ce
d
m
eth
o
d
s
f
o
r
e
f
f
e
ctiv
e
d
am
p
i
n
g
o
f
in
ter
-
ar
ea
o
s
cillatio
n
s
to
av
o
id
in
s
tab
ilit
y
an
d
b
lack
o
u
ts
ca
u
s
ed
b
y
u
n
d
am
p
ed
s
win
g
s
.
T
h
e
f
ast
g
r
o
wth
o
f
p
o
wer
elec
tr
o
n
ics
h
as
in
d
ee
d
r
esu
lted
in
th
e
in
co
r
p
o
r
atio
n
o
f
f
lex
i
b
le
a
lter
n
atin
g
cu
r
r
en
t
t
r
an
s
m
is
s
io
n
s
y
s
tem
(
FAC
T
S)
elem
en
ts
in
p
o
wer
n
etwo
r
k
s
[
4
]
FAC
T
S
d
ev
ic
es
eq
u
ip
p
ed
with
ap
p
r
o
p
r
iate
au
x
iliar
y
d
am
p
in
g
co
n
tr
o
ller
(
ADC)
ca
n
ac
tiv
el
y
co
u
n
ter
ac
t
in
ter
-
ar
ea
o
s
cillatio
n
s
b
y
m
o
d
u
latio
n
o
f
ac
tiv
e
a
n
d
r
ea
ctiv
e
p
o
wer
,
ad
ju
s
tin
g
v
o
ltag
e
lev
els,
a
n
d
o
p
tim
izin
g
p
o
wer
f
lo
w
d
is
tr
ib
u
tio
n
.
T
h
is
h
elp
s
en
h
an
ce
m
e
n
t
o
f
p
o
wer
o
s
cillatio
n
s
d
am
p
in
g
a
n
d
o
v
e
r
all
s
y
s
tem
s
tab
ilit
y
[
5
]
.
O
n
th
e
wh
o
le,
s
tatic
v
a
r
co
m
p
en
s
ato
r
(
SVC
)
is
an
es
s
en
tial
s
h
u
n
t
p
ar
t
o
f
FAC
T
S
co
n
tr
o
ller
s
th
at
co
n
tr
ib
u
te
t
o
th
e
s
tab
ilit
y
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
F
r
a
ctio
n
a
l fu
z
z
y
b
a
s
ed
s
ta
tic
va
r
co
mp
en
s
a
to
r
co
n
tr
o
l fo
r
…
(
Ta
r
ik
Za
b
a
io
u
)
5131
ef
f
icien
cy
o
f
p
o
wer
n
etwo
r
k
s
.
SVC
h
elp
s
en
s
u
r
e
elec
tr
ic
al
s
y
s
tem
s
well
o
p
er
atin
g
b
y
r
eg
u
latin
g
v
o
ltag
e
lev
els
an
d
r
ed
u
ci
n
g
tr
a
n
s
m
is
s
io
n
lo
s
s
es.
I
t
also
p
r
o
v
id
e
s
o
s
cillatio
n
s
d
am
p
in
g
wh
e
n
co
n
n
ec
te
d
to
an
ad
d
itio
n
al
r
eg
u
lato
r
[
6
]
.
I
n
d
ee
d
,
s
ev
er
al
co
n
v
en
tio
n
al
s
o
lu
tio
n
s
h
av
e
b
ee
n
test
ed
to
d
esig
n
SVC
ty
p
e
d
am
p
in
g
co
n
tr
o
ller
.
A
f
r
eq
u
e
n
tly
ap
p
lied
a
p
p
r
o
ac
h
in
v
o
lv
es
lin
ea
r
co
n
tr
o
l
tech
n
iq
u
es,
s
u
ch
as
th
e
d
esig
n
o
f
lead
-
lag
[
7
]
an
d
p
r
o
p
o
r
tio
n
al
i
n
teg
r
al
d
er
iv
ativ
e
(
PID
)
[
8
]
c
o
n
tr
o
ller
s
.
An
o
th
er
co
n
v
en
tio
n
al
s
tr
ateg
y
r
elies
o
n
th
e
ap
p
licatio
n
o
f
a
lin
ea
r
q
u
a
d
r
atic
r
e
g
u
lato
r
(
L
QR
)
[
9
]
.
I
n
ad
d
itio
n
,
r
o
b
u
s
t
co
n
tr
o
l
m
eth
o
d
s
h
a
v
e
b
ee
n
e
m
p
lo
y
ed
in
clu
d
in
g
μ
-
s
y
n
th
esis
[
1
0
]
,
p
o
ly
n
o
m
ial
c
o
n
tr
o
l
[
1
1
]
a
n
d
lo
o
p
s
h
ap
i
n
g
[
1
2
]
.
Fu
r
th
er
m
o
r
e
,
a
co
n
s
id
er
ab
le
am
o
u
n
t
o
f
r
esear
c
h
h
as
ex
a
m
in
ed
in
tellig
en
t
a
p
p
r
o
ac
h
es
to
d
ev
el
o
p
m
o
r
e
ef
f
icien
t
co
n
tr
o
l
s
tr
ateg
ies.
Kar
p
ag
am
et
a
l
.
[
1
3
]
in
v
esti
g
ated
th
e
ap
p
licatio
n
o
f
th
e
f
u
zz
y
lo
g
ic
tech
n
iq
u
e
in
.
Ab
d
u
lr
a
h
m
an
a
n
d
R
ad
m
an
[
1
4
]
co
m
b
in
ed
th
e
s
tr
en
g
th
s
o
f
f
u
zz
y
l
o
g
ic
an
d
n
eu
r
al
n
etwo
r
k
s
to
cr
ea
te
p
o
wer
f
u
l
an
d
ad
a
p
tiv
e
co
n
tr
o
l
s
y
s
tem
in
.
A
d
ec
en
tr
alize
d
r
o
b
u
s
t
co
n
tr
o
l
tech
n
iq
u
e
to
en
h
an
ce
th
e
d
y
n
am
ic
r
esp
o
n
s
e
o
f
t
h
e
n
etw
o
r
k
a
n
d
m
itig
ate
elec
tr
o
m
ec
h
an
ical
s
win
g
s
h
as
b
ee
n
ap
p
lied
b
y
[
1
5
]
.
B
esid
es,
au
th
o
r
in
[
1
6
]
ex
p
l
o
r
ed
d
ee
p
r
ein
f
o
r
ce
m
e
n
t
lear
n
in
g
(
R
L
)
al
g
o
r
ith
m
to
d
esig
n
a
co
m
p
lem
e
n
tar
y
co
n
tr
o
ller
f
o
r
SVC
in
o
r
d
er
to
g
u
ar
a
n
tee
an
ad
a
p
tiv
e
p
a
r
am
eter
a
d
ju
s
tin
g
an
d
s
y
s
tem
r
o
b
u
s
tn
ess
.
Ad
d
itio
n
ally
,
n
ew
o
p
tim
izatio
n
s
s
tr
ateg
ies
h
av
e
b
ee
n
a
p
p
lied
t
o
co
o
r
d
in
ate
SVC
an
d
p
o
wer
s
y
s
tem
s
tab
ilizer
(
PS
S)
f
o
r
o
p
tim
al
d
am
p
in
g
o
f
th
e
L
FOs
[
1
7
]
.
A
m
ajo
r
p
ar
t
o
f
r
ec
e
n
t
s
tu
d
ies
is
f
o
cu
s
ed
o
n
f
r
ac
tio
n
a
l
-
o
r
d
er
p
r
o
p
o
r
tio
n
al
in
te
g
r
al
d
er
iv
ativ
e
(
FOPID)
co
n
tr
o
ller
s
[
1
8
]
.
Ov
e
r
all,
th
ese
class
o
f
co
n
tr
o
ller
s
o
f
f
er
im
p
r
o
v
ed
p
er
f
o
r
m
a
n
ce
a
n
d
g
r
ea
t
r
o
b
u
s
tn
ess
f
o
r
L
FOs
d
am
p
in
g
u
s
in
g
FAC
T
S
d
ev
ices
as
d
em
o
n
s
tr
a
ted
b
y
FOPID
-
b
ased
t
h
y
r
is
to
r
-
co
n
t
r
o
lled
s
er
ies
ca
p
ac
ito
r
(
T
C
SC
)
[
1
9
]
,
FOPID
ty
p
e
s
tatic
s
y
n
ch
r
o
n
o
u
s
s
er
ies
co
m
p
en
s
ato
r
(
SS
SC
)
[
2
0
]
–
[
2
2
]
a
n
d
f
r
ac
tio
n
al
PI
co
n
tr
o
ller
a
p
p
lied
t
o
u
n
if
ied
p
o
wer
f
lo
w
co
n
tr
o
ller
(
UPFC
)
[
2
3
]
.
Mo
r
eo
v
e
r
,
a
n
FOPID
-
SVC
in
co
o
r
d
in
atio
n
with
FOPID
-
PS
S
is
r
ep
o
r
ted
in
[
2
4
]
t
o
m
iti
g
ate
lo
w
-
f
r
e
q
u
en
c
y
o
s
cillatio
n
s
u
s
in
g
a
s
in
g
le
-
m
ac
h
in
e
in
f
i
n
ite
b
u
s
(
SMI
B
)
n
etwo
r
k
.
T
h
is
co
n
tr
o
l
s
ch
em
e
h
as
s
h
o
wn
g
o
o
d
r
esu
lts
f
o
r
d
a
m
p
in
g
lo
c
al
s
win
g
s
b
u
t
n
o
t
v
er
if
ied
f
o
r
in
ter
-
r
eg
i
o
n
al
m
o
d
es
th
at
r
ep
r
esen
t
a
v
ital
co
n
ce
r
n
in
s
tab
ilit
y
an
d
r
eliab
ilit
y
o
f
p
r
esen
t
in
ter
co
n
n
ec
ted
p
o
wer
g
r
id
s
.
H
en
ce
,
a
wid
e
-
ar
ea
FOPID
ty
p
e
SVC
is
in
tr
o
d
u
ce
d
as
f
ir
s
t
p
u
r
p
o
s
e
in
t
h
is
wo
r
k
to
am
elio
r
ate
th
e
d
am
p
in
g
o
f
i
n
ter
-
ar
ea
L
FOs
in
m
u
lti
-
g
e
n
er
ato
r
s
n
etwo
r
k
.
Alter
n
ativ
ely
,
an
h
y
b
r
i
d
co
n
t
r
o
l
tech
n
iq
u
e
th
at
m
er
g
es
th
e
b
en
ef
its
o
f
f
u
zz
y
lo
g
ic
an
d
f
r
ac
tio
n
al
ca
lcu
lu
s
r
ev
ea
ls
an
o
r
ig
in
al
co
n
tr
o
ller
s
ch
em
e
ca
lled
f
r
a
ctio
n
al
-
o
r
d
e
r
f
u
zz
y
PID
(
FOFP
I
D)
[
2
5
]
,
wh
ic
h
attr
ac
ted
co
n
s
id
er
ab
le
r
esear
c
h
co
n
ce
r
n
in
p
o
wer
an
d
en
er
g
y
s
y
s
tem
en
g
in
ee
r
in
g
[
2
6
]
–
[
2
9
]
.
I
n
v
esti
g
atio
n
o
f
cu
r
r
en
t
liter
atu
r
e
h
as
r
ev
ea
led
th
at
th
e
FOF
PID
-
b
ased
SVC
co
n
tr
o
ller
h
as
n
o
t
b
ee
n
s
u
f
f
icien
tly
ex
am
in
ed
f
o
r
in
ter
-
ar
ea
L
FOs
d
am
p
in
g
s
tu
d
y
.
T
h
is
in
s
p
ir
ed
u
s
to
d
ev
el
o
p
a
FOFP
I
D
u
s
in
g
r
em
o
te
s
ig
n
als
-
b
ased
p
h
aso
r
m
ea
s
u
r
em
en
t u
n
its
(
PMU)
[
3
0
]
,
[
3
1
]
f
o
r
in
ter
-
a
r
ea
o
s
cillatio
n
s
d
am
p
in
g
m
itig
atio
n
.
Ad
d
itio
n
ally
,
v
ar
io
u
s
o
p
tim
iz
atio
n
alg
o
r
ith
m
s
h
av
e
b
ee
n
ap
p
lied
b
y
m
an
y
r
esear
c
h
er
s
to
o
b
tain
th
e
g
ain
s
o
f
f
r
ac
tio
n
al
c
o
n
tr
o
ller
s
.
T
h
e
m
o
s
t
p
o
p
u
lar
a
n
d
ef
f
icie
n
t
tech
n
i
q
u
es
ar
e
an
t
lio
n
o
p
ti
m
izer
(
AL
O)
[
3
2
]
,
m
o
d
if
ied
s
alp
s
war
m
alg
o
r
ith
m
(
MSSA)
[
3
3
]
,
g
r
ey
wo
lf
o
p
t
im
izer
(
GW
O)
[
2
2
]
,
a
n
d
m
o
th
f
lam
e
o
p
tim
izatio
n
(
MFO)
[
2
4
]
.
T
h
er
ef
o
r
e,
in
th
is
wo
r
k
,
th
e
GW
O
alg
o
r
ith
m
is
ad
o
p
ted
a
n
d
im
p
lem
e
n
ted
f
o
r
tu
n
in
g
t
h
e
p
ar
am
eter
s
o
f
th
e
d
ev
el
o
p
ed
c
o
n
tr
o
ller
s
.
Mo
r
eo
v
er
,
in
teg
r
al
tim
e
ab
s
o
lu
te
er
r
o
r
(
I
T
AE
)
-
o
b
jectiv
e
f
u
n
ctio
n
is
u
s
ed
as
p
e
r
f
o
r
m
an
ce
in
d
e
x
in
t
h
is
wo
r
k
.
I
t
i
s
co
n
s
id
er
e
d
t
o
b
e
th
e
b
est
cr
iter
ia
to
o
p
tim
ize
t
h
e
r
e
g
u
lato
r
s
g
ain
s
[
3
4
]
.
R
eg
ar
d
in
g
th
e
a
b
o
v
e
m
o
tiv
atio
n
s
,
th
is
s
tu
d
y
aim
s
t
o
e
n
h
an
ce
in
ter
-
ar
ea
o
s
cillatio
n
s
d
am
p
in
g
in
in
ter
co
n
n
ec
ted
p
o
wer
g
r
id
b
y
d
esig
n
in
g
a
r
o
b
u
s
t
SVC
-
b
ased
FOFP
I
D
co
n
tr
o
ller
th
at
u
tili
ze
s
wid
e
-
ar
ea
m
ea
s
u
r
em
en
ts
.
T
h
e
m
aj
o
r
h
ig
h
lig
h
ts
o
f
th
is
r
esear
ch
a
r
e
lis
ted
in
th
is
way
:
a.
Usi
n
g
o
f
s
p
ee
d
d
ev
iatio
n
s
d
if
f
er
en
ce
o
f
all
g
e
n
er
ato
r
s
f
r
o
m
d
is
p
er
s
ed
ar
ea
s
o
f
m
u
lti
-
m
ac
h
in
e
n
etwo
r
k
as
in
p
u
t c
o
n
tr
o
l sig
n
al.
T
h
ese
m
e
asu
r
em
en
ts
o
f
f
er
h
ig
h
est o
b
s
er
v
ab
ilit
y
o
f
in
te
r
-
ar
ea
o
s
cillatio
n
s
m
o
d
es.
b.
Dev
elo
p
m
en
t
o
f
a
wid
e
-
a
r
ea
FOPID
b
ased
-
SVC
to
im
p
r
o
v
e
t
h
e
d
am
p
i
n
g
o
f
in
ter
-
a
r
ea
L
FOs
.
c.
C
alcu
latio
n
o
f
f
r
ac
tio
n
al
o
r
d
e
r
o
p
er
ato
r
s
(
in
teg
r
al
an
d
d
er
i
v
ativ
e)
b
y
C
h
ar
e
f
’
s
ap
p
r
o
x
im
atio
n
alg
o
r
ith
m
u
s
in
g
MA
T
L
AB
s
o
f
twar
e
an
d
im
p
lem
en
tatio
n
o
f
FOPID
co
n
tr
o
ller
b
y
Simu
lin
k
b
lo
c
k
.
d.
C
o
m
b
in
in
g
th
e
ef
f
icien
c
y
o
f
f
u
zz
y
lo
g
ic
co
n
t
r
o
ller
(
FLC)
with
f
lex
ib
ilit
y
an
d
ad
d
itio
n
al
p
er
f
o
r
m
an
ce
o
f
f
r
ac
tio
n
al
ca
lcu
lu
s
(
FC
)
b
ased
co
n
tr
o
l
s
ch
e
m
e,
a
h
y
b
r
i
d
G
W
O
-
o
p
tim
ized
f
r
ac
tio
n
al
-
o
r
d
e
r
f
u
zz
y
PID
ty
p
e
SVC
d
am
p
in
g
co
n
tr
o
ller
is
d
e
s
ig
n
ed
an
d
test
ed
to
r
estra
in
in
ter
-
ar
ea
o
s
cillatio
n
s
.
e.
I
n
tr
o
d
u
ctio
n
o
f
th
e
d
ec
a
y
r
at
io
in
d
ex
(
DR
I
)
as
a
p
er
f
o
r
m
an
ce
m
ea
s
u
r
e
to
q
u
an
tify
p
o
wer
o
s
cillatio
n
s
s
p
ee
d
d
ec
r
ea
s
in
g
.
T
o
ac
h
iev
e
th
is
g
o
al,
th
e
p
a
p
er
is
o
r
d
er
ed
i
n
th
is
way
:
s
ec
tio
n
2
d
is
cu
s
s
es
th
e
p
o
wer
s
y
s
tem
in
v
esti
g
atio
n
an
d
SVC
m
o
d
elin
g
.
Sectio
n
3
p
r
esen
ts
th
e
co
n
tr
o
l
s
tr
ateg
y
in
clu
d
in
g
th
e
d
esig
n
o
f
th
e
d
am
p
in
g
co
n
tr
o
ller
s
.
T
h
e
o
p
tim
izatio
n
f
o
r
m
u
latio
n
an
d
p
e
r
f
o
r
m
an
ce
cr
iter
ia
ar
e
elab
o
r
ated
in
s
ec
tio
n
4
,
f
o
llo
wed
b
y
th
e
im
p
lem
en
tatio
n
o
f
GW
O
alg
o
r
ith
m
in
s
ec
tio
n
5
.
Sectio
n
6
p
r
o
v
id
es
th
e
o
p
tim
izatio
n
an
d
s
im
u
latio
n
r
esu
lts
to
g
eth
er
with
th
eir
ex
p
l
an
atio
n
s
.
Fin
ally
,
s
ec
tio
n
7
p
r
e
s
en
ts
th
e
co
n
clu
s
io
n
d
e
r
iv
ed
f
r
o
m
th
is
s
tu
d
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
1
3
0
-
5
1
4
3
5132
2.
O
VE
RA
L
L
S
YST
E
M
DE
SC
RIPT
I
O
N
2
.
1
.
P
o
wer
s
y
s
t
em
inv
estig
a
t
ed
T
h
e
co
n
f
ig
u
r
atio
n
s
h
o
wn
in
F
ig
u
r
e
1
illu
s
tr
ates
th
e
test
p
o
wer
n
etwo
r
k
ex
am
in
e
d
in
th
is
s
tu
d
y
.
T
h
e
s
y
s
tem
is
m
ad
e
u
p
o
f
two
s
y
m
m
etr
ical
ar
ea
s
in
ter
-
co
n
n
ec
ted
b
y
two
tie
-
lin
es
o
f
2
0
0
k
m
len
g
th
.
E
ac
h
r
e
g
i
o
n
h
as
t
wo
s
y
n
c
h
r
o
n
o
u
s
g
en
e
r
at
o
r
s
r
ate
d
2
0
k
V/
9
0
0
M
VA,
ar
r
a
n
g
e
d
G
1
a
n
d
G2
f
o
r
ar
ea
1
,
G
3
a
n
d
G
4
f
o
r
a
r
ea
2
.
E
v
er
y
g
en
er
ato
r
is
d
escr
ib
ed
b
y
its
two
-
ax
is
m
o
d
el
an
d
s
u
p
p
l
ied
with
in
ter
n
al
r
e
g
u
lato
r
s
.
Po
wer
s
y
s
tem
s
tab
ilizer
s
(
P
S
Ss
)
ar
e
in
s
tal
led
f
o
r
o
n
ly
o
n
e
g
en
er
ato
r
in
ea
ch
ar
ea
(
G1
f
o
r
ar
ea
1
an
d
G3
f
o
r
ar
ea
2
)
to
d
a
m
p
lo
ca
l
m
o
d
es
wh
ile
o
th
er
g
e
n
er
ato
r
s
(
G2
an
d
G4
)
ar
e
with
o
u
t
s
ta
b
ilizer
s
.
An
SVC
o
f
±
200
M
VAR
r
atin
g
is
p
o
s
itio
n
ed
at
b
u
s
8
to
d
am
p
in
ter
-
ar
ea
o
s
cillatio
n
s
.
T
h
e
test
s
y
s
tem
is
av
ailab
le
in
Simscap
e
E
lectr
ical
with
in
MA
T
L
AB
/Si
m
u
lin
k
s
o
f
twar
e
an
d
its
p
ar
am
eter
s
ar
e
g
iv
e
n
in
[
3
5
]
.
Fig
u
r
e
1
.
T
wo
-
ar
ea
f
o
u
r
-
m
ac
h
in
e
p
o
wer
n
etwo
r
k
with
SVC
[
3
5
]
2
.
2
.
St
a
t
ic
v
a
r
co
m
pens
a
t
o
r
m
o
del
T
h
e
s
tatic
v
ar
co
m
p
e
n
s
ato
r
b
elo
n
g
s
to
th
e
s
h
u
n
t
ca
te
g
o
r
y
o
f
FAC
T
S
eq
u
ip
m
en
t’
s
.
A
th
y
r
is
to
r
co
n
tr
o
lled
r
ea
cto
r
(
T
C
R
)
is
j
o
in
ed
in
p
ar
allel
with
a
FC
b
an
k
[
3
6
]
to
f
o
r
m
th
e
s
tr
u
ct
u
r
e
o
f
th
e
SVC
as
p
r
esen
ted
in
Fig
u
r
e
2
.
T
h
e
m
ain
r
o
le
o
f
a
SVC
is
v
o
ltag
e
co
n
tr
o
l
in
elec
tr
ic
p
o
we
r
n
etwo
r
k
,
an
d
ca
n
co
n
tr
ib
u
te
to
d
am
p
in
ter
-
ar
ea
o
s
cillatio
n
s
b
y
ad
d
itio
n
al
co
n
tr
o
l
eq
u
ip
m
en
t.
Fig
u
r
e
3
d
ep
ic
ts
th
e
S
VC
m
o
d
el
with
an
ADC.
T
h
e
s
u
p
p
lem
en
tar
y
co
n
tr
o
l
s
ig
n
al
is
ad
d
ed
to
th
e
s
u
m
o
f
th
e
SVC
b
u
s
m
ag
n
itu
d
e
v
o
ltag
e
_
an
d
th
e
SVC
r
ef
er
en
ce
v
o
ltag
e
_
.
d
en
o
tes
th
e
eq
u
iv
alen
t
s
u
s
ce
p
tan
ce
o
f
SVC
.
T
h
e
g
ain
an
d
tim
e
co
n
s
tan
t
d
escr
ib
e
t
h
e
co
m
p
en
s
ato
r
f
i
r
in
g
r
eg
u
lat
o
r
wh
ich
ca
n
b
e
ex
p
r
ess
ed
b
y
th
e
n
e
x
t
eq
u
atio
n
[
3
7
]
.
̇
=
1
(
(
−
_
+
_
+
)
−
)
(
1
)
Fig
u
r
e
2
.
C
ir
cu
it d
iag
r
am
o
f
SVC
Fig
u
r
e
3
.
C
o
n
tr
o
l b
lo
c
k
s
ch
em
e
o
f
SVC
with
an
ADC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
F
r
a
ctio
n
a
l fu
z
z
y
b
a
s
ed
s
ta
tic
va
r
co
mp
en
s
a
to
r
co
n
tr
o
l fo
r
…
(
Ta
r
ik
Za
b
a
io
u
)
5133
3.
SUG
G
E
S
T
E
D
CO
NT
RO
L
S
T
RA
T
E
G
Y
T
h
e
f
r
am
ewo
r
k
o
f
th
is
s
tu
d
y
i
s
f
o
cu
s
ed
o
n
th
e
im
p
r
o
v
in
g
o
f
in
ter
-
ar
ea
L
FOs
.
T
h
e
s
o
lu
tio
n
to
s
atis
f
y
s
u
ch
co
n
s
tr
ain
t
is
b
y
a
d
d
in
g
a
co
m
p
lem
en
tar
y
r
e
g
u
lato
r
t
o
SVC
in
ter
n
al
co
n
tr
o
l
u
s
in
g
g
l
o
b
al
m
ea
s
u
r
em
e
n
ts
th
at
o
f
f
er
h
ig
h
est
o
b
s
er
v
ab
ilit
y
o
f
in
ter
-
ar
ea
s
win
g
s
as
co
n
tr
o
l
in
p
u
t.
T
h
e
m
ain
p
r
o
p
o
s
ed
s
tr
ateg
y
is
b
ased
o
n
f
r
ac
tio
n
al
-
o
r
d
er
f
u
zz
y
PID
,
th
en
c
o
m
p
ar
e
d
with
th
e
class
ical
PID
an
d
f
r
ac
tio
n
al
-
o
r
d
er
PID
.
T
h
e
g
e
n
er
al
co
n
tr
o
l
s
tr
u
ctu
r
e
is
p
r
esen
ted
in
Fig
u
r
e
4
an
d
th
e
in
p
u
t
s
ig
n
al
is
b
ased
o
n
s
p
ee
d
d
e
v
ia
tio
n
s
d
if
f
er
en
ce
o
f
g
en
er
ato
r
s
f
r
o
m
s
ca
tter
ed
a
r
ea
s
as e
x
p
r
ess
ed
b
y
(
2
)
.
=
∑
∈
1
−
∑
∈
2
(
2
)
an
d
ar
e
th
e
s
p
ee
d
d
ev
iatio
n
o
f
th
e
ℎ
an
d
ℎ
g
en
er
ato
r
r
esp
ec
tiv
ely
.
Fig
u
r
e
4
.
I
n
ter
-
ar
ea
p
o
wer
n
et
wo
r
k
with
SVC
ty
p
e
d
am
p
i
n
g
co
n
tr
o
ller
3
.
1
.
SVC
-
P
I
D
co
ntr
o
ller
T
h
e
co
n
v
e
n
tio
n
al
PID
co
n
tr
o
ll
er
p
r
esen
ted
in
Fig
u
r
e
5
is
r
an
k
ed
as th
e
m
o
s
t w
id
ely
u
s
ed
r
eg
u
lato
r
in
in
d
u
s
tr
ial
p
r
o
ce
s
s
es.
T
h
e
PID
o
u
tp
u
t
f
o
r
m
u
la
c
o
n
s
is
ts
o
f
th
r
ee
ter
m
s
b
ased
o
n
its
co
n
tr
o
l
g
ain
s
:
p
r
o
p
o
r
tio
n
al
(
)
,
in
teg
r
al
(
)
an
d
d
e
r
iv
ativ
e
(
)
as e
x
p
r
ess
ed
in
(
3
)
.
(
)
=
(
+
+
)
(
)
(
3
)
Fig
u
r
e
5
.
PID
co
n
tr
o
ller
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
1
3
0
-
5
1
4
3
5134
3
.
2
.
SVC
-
F
O
P
I
D
co
ntr
o
ller
Po
d
lu
b
n
y
[
3
8
]
p
r
o
p
o
s
ed
a
g
en
er
aliza
tio
n
o
f
t
h
e
in
teg
e
r
-
o
r
d
er
PID
to
a
n
ew
o
n
e
d
esig
n
ated
f
r
ac
tio
n
al
-
o
r
d
er
PID
as
d
ep
icted
in
Fig
u
r
e
6
.
FOPID
co
n
tr
o
ller
s
ar
e
estab
lis
h
ed
b
y
f
r
ac
tio
n
al
ca
lcu
lu
s
[
3
9
]
wh
ich
b
ec
o
m
e
a
p
o
p
u
lar
p
ar
t
o
f
m
at
h
em
atica
l
an
aly
s
is
o
v
er
th
e
p
ast
f
ew
d
ec
ad
es.
I
t
is
in
ten
d
ed
f
o
r
t
h
e
co
m
p
u
tatio
n
o
f
n
o
n
-
in
teg
er
d
er
iv
atio
n
a
n
d
i
n
teg
r
atio
n
o
p
er
ato
r
s
.
T
o
im
p
lem
en
t
t
h
ese
co
n
tr
o
ller
s
b
o
th
in
s
im
u
latio
n
an
d
in
h
ar
d
war
e
im
p
lem
en
tatio
n
,
an
a
p
p
r
o
x
im
atio
n
with
in
teg
er
o
r
d
er
tr
an
s
f
er
f
u
n
ctio
n
s
is
n
ee
d
ed
.
I
n
th
is
wo
r
k
,
th
e
ap
p
r
o
x
im
atio
n
alg
o
r
ith
m
p
r
o
p
o
s
ed
b
y
C
h
ar
ef
et
a
l.
[
4
0
]
h
as
b
ee
n
u
s
ed
f
o
r
ca
lcu
latio
n
o
f
f
r
ac
tio
n
al
o
r
d
er
o
p
er
ato
r
s
.
T
h
e
tr
an
s
f
er
f
u
n
ctio
n
o
f
th
is
s
o
r
t o
f
co
n
t
r
o
l stru
ctu
r
e
is
ex
p
r
ess
ed
in
(
4
)
.
,
an
d
s
y
m
b
o
lize
in
o
r
d
er
,
th
e
p
r
o
p
o
r
tio
n
al,
in
te
g
r
al,
an
d
d
er
iv
ativ
e
g
ai
n
s
.
an
d
r
ep
r
esen
t
in
teg
r
ato
r
an
d
d
if
f
er
en
tiato
r
o
r
d
er
s
r
esp
ec
tiv
ely
(
0
<
,
<
1
)
.
(
)
=
+
+
(
4
)
Fig
u
r
e
7
s
h
o
ws
th
e
ar
r
an
g
e
m
e
n
t
o
f
th
e
f
r
ac
tio
n
al
co
n
tr
o
ller
in
th
e
p
lan
e
(
,
)
.
No
tin
g
f
r
o
m
(
4
)
th
at
f
o
r
=
=
1
th
e
f
r
ac
tio
n
al
c
o
n
tr
o
ller
b
ec
o
m
es
th
e
class
ical
PID
.
T
h
e
i
n
ter
est
in
th
is
k
in
d
o
f
co
n
tr
o
ller
is
j
u
s
tifie
d
b
y
b
et
ter
f
lex
ib
ilit
y
,
s
in
ce
p
lu
s
th
e
th
r
ee
tr
a
d
itio
n
al
p
ar
am
eter
s
o
f
PID
co
r
r
e
cto
r
ad
ju
s
tm
en
t,
it
h
as
two
o
th
er
g
ain
s
,
th
e
o
r
d
er
o
f
in
teg
r
atio
n
an
d
t
h
e
o
n
e
o
f
d
if
f
er
e
n
tiatio
n
.
T
h
ese
two
f
ac
to
r
s
ca
n
b
e
u
s
ed
to
f
u
lf
ill a
d
d
itio
n
al
ch
ar
ac
te
r
is
tics
s
u
ch
as p
r
ec
is
e
co
n
tr
o
l a
n
d
r
o
b
u
s
tn
ess
[
4
1
]
,
[
4
2
]
.
Fig
u
r
e
6
.
FOPID
co
n
tr
o
ller
Fig
u
r
e
7
.
Gr
a
p
h
ic
illu
s
tr
atio
n
i
n
λ
-
µ
p
lan
e
3
.
3
.
SVC
-
F
O
F
P
I
D
co
ntr
o
lle
r
B
en
ef
itin
g
f
r
o
m
th
e
ca
p
ab
ilit
y
o
f
f
u
zz
y
PID
f
o
r
d
ea
lin
g
with
co
m
p
lex
n
o
n
lin
ea
r
s
y
s
tem
s
alo
n
g
with
th
e
f
lex
ib
ilit
y
an
d
r
o
b
u
s
tn
ess
o
f
FOPID,
a
h
y
b
r
id
ty
p
e
FOFP
I
D
co
n
tr
o
ller
is
in
tr
o
d
u
ce
d
in
th
is
wo
r
k
.
T
h
e
ad
o
p
ted
co
n
tr
o
l
s
tr
ateg
y
is
b
ased
o
n
Ma
m
d
an
i
f
u
zz
y
in
f
e
r
en
ce
class
.
R
o
to
r
s
p
ee
d
d
ev
iatio
n
(
)
an
d
its
f
r
ac
tio
n
al
o
r
d
er
d
e
r
iv
ativ
e
(
̇
=
)
ar
e
th
e
in
p
u
ts
an
d
t
h
e
au
x
iliar
y
s
ig
n
al
(
)
is
g
en
er
ated
as
o
u
tp
u
t
o
f
th
e
FOFP
I
D
as
d
ep
icted
i
n
Fig
u
r
e
8
.
T
h
e
e
r
r
o
r
in
p
u
t
(
)
in
clu
d
es
th
e
s
p
ee
d
d
ev
iatio
n
s
d
if
f
er
en
ce
o
f
r
em
o
te
g
en
e
r
ato
r
s
.
T
h
e
FLC
i
n
teg
r
al
o
u
t
p
u
t
h
as
a
f
r
ac
tio
n
al
o
r
d
er
c
o
ef
f
icien
t
(
)
.
an
d
r
ep
r
esen
tin
g
in
p
u
ts
s
ca
lin
g
f
ac
to
r
s
with
an
d
o
u
t
p
u
t
o
n
es
a
r
e
o
p
tim
ized
b
y
th
e
GW
O
alg
o
r
ith
m
as
well
as
th
e
f
r
ac
tio
n
al
o
r
d
er
o
p
er
ato
r
s
an
d
.
Fig
u
r
e
8
.
FOFP
I
D
co
n
tr
o
ller
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
F
r
a
ctio
n
a
l fu
z
z
y
b
a
s
ed
s
ta
tic
va
r
co
mp
en
s
a
to
r
co
n
tr
o
l fo
r
…
(
Ta
r
ik
Za
b
a
io
u
)
5135
T
h
u
s
,
f
iv
e
Gau
s
s
ian
s
y
m
m
etr
ical
lin
g
u
is
tic
v
ar
iab
les
n
am
ely
(
n
eg
ativ
e
b
ig
,
n
eg
ativ
e
s
m
all,
ze
r
o
,
p
o
s
itiv
e
s
m
all,
an
d
p
o
s
itiv
e
b
ig
)
ar
e
s
elec
ted
as
m
em
b
er
s
h
ip
f
u
n
ctio
n
s
f
o
r
b
o
th
in
p
u
ts
an
d
o
u
tp
u
t
as
r
ep
r
esen
ted
in
Fig
u
r
es
9
an
d
1
0
r
esp
ec
tiv
ely
.
T
h
e
ex
tr
ac
tio
n
o
f
th
e
p
r
o
p
o
s
ed
in
p
u
t
-
o
u
tp
u
t
r
u
les
is
b
a
s
ed
o
n
th
e
p
r
i
n
cip
le
o
f
ac
ce
ler
atio
n
/
d
ec
eler
atio
n
co
n
tr
o
l
o
f
th
e
s
y
s
t
em
.
E
x
a
m
in
in
g
th
e
ca
s
e
with
(
)
an
d
(
̇
)
ar
e
p
o
s
itiv
e
b
ig
(
PB
)
.
T
h
is
s
ig
n
if
ies
th
at
th
e
d
if
f
er
en
ce
o
f
s
p
ee
d
d
ev
iatio
n
s
in
cr
ea
s
es,
an
d
th
er
ef
o
r
e
(
1
+
2
)
o
f
g
en
er
ato
r
s
(
1
,
2
)
in
ar
ea
1
is
g
r
ea
ter
th
an
(
3
+
4
)
o
f
g
en
er
at
o
r
s
(
3
,
4
)
in
ar
ea
2
.
C
o
n
s
eq
u
en
tly
,
th
e
s
y
s
tem
d
ec
eler
ates
an
d
th
e
tr
an
s
m
itted
ac
tiv
e
p
o
wer
f
lo
w
b
etwe
en
th
e
two
ar
ea
s
i
s
d
ec
r
ea
s
ed
.
At
th
is
m
o
m
en
t,
b
y
ap
p
l
y
in
g
an
a
u
x
il
iar
y
s
ig
n
al
(
)
,
th
e
s
tatic
v
ar
co
m
p
en
s
ato
r
(
SVC
)
in
jects
r
ea
ctiv
e
p
o
wer
an
d
p
r
o
v
id
es
p
o
s
itiv
e
s
u
s
ce
p
tan
c
e
(
)
at
th
e
o
u
t
p
u
t
o
f
th
e
v
o
lta
g
e
r
e
g
u
lato
r
in
Fig
u
r
e
3
.
I
n
th
e
co
n
tr
ar
y
s
itu
atio
n
k
n
o
wn
as
ac
ce
le
r
atio
n
,
(
)
an
d
(
̇
)
ar
e
tak
en
as
n
e
g
ativ
e
b
ig
(
NB
)
,
th
is
m
ea
n
s
th
at
th
e
s
p
ee
d
d
ev
iatio
n
s
(
1
+
2
)
is
lo
wer
th
an
(
3
+
4
)
.
Hen
ce
,
th
e
o
u
tp
u
t
s
ig
n
al
(
)
is
u
s
ed
s
u
ch
as
SVC
ab
s
o
r
b
s
r
ea
ctiv
e
p
o
wer
(
i
n
d
u
ctiv
e
m
o
d
e
)
a
n
d
s
u
p
p
lies
n
e
g
ativ
e
s
u
s
ce
p
tan
ce
to
th
e
p
o
we
r
g
r
i
d
.
W
h
en
(
)
an
d
its
d
er
iv
ativ
e
a
r
e
ze
r
o
(
Z
)
,
th
e
g
en
e
r
ato
r
s
ar
e
r
o
tatin
g
with
eq
u
al
s
p
ee
d
,
n
o
p
o
wer
o
s
cillatio
n
s
s
i
tu
atio
n
.
T
h
u
s
,
th
e
SVC
s
u
p
p
lem
en
tar
y
co
n
tr
o
l
is
n
o
t
n
ec
ess
ar
y
an
d
th
e
o
u
tp
u
t
is
ze
r
o
.
Usi
n
g
s
im
il
ar
in
ter
p
r
etatio
n
s
,
a
5
×
5
r
u
le
b
ase
m
atr
ix
ca
n
b
e
estab
lis
h
ed
an
d
lis
ted
in
T
ab
le
1
.
Mo
r
eo
v
er
,
th
e
in
f
er
en
ce
p
r
o
c
ess
is
m
ad
e
o
n
th
e
m
in
-
m
ax
tech
n
iq
u
e
a
n
d
d
ef
u
z
zif
icatio
n
o
n
th
e
ce
n
ter
o
f
g
r
a
v
ity
.
Fig
u
r
e
9
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
f
o
r
o
u
tp
u
t
Fig
u
r
e
1
0
.
Me
m
b
er
s
h
ip
f
u
n
cti
o
n
f
o
r
in
p
u
ts
T
ab
le
1
.
FOFP
I
D
co
n
tr
o
ller
r
u
le
b
ase
NB
NS
Z
PS
PB
NB
NB
NB
NB
NS
Z
NS
NB
NB
NS
Z
PS
Z
NB
NS
Z
PS
PB
PS
NS
Z
PS
PB
PB
PB
Z
PS
PB
PB
PB
4.
P
E
RF
O
RM
A
NCE C
RI
T
E
R
I
A
4
.
1
.
O
bje
ct
if
f
un
ct
io
n
T
o
im
p
r
o
v
e
th
e
o
p
er
atin
g
c
o
n
d
itio
n
s
o
f
t
h
e
d
am
p
in
g
c
o
n
tr
o
ller
an
d
in
cr
ea
s
e
its
p
e
r
f
o
r
m
a
n
ce
,
p
ar
am
eter
s
tu
n
in
g
is
in
ev
itab
l
e.
Fo
r
th
is
aim
,
I
T
AE
is
ap
p
r
o
v
ed
as o
b
jectiv
e
c
r
iter
io
n
a
n
d
ex
p
r
ess
ed
b
y
(
5
)
:
=
∫
|
−
|
⋅
⋅
0
(
5
)
wh
er
e
is
s
im
u
latio
n
tim
e
an
d
−
=
∑
∈
1
−
∑
∈
2
.
an
d
ar
e
th
e
ℎ
an
d
ℎ
s
p
ee
d
g
en
er
ato
r
f
r
o
m
d
is
tin
ct
zo
n
es.
I
n
th
is
s
tu
d
y
,
f
o
r
a
m
u
lti
-
g
en
e
r
ato
r
s
s
y
s
tem
th
e
f
itn
ess
f
u
n
ctio
n
is
d
ef
in
e
d
b
y
(
6
)
:
=
∫
|
(
1
+
2
)
−
(
3
+
4
)
|
⋅
⋅
0
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
1
3
0
-
5
1
4
3
5136
T
h
u
s
,
th
e
p
r
o
b
lem
f
o
r
m
u
latio
n
is
s
tated
as:
Min
im
ize
s
u
b
ject
to
−
PID
co
n
tr
o
ller
(
,
,
)
{
_
≤
≤
_
_
≤
≤
_
_
≤
≤
_
−
FOPID
co
n
tr
o
ller
(
,
,
,
,
)
{
_
≤
≤
_
_
≤
≤
_
_
≤
≤
_
≤
≤
≤
≤
−
FOFP
I
D
co
n
tr
o
ller
(
,
,
,
,
,
)
{
_
≤
≤
_
_
≤
≤
_
_
≤
≤
_
_
≤
≤
_
≤
≤
≤
≤
T
h
e
lim
its
o
f
th
e
o
p
tim
ized
s
ettin
g
s
ar
e
g
iv
en
b
y
{
,
,
,
,
,
,
,
,
,
}
∈
[
0
,
100
]
an
d
{
,
}
∈
[
0
,
1
]
.
4
.
2
.
P
er
f
o
r
m
a
nce
m
e
a
s
ure
ind
ices
W
ith
th
e
aim
o
f
ass
ess
in
g
t
h
e
s
u
p
r
em
ac
y
o
f
th
e
d
ev
elo
p
ed
FOFP
I
D
co
n
tr
o
ller
,
a
c
o
m
p
ar
ativ
e
an
aly
s
is
b
ased
tr
an
s
ien
t
p
er
f
o
r
m
an
ce
i
n
d
ices
(
s
ettlin
g
tim
e,
o
v
er
s
h
o
o
t
a
n
d
u
n
d
e
r
s
h
o
o
t)
is
co
n
s
id
er
ed
.
I
n
ad
d
itio
n
,
a
n
in
d
icato
r
ca
lled
d
ec
ay
r
atio
i
n
d
ex
(
DR
I
)
is
in
tr
o
d
u
ce
d
in
th
is
s
tu
d
y
,
p
r
esen
ted
b
y
(
7
)
.
I
t
g
iv
es
a
m
ea
s
u
r
e
o
f
h
o
w
r
ap
i
d
ly
th
e
p
o
wer
o
s
cillatio
n
s
ar
e
d
ec
r
ea
s
in
g
.
Min
im
izin
g
I
T
AE
an
d
o
th
er
p
er
f
o
r
m
an
ce
in
d
ices
ar
e
a
g
o
o
d
in
d
icatio
n
o
f
d
y
n
am
ic
r
esp
o
n
s
e
im
p
r
o
v
em
en
t.
So
,
th
e
p
o
wer
s
y
s
tem
r
esp
o
n
s
e
b
ec
o
m
e
s
f
aster
an
d
th
e
o
s
cillatio
n
s
d
am
p
in
g
is
in
cr
ea
s
ed
.
=
(
7
)
wh
er
e
F
OS
is
th
e
f
ir
s
t o
v
e
r
s
h
o
o
t a
n
d
S
OS
is
th
e
s
ec
o
n
d
o
v
er
s
h
o
o
t.
5.
O
P
T
I
M
I
Z
AT
I
O
N
CO
M
P
U
T
AT
I
O
N
Var
io
u
s
alg
o
r
ith
m
s
f
o
r
o
p
tim
izin
g
s
war
m
in
tellig
en
ce
h
av
e
b
ee
n
in
tr
o
d
u
ce
d
b
y
s
im
u
latin
g
th
e
b
eh
av
io
r
o
f
liv
in
g
b
ein
g
s
in
n
atu
r
e.
On
e
o
f
th
e
o
p
tim
izatio
n
ap
p
r
o
ac
h
es
is
GW
O
[
4
3
]
wh
ich
is
ad
ap
ted
u
s
in
g
MA
T
L
AB
en
v
ir
o
n
m
en
t
f
o
r
o
u
r
ap
p
licatio
n
.
T
h
is
tech
n
iq
u
e
is
in
s
p
ir
ed
b
y
a
wo
lf
ty
p
e
ca
l
led
g
r
ey
wo
lf
wh
ich
h
as
a
s
p
ec
ial
h
ier
ar
c
h
y
a
n
d
g
r
ea
t
o
r
g
a
n
izatio
n
.
T
h
e
o
p
tim
i
za
tio
n
alg
o
r
ith
m
d
e
p
en
d
s
o
n
t
h
e
s
o
cial
h
ier
ar
c
h
y
an
d
th
e
h
u
n
tin
g
m
ec
h
a
n
is
m
o
f
th
e
g
r
ey
wo
lv
es.
−
So
cial
h
ier
ar
ch
y
:
T
h
e
p
ac
k
is
s
h
ar
ed
o
n
f
o
u
r
le
v
els
as
d
ep
icted
in
Fig
u
r
e
1
1
(
a)
:
Alp
h
a
,
B
eta
,
Delta
an
d
Om
eg
a
in
th
e
b
ase.
T
h
e
s
tr
o
n
g
est
wo
lf
is
th
e
alp
h
a
lea
d
er
an
d
t
h
e
d
o
m
in
atio
n
d
ec
r
e
ase
f
r
o
m
t
o
.
−
Hu
n
tin
g
m
ec
h
a
n
is
m
:
T
h
e
p
r
i
n
cip
al
s
tep
s
o
f
wo
lf
h
u
n
tin
g
p
r
esen
ted
b
y
[
4
4
]
a
r
e
as
f
o
llo
ws:
tr
ac
k
in
g
,
en
cir
clin
g
,
an
d
attac
k
in
g
th
e
p
r
ey
.
C
o
m
p
ar
ed
to
o
th
e
r
k
n
o
wn
m
etah
eu
r
is
tic
alg
o
r
ith
m
s
,
GW
O
is
ch
ar
ac
ter
ized
b
y
its
s
i
m
p
licity
,
its
ea
s
e
o
f
ap
p
licatio
n
an
d
m
ai
n
ly
its
u
s
e
o
f
n
o
s
p
ec
if
ic
in
p
u
t
p
ar
am
ete
r
s
to
o
p
er
ate.
T
h
e
g
e
n
er
al
ev
o
lu
tio
n
s
tep
s
o
f
th
e
u
s
ed
alg
o
r
ith
m
ar
e
s
u
m
m
ar
ize
d
b
y
th
e
f
o
llo
win
g
f
lo
wch
a
r
t illu
s
tr
ated
in
Fig
u
r
e
1
1
(
b
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
F
r
a
ctio
n
a
l fu
z
z
y
b
a
s
ed
s
ta
tic
va
r
co
mp
en
s
a
to
r
co
n
tr
o
l fo
r
…
(
Ta
r
ik
Za
b
a
io
u
)
5137
Fig
u
r
e
11
.
GW
O
alg
o
r
ith
m
[
4
3
]
: (
a)
s
o
cial
h
ier
a
r
ch
y
o
f
g
r
ey
wo
lv
es
an
d
(
b
)
f
lo
w
d
iag
r
am
6.
O
P
T
I
M
I
Z
AT
I
O
N
AND
S
I
M
UL
A
T
I
O
N
R
E
SU
L
T
S
I
n
th
e
co
n
tex
t o
f
ass
ess
in
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
p
r
o
p
o
s
ed
FOFP
I
D
co
n
tr
o
ller
to
m
itig
ate
in
ter
-
ar
ea
L
FOs
an
d
em
p
h
asizin
g
its
s
u
p
er
io
r
ity
o
v
er
o
t
h
er
r
e
g
u
lato
r
s
,
th
is
wo
r
k
co
v
e
r
s
two
ca
s
e
s
t
u
d
ies.
No
te
th
at
th
e
f
r
ac
tio
n
al
co
n
tr
o
ller
s
[
4
0
]
a
r
e
im
p
lem
en
ted
u
s
in
g
MA
T
L
AB
/Si
m
u
lin
k
an
d
t
h
e
m
ain
co
n
f
i
g
u
r
atio
n
em
p
lo
y
ed
b
y
th
e
GW
O
alg
o
r
ith
m
is
4
0
s
ea
r
ch
ag
en
ts
an
d
1
0
0
iter
atio
n
s
.
6
.
1
.
Ca
s
e
1
:
Six
-
cy
cle
t
hree
-
ph
a
s
e
f
a
ult
Fo
r
th
e
f
ir
s
t
test
,
a
s
ix
-
cy
cle
th
r
ee
-
p
h
ase
f
au
lt
is
o
cc
u
r
r
e
d
in
th
e
ce
n
ter
o
f
th
e
tr
an
s
m
is
s
io
n
lin
e
b
etwe
en
b
u
s
es
7
a
n
d
8
o
f
t
h
e
test
s
y
s
tem
.
T
h
e
d
is
tu
r
b
an
ce
i
s
s
tar
ted
at
th
e
tim
e
t
=
1
s
an
d
d
elete
d
af
ter
0
.
1
s
th
r
o
u
g
h
th
e
b
r
ea
k
er
’
s
cir
cu
its
.
T
h
e
v
alu
es
o
f
th
e
f
itn
ess
f
u
n
c
tio
n
an
d
th
e
o
p
tim
u
m
co
n
tr
o
ll
er
s
’
g
ain
s
ac
q
u
ir
ed
af
ter
o
p
tim
izatio
n
with
t
h
e
G
W
O
m
eth
o
d
ar
e
n
o
ticed
in
T
a
b
le
2
.
T
ab
le
2
.
C
o
n
tr
o
ller
s
g
ain
s
an
d
I
T
AE
o
p
tim
al
v
al
u
es f
o
r
ca
s
e
1
C
o
n
t
r
o
l
l
e
r
C
a
se
1
P
a
r
a
me
t
e
r
s
I
TA
E
P
I
D
J
1
0
0
.
0
0
0
.
3
8
7
0
1
6
.
3
2
7
6
0
.
4
0
5
1
F
O
P
I
D
J
3
9
.
4
7
2
3
0
.
1
5
8
7
9
9
.
8
5
9
6
0
.
1
2
8
9
0
.
1
9
5
5
0
.
3
5
5
6
F
O
F
P
I
D
J
5
.
3
8
0
2
5
9
.
7
0
7
3
2
.
6
0
9
0
5
7
.
7
6
0
9
0
.
1
8
5
0
0
.
3
2
1
4
0
.
3
2
2
9
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
1
3
0
-
5
1
4
3
5138
T
h
e
o
b
tain
e
d
co
n
v
er
g
en
c
e
cu
r
v
e
is
illu
s
tr
ated
in
Fig
u
r
e
1
2
.
I
t
is
ap
p
ar
en
t,
t
h
at
th
e
I
T
AE
h
as
its
m
in
im
al
v
alu
e
J
=
0
.
3
2
2
9
f
o
r
t
h
e
GW
O
-
b
ased
FOF
PID
co
n
tr
o
ller
v
er
s
u
s
J
=
0
.
3
5
5
6
f
o
r
FOPID
an
d
J
=
0
.
4
0
5
1
f
o
r
PID
.
Hen
ce
,
th
e
d
ev
el
o
p
e
d
FOFP
I
D
h
as
th
e
b
est
ef
f
icien
cy
in
r
e
d
u
cin
g
th
e
o
b
jectiv
e
f
u
n
ctio
n
v
alu
e
an
d
s
co
r
es e
x
tr
a
d
esire
d
o
s
cillatio
n
s
d
am
p
in
g
in
co
m
p
ar
is
o
n
wit
h
th
e
PID
an
d
FOPID.
Af
ter
co
m
p
u
ter
s
im
u
latio
n
,
th
e
d
y
n
am
ics
p
er
f
o
r
m
a
n
ce
o
f
th
e
test
p
o
wer
g
r
id
is
p
r
o
v
id
ed
i
n
Fig
u
r
es
1
3
an
d
1
4
.
T
h
ese
f
ig
u
r
es
s
h
o
w
th
e
r
esp
o
n
s
es
o
f
th
e
r
o
to
r
s
p
ee
d
d
if
f
e
r
en
ce
b
etwe
e
n
g
en
er
ato
r
s
o
f
ar
ea
1
(
G1
an
d
G
2
)
an
d
th
o
s
e
o
f
a
r
ea
2
(
G3
an
d
G4
)
.
T
h
e
d
is
tu
r
b
an
ce
p
r
o
d
u
ce
s
a
p
o
o
r
i
n
ter
-
ar
ea
lo
w
f
r
eq
u
e
n
cy
o
s
cillatio
n
(
f
=
0
.
6
3
Hz)
.
No
ticea
b
ly
,
th
e
FOFP
I
D
co
n
tr
o
ller
ef
f
ec
tiv
ely
an
d
r
ap
id
ly
atten
u
ate
th
e
d
am
p
in
g
o
f
th
e
u
n
d
esira
b
le
o
s
cillatio
n
.
D
esp
ite
th
e
ass
ets
o
f
th
e
FOPID
n
o
ticed
b
y
t
h
e
liter
atu
r
e,
t
h
e
n
o
v
el
f
r
ac
ti
o
n
al
-
o
r
d
er
f
u
zz
y
PID
g
iv
es h
ig
h
e
r
p
er
f
o
r
m
an
ce
s
.
Fig
u
r
e
12
.
Ob
jectiv
e
f
u
n
ctio
n
v
ar
iatio
n
g
r
ap
h
f
o
r
ca
s
e
1
Fig
u
r
e
1
3
.
Sp
ee
d
d
if
f
er
en
ce
o
f
G1
-
G3
-
ca
s
e
1
Fig
u
r
e
1
4
.
Sp
ee
d
d
if
f
er
en
ce
o
f
G2
-
G4
-
ca
s
e
1
T
h
e
v
ar
i
o
u
s
tr
an
s
ien
t
p
er
f
o
r
m
an
ce
in
d
e
x
es
n
o
te
d
s
ettlin
g
tim
e
(
ST)
,
o
v
er
s
h
o
o
ts
:
f
ir
s
t
o
v
er
s
h
o
o
t
(
FOS),
s
ec
o
n
d
o
v
er
s
h
o
o
t
(
SO
S),
an
d
u
n
d
er
s
h
o
o
t
(
US)
e
x
tr
ac
ted
f
r
o
m
th
e
p
r
ev
io
u
s
f
ig
u
r
es
ar
e
m
en
tio
n
ed
in
T
ab
le
3
.
T
h
e
s
ettlin
g
tim
e
(
ST)
o
f
s
p
ee
d
d
ev
iatio
n
(
w1
-
w3
)
with
th
e
SVC
-
b
ased
FOFP
I
D
is
d
etec
ted
at
3
.
9
4
5
6
s
,
wh
ich
is
less
th
an
o
th
er
s
ettlin
g
tim
es
o
b
tain
e
d
with
FOPID
(
4
.
6
4
3
5
s
)
a
n
d
PID
(
5
.
5
9
1
4
s
)
.
Fu
r
th
er
m
o
r
e
,
th
e
f
ir
s
t a
n
d
s
ec
o
n
d
o
v
e
r
s
h
o
o
ts
ar
e
(
FOS =
4
.
3
9
5
8
,
4
.
6
0
5
7
,
4
.
7
7
4
3
)
an
d
(
S
OS =
0
.
9
3
6
8
,
1
.
6
1
1
9
,
2
.
3
8
3
2
)
f
o
r
th
e
FOFP
I
D,
F
O
PID
an
d
PID
,
r
esp
ec
tiv
ely
.
T
h
e
u
n
d
er
s
h
o
o
t
is
d
ec
r
ea
s
ed
to
a
lo
wer
v
alu
e
o
f
4
.
2
4
6
2
g
iv
en
b
y
th
e
FOFP
I
D
an
d
v
a
r
ies
at
4
.
9
5
1
4
an
d
5
.
1
1
8
3
f
o
r
th
e
FOPID
an
d
PID
,
s
u
b
s
eq
u
en
tly
.
T
h
e
s
am
e
r
em
ar
k
s
ar
e
c
o
n
d
u
cte
d
f
o
r
s
p
ee
d
d
e
v
iatio
n
(
w
2
-
w4
)
,
f
o
r
all
tr
an
s
ien
t
m
ea
s
u
r
es,
th
e
FOFP
I
D
ac
h
iev
em
en
t
is
s
u
p
er
io
r
to
th
e
FOPID
an
d
PID
co
n
tr
o
ller
s
.
Fro
m
th
is
co
m
p
ar
ativ
e
s
tu
d
y
,
it
is
co
n
clu
d
ed
th
at
th
e
d
esig
n
ed
GW
O
-
FOFP
I
D
p
er
f
o
r
m
s
b
etter
in
ter
m
o
f
m
in
im
izin
g
th
e
s
ettlin
g
tim
e,
l
o
wer
in
g
o
v
er
/u
n
d
er
s
h
o
o
ts
an
d
th
er
e
f
o
r
e
p
r
o
v
id
es
ef
f
ec
tiv
e
d
am
p
in
g
o
f
in
ter
-
ar
e
a
lo
w
L
FOs
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
F
r
a
ctio
n
a
l fu
z
z
y
b
a
s
ed
s
ta
tic
va
r
co
mp
en
s
a
to
r
co
n
tr
o
l fo
r
…
(
Ta
r
ik
Za
b
a
io
u
)
5139
T
ab
le
3
.
T
r
a
n
s
ien
t p
ar
am
eter
s
o
f
s
p
ee
d
d
i
f
f
er
en
ce
f
o
r
ca
s
e
1
w1
-
w3
w2
-
w4
C
o
n
t
r
o
l
l
e
r
S
T
(
s)
F
O
S
(
×
−
)
S
O
S
(
×
−
)
US
(
×
−
)
C
o
n
t
r
o
l
l
e
r
S
T
(
s)
F
O
S
(
×
−
)
S
O
S
(
×
−
)
US
(
×
−
)
P
I
D
5
.
5
9
1
4
4
.
7
7
4
3
2
.
3
8
3
2
5
.
1
1
8
3
P
I
D
5
.
4
5
7
6
6
.
8
6
4
1
3
.
3
0
2
1
5
.
7
7
7
6
F
O
P
I
D
4
.
6
4
3
5
4
.
6
0
5
7
1
.
6
1
1
9
4
.
9
5
1
4
F
O
P
I
D
4
.
3
7
4
8
6
.
8
6
4
5
2
.
5
1
8
7
5
.
0
4
4
5
F
O
F
P
I
D
3
.
9
4
5
6
4
.
3
9
5
8
0
.
9
3
6
8
4
.
2
4
6
2
F
O
F
P
I
D
3
.
6
1
3
5
6
.
8
6
1
6
1
.
0
6
1
8
4
.
7
4
2
7
6
.
2
.
Ca
s
e
2
:
L
o
a
d v
a
ria
t
io
n
I
n
th
e
s
ec
o
n
d
s
ce
n
a
r
io
,
th
e
r
o
b
u
s
tn
ess
v
er
if
icatio
n
o
f
th
e
d
esig
n
ed
co
n
tr
o
ller
is
p
er
f
o
r
m
ed
b
y
ch
an
g
in
g
lo
ad
co
n
d
itio
n
s
.
Fo
r
th
at,
a
test
is
ca
r
r
ied
o
u
t
b
y
in
cr
ea
s
in
g
th
e
lo
ad
L
9
at
b
u
s
9
b
y
2
0
%
f
r
o
m
1
7
6
7
MW
to
2
1
2
0
.
4
0
MW
a
t
t
=
1
s
[
4
5
]
.
T
h
e
m
in
im
alize
d
v
alu
es
o
f
th
e
o
b
tain
ed
I
T
A
E
cr
iter
ia
an
d
th
e
GW
O
-
o
p
tim
ized
p
ar
am
eter
s
o
f
th
e
PID
,
FOPID,
an
d
FOFP
I
D
co
n
tr
o
ller
s
ar
e
p
r
o
v
i
d
ed
in
T
ab
le
4
.
Fig
u
r
e
1
5
illu
s
tr
ates
th
e
v
ar
ia
tio
n
o
f
o
b
jectiv
e
f
u
n
ctio
n
.
I
t
is
ev
id
en
t
th
at
th
e
FO
FP
I
D
d
i
s
p
lay
s
th
e
b
est
f
itn
ess
v
alu
e
J
=
0
.
4
0
4
1
c
o
m
p
ar
ed
to
FOPID
an
d
PID
with
J
=
0
.
4
3
0
5
a
n
d
J
=
0
.
5
5
0
1
,
r
esp
ec
tiv
ely
.
R
ed
u
cin
g
I
T
AE
is
a
g
o
o
d
s
ig
n
o
f
p
o
wer
o
s
cillatio
n
s
d
im
in
u
ti
o
n
an
d
s
y
s
tem
d
y
n
am
ic
r
esp
o
n
s
e
am
elio
r
atio
n
.
T
ab
le
4
.
C
o
n
tr
o
ller
s
g
ain
s
an
d
I
T
AE
o
p
tim
al
v
al
u
es f
o
r
ca
s
e
2
C
o
n
t
r
o
l
l
e
r
C
a
se
2
P
a
r
a
me
t
e
r
s
I
TA
E
P
I
D
J
1
0
0
0
.
4
2
9
6
3
.
2
5
4
2
0
.
5
5
0
1
F
O
P
I
D
J
9
2
.
2
7
0
6
8
2
.
8
2
3
8
8
3
.
9
2
8
5
0
.
4
3
5
3
0
.
1
4
5
4
0
.
4
3
0
5
F
O
F
P
I
D
J
0
.
4
6
3
5
6
7
.
3
1
1
0
9
2
.
9
8
4
7
9
6
.
0
4
7
0
0
.
1
1
9
3
0
.
2
4
7
6
0
.
4
0
4
1
Fig
u
r
e
1
.
Ob
jectiv
e
f
u
n
ctio
n
v
ar
iatio
n
g
r
a
p
h
f
o
r
ca
s
e
2
T
h
e
r
o
to
r
s
p
ee
d
d
if
f
er
e
n
ce
o
f
g
en
er
ato
r
s
f
r
o
m
s
ca
tter
ed
r
e
g
io
n
s
ar
e
s
h
o
wn
in
Fig
u
r
es
1
6
an
d
1
7
.
Du
r
in
g
th
e
lo
ad
v
ar
iatio
n
,
th
e
p
o
wer
s
y
s
tem
b
ec
o
m
es
ex
p
o
s
e
to
g
r
e
at
p
o
o
r
ly
d
am
p
ed
in
ter
-
ar
ea
s
win
g
s
.
E
v
id
en
tly
,
t
h
e
s
y
s
tem
eq
u
ip
p
e
d
with
th
e
FOFP
I
D
r
etu
r
n
s
to
its
s
tead
y
s
tate
an
d
ca
n
s
u
p
p
r
ess
o
s
cillatio
n
s
a
s
r
ap
id
ly
an
d
m
o
r
e
ef
f
icien
tly
th
an
with
o
th
er
c
o
n
tr
o
ller
s
.
T
h
e
o
b
tain
ed
v
alu
es
o
f
tr
an
s
i
en
t
p
er
f
o
r
m
a
n
ce
p
ar
am
eter
s
(
s
ettlin
g
tim
e,
o
v
er
s
h
o
o
t
an
d
u
n
d
er
s
h
o
o
t
)
o
f
ca
s
e
2
ar
e
lis
ted
in
T
ab
le
5
.
I
t is ap
p
ar
en
t th
at
f
o
r
s
p
ee
d
d
if
f
er
en
ce
(
w1
-
w
3
)
,
th
e
litt
le
s
et
tlin
g
tim
e
3
.
0
0
1
1
s
is
o
b
tain
ed
with
th
e
FOFP
I
D
s
tr
ateg
y
,
co
m
p
a
r
ed
t
o
FOPID
(
3
.
1
9
9
5
s
)
a
n
d
PID
(
4
.
7
1
7
0
s
)
.
T
h
e
r
esu
lts
r
ev
e
al
ap
p
r
o
x
im
ately
a
s
im
ilar
f
ir
s
t o
v
er
s
h
o
o
t
(
FOS).
Ho
wev
er
,
th
e
r
ec
o
m
m
en
d
e
d
co
n
tr
o
l
s
ch
em
e
ex
h
ib
its
th
e
lo
wer
s
ec
o
n
d
o
v
e
r
s
h
o
o
t
(
SOS
=
0
.
0
1
5
1
)
,
s
u
r
p
ass
in
g
th
e
f
in
d
in
g
s
o
f
FOPID
(
0
.
0
9
0
4
)
a
n
d
PID
(
0
.
2
6
8
5
)
.
Ag
ain
,
th
e
u
n
d
er
s
h
o
o
t
is
f
u
r
th
e
r
r
ed
u
ce
d
to
a
s
m
all
am
o
u
n
t
0
.
6
9
5
4
u
s
in
g
FOFP
I
D
co
m
p
ar
ed
t
o
th
e
v
alu
es
attain
ed
b
y
FOPID
(
0
.
8
0
0
2
)
an
d
PID
(
0
.
9
0
1
1
)
.
T
h
e
s
am
e
r
e
m
ar
k
s
f
o
r
s
p
ee
d
d
e
v
iatio
n
(
w2
-
w4
)
,
th
e
r
esu
lts
in
d
icate
th
e
s
u
p
r
em
ac
y
o
f
th
e
FOFP
I
D
with
a
g
o
o
d
en
h
an
ce
m
e
n
t o
f
t
r
an
s
ien
t p
er
f
o
r
m
an
ce
m
e
asu
r
es.
Evaluation Warning : The document was created with Spire.PDF for Python.