I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
6
,
Decem
b
er
20
25
,
p
p
.
5
4
0
1
~
5
4
1
0
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
6
.
pp
5
4
0
1
-
5
4
1
0
5401
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Enha
nced
spec
tr
um sens
ing
in
M
I
M
O
-
O
FDM
co
g
nitive ra
dio
networks
usi
ng
m
ulti
-
user
de
tect
io
n and
squa
re
-
la
w
co
mbinin
g
techniqu
es
Srik
a
ntha
K
a
nd
hg
a
l Mo
chig
a
r
1,
2
,
Ro
hitha
Uj
j
ini
M
a
t
a
d
1
,
P
re
m
a
cha
nd
Do
dd
a
m
a
g
a
di
Ra
m
a
na
i
k
2
1
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
o
n
i
c
s a
n
d
C
o
m
mu
n
i
c
a
t
i
o
n
En
g
i
n
e
e
r
i
n
g
,
P
r
o
u
d
h
a
d
e
v
a
r
a
y
a
I
n
st
i
t
u
t
e
o
f
Te
c
h
n
o
l
o
g
y
H
o
sa
p
e
t
e
,
a
f
f
i
l
i
a
t
e
d
t
o
V
i
sv
e
sv
a
r
a
y
a
T
e
c
h
n
o
l
o
g
i
c
a
l
U
n
i
v
e
r
s
i
t
y
,
B
e
l
a
g
a
v
i
,
I
n
d
i
a
2
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
o
n
i
c
s a
n
d
C
o
m
mu
n
i
c
a
t
i
o
n
En
g
i
n
e
e
r
i
n
g
,
B
a
l
l
a
r
i
I
n
st
i
t
u
t
e
o
f
Te
c
h
n
o
l
o
g
y
a
n
d
M
a
n
a
g
e
me
n
t
B
a
l
l
a
r
i
,
a
f
f
i
l
i
a
t
e
d
t
o
V
i
sv
e
sv
a
r
a
y
a
T
e
c
h
n
o
l
o
g
i
c
a
l
U
n
i
v
e
r
s
i
t
y
,
B
e
l
a
g
a
v
i
,
I
n
d
i
a
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
2
3
,
2
0
2
4
R
ev
is
ed
J
u
l 9
,
2
0
2
5
Acc
ep
ted
Sep
1
4
,
2
0
2
5
S
p
e
c
tru
m
s
e
n
sin
g
(S
S
)
is
e
ss
e
n
ti
a
l
fo
r
c
o
g
n
it
iv
e
ra
d
i
o
(CR)
n
e
t
wo
rk
s
to
e
n
a
b
le
se
c
o
n
d
a
ry
u
se
rs
to
o
p
p
o
rt
u
n
isti
c
a
ll
y
a
c
c
e
ss
u
n
u
se
d
sp
e
c
tr
u
m
with
o
u
t
in
terfe
rin
g
wi
th
p
r
ima
ry
u
se
rs.
Th
is
a
rti
c
le
p
ro
p
o
se
s
a
n
o
v
e
l
m
u
lt
i
-
u
se
r
d
e
tec
ti
o
n
(
M
UD
)
a
n
d
sq
u
a
re
-
la
w
c
o
m
b
in
i
n
g
(S
LC)
fra
m
e
wo
rk
fo
r
S
S
i
n
m
u
lt
ip
le
-
i
n
p
u
t
m
u
lt
ip
le
-
o
u
t
p
u
t
(
M
IM
O)
a
n
d
o
rth
o
g
o
n
a
l
fre
q
u
e
n
c
y
d
i
v
isio
n
m
u
lt
ip
le
x
in
g
(OFDM
)
CR
n
e
tw
o
rk
s.
Trad
it
io
n
a
l
S
S
m
e
th
o
d
s,
e
sp
e
c
ially
e
n
e
rg
y
d
e
tec
ti
o
n
(ED),
o
fte
n
u
n
d
e
rp
e
rfo
rm
in
lo
w
sig
n
a
l
-
to
-
n
o
ise
ra
ti
o
(S
NR)
c
o
n
d
it
io
n
s,
re
su
lt
in
g
in
h
i
g
h
fa
lse
a
larm
ra
tes
d
u
e
to
n
o
ise
u
n
c
e
rtain
ty
a
n
d
m
u
lt
i
-
u
se
r
i
n
terfe
re
n
c
e
.
Th
e
m
u
lt
i
-
u
se
r
d
e
tec
ti
o
n
-
sq
u
a
re
-
law
c
o
m
b
in
i
n
g
(
M
UD
-
S
LC
)
fra
m
e
wo
rk
a
d
d
re
ss
e
s
th
e
se
li
m
it
a
ti
o
n
s
b
y
u
sin
g
M
UD
to
se
p
a
ra
te
u
se
r
sig
n
a
ls
a
n
d
S
LC
t
o
c
o
m
b
in
e
e
n
e
rg
y
fr
o
m
m
u
lt
i
p
le
a
n
ten
n
a
s,
sig
n
ifi
c
a
n
t
ly
imp
r
o
v
i
n
g
p
r
o
b
a
b
il
i
ty
o
f
d
e
tec
ti
o
n
(P
D
)
w
h
il
e
m
a
in
tain
in
g
a
lo
w
fa
lse
a
larm
p
ro
b
a
b
il
it
y
(P
fa
).
S
imu
latio
n
re
su
lt
s
sh
o
w
t
h
a
t
th
e
p
ro
p
o
se
d
a
p
p
r
o
a
c
h
a
c
h
ie
v
e
s
a
P
D
o
f
0
.
8
1
a
t
P
fa
=
0
.
1
5
a
n
d
S
N
R
=
15
d
B
,
o
u
t
p
e
rfo
rm
in
g
c
o
n
v
e
n
ti
o
n
a
l
a
n
d
a
d
v
a
n
c
e
d
S
S
m
e
th
o
d
s.
M
o
re
o
v
e
r,
M
UD
-
S
LC
d
e
m
o
n
stra
tes
a
c
o
n
sid
e
ra
b
le
b
o
o
st
i
n
d
e
tec
ti
o
n
p
e
rfo
rm
a
n
c
e
,
e
v
e
n
in
th
e
p
re
se
n
c
e
o
f
se
v
e
re
in
terfe
re
n
c
e
a
n
d
n
o
ise
u
n
c
e
rtain
ty
,
lea
d
in
g
to
m
o
re
re
li
a
b
le
sp
e
c
tru
m
u
ti
li
z
a
ti
o
n
i
n
sy
ste
m
s.
T
h
e
fra
m
e
wo
rk
a
lso
m
a
in
tain
s
a
lo
we
r
P
fa
,
e
sp
e
c
ially
in
d
y
n
a
m
ic
wire
les
s
e
n
v
ir
o
n
m
e
n
ts.
Th
is
re
se
a
rc
h
wo
rk
c
o
n
t
rib
u
tes
t
o
imp
ro
v
i
n
g
th
e
e
fficie
n
c
y
a
n
d
re
li
a
b
il
it
y
o
f
S
S
in
CR
n
e
two
r
k
s.
K
ey
w
o
r
d
s
:
C
o
g
n
itiv
e
r
ad
io
E
n
er
g
y
d
etec
tio
n
Mu
ltip
le
-
in
p
u
t m
u
ltip
le
o
u
tp
u
t
Mu
lti
-
u
s
er
d
etec
tio
n
s
q
u
ar
e
-
law
co
m
b
in
g
Or
th
o
g
o
n
al
f
r
eq
u
en
cy
d
iv
is
io
n
m
u
ltip
lex
in
g
Sp
ec
tr
u
m
s
en
s
in
g
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Srik
an
th
a
Kan
d
h
g
al
Mo
ch
i
g
ar
Dep
ar
tm
en
t o
f
E
lectr
o
n
ics an
d
C
o
m
m
u
n
icatio
n
E
n
g
in
ee
r
i
n
g
,
Pro
u
d
h
a
d
ev
ar
a
y
a
I
n
s
titu
te
o
f
T
ec
h
n
o
lo
g
y
,
Ho
s
ap
ete,
af
f
iliated
to
Vis
v
esv
ar
ay
a
T
ec
h
n
o
lo
g
ical
Un
iv
er
s
ity
B
elag
av
i
-
5
9
0
0
1
8
,
Kar
n
atak
a,
I
n
d
ia
E
m
ail:
s
r
ik
an
th
k
m
2
0
1
9
@
g
m
a
il.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
r
ap
id
e
x
p
an
s
io
n
o
f
wir
el
ess
co
m
m
u
n
icatio
n
h
as
r
esu
l
ted
in
an
in
cr
ea
s
in
g
ly
c
o
n
g
e
s
ted
r
ad
io
s
p
ec
tr
u
m
,
cr
ea
tin
g
ch
allen
g
e
s
f
o
r
ef
f
icien
t
s
p
ec
tr
u
m
u
tili
za
tio
n
.
C
o
n
v
e
n
tio
n
al
s
tatic
s
p
ec
tr
u
m
allo
ca
tio
n
tech
n
iq
u
es
f
ail
to
ef
f
ec
tiv
ely
ad
d
r
ess
th
is
ch
allen
g
e,
as
lice
n
s
ed
f
r
eq
u
e
n
cy
b
an
d
s
ar
e
o
f
te
n
u
n
d
er
u
tili
ze
d
.
T
o
o
v
er
co
m
e
th
is
lim
itatio
n
,
c
o
g
n
itiv
e
r
ad
io
(
CR
)
s
y
s
tem
s
h
av
e
em
er
g
ed
as
a
p
r
o
m
is
in
g
s
o
lu
tio
n
b
y
e
n
ab
lin
g
d
y
n
am
ic
s
p
ec
tr
u
m
ac
ce
s
s
(
DSA)
,
wh
ich
allo
ws
s
ec
o
n
d
ar
y
u
s
er
s
(
SUs
)
to
o
p
p
o
r
tu
n
is
tically
ac
ce
s
s
id
le
licen
s
ed
s
p
ec
tr
u
m
with
o
u
t
i
n
ter
f
er
in
g
with
p
r
im
ar
y
u
s
er
s
(
PUs
)
[
1
]
,
[
2
]
.
As
h
ig
h
lig
h
ted
in
a
c
o
m
p
r
e
h
en
s
iv
e
s
u
r
v
ey
o
n
n
ex
t
g
en
er
atio
n
C
R
n
etwo
r
k
s
[
3
]
,
C
R
s
y
s
te
m
s
u
tili
ze
DSA
tech
n
iq
u
es
to
an
aly
ze
th
e
r
ad
io
en
v
ir
o
n
m
en
ts
,
id
en
tify
s
p
ec
tr
u
m
g
ap
s
an
d
p
e
r
m
it
SUs
to
o
cc
u
p
y
th
ese
id
le
f
r
eq
u
en
cy
b
a
n
d
s
.
T
h
is
ap
p
r
o
ac
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
4
0
1
-
5
4
1
0
5402
n
o
t
o
n
ly
e
n
h
an
ce
s
s
p
ec
tr
u
m
u
tili
za
tio
n
b
u
t
also
f
ac
ilit
ates
th
e
cr
ea
tio
n
o
f
m
o
r
e
f
lex
i
b
le
an
d
ad
ap
ti
v
e
n
etwo
r
k
f
r
am
ewo
r
k
s
.
E
f
f
ec
tiv
e
s
p
ec
tr
u
m
s
en
s
in
g
(
SS
)
is
cr
u
cial
SUs
to
ex
p
lo
it
u
n
d
e
r
u
tili
ze
d
s
p
ec
tr
u
m
in
C
R
n
etwo
r
k
s
.
E
n
er
g
y
d
etec
tio
n
(
ED
)
is
wid
ely
u
s
ed
d
u
e
to
its
s
im
p
lici
ty
an
d
ad
a
p
tab
ilit
y
to
d
iv
er
s
e
co
m
m
u
n
icatio
n
s
ce
n
ar
io
s
.
Ho
wev
er
,
E
D
-
b
ased
tech
n
iq
u
es
o
f
ten
f
ac
e
c
h
allen
g
es
in
lo
w
s
ig
n
al
-
to
-
n
o
is
e
r
atio
(
SNR
)
co
n
d
itio
n
s
,
wh
er
e
n
o
is
e
u
n
ce
r
tain
ty
(
NU)
ca
n
r
esu
lt
in
h
ig
h
er
f
alse
alar
m
an
d
m
i
s
s
ed
d
etec
tio
n
r
ates
[
4
]
,
[
5
]
.
Ad
v
an
ce
d
s
p
ec
tr
u
m
s
en
s
in
g
t
ec
h
n
iq
u
e
s
ar
e
b
ei
n
g
d
ev
elo
p
e
d
,
f
o
cu
s
in
g
o
n
s
ig
n
a
l
ch
ar
ac
te
r
i
s
t
ic
s
th
a
t
d
i
s
t
in
g
u
i
s
h
li
ce
n
s
e
d
s
ig
n
a
l
s
f
r
o
m
b
ac
k
g
r
o
u
n
d
n
o
i
s
e.
B
y
a
n
aly
zin
g
s
p
a
t
ial
an
d
te
m
p
o
r
a
l
s
ig
n
a
l
p
r
o
p
e
r
t
ie
s
,
th
e
s
e
m
eth
o
d
s
en
h
an
c
e
s
d
et
e
ct
io
n
ac
cu
r
a
cy
[
6
]
.
S
ev
er
al
e
n
h
an
ce
m
en
t
s
to
E
D
h
a
v
e
b
ee
n
p
r
o
p
o
s
e
d
,
s
u
ch
a
s
d
y
n
am
i
c
th
r
e
s
h
o
ld
in
g
,
to
im
p
r
o
v
e
p
er
f
o
r
m
a
n
ce
u
n
d
er
v
a
r
y
in
g
n
o
is
e
l
ev
e
l
s
.
F
o
r
ex
a
m
p
le
,
Ye
et
a
l.
[
7
]
d
em
o
n
s
t
r
at
ed
th
at
a
d
ap
tiv
e
t
h
r
e
s
h
o
ld
a
d
ju
s
tm
en
t
s
b
a
s
ed
o
n
r
e
al
-
t
im
e
n
o
i
s
e
v
ar
ia
n
ce
co
u
ld
s
ig
n
if
ic
an
t
ly
im
p
r
o
v
e
S
S
r
e
l
iab
il
ity
.
B
y
f
ac
to
r
in
g
in
n
o
i
s
e
v
ar
ian
ce
e
s
t
im
at
es
,
th
e
r
e
s
e
ar
ch
er
s
d
e
m
o
n
s
tr
a
ted
th
a
t
th
e
s
y
s
t
em
ca
n
p
r
o
d
u
ce
m
o
r
e
p
r
ec
i
s
e
d
e
te
ct
io
n
o
u
t
co
m
e
s
,
ev
en
i
n
en
v
ir
o
n
m
en
t
s
w
i
th
s
i
g
n
if
i
ca
n
t
n
o
i
s
e
an
d
u
n
ce
r
ta
in
ty
.
Ad
d
i
t
io
n
a
lly
,
h
ig
h
lig
h
t
s
th
a
t
co
n
v
e
n
t
io
n
a
l
E
D
m
eth
o
d
s
,
wh
i
ch
u
s
e
f
ix
ed
th
r
esh
o
ld
s
,
ar
e
p
r
o
n
e
to
in
cr
ea
s
ed
f
a
l
s
e
al
ar
m
p
r
o
b
ab
i
li
ty
(
Pf
a
)
an
d
m
i
s
s
ed
d
et
ec
tio
n
,
p
a
r
t
icu
lar
ly
wh
e
n
n
o
is
e
l
ev
el
s
f
lu
ct
u
a
te
[
8
]
.
T
h
e
p
r
es
en
c
e
o
f
m
u
l
tip
le
an
ten
n
as
in
m
u
l
tip
le
-
in
p
u
t
m
u
l
tip
le
-
o
u
tp
u
t
(
MI
M
O
)
s
y
s
tem
s
i
m
p
r
o
v
es
s
ig
n
al
d
ete
ct
io
n
in
lo
w
-
S
N
R
co
n
d
it
io
n
s
.
W
h
ile
o
r
th
o
g
o
n
a
l
f
r
eq
u
en
cy
d
iv
i
s
io
n
m
u
lt
ip
l
ex
in
g
(
OF
DM
)
o
p
t
im
iz
es
s
p
e
ctr
u
m
u
t
il
iza
t
io
n
b
y
b
r
ea
k
in
g
th
e
s
ig
n
al
in
to
o
r
th
o
g
o
n
al
s
u
b
ca
r
r
i
er
s
.
T
h
e
in
teg
r
a
t
io
n
o
f
M
I
M
O
an
d
OF
DM
tech
n
o
lo
g
ie
s
in
C
R
s
y
s
t
em
s
h
a
s
p
r
o
v
en
to
b
e
a
p
r
a
ct
ica
l
ap
p
r
o
ac
h
to
i
m
p
r
o
v
in
g
b
o
th
s
p
ec
tr
al
ef
f
i
ci
en
cy
an
d
o
v
er
a
ll
s
y
s
tem
p
er
f
o
r
m
an
c
e
co
g
n
i
tiv
e
r
ad
io
s
(
CRs
)
al
lo
w
d
y
n
am
ic
ac
ce
s
s
t
o
u
n
d
er
u
t
il
iz
ed
s
p
e
ctr
u
m
,
wh
i
le
MI
M
O
a
n
d
OF
DM
o
f
f
er
ad
v
a
n
ta
g
e
s
l
i
k
e
s
p
at
ia
l
d
iv
er
s
ity
an
d
i
n
cr
ea
s
ed
r
e
s
i
li
en
c
e
to
m
u
lt
ip
ath
f
ad
in
g
[
9
]
–
[
1
5
]
.
I
n
R
awa
t’
s
s
tu
d
y
[
1
6
]
,
th
e
p
er
f
o
r
m
a
n
ce
o
f
C
R
u
s
er
s
in
m
u
ltip
le
-
in
p
u
t
m
u
ltip
le
-
o
u
tp
u
t
-
o
r
th
o
g
o
n
al
f
r
eq
u
e
n
cy
d
i
v
is
io
n
m
u
ltip
lex
i
n
g
(
MI
MO
-
OFDM
)
wir
eless
n
etwo
r
k
s
is
ass
ess
ed
,
with
a
p
ar
ticu
lar
f
o
cu
s
o
n
h
o
w
th
ese
tech
n
o
lo
g
ies
im
p
r
o
v
e
SS
an
d
d
ata
tr
an
s
m
is
s
io
n
in
C
R
s
y
s
tem
s
.
T
h
e
r
esear
ch
s
h
o
ws
th
at
th
e
co
m
b
in
atio
n
o
f
MI
MO
a
n
d
OFDM
g
r
ea
tly
en
h
an
ce
s
th
e
r
eliab
ilit
y
o
f
SS
b
y
u
tili
zin
g
s
p
atial
d
iv
er
s
ity
an
d
f
r
eq
u
e
n
cy
s
elec
tiv
ity
.
E
D
f
ac
es n
o
tab
le
ch
allen
g
es,
p
ar
ticu
la
r
ly
in
en
v
ir
o
n
m
en
ts
with
NU,
wh
ich
ar
is
es d
u
e
to
f
ac
to
r
s
s
u
ch
as
tem
p
er
atu
r
e
v
ar
iatio
n
s
,
in
ter
f
er
en
ce
an
d
im
p
er
f
ec
t
f
ilter
in
g
.
T
h
ese
f
lu
ctu
atio
n
s
ca
n
ex
ce
ed
p
r
ed
icted
v
alu
es,
ca
u
s
in
g
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
E
D
to
d
eg
r
ad
e,
esp
ec
ially
u
n
d
er
lo
w
-
SNR
co
n
d
itio
n
s
.
Ad
d
itio
n
ally
,
th
e
t
r
ad
e
-
o
f
f
s
a
m
o
n
g
c
r
itical
p
ar
am
eter
s
lik
e
t
h
e
n
u
m
b
er
o
f
s
am
p
les,
NU
lev
els,
an
d
Pfa
r
eq
u
ir
e
ca
r
ef
u
l
ca
lib
r
atio
n
to
m
ain
tai
n
co
n
s
is
ten
t
d
etec
tio
n
p
er
f
o
r
m
an
ce
.
Ad
d
r
ess
in
g
th
ese
ch
allen
g
es
is
es
s
en
tial
to
en
h
an
ce
E
D’
s
ap
p
licab
ilit
y
an
d
e
n
s
u
r
e
its
r
o
b
u
s
tn
ess
in
d
iv
e
r
s
e
an
d
d
y
n
am
ically
ch
an
g
in
g
wir
eless
en
v
ir
o
n
m
en
ts
[
1
7
]
.
W
h
ile
Dee
p
-
C
R
Net
d
em
o
n
s
tr
ates
im
p
r
ess
iv
e
p
er
f
o
r
m
a
n
ce
in
ac
cu
r
ately
d
etec
tin
g
PU
ac
tiv
ity
an
d
id
e
n
tify
in
g
s
p
ec
tr
u
m
h
o
les
in
C
R
n
etwo
r
k
s
,
ce
r
tain
ch
allen
g
es
r
em
ai
n
.
T
h
e
s
y
s
tem
s
r
elian
ce
a
d
ee
p
lear
n
in
g
m
eth
o
d
s
u
ch
a
s
m
u
lti
-
k
er
n
el
co
n
v
o
lu
tio
n
s
a
n
d
r
esid
u
al
co
n
n
ec
tio
n
s
,
i
n
tr
o
d
u
ce
s
a
s
ig
n
if
ica
n
t
co
m
p
u
tatio
n
al
b
u
r
d
en
.
Ad
d
it
io
n
ally
,
th
e
d
etec
to
r
s
p
er
f
o
r
m
an
ce
m
ay
d
ep
e
n
d
h
ea
v
ily
o
n
th
e
q
u
ality
a
n
d
d
iv
er
s
ity
o
f
tr
ain
in
g
d
ata,
p
o
t
en
tially
m
ak
in
g
it
v
u
ln
er
ab
le
to
v
ar
iatio
n
s
in
tr
an
s
m
is
s
io
n
p
atter
n
s
o
r
n
etwo
r
k
d
y
n
am
ics th
at
wer
e
n
o
t c
o
n
s
id
er
ed
d
u
r
in
g
t
h
e
tr
ain
in
g
p
r
o
ce
s
s
[
1
8
]
,
[
1
9
]
.
T
h
e
in
teg
r
atio
n
o
f
in
tellig
en
t
r
ef
lectin
g
s
u
r
f
ac
e
s
ig
n
if
ican
tly
en
h
an
ce
s
SS
ac
cu
r
ac
y
b
y
lev
e
r
ag
in
g
its
ab
ilit
y
to
m
an
ip
u
late
r
ef
lectio
n
s
an
d
s
tr
en
g
th
en
wea
k
s
ig
n
als
f
r
o
m
th
e
PUs
.
T
h
is
r
es
u
lt
in
m
o
r
e
r
eliab
le
d
etec
tio
n
o
u
tc
o
m
es
ev
en
in
ch
allen
g
in
g
e
n
v
ir
o
n
m
en
ts
.
T
ec
h
n
iq
u
es
s
u
ch
as
b
l
o
ck
co
o
r
d
in
ate
d
escen
t,
s
u
cc
ess
iv
e
co
n
v
ex
a
p
p
r
o
x
im
at
io
n
an
d
s
em
id
ef
in
ite
r
elax
atio
n
ar
e
co
m
p
u
tatio
n
ally
i
n
ten
s
iv
e
an
d
m
ay
in
cr
ea
s
e
s
y
s
tem
laten
cy
[
2
0
]
.
Fu
ll
-
d
u
p
l
ex
o
p
er
atio
n
m
o
d
es
en
ab
le
s
im
u
ltan
eo
u
s
tr
an
s
m
is
s
io
n
an
d
r
ec
ep
tio
n
,
r
e
d
u
cin
g
SS
d
elay
s
wh
ile
im
p
r
o
v
in
g
th
r
o
u
g
h
p
u
t
co
m
p
ar
ed
to
t
r
ad
itio
n
al
h
alf
-
d
u
p
lex
m
eth
o
d
s
.
T
h
ese
m
o
d
es
s
ig
n
if
ican
tly
en
h
an
ce
s
th
e
n
et
wo
r
k
s
r
esp
o
n
s
iv
en
ess
to
ch
an
g
es
in
f
r
eq
u
en
c
y
av
ailab
ilit
y
[
2
1
]
.
Siv
ag
u
r
u
n
at
h
an
et
a
l.
[
2
2
]
r
ev
iews
v
ar
io
u
s
SS
tech
n
iq
u
e,
th
eir
class
if
icatio
n
an
d
th
eir
u
n
d
er
ly
i
n
g
m
eth
o
d
o
lo
g
ies.
I
t
ex
p
lo
r
es
th
e
s
tr
en
g
th
s
an
d
wea
k
n
ess
es
o
f
th
ese
ap
p
r
o
ac
h
es,
o
f
f
er
i
n
g
v
alu
ab
le
in
s
ig
h
ts
in
to
p
o
te
n
tial
im
p
r
o
v
em
e
n
ts
.
T
h
e
s
u
r
v
e
y
also
id
en
tifie
s
k
e
y
ch
allen
g
es
an
d
o
p
p
o
r
tu
n
ities
in
th
e
f
ield
,
p
r
o
v
id
in
g
a
r
o
ad
m
ap
f
o
r
en
h
an
cin
g
ex
is
tin
g
SS
tech
n
iq
u
es
[
2
2
]
.
R
ec
en
t
ad
v
an
ce
m
e
n
ts
h
av
e
in
co
r
p
o
r
ated
a
n
ten
n
a
d
iv
er
s
ity
tech
n
iq
u
es
s
u
ch
as
s
q
u
ar
e
-
law
s
elec
to
r
an
d
s
q
u
a
r
e
-
law
co
m
b
in
i
n
g
(
SLC
)
,
to
e
n
h
an
ce
d
etec
tio
n
ac
c
u
r
ac
y
.
T
h
ese
m
eth
o
d
s
h
av
e
b
ee
n
a
n
aly
tically
e
v
alu
ated
to
u
n
d
er
s
tan
d
th
eir
im
p
ac
t
o
n
d
etec
tio
n
p
er
f
o
r
m
an
ce
.
Ho
wev
er
,
p
r
ac
tical
ch
allen
g
es
lik
e
r
a
d
io
f
r
eq
u
en
cy
(
R
F)
im
p
air
m
en
ts
a
n
d
f
a
d
in
g
m
o
d
els
co
m
p
lic
ate
th
e
h
ar
d
war
e
im
p
lem
en
tatio
n
o
f
th
ese
tech
n
iq
u
es
[
2
3
]
.
T
h
is
s
ec
tio
n
r
ev
ie
ws
th
e
ex
is
tin
g
r
esear
ch
o
n
E
D
an
d
SS
in
MI
MO
-
OFDM
-
b
ased
C
R
n
etwo
r
k
s
,
h
ig
h
lig
h
tin
g
b
o
th
th
eir
b
e
n
ef
its
an
d
lim
itatio
n
s
.
L
o
r
in
cz
et
a
l.
[
2
4
]
d
ev
el
o
p
ed
an
alg
o
r
ith
m
to
s
im
u
late
th
e
E
D
p
r
o
ce
s
s
in
co
g
n
itiv
e
MI
M
O
-
OFDM
s
y
s
tem
s
u
s
in
g
th
e
SL
C
tech
n
i
q
u
e.
T
h
e
SLC
tech
n
iq
u
e
is
em
p
lo
y
ed
to
e
n
h
an
ce
th
e
E
D
p
r
o
ce
s
s
b
y
co
m
b
in
in
g
s
ig
n
als
f
r
o
m
m
u
ltip
le
a
n
ten
n
as.
T
h
is
m
eth
o
d
im
p
r
o
v
es
th
e
o
v
er
all
SNR
,
m
ak
in
g
it
ea
s
ier
to
d
etec
t
th
e
p
r
esen
ce
o
f
s
ig
n
als.
Ho
wev
er
,
th
e
s
tu
d
y
d
id
n
o
t
co
m
p
r
eh
e
n
s
iv
ely
in
v
esti
g
ate
th
e
im
p
ac
t
o
f
v
ar
iatio
n
s
in
n
o
is
e
u
n
ce
r
tain
ty
(
NU)
an
d
th
e
ad
j
u
s
tm
en
ts
to
th
e
d
y
n
a
m
ic
d
etec
ti
o
n
th
r
esh
o
ld
(
DT
)
o
n
th
e
p
e
r
f
o
r
m
an
ce
o
f
E
D
a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
d
s
p
ec
tr
u
m
s
en
s
in
g
in
MIMO
-
OF
DM c
o
g
n
itive
r
a
d
io
n
etw
o
r
ks
…
(
S
r
ika
n
th
a
K
a
n
d
h
g
a
l Mo
c
h
ig
a
r
)
5403
it
was
co
n
f
in
ed
to
a
p
ar
ticu
l
ar
MI
MO
-
OFDM
s
y
s
tem
m
o
d
el.
T
h
e
an
al
y
s
is
d
o
es
n
o
t
e
x
p
lo
r
e
th
e
p
o
ten
tial
b
en
ef
its
o
f
ad
v
an
ce
d
m
o
d
u
latio
n
s
ch
em
es o
n
d
etec
tio
n
p
er
f
o
r
m
an
ce
.
L
o
r
in
cz
et
a
l.
[
2
5
]
in
tr
o
d
u
ce
d
an
in
n
o
v
ativ
e
alg
o
r
ith
m
to
s
im
u
late
E
D
p
r
o
ce
s
s
u
s
in
g
SLC
,
ev
alu
atin
g
its
p
er
f
o
r
m
an
ce
ac
r
o
s
s
d
if
f
er
e
n
t
o
p
er
atio
n
al
s
ce
n
ar
io
s
.
T
h
ei
r
f
in
d
in
g
s
h
ig
h
lig
h
ted
t
h
at
en
h
an
cin
g
th
e
n
u
m
b
er
o
f
r
ec
ei
v
e
a
n
ten
n
as
o
d
t
h
e
SU
s
id
e
s
ig
n
if
ican
tly
im
p
r
o
v
es
E
D
p
er
f
o
r
m
a
n
ce
c
o
m
p
ar
e
d
to
in
cr
ea
s
in
g
th
e
n
u
m
b
er
o
f
tr
an
s
m
it
an
te
n
n
as
o
n
th
e
PU
s
id
e.
Nev
er
t
h
eless
,
th
eir
s
tu
d
y
was
co
n
f
in
ed
to
E
D,
m
ak
in
g
it
less
ef
f
ec
tiv
e
in
s
ce
n
ar
io
s
with
lo
w
SNR
o
r
s
ev
er
e
c
h
an
n
el
f
a
d
in
g
.
Fu
r
th
er
m
o
r
e,
t
h
e
im
p
ac
t
o
f
th
e
ad
v
an
ce
d
m
o
d
u
latio
n
tech
n
iq
u
es o
n
d
ete
ctio
n
p
er
f
o
r
m
an
ce
was n
o
t e
x
p
lo
r
ed
in
th
eir
an
al
y
s
is
.
L
o
r
in
cz
et
a
l.
[
2
6
]
d
e
v
elo
p
e
d
a
m
ath
em
atica
l
m
o
d
el
aim
e
d
a
t
ex
p
lo
r
in
g
th
e
r
elatio
n
s
h
ip
b
e
twee
n
k
ey
p
ar
am
eter
s
an
d
d
etec
tio
n
p
er
f
o
r
m
an
ce
,
with
a
f
o
cu
s
o
n
o
p
tim
izin
g
th
e
d
etec
tio
n
t
h
r
esh
o
ld
to
en
h
an
ce
th
e
r
eliab
ilit
y
o
f
SS
.
T
h
e
s
tu
d
y
e
x
am
in
ed
h
o
w
v
ar
iatio
n
s
in
t
h
e
DT
an
d
NU
in
f
lu
en
ce
th
e
ef
f
e
ctiv
en
ess
o
f
E
D
in
MI
MO
-
OFDM
C
R
s
y
s
tem
s
.
Ho
wev
er
,
th
e
an
aly
s
is
f
ailed
to
co
n
s
id
er
th
e
p
o
ten
tial
in
ter
f
er
en
ce
f
r
o
m
o
th
e
r
u
s
er
s
o
r
ex
ter
n
al
s
o
u
r
ce
s
,
wh
i
ch
co
u
ld
n
o
tab
l
y
im
p
ac
t th
e
p
er
f
o
r
m
a
n
ce
o
f
E
D.
Pan
et
a
l.
[
2
7
]
i
n
tr
o
d
u
ce
d
a
f
r
am
ewo
r
k
t
h
at
h
ar
n
ess
es
d
ee
p
lear
n
in
g
tec
h
n
iq
u
es
to
i
m
p
r
o
v
e
t
h
e
ac
cu
r
ac
y
a
n
d
r
eliab
ilit
y
o
f
S
S
in
d
y
n
am
ic
wir
eless
en
v
ir
o
n
m
en
t.
I
t
p
r
o
p
o
s
es
a
n
ew
m
e
th
o
d
f
o
r
SS
in
C
R
Netwo
r
k
s
,
em
p
lo
y
in
g
d
ee
p
lear
n
in
g
a
n
d
cy
cle
s
p
ec
tr
u
m
an
aly
s
is
to
id
en
tify
OFDM
s
ig
n
als.
Ho
wev
er
,
th
e
lear
n
in
g
a
p
p
r
o
ac
h
d
em
an
d
s
c
o
n
s
id
er
ab
le
c
o
m
p
u
tatio
n
al
r
es
o
u
r
ce
s
an
d
ex
p
er
tis
e
in
m
o
d
el
tr
ain
in
g
,
th
is
co
u
ld
cr
ea
te
d
if
f
icu
lties
f
o
r
d
ep
lo
y
m
en
t in
en
v
ir
o
n
m
e
n
ts
with
lim
ited
r
eso
u
r
ce
s
.
Al
-
Am
id
ie
et
a
l.
[
2
8
]
d
ev
el
o
p
ed
a
g
en
e
r
alize
d
lik
elih
o
o
d
r
atio
test
(
GL
R
T
)
d
etec
to
r
u
s
in
g
a
B
ay
esian
f
r
am
ewo
r
k
to
tack
l
e
u
n
ce
r
tain
ties
in
th
e
n
o
is
e
c
o
v
ar
ian
ce
m
atr
ix
a
n
d
c
h
an
n
e
l
g
ain
.
T
h
eir
wo
r
k
p
r
esen
ts
a
r
o
b
u
s
t
SS
d
etec
t
o
r
d
esig
n
ed
f
o
r
MI
MO
C
R
s
y
s
tem
s
,
p
ar
ticu
lar
ly
wh
en
th
e
C
h
an
n
el
State
I
n
f
o
r
m
atio
n
(
C
SI)
is
im
p
e
r
f
ec
t.
T
h
e
p
r
o
p
o
s
ed
s
o
lu
tio
n
e
f
f
ec
tiv
ely
ad
d
r
ess
es
SS
u
n
ce
r
tain
t
ies
u
n
d
er
th
e
g
iv
e
n
ass
u
m
p
tio
n
s
.
Ho
wev
er
,
t
h
e
s
tu
d
y
f
o
cu
s
es
s
o
lely
o
n
th
e
S
S
ch
allen
g
e,
with
o
u
t
ac
co
u
n
t
in
g
f
o
r
ad
d
itio
n
al
f
ac
to
r
s
s
u
ch
as
r
eso
u
r
ce
allo
c
atio
n
o
r
th
r
o
u
g
h
p
u
t
o
p
tim
izatio
n
with
in
C
R
n
etwo
r
k
s
.
Ad
d
i
tio
n
ally
,
th
e
r
o
b
u
s
t
d
etec
to
r
m
ay
i
n
v
o
lv
e
h
ig
h
er
c
o
m
p
u
tatio
n
al
c
o
m
p
lex
ity
.
Z
ai
m
b
a
s
h
i
[
2
9
]
p
r
o
p
o
s
ed
a
S
S
m
eth
o
d
f
o
r
m
u
l
ti
-
an
ten
n
a
C
R
s
y
s
tem
s
u
s
in
g
a
o
n
e
-
s
te
p
lik
el
ih
o
o
d
te
s
t
(
L
R
T
)
b
a
s
ed
o
n
th
e
c
o
v
ar
i
an
c
e
m
a
tr
ix
o
f
th
e
r
e
ce
iv
ed
s
i
g
n
a
l.
T
h
e
p
r
o
p
o
s
e
d
E
-
S
S
E
d
e
tec
to
r
s
o
u
tp
er
f
o
r
m
e
d
t
r
ad
it
io
n
a
l
m
et
h
o
d
s
li
k
e
S
SE
an
d
M
ME
in
s
im
u
lat
io
n
en
v
ir
o
n
m
en
t
s
.
H
o
wev
er
,
th
e
wo
r
k
as
s
u
m
e
s
id
ea
l
co
n
d
i
tio
n
s
an
d
d
o
e
s
n
o
t
ac
c
o
u
n
t
f
o
r
r
e
al
wo
r
l
d
i
s
s
u
e
s
s
u
c
h
a
s
h
ar
d
war
e
im
p
er
f
ec
tio
n
s
,
m
o
b
i
li
ty
o
r
in
te
r
f
er
en
c
e.
Ad
d
it
io
n
a
ll
y
,
it
d
o
e
s
n
o
t
ad
d
r
e
s
s
s
i
g
n
a
l
d
e
te
ct
io
n
in
O
F
DM
s
y
s
t
em
s
o
r
m
u
lt
i
-
u
s
e
r
s
c
en
ar
io
s
.
I
n
co
n
tr
a
s
t,
th
e
wo
r
k
in
tr
o
d
u
ce
s
a
m
u
l
ti
-
u
s
e
r
d
e
te
ct
io
n
-
s
q
u
a
r
e
-
la
w
co
m
b
in
in
g
(
MU
D
-
SL
C
)
f
r
am
e
wo
r
k
ta
il
o
r
ed
f
o
r
MI
M
O
-
O
F
DM
n
et
wo
r
k
s
,
ca
p
ab
l
e
o
f
h
an
d
l
in
g
in
t
er
f
er
en
ce
a
n
d
d
y
n
am
i
c
s
p
e
ctr
u
m
co
n
d
i
tio
n
s
ef
f
ec
tiv
el
y
.
Ov
er
all,
cu
r
r
e
n
t
co
g
n
itiv
e
SS
ap
p
r
o
ac
h
es
f
ac
e
ch
allen
g
es,
r
o
b
u
s
t
d
etec
tio
n
m
eth
o
d
s
o
f
ten
lead
to
in
cr
ea
s
ed
co
m
p
u
tatio
n
al
c
o
m
p
lex
ity
.
Ad
d
itio
n
ally
,
m
a
n
y
o
f
th
ese
ap
p
r
o
ac
h
es
ar
e
r
estr
icted
to
b
asic
E
D,
wh
ich
ca
n
u
n
d
er
p
e
r
f
o
r
m
in
lo
w
-
SNR
co
n
d
itio
n
s
o
r
wi
th
s
ig
n
if
ican
t
c
h
an
n
el
f
ad
i
n
g
.
T
h
e
im
p
ac
t
o
f
in
ter
f
er
en
ce
in
SS
is
also
f
r
eq
u
en
tly
o
v
er
lo
o
k
ed
,
wh
ich
ca
n
r
esu
lt
in
r
e
d
u
ce
d
ef
f
icien
c
y
d
u
e
to
ele
v
ated
f
alse
alar
m
r
ates.
I
n
th
is
r
esear
ch
,
th
e
MU
D
-
S
L
C
tech
n
iq
u
e
to
cr
ea
te
a
r
o
b
u
s
t
an
d
ef
f
icien
t
SS
s
o
lu
tio
n
f
o
r
MI
MO
-
OFDM
CR
n
etwo
r
k
s
.
T
h
e
im
p
o
r
tan
t f
in
d
in
g
s
o
f
th
is
r
esear
ch
ar
e
lis
ted
as.
a.
Sep
ar
atio
n
o
f
s
ig
n
als:
MU
D
p
lay
s
a
cr
itical
r
o
le
i
n
s
ep
ar
atin
g
s
ig
n
als
f
r
o
m
m
u
ltip
le
u
s
er
s
.
T
h
is
is
esp
ec
ially
im
p
o
r
ta
n
t
in
m
u
lti
-
u
s
er
C
R
en
v
ir
o
n
m
en
ts
wh
e
r
e
p
r
im
ar
y
an
d
s
ec
o
n
d
ar
y
u
s
er
s
s
h
ar
e
th
e
s
am
e
s
p
ec
tr
u
m
.
B
y
r
ed
u
cin
g
t
h
e
in
t
er
f
er
en
ce
b
etwe
en
u
s
er
s
,
MU
D
en
h
an
ce
s
d
etec
tio
n
p
er
f
o
r
m
an
ce
.
b.
C
o
m
b
in
in
g
e
n
er
g
y
f
o
r
r
o
b
u
s
t
d
etec
tio
n
:
SLC
b
o
o
s
ts
d
etec
tio
n
p
er
f
o
r
m
a
n
ce
b
y
co
m
b
in
i
n
g
th
e
r
ec
eiv
ed
s
ig
n
al
en
er
g
y
f
r
o
m
m
u
ltip
le
a
n
ten
n
as
o
r
s
u
b
ca
r
r
ier
s
,
th
u
s
im
p
r
o
v
i
n
g
SNR
an
d
m
ak
in
g
t
h
e
s
y
s
tem
m
o
r
e
r
esil
ien
t
to
n
o
is
e
an
d
f
ad
in
g
.
T
h
is
f
ac
ilit
ates
a
m
o
r
e
d
e
p
en
d
ab
le
d
etec
tio
n
p
r
o
ce
s
s
,
ev
en
in
ad
v
e
r
s
e
co
n
d
itio
n
s
.
c.
I
m
p
r
o
v
ed
s
p
ec
tr
u
m
u
tili
za
tio
n
:
b
y
en
h
a
n
cin
g
t
h
e
d
etec
tio
n
p
er
f
o
r
m
an
ce
in
m
u
lti
-
u
s
er
en
v
ir
o
n
m
e
n
ts
,
th
e
s
y
s
tem
en
ab
les
s
ec
o
n
d
ar
y
u
s
er
s
to
m
o
r
e
ef
f
ec
tiv
ely
ac
ce
s
s
u
n
u
s
ed
s
p
ec
tr
u
m
,
im
p
r
o
v
in
g
o
v
er
all
s
p
ec
tr
u
m
u
tili
za
tio
n
in
C
R
n
etwo
r
k
s
.
d.
I
n
cr
ea
s
ed
n
etwo
r
k
r
eliab
ilit
y
:
th
e
in
teg
r
atio
n
o
f
MU
D
an
d
SLC
en
s
u
r
es
th
at
s
p
ec
tr
u
m
h
o
les
ar
e
d
etec
ted
with
h
ig
h
ac
cu
r
ac
y
,
ev
e
n
in
ch
allen
g
in
g
en
v
ir
o
n
m
e
n
ts
s
u
ch
as
lo
w
-
SN
R
o
r
f
ad
in
g
ch
an
n
e
ls
.
T
h
is
lead
s
to
m
o
r
e
r
eliab
le
n
etwo
r
k
p
er
f
o
r
m
an
ce
,
with
f
ev
e
r
m
is
s
ed
d
ete
ctio
n
o
p
p
o
r
tu
n
ities
an
d
f
alse a
lar
m
s
.
T
h
e
s
tr
u
ctu
r
e
o
f
th
e
r
esear
ch
p
ap
er
is
as
f
o
llo
ws:
s
ec
tio
n
2
o
u
tlin
es
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
o
lo
g
y
;
s
ec
tio
n
3
p
r
o
v
id
es
an
an
al
y
s
is
o
f
th
e
r
esu
lts
alo
n
g
with
th
e
d
is
cu
s
s
io
n
an
d
s
ec
tio
n
4
o
f
f
er
s
th
e
co
n
clu
s
io
n
s
d
r
awn
f
r
o
m
th
e
r
esear
ch
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
4
0
1
-
5
4
1
0
5404
2.
P
RO
P
O
SE
D
M
E
T
H
O
D
I
n
th
i
s
r
es
ea
r
ch
,
M
UD
-
SL
C
t
e
ch
n
iq
u
e
is
p
r
o
p
o
s
ed
f
o
r
th
e
S
S
in
MI
M
O
-
OF
D
M
C
R
n
et
w
o
r
k
,
wh
er
e
S
S
i
s
en
h
an
c
ed
u
s
i
n
g
M
UD
an
d
S
L
C
t
ec
h
n
iq
u
e
s
.
T
h
e
o
b
je
ct
iv
e
o
f
th
e
s
y
s
te
m
i
s
t
o
ef
f
i
ci
en
t
ly
d
et
ec
t
th
e
p
r
e
s
en
ce
o
f
P
U
in
a
s
h
a
r
ed
s
p
e
ctr
u
m
en
v
ir
o
n
m
en
t
w
h
il
e
a
llo
w
in
g
SU
s
to
a
cc
e
s
s
av
ai
la
b
l
e
s
p
ec
tr
u
m
wi
th
o
u
t
ca
u
s
in
g
h
ar
m
f
u
l
in
t
er
f
er
en
ce
.
T
h
e
s
ch
em
at
ic
r
ep
r
es
en
ta
t
io
n
o
f
MU
D
-
SL
C
te
ch
n
i
q
u
e
i
s
p
r
e
s
en
ted
i
n
Fig
u
r
e
1
.
Fig
u
r
e
1
.
Fu
n
ctio
n
al
co
m
p
o
n
e
n
ts
o
f
th
e
MI
MO
-
OFDM
co
m
m
u
n
icatio
n
s
y
s
tem
u
tili
zin
g
E
D
f
o
r
SS
,
I
m
p
lem
en
ted
t
h
r
o
u
g
h
MU
D
-
S
L
C
tech
n
iq
u
e
2
.
1
.
Sy
s
t
e
m
mo
del
T
h
e
p
r
o
p
o
s
ed
f
r
a
m
ewo
r
k
o
p
er
ates
with
in
a
MI
MO
-
OFD
M
C
R
n
etwo
r
k
,
le
v
er
ag
in
g
s
p
atial
an
d
f
r
eq
u
e
n
cy
d
i
v
er
s
ity
to
e
n
h
an
c
e
SS
.
T
h
e
s
y
s
tem
co
n
s
is
ts
o
f
tr
an
s
m
it
an
ten
n
as
at
th
e
PU
an
d
r
ec
eiv
e
an
ten
n
as
at
th
e
SU.
MI
MO
tech
n
o
lo
g
y
en
a
b
les
s
p
atial
d
iv
er
s
ity
,
wh
ile
OFDM
m
itig
ates
f
r
eq
u
e
n
cy
-
s
elec
tiv
e
f
ad
in
g
b
y
d
i
v
id
in
g
t
h
e
s
ig
n
al
N
o
r
th
o
g
o
n
al
s
u
b
ca
r
r
ier
s
.
T
h
e
r
ec
eiv
ed
s
ig
n
al
at
th
e
i
th
a
n
ten
n
a
is
ex
p
r
ess
ed
as
=
+
(
1
)
w
h
er
e
r
ep
r
esen
ts
ch
an
n
el
m
atr
ix
m
o
d
ellin
g
p
ath
lo
s
s
,
f
a
d
in
g
an
d
in
ter
f
e
r
en
ce
.
r
ep
r
e
s
en
ts
v
ec
to
r
o
f
tr
an
s
m
itted
s
ig
n
als
f
r
o
m
PU
an
ten
n
as,
m
o
d
u
lated
u
s
in
g
QPSK
o
r
QAM
.
r
ep
r
esem
ts
n
o
is
e
with
ze
r
o
m
ea
n
an
d
v
ar
ian
ce
σ
2
.
T
o
m
itig
ate
in
ter
f
er
en
ce
,
t
h
e
p
r
o
p
o
s
ed
s
y
s
tem
em
p
lo
y
es
MU
D
to
s
ep
ar
ate
o
v
er
la
p
p
in
g
s
ig
n
als
f
r
o
m
m
u
ltip
le
u
s
er
s
.
S
L
C
ag
g
r
eg
ates
th
e
en
er
g
y
ac
r
o
s
s
N
r
an
ten
n
as
to
im
p
r
o
v
e
th
e
ef
f
ec
tiv
e
SNR
f
o
r
r
eliab
le
d
etec
tio
n
.
2
.
2
.
M
ulti
-
us
er
det
ec
t
io
n (
M
UD)
Mu
lti
-
u
s
er
d
etec
tio
n
(
MU
D)
i
s
a
en
h
an
ce
tech
n
iq
u
e
i
n
wir
el
ess
co
m
m
u
n
icatio
n
s
y
s
tem
s
,
p
ar
ticu
lar
ly
in
s
ce
n
ar
io
s
wh
er
e
m
u
ltip
le
u
s
er
s
tr
an
s
m
it
d
ata
s
im
u
ltan
eo
u
s
ly
o
v
er
s
h
ar
ed
c
h
an
n
els.
T
h
e
g
o
al
o
f
MU
D
is
to
d
ec
o
d
e
th
e
s
ig
n
als
o
f
m
u
ltip
le
u
s
er
s
b
y
ac
co
u
n
tin
g
f
o
r
t
h
e
in
ter
f
er
en
ce
b
etwe
en
th
e
m
,
th
u
s
im
p
r
o
v
in
g
o
v
e
r
all
s
y
s
tem
p
er
f
o
r
m
a
n
ce
.
MU
D
i
s
esp
ec
ially
cr
itical
in
co
d
e
-
d
iv
is
io
n
m
u
ltip
le
ac
ce
s
s
(
C
DM
A)
,
OFDM
an
d
MI
MO
s
y
s
tem
s
,
wh
er
e
u
s
er
s
o
r
an
ten
n
as
s
h
ar
e
th
e
s
am
e
f
r
eq
u
e
n
cy
b
an
d
.
T
h
e
ze
r
o
-
f
o
r
cin
g
(
Z
F)
d
etec
to
r
elim
in
ates in
ter
f
er
en
ce
b
y
m
u
l
tip
ly
in
g
th
e
r
ec
eiv
e
d
s
ig
n
al
b
y
th
e
p
s
eu
d
o
-
in
v
er
s
e
o
f
th
e
c
h
a
n
n
el
m
atr
ix
.
T
h
e
Z
F so
lu
tio
n
is
g
iv
en
b
y
:
̂
=
(
)
−
1
(
2
)
w
h
er
e
X
̂
i
s
t
h
e
e
s
t
im
at
ed
tr
an
s
m
it
ted
s
i
g
n
a
l
v
ec
to
r
,
an
d
i
s
t
h
e
a
g
g
r
eg
at
e
ch
an
n
el
m
atr
ix
ac
r
o
s
s
al
l
u
s
er
s
.
W
h
il
e
Z
F
ef
f
ec
tiv
ely
r
e
m
o
v
es
in
te
r
f
er
en
c
e,
it
c
an
am
p
lify
n
o
is
e
wh
en
t
h
e
ch
an
n
el
m
a
tr
ix
i
s
il
l
co
n
d
i
tio
n
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
d
s
p
ec
tr
u
m
s
en
s
in
g
in
MIMO
-
OF
DM c
o
g
n
itive
r
a
d
io
n
etw
o
r
ks
…
(
S
r
ika
n
th
a
K
a
n
d
h
g
a
l Mo
c
h
ig
a
r
)
5405
2
.
3
.
S
qu
a
re
-
la
w
co
m
bin
ing
Sq
u
ar
e
-
law
co
m
b
in
in
g
(
SLC)
is
a
d
iv
er
s
ity
-
co
m
b
in
in
g
tech
n
iq
u
e
o
f
ten
u
s
ed
in
c
o
m
m
u
n
icatio
n
s
y
s
tem
s
to
im
p
r
o
v
e
d
etec
tio
n
p
er
f
o
r
m
a
n
ce
u
n
d
er
f
ad
i
n
g
c
h
an
n
els.
SLC
is
ty
p
ically
ap
p
lied
in
E
D
f
o
r
SS
,
wh
er
e
th
e
s
ig
n
als
en
er
g
y
is
co
m
b
in
ed
ac
r
o
s
s
m
u
ltip
le
b
r
an
c
h
es
(
e.
g
.
an
ten
n
as
o
r
s
u
b
ca
r
r
ie
r
s
)
.
SLC
co
m
p
u
tes
th
e
en
er
g
y
o
f
th
e
r
ec
eiv
e
d
s
ig
n
al
an
d
s
u
m
s
th
e
en
er
g
y
f
r
o
m
all
b
r
an
ch
es.
T
h
is
is
p
ar
ticu
lar
ly
ef
f
ec
tiv
e
w
h
en
th
e
s
ig
n
al
is
wea
k
,
as
it
ca
n
i
m
p
r
o
v
e
th
e
p
r
o
b
a
b
ilit
y
o
f
d
etec
tio
n
(
P
D
)
with
o
u
t
n
ee
d
in
g
to
d
ec
o
d
in
g
th
e
ex
ac
t
tr
an
s
m
itted
d
ata.
C
o
n
s
id
er
a
c
o
m
m
u
n
icatio
n
s
y
s
tem
with
N
r
r
ec
eiv
e
an
ten
n
as
an
d
let
th
e
r
ec
eiv
ed
s
ig
n
al
o
n
th
e
i
th
b
r
a
n
ch
b
e
d
e
n
o
ted
b
y
(
)
.
T
h
e
SLC
o
u
t
p
u
t
is
th
e
s
u
m
o
f
th
e
s
q
u
ar
e
d
m
a
g
n
itu
d
es
o
f
th
e
r
ec
ei
v
ed
s
ig
n
als,
g
iv
en
b
y
:
=
∑
|
|
2
=
1
(
3
)
w
h
er
e,
|
y
i
|
2
r
ep
r
esen
ts
th
e
en
er
g
y
o
f
th
e
s
ig
n
al
r
ec
eiv
ed
o
n
t
h
e
i
th
b
r
an
c
h
.
T
h
e
d
ec
is
io
n
o
n
wh
eth
er
a
s
ig
n
al
is
p
r
esen
t o
r
a
b
s
en
t is m
ad
e
b
y
c
o
m
p
ar
in
g
th
e
co
m
b
in
ed
en
er
g
y
E
with
a
th
r
esh
o
ld
λ
.
:
{
>
≤
(
4
)
Fo
r
SLC,
th
e
ef
f
ec
tiv
e
SNR
af
ter
co
m
b
in
in
g
is
g
iv
en
b
y
:
=
1
∑
=
1
(
5
)
T
h
is
s
h
o
ws
th
at
c
o
m
b
in
in
g
t
h
e
en
er
g
y
ac
r
o
s
s
N
r
b
r
a
n
ch
es
i
m
p
r
o
v
e
th
e
o
v
e
r
all
SNR
,
th
er
eb
y
e
n
h
an
cin
g
t
h
e
d
etec
tio
n
p
er
f
o
r
m
a
n
ce
,
p
a
r
ticu
lar
ly
in
f
a
d
in
g
e
n
v
ir
o
n
m
en
ts
.
I
n
C
R
n
etwo
r
k
s
,
SLC
is
o
f
ten
u
s
ed
f
o
r
SS
.
I
t
h
elp
s
d
etec
t
th
e
p
r
esen
ce
o
f
P
U
b
y
m
ea
s
u
r
in
g
th
e
e
n
er
g
y
o
f
th
e
r
ec
eiv
ed
s
ig
n
al
ac
r
o
s
s
m
u
ltip
le
an
ten
n
as
o
r
s
u
b
ca
r
r
ier
s
.
T
h
is
m
ak
es
SLC
a
v
alu
ab
le
tech
n
iq
u
e
in
d
y
n
am
ic
s
p
ec
tr
u
m
ac
ce
s
s
s
ce
n
ar
io
s
wh
er
e
r
eliab
le
d
etec
tio
n
is
cr
u
cial.
2
.
4
.
O
F
DM
t
ra
ns
m
is
s
io
n
I
n
th
e
OFDM
-
b
ased
C
R
s
y
s
tem
,
th
e
wid
eb
a
n
d
ch
an
n
el
is
s
eg
m
en
ted
in
to
s
ev
er
al
o
r
th
o
g
o
n
al
s
u
b
ca
r
r
ier
s
,
en
ab
lin
g
t
h
e
s
y
s
tem
to
m
itig
ate
f
r
eq
u
en
c
y
-
s
elec
tiv
e
f
ad
in
g
.
T
h
e
tr
a
n
s
m
itted
s
ig
n
al
x
co
n
s
is
ts
o
f
m
o
d
u
lated
s
y
m
b
o
ls
o
n
ea
ch
s
u
b
ca
r
r
ier
.
T
h
e
s
ig
n
al
o
n
th
e
k
th
s
u
b
ca
r
r
ier
at
tim
e
t
is
g
iv
e
n
b
y
:
(
)
=
∑
2
⁄
−
1
=
0
=
0
,
1
,
…
…
.
,
−
1
(
6
)
w
h
er
e,
X
r
ep
r
esen
ts
th
e
m
o
d
u
lated
d
ata
s
y
m
b
o
l
o
n
th
e
n
th
s
u
b
ca
r
r
ier
,
N
is
th
e
n
u
m
b
e
r
o
f
OFDM
s
u
b
ca
r
r
ier
s
,
th
e
ex
p
o
n
en
tial
ter
m
r
e
p
r
esen
ts
th
e
s
u
b
ca
r
r
ier
m
o
d
u
latio
n
.
At
th
e
r
ec
eiv
er
,
af
ter
MU
D
a
n
d
SLC
ar
e
ap
p
lied
,
th
e
s
y
s
tem
co
m
b
in
es
th
e
r
ec
ei
v
ed
s
ig
n
al
en
e
r
g
ies
ac
r
o
s
s
m
u
ltip
le
an
ten
n
as
a
n
d
s
u
b
ca
r
r
ier
s
f
o
r
SS
.
Sp
ec
tr
u
m
s
en
s
in
g
p
r
o
ce
s
s
as:
a.
Sig
n
al
tr
an
s
m
is
s
io
n
: m
u
ltip
le
SUs
tr
an
s
m
its
th
eir
d
ata
u
s
in
g
OFDM
o
v
er
s
h
ar
ed
b
a
n
d
s
.
b.
Sig
n
al
r
ec
ep
tio
n
:
th
e
r
ec
eiv
ed
s
ig
n
als,
s
u
b
ject
to
m
u
lti
-
u
s
er
in
ter
f
er
en
ce
an
d
n
o
is
e,
ar
e
p
r
o
ce
s
s
ed
u
s
in
g
MU
D
tech
n
iq
u
es su
ch
as Z
F o
r
MM
SE.
c.
E
n
er
g
y
c
o
m
b
i
n
in
g
:
SLC
is
ap
p
lied
to
co
m
b
in
e
th
e
en
er
g
y
o
f
th
e
r
ec
eiv
e
d
s
ig
n
als
ac
r
o
s
s
m
u
ltip
le
an
ten
n
as
an
d
/o
r
s
u
b
c
ar
r
ier
s
.
d.
Dec
is
io
n
m
ak
in
g
:
th
e
co
m
b
in
ed
en
e
r
g
y
is
co
m
p
ar
ed
ag
ai
n
s
t
th
e
d
etec
tio
n
th
r
esh
o
l
d
to
d
ec
id
e
wh
eth
er
th
e
s
p
ec
tr
u
m
is
o
cc
u
p
ied
b
y
a
PU o
r
av
ailab
le
f
o
r
SU.
2
.
5
.
Co
m
pu
t
a
t
io
na
l
c
o
m
plex
i
t
y
T
h
e
co
m
p
u
tatio
n
al
co
m
p
lex
it
y
o
f
th
e
MU
D
-
SLC
f
r
am
ewo
r
k
p
r
im
ar
ily
ar
is
es
f
r
o
m
MU
D
alg
o
r
ith
m
an
d
SLC
en
er
g
y
ag
g
r
eg
atio
n
.
T
h
e
Z
F
d
etec
to
r
u
s
ed
in
MU
D
in
v
o
lv
es
m
atr
ix
in
v
er
s
io
n
with
a
co
m
p
lex
ity
o
f
(
3
)
,
wh
ile
SLC
ad
d
s
l
in
ea
r
co
m
p
lex
ity
p
r
o
p
o
r
tio
n
al
to
th
e
n
u
m
b
er
o
f
an
ten
n
as
(
(
)
)
.
W
h
ile
t
h
ese
o
p
er
atio
n
s
ar
e
m
o
r
e
e
f
f
icien
t
th
an
d
ata
-
in
ten
s
iv
e
m
ac
h
in
e
l
ea
r
n
in
g
m
o
d
els,
o
p
tim
izin
g
MU
D
-
SLC
f
o
r
r
ea
l
-
tim
e
ap
p
licatio
n
s
is
a
f
o
cu
s
f
o
r
f
u
tu
r
e
r
esear
ch
.
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
s
ec
tio
n
p
r
esen
ts
th
e
ex
p
er
im
en
tal
f
in
d
in
g
s
an
d
th
eir
in
ter
p
r
etatio
n
,
em
p
h
asizin
g
t
h
e
ef
f
icien
cy
o
f
th
e
p
r
o
p
o
s
ed
MU
D
-
SLC
f
r
am
ewo
r
k
f
o
r
SS
in
MI
MO
-
OFDM
C
R
n
etwo
r
k
s
.
B
y
in
te
g
r
atin
g
r
esu
lts
with
d
is
cu
s
s
io
n
,
to
p
r
o
v
i
d
e
a
co
m
p
r
eh
en
s
iv
e
u
n
d
e
r
s
tan
d
in
g
o
f
h
o
w
th
e
p
r
o
p
o
s
ed
f
r
am
e
wo
r
k
ad
d
r
ess
es
SS
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
4
0
1
-
5
4
1
0
5406
ch
allen
g
es,
p
ar
ticu
lar
l
y
in
lo
w
-
SNR
an
d
in
ter
f
er
en
ce
-
h
ea
v
y
s
ce
n
ar
io
s
.
T
h
e
im
p
lem
e
n
tatio
n
p
r
o
ce
s
s
was
ex
ec
u
ted
with
th
e
h
elp
o
f
MA
T
L
AB
s
o
f
twar
e
o
n
a
s
y
s
tem
with
an
in
tel
i7
p
r
o
ce
s
s
o
r
,
win
d
o
ws
1
1
o
p
er
atin
g
s
y
s
tem
an
d
8
G
b
o
f
r
an
d
o
m
-
ac
ce
s
s
m
em
o
r
y
(
R
AM
)
.
T
h
e
s
im
u
latio
n
p
a
r
am
eter
s
f
o
r
th
e
p
r
o
p
o
s
ed
a
p
p
r
o
ac
h
a
r
e
o
u
tlin
ed
in
T
a
b
le
1
.
T
ab
le
1
.
Simu
latio
n
p
ar
am
eter
s
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
P
a
r
a
me
t
e
r
s
V
a
l
u
e
s
P
U
si
g
n
a
l
t
y
p
e
O
F
D
M
N
U
f
a
c
t
o
r
ρ
1
.
0
2
D
T
f
a
c
t
o
r
ρ
΄
1
.
0
1
O
F
D
M
mo
d
u
l
a
t
i
o
n
t
y
p
e
Q
P
S
K
,
1
6
Q
A
M
,
6
4
Q
A
M
D
e
t
e
c
t
i
o
n
s
a
mp
l
e
n
u
m
b
e
r
s
1
2
8
,
5
1
2
,
2
5
6
P
D
a
n
d
P
f
a
r
a
n
g
e
[
0
t
o
1
]
P
U
Tx
b
r
a
n
c
h
e
s
n
u
m
b
e
r
1
t
o
2
S
U
R
x
b
r
a
n
c
h
e
s
n
u
m
b
e
r
1
t
o
2
S
N
R
a
t
S
U
p
o
i
n
t
(
d
B
)
-
3
0
t
o
-
10
3
.
1
.
P
er
f
o
r
m
a
nce
a
na
ly
s
is
I
n
th
is
s
ec
tio
n
,
th
e
e
f
f
icien
cy
o
f
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
is
ev
alu
ated
u
s
in
g
v
ar
io
u
s
p
ar
a
m
eter
s
,
as
lis
ted
in
T
ab
le
1
.
Fig
u
r
e
2
il
lu
s
tr
ates
th
e
r
ec
eiv
er
o
p
er
atin
g
ch
a
r
ac
ter
is
tic
(
R
OC
)
cu
r
v
e,
d
ep
ictin
g
th
e
P
D
v
er
s
u
s
SNR
f
o
r
a
2
×2
M
I
M
O
s
y
s
tem
u
n
d
er
NU
an
d
DT
co
n
d
itio
n
s
,
with
th
e
PU
tr
an
s
m
itti
n
g
at
1
W
an
d
100
m
W
.
Fig
u
r
e
3
s
h
o
ws
th
e
R
OC
cu
r
v
e
o
f
P
D
v
er
s
u
s
Pfa
f
o
r
a
M
I
MO
s
y
s
tem
u
n
d
er
N
U
an
d
DT
f
ac
to
r
s
,
with
th
e
PU
tr
an
s
m
itti
n
g
at
1
W
.
Fig
u
r
e
2
d
is
p
lay
s
th
e
R
OC
cu
r
v
e
f
o
r
a
2
×2
M
I
M
O
s
y
s
tem
,
s
h
o
win
g
th
e
r
elatio
n
s
h
ip
b
etwe
en
P
D
an
d
SNR
f
o
r
NU
an
d
DT
f
a
cto
r
s
,
with
p
a
r
am
eter
s
s
et
as
Pfa
=
0
.
1
5
,
N
=
1
2
8
,
P
TX
=
1
W
an
d
1
0
0
m
W
.
T
h
e
r
esu
lts
in
d
icate
t
h
at
as
t
h
e
SNR
im
p
r
o
v
es,
th
e
P
D
i
n
cr
ea
s
es
s
ig
n
if
ican
tly
,
h
ig
h
li
g
h
tin
g
t
h
e
en
h
an
ce
d
SS
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
MU
D
-
SLC
f
r
am
ewo
r
k
.
Fo
r
in
s
tan
ce
,
Fig
u
r
e
2
illu
s
tr
ates
th
e
R
OC
cu
r
v
e
f
o
r
a
2
×2
MI
MO
s
y
s
tem
u
n
d
er
NU
an
d
DT
co
n
d
itio
n
s
,
s
h
o
w
in
g
th
at
an
SNR
o
f
-
15
d
B
a
n
d
a
Pfa
o
f
0
.
1
5
,
th
e
p
r
o
p
o
s
ed
m
eth
o
d
ac
h
iev
es
a
P
D
o
f
0
.
8
1
.
T
h
e
r
esu
lt
o
u
t
p
er
f
o
r
m
s
co
n
v
en
tio
n
al
SLC
-
b
ased
m
eth
o
d
s
in
lo
w
-
SNR
s
ce
n
ar
io
s
,
wh
ich
ac
h
ie
v
e
P
D
v
alu
es
o
f
0
.
7
7
an
d
0
.
7
0
.
T
h
e
i
n
teg
r
atio
n
o
f
MU
D
en
ab
les
ef
f
ec
tiv
e
s
ep
ar
atio
n
o
f
u
s
er
s
ig
n
als,
m
itig
atin
g
co
-
ch
a
n
n
el
in
ter
f
e
r
en
ce
,
wh
ile
SLC
ag
g
r
eg
ates
en
er
g
y
f
r
o
m
m
u
ltip
le
an
ten
n
as,
f
u
r
th
er
b
o
o
s
tin
g
th
e
o
v
er
all
SNR
.
Ho
wev
er
,
NU
a
n
d
DT
ad
ju
s
tm
en
t
p
r
esen
t
ch
a
llen
g
es,
p
ar
ticu
lar
l
y
at
lo
wer
SNR
lev
el
s
.
T
h
ese
f
ac
to
r
s
h
ig
h
lig
h
t
th
e
im
p
o
r
tan
c
e
o
f
d
esig
n
in
g
r
o
b
u
s
t
alg
o
r
ith
m
s
to
ad
d
r
ess
r
ea
l
-
wo
r
ld
im
p
air
m
e
n
ts
in
wir
eless
en
v
ir
o
n
m
en
ts
.
Fig
u
r
e
3
p
r
esen
ts
th
e
R
OC
cu
r
v
e
f
o
r
t
h
e
s
am
e
2
×2
MI
MO
s
y
s
tem
,
illu
s
tr
atin
g
th
e
P
D
v
e
r
s
u
s
Pfa
at
SNR
lev
els
o
f
-
15
d
B
an
d
-
10
d
B
,
with
N=
1
2
8
an
d
P
TX
=1
W
.
T
h
e
r
esu
lts
r
e
v
ea
l
a
tr
ad
e
-
o
f
f
b
etwe
en
t
h
e
P
D
an
d
th
e
Pfa
.
As th
e
SNR
in
cr
ea
s
es f
r
o
m
-
1
5
to
-
10
d
B
,
th
e
R
OC
cu
r
v
e
m
o
v
es to
war
d
th
e
t
o
p
-
lef
t c
o
r
n
e
r
o
f
t
h
e
p
lo
t,
s
ig
n
if
y
in
g
an
im
p
r
o
v
em
en
t
in
P
D
wh
ile
m
ain
tain
in
g
t
h
e
s
am
e
Pfa
.
T
h
is
tr
en
d
is
an
ticip
ated
,
as
h
ig
h
er
SNR
co
n
d
itio
n
s
f
ac
ilit
ate
m
o
r
e
r
eliab
le
d
etec
tio
n
o
f
PU sig
n
als.
Fig
u
r
e
2
.
R
OC
cu
r
v
e
o
f
P
D
v
e
r
s
u
s
SNR
f
o
r
2
×2
MI
MO
u
n
d
er
NU
a
n
d
DT
f
ac
t
o
r
at
P
TX
= 1
W
an
d
100
mW
Fig
u
r
e
3
.
R
OC
cu
r
v
e
o
f
P
D
v
e
r
s
u
s
Pfa
f
o
r
2
×
2
MI
MO
u
n
d
er
NU
a
n
d
DT
f
ac
t
o
r
at
P
TX
= 1
W
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
d
s
p
ec
tr
u
m
s
en
s
in
g
in
MIMO
-
OF
DM c
o
g
n
itive
r
a
d
io
n
etw
o
r
ks
…
(
S
r
ika
n
th
a
K
a
n
d
h
g
a
l Mo
c
h
ig
a
r
)
5407
T
h
e
f
in
d
i
n
g
s
p
r
o
v
id
e
v
alu
ab
l
e
in
s
ig
h
ts
in
to
th
e
ef
f
e
ctiv
en
ess
o
f
E
D
f
o
r
SS
in
MI
MO
-
OFDm
C
R
Netwo
r
k
s
.
B
y
ev
al
u
atin
g
f
ac
t
o
r
s
u
ch
as
n
o
is
e
u
n
ce
r
tain
ty
,
d
y
n
am
ic
th
r
esh
o
ld
ad
j
u
s
tm
en
t,
an
d
th
e
in
ter
p
la
y
b
etwe
en
d
etec
tio
n
a
n
d
f
alse
alar
m
p
r
o
b
ab
ilit
ies,
th
ese
f
in
d
in
g
s
ca
n
in
f
o
r
m
th
e
d
ev
el
o
p
m
en
t
an
d
r
e
f
in
em
en
t o
f
SS
alg
o
r
ith
m
s
f
o
r
p
r
ac
tical
im
p
lem
en
tatio
n
.
3
.
2
.
Co
m
pa
ra
t
iv
e
a
na
ly
s
is
T
ab
le
2
o
u
tlin
es
t
h
e
s
im
u
latio
n
p
ar
a
m
eter
s
f
o
r
v
ar
io
u
s
s
ce
n
ar
io
s
,
with
s
ce
n
ar
io
s
1
a
n
d
2
r
e
p
r
esen
tin
g
SLC
[
2
4
]
an
d
SLC
[
2
5
]
r
esp
ec
tiv
ely
.
T
ab
le
3
p
r
o
v
id
es
a
co
m
p
ar
ativ
e
a
n
aly
s
is
o
f
th
e
p
r
o
p
o
s
ed
MU
D
-
SLC
f
r
am
ewo
r
k
ag
ain
s
t
ex
is
tin
g
S
L
C
-
b
ased
m
eth
o
d
s
in
[
2
4
]
an
d
[
2
5
]
b
y
ev
alu
ati
n
g
P
D
at
v
ar
io
u
s
SNR
lev
els.
T
h
e
r
esu
lts
d
em
o
n
s
tr
ate
th
e
s
u
p
er
io
r
p
e
r
f
o
r
m
an
ce
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
.
Fo
r
i
n
s
tan
ce
,
at
an
SNR
o
f
-
10
d
B
,
th
e
MU
D
-
SLC
f
r
am
ewo
r
k
ac
h
iev
es
a
P
D
o
f
0
.
9
0
,
co
m
p
ar
ed
to
0
.
8
8
[
2
4
]
an
d
0
.
8
5
[
2
5
]
.
Similar
ly
,
at
SNR
=
-
15
d
B
,
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
ac
h
iev
es a
P
D
o
f
0
.
8
1
,
s
u
r
p
ass
in
g
0
.
7
7
[
2
4
]
an
d
0
.
7
0
[
2
5
]
.
T
ab
le
4
f
u
r
th
er
illu
s
tr
ates
th
e
p
er
f
o
r
m
an
ce
co
m
p
ar
is
o
n
f
o
r
PD
v
er
s
u
s
Pfa
at
SN
R
=
-
1
5
d
B
.
No
tab
ly
,
th
e
MU
D
-
SLC m
eth
o
d
ac
h
iev
es a
PD
o
f
0
.
9
0
at
Pfa
=
0
.
4
,
ex
c
ee
d
in
g
th
e
r
esu
lts
o
f
[
2
4
]
(
0
.
8
9
)
an
d
[
2
5
]
(
0
.
8
5
)
.
T
h
ese
f
in
d
in
g
s
h
ig
h
lig
h
t
th
e
r
o
b
u
s
tn
ess
o
f
t
h
e
MU
D
-
SLC
f
r
am
ewo
r
k
in
h
an
d
lin
g
lo
w
-
S
NR
co
n
d
itio
n
s
an
d
ac
h
iev
in
g
a
f
a
v
o
r
ab
le
tr
a
d
e
-
o
f
f
b
etwe
en
PD
an
d
Pfa
.
T
ab
le
5
s
u
m
m
ar
izes
th
e
PD
o
f
th
e
p
r
o
p
o
s
ed
MU
D
-
SLC
f
r
am
ewo
r
k
co
m
p
a
r
ed
with
a
d
v
an
ce
d
m
eth
o
d
s
,
in
clu
d
in
g
i
m
p
r
o
v
e
d
E
D
an
d
d
ee
p
lear
n
i
n
g
-
b
ased
s
p
ec
tr
u
m
s
en
s
in
g
(
DL
-
SS
)
,
at
Pfa
=
0
.
1
5
a
n
d
SNR
=
-
15
d
B
.
T
ab
le
2
.
Simu
latio
n
p
ar
am
eter
s
with
th
e
d
if
f
er
en
t scen
a
r
io
s
P
a
r
a
me
t
e
r
s
S
c
e
n
a
r
i
o
1
2
N
U
f
a
c
t
o
r
ρ
1
.
0
2
1
.
0
2
D
T
f
a
c
t
o
r
ρ
΄
1
.
0
1
1
.
0
1
S
N
R
i
n
d
B
-
3
0
t
o
-
10
-
15
Ta
r
g
e
t
P
f
a
0
.
1
5
0
t
o
1
P
U
Tx
b
r
a
n
c
h
e
s
n
u
m
b
e
r
1
t
o
2
1
t
o
2
S
U
R
x
b
r
a
n
c
h
e
s
n
u
m
b
e
r
1
t
o
2
1
t
o
2
N
u
mb
e
r
o
f
sam
p
l
e
s
1
2
8
1
2
8
T
ab
le
3
.
C
o
m
p
ar
is
o
n
o
f
P
D
v
e
r
s
u
s
SNR
f
o
r
th
e
p
r
o
p
o
s
ed
M
UD
-
SLC f
r
am
ewo
r
k
an
d
ex
is
tin
g
m
eth
o
d
s
(
[
2
4
]
,
[
2
5
]
)
at
Pfa
=
0
.
1
5
S
c
e
n
a
r
i
o
P
a
r
a
me
t
e
r
s
S
LC
[
2
4
]
S
LC
[
2
5
]
P
r
o
p
o
se
d
M
U
D
-
S
L
C
1
S
N
R
=
-
1
0
d
B
0
.
8
8
0
.
8
5
0
.
9
S
N
R
=
-
1
5
d
B
0
.
7
7
0
.
7
0
.
8
1
S
N
R
=
-
2
5
d
B
0
.
6
5
0
.
6
0
.
6
8
S
N
R
=
-
3
0
d
B
0
.
5
5
0
.
5
0
.
5
7
T
ab
le
4
.
C
o
m
p
a
r
is
o
n
o
f
P
D
v
e
r
s
u
s
Pfa
f
o
r
th
e
p
r
o
p
o
s
ed
MU
D
-
SLC f
r
am
ewo
r
k
an
d
ex
is
tin
g
m
eth
o
d
s
(
[
2
4
]
,
[
2
5
]
)
at
SNR
=
-
15
dB
S
c
e
n
a
r
i
o
P
a
r
a
me
t
e
r
s
S
LC
[
2
4
]
S
LC
[
2
5
]
P
r
o
p
o
se
d
M
U
D
-
S
L
C
2
P
f
a
=
0
0
.
4
2
0
.
3
5
0
.
4
6
P
f
a
=
0
.
2
0
.
7
9
0
.
7
3
0
.
8
2
P
f
a
=
0
.
3
0
.
8
4
0
.
8
0
.
8
5
P
f
a
=
0
.
4
0
.
8
9
0
.
8
5
0
.
9
P
f
a
=
0
.
8
0
.
9
8
0
.
9
6
0
.
9
9
T
ab
le
5
.
C
o
m
p
a
r
is
o
n
o
f
p
r
o
p
o
s
ed
MU
D
-
SLC with
ad
v
an
ce
d
s
p
ec
tr
u
m
s
en
s
in
g
m
eth
o
d
s
S
c
e
n
a
r
i
o
M
e
t
h
o
d
P
D
a
t
P
f
a
=
0
.
1
5
C
o
m
p
u
t
a
t
i
o
n
a
l
c
o
m
p
l
e
x
i
t
y
3
C
o
n
v
e
n
t
i
o
n
a
l
ED
0
.
7
Lo
w
I
mp
r
o
v
e
d
ED
0
.
7
5
M
o
d
e
r
a
t
e
DL
-
SS
0
.
8
H
i
g
h
P
r
o
p
o
se
d
M
U
D
-
S
LC
0
.
8
1
M
o
d
e
r
a
t
e
3
.
3
.
Rea
l
-
wo
rld a
pp
lica
bil
it
y
W
h
ile
s
im
u
latio
n
r
esu
lts
co
n
f
ir
m
th
e
r
o
b
u
s
tn
ess
o
f
th
e
p
r
o
p
o
s
ed
MU
D
-
SLC
f
r
am
ewo
r
k
,
r
ea
l
wo
r
ld
v
alid
atio
n
r
em
ain
s
a
c
r
u
cial
s
tep
to
ass
ess
it
s
p
r
ac
tical
ef
f
ec
tiv
en
ess
.
I
n
r
ea
l
d
ep
l
o
y
m
e
n
ts
,
ad
d
itio
n
al
f
ac
to
r
s
s
u
ch
as
h
ar
d
war
e
im
p
er
f
ec
tio
n
s
,
n
o
n
-
lin
e
ar
ities
,
u
s
er
m
o
b
il
ity
an
d
r
a
p
id
ly
ch
a
n
g
in
g
s
p
ec
tr
u
m
en
v
i
r
o
n
m
e
n
ts
ca
n
s
ig
n
if
ican
tly
i
n
f
lu
en
ce
s
y
s
tem
p
er
f
o
r
m
an
ce
.
Fu
tu
r
e
w
o
r
k
will
f
o
cu
s
o
n
im
p
lem
e
n
tin
g
th
e
f
r
am
ewo
r
k
in
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
4
0
1
-
5
4
1
0
5408
p
h
y
s
ical
test
b
ed
to
ev
alu
ate
i
ts
r
eliab
ilit
y
u
n
d
er
s
u
ch
n
o
n
-
id
ea
l
co
n
d
itio
n
s
.
T
h
is
in
clu
d
e
s
test
in
g
with
r
ea
l
co
g
n
itiv
e
r
a
d
io
h
a
r
d
war
e
p
latf
o
r
m
s
,
m
ea
s
u
r
in
g
d
etec
tio
n
a
cc
u
r
ac
y
in
th
e
p
r
esen
ce
o
f
d
y
n
am
ic
in
ter
f
e
r
en
ce
an
d
o
b
s
er
v
in
g
p
e
r
f
o
r
m
an
ce
in
v
ar
y
in
g
m
o
b
ilit
y
s
ce
n
ar
io
s
s
u
ch
as
UAV
-
ass
i
s
ted
o
r
v
eh
icu
l
ar
n
etwo
r
k
s
.
T
h
ese
ex
p
er
im
en
ts
will
h
elp
b
r
id
g
e
t
h
e
g
ap
b
etwe
en
th
eo
r
etica
l
s
im
u
latio
n
s
an
d
p
r
ac
tical
d
ep
l
o
y
m
en
t,
en
s
u
r
in
g
th
e
f
r
am
ewo
r
k
s
ad
a
p
tab
ilit
y
to
5
G
an
d
b
e
y
o
n
d
wir
eless
s
y
s
tem
s
.
3
.
4
.
Dis
cus
s
io
n
T
h
e
p
r
o
p
o
s
ed
MU
D
-
SLC
SS
f
r
am
ewo
r
k
ef
f
ec
tiv
ely
ad
d
r
e
s
s
es
k
ey
ch
allen
g
es
f
ac
ed
b
y
tr
ad
itio
n
al
E
D
m
eth
o
d
s
,
p
ar
ticu
lar
l
y
u
n
d
er
lo
w
-
SNR
co
n
d
itio
n
s
an
d
i
n
m
u
lti
-
u
s
er
en
v
i
r
o
n
m
e
n
ts
.
B
y
in
teg
r
atin
g
MU
D,
th
e
f
r
am
ewo
r
k
s
ep
ar
ates
s
ig
n
als
f
r
o
m
m
u
ltip
le
u
s
er
s
,
s
ig
n
if
ican
tly
r
ed
u
cin
g
co
-
ch
an
n
el
in
ter
f
er
en
ce
.
Ad
d
itio
n
ally
,
th
e
SLC
tech
n
iq
u
e
ag
g
r
e
g
ates
en
er
g
y
ac
r
o
s
s
s
p
atial
p
ath
s
,
r
esu
ltin
g
in
a
h
i
g
h
er
P
D
ev
en
in
th
e
p
r
esen
ce
o
f
f
ad
in
g
an
d
n
o
is
e
u
n
ce
r
tain
ty
.
C
o
m
p
ar
ativ
e
an
aly
s
is
with
p
r
io
r
s
tu
d
ies
f
u
r
th
er
u
n
d
er
s
co
r
es
th
e
ad
v
an
tag
es
o
f
th
e
p
r
o
p
o
s
e
d
m
eth
o
d
.
Un
lik
e
[
2
4
]
an
d
[
2
5
]
,
wh
ich
r
ely
s
o
lely
o
n
SLC
f
o
r
E
D,
th
e
MU
D
-
SL
C
f
r
am
ewo
r
k
co
m
b
in
es
MU
D
f
o
r
in
ter
f
er
en
ce
m
itig
atio
n
an
d
SLC
f
o
r
en
er
g
y
ag
g
r
eg
atio
n
,
ac
h
iev
in
g
s
u
p
e
r
io
r
p
er
f
o
r
m
an
ce
.
Fo
r
in
s
tan
ce
,
at
a
n
SNR
o
f
-
15
d
B
,
th
e
p
r
o
p
o
s
ed
m
eth
o
d
ac
h
ie
v
es a
P
D
o
f
0
.
8
1
,
co
m
p
ar
ed
t
o
0
.
7
7
f
o
r
[
2
4
]
an
d
[
2
5
]
,
r
esp
ec
tiv
ely
.
Similar
ly
,
at
a
Pfa
o
f
0
.
4
th
e
p
r
o
p
o
s
ed
s
y
s
tem
attain
s
a
P
D
o
f
0
.
9
0
,
ex
ce
e
d
in
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
r
ef
er
en
ce
s
y
s
tem
s
.
T
h
e
p
r
o
p
o
s
ed
MU
D
-
SLC
f
r
am
ewo
r
k
d
em
o
n
s
tr
ates
s
u
p
er
io
r
d
ete
ctio
n
p
er
f
o
r
m
an
ce
,
ac
h
iev
in
g
a
P
D
o
f
0
.
8
1
at
Pfa
=
0
.
1
5
,
co
m
p
ar
e
d
to
0
.
7
5
f
o
r
im
p
r
o
v
e
d
E
D
an
d
0
.
8
0
f
o
r
DL
-
S
S.
Un
lik
e
DL
-
SS
,
wh
ich
d
em
a
n
d
s
h
ig
h
co
m
p
u
ta
tio
n
al
r
eso
u
r
ce
s
,
th
e
MU
D
-
S
L
C
m
eth
o
d
b
alan
ce
s
p
er
f
o
r
m
an
ce
an
d
ef
f
icien
c
y
,
m
ak
in
g
it m
o
r
e
s
u
itab
le
f
o
r
r
e
s
o
u
r
ce
-
co
n
s
tr
ain
e
d
en
v
i
r
o
n
m
e
n
ts
.
W
h
ile
th
e
f
r
a
m
ewo
r
k
d
em
o
n
s
tr
ates
s
ig
n
if
ican
t
im
p
r
o
v
e
m
en
ts
in
P
D
,
it
in
tr
o
d
u
ce
s
ad
d
itio
n
al
co
m
p
u
tatio
n
al
co
m
p
le
x
ity
d
u
e
to
th
e
MU
D
p
r
o
ce
s
s
.
Fu
tu
r
e
r
esear
ch
c
o
u
ld
e
x
p
lo
r
e
ad
ap
tiv
e
th
r
esh
o
ld
i
n
g
tech
n
iq
u
es
o
r
m
ac
h
in
e
lear
n
in
g
ap
p
r
o
ac
h
es
to
o
p
tim
ize
th
e
f
r
am
ewo
r
k
f
o
r
r
ea
l
-
tim
e
ap
p
licatio
n
s
.
T
h
is
r
ef
in
em
en
t
co
u
ld
f
u
r
th
er
en
h
a
n
ce
th
e
ap
p
licab
ilit
y
o
f
t
h
e
MU
D
-
SLC
f
r
am
ewo
r
k
in
C
R
n
etwo
r
k
s
,
p
ar
ticu
lar
ly
in
d
y
n
am
ic
an
d
r
eso
u
r
ce
co
n
s
tr
ain
ed
en
v
ir
o
n
m
en
ts
.
W
h
ile
t
h
e
d
ataset
is
b
ased
o
n
s
im
u
latio
n
,
th
e
f
r
am
ew
o
r
k
is
d
esig
n
ed
to
o
p
e
r
ate
in
d
y
n
am
ic
r
ea
l
-
wo
r
ld
en
v
ir
o
n
m
en
ts
.
Fu
tu
r
e
r
esear
ch
will
c
o
n
f
ir
m
its
v
alid
ity
p
er
f
o
r
m
an
ce
u
s
in
g
e
x
p
er
im
e
n
tal
test
b
ed
s
to
ac
co
u
n
t
f
o
r
h
a
r
d
war
e
im
p
er
f
ec
tio
n
s
,
m
o
b
ilit
y
an
d
in
ter
f
er
en
ce
f
r
o
m
e
x
ter
n
al
s
o
u
r
ce
s
.
4.
CO
NCLU
SI
O
N
T
h
is
r
esear
ch
p
r
esen
ts
a
r
o
b
u
s
t
SS
f
r
am
ewo
r
k
f
o
r
MI
MO
-
OFDM
C
R
n
etwo
r
k
s
,
co
m
b
in
in
g
MU
D
an
d
SLC
tech
n
iq
u
es.
T
h
e
p
r
o
p
o
s
e
d
s
y
s
tem
d
eliv
er
s
s
u
p
er
io
r
d
e
tectio
n
p
er
f
o
r
m
an
ce
,
esp
ec
iall
y
in
lo
w
-
SNR
an
d
in
ter
f
er
en
ce
-
p
r
o
n
e
en
v
ir
o
n
m
e
n
ts
.
Key
f
in
d
in
g
s
in
d
icate
th
at
th
e
MU
D
-
SLC
f
r
am
ewo
r
k
ac
h
iev
es
a
P
D
o
f
0
.
8
1
at
an
SNR
o
f
-
15
d
B
,
s
ig
n
if
ican
tly
o
u
tp
er
f
o
r
m
in
g
ex
is
tin
g
SLC
-
b
ased
m
eth
o
d
s
.
At
a
Pfa
o
f
0
.
1
5
a
n
d
an
SNR
o
f
-
15
d
B
,
th
e
f
r
am
ewo
r
k
s
u
r
p
ass
es c
o
n
v
en
tio
n
al
an
d
ad
v
a
n
c
ed
ap
p
r
o
ac
h
es.
B
y
r
ed
u
cin
g
in
ter
f
er
en
ce
th
r
o
u
g
h
MU
D
an
d
en
h
an
cin
g
s
ig
n
al
ag
g
r
eg
atio
n
u
s
in
g
SLC,
th
e
s
y
s
tem
im
p
r
o
v
es
s
p
ec
tr
u
m
u
tili
za
tio
n
an
d
n
etwo
r
k
r
eliab
ilit
y
in
d
y
n
am
ic
an
d
ch
allen
g
in
g
co
n
d
itio
n
s
.
Alth
o
u
g
h
th
e
ap
p
r
o
ac
h
p
r
o
v
id
es
s
u
b
s
tan
tial
b
en
ef
its
,
th
e
co
m
p
u
tatio
n
al
c
o
m
p
lex
ity
co
u
ld
p
r
esen
t
d
if
f
icu
lties
f
o
r
r
ea
l
-
tim
e
d
ep
lo
y
m
e
n
t.
Ho
wev
e
r
,
th
e
b
alan
ce
b
etwe
e
n
co
m
p
u
tatio
n
al
ef
f
icien
c
y
an
d
p
er
f
o
r
m
an
ce
m
ak
es
it
p
r
ac
tical
f
o
r
v
ar
io
u
s
ap
p
licatio
n
s
.
Fu
tu
r
e
r
esear
ch
co
u
l
d
f
o
cu
s
o
n
d
ev
el
o
p
in
g
a
d
ap
tiv
e
alg
o
r
ith
m
s
an
d
co
n
d
u
ctin
g
te
s
tb
ed
v
alid
atio
n
s
to
f
u
r
th
er
o
p
tim
ize
co
m
p
lex
ity
an
d
en
h
a
n
ce
r
ea
l
-
wo
r
ld
p
er
f
o
r
m
an
ce
.
T
h
ese
ad
v
a
n
ce
m
en
ts
will
s
u
p
p
o
r
t
th
e
in
teg
r
atio
n
o
f
C
R
s
y
s
tem
s
in
n
ex
t
-
g
en
e
r
atio
n
wir
eless
n
etwo
r
k
s
,
in
clu
d
i
n
g
5
G
a
n
d
b
ey
o
n
d
.
RE
F
E
R
E
NC
E
S
[
1
]
Y
.
Ze
n
g
,
Y
.
-
C
.
L
i
a
n
g
,
A
.
T.
H
o
a
n
g
,
a
n
d
R
.
Zh
a
n
g
,
“
A
r
e
v
i
e
w
o
n
s
p
e
c
t
r
u
m
sen
s
i
n
g
f
o
r
c
o
g
n
i
t
i
v
e
r
a
d
i
o
:
c
h
a
l
l
e
n
g
e
s
a
n
d
s
o
l
u
t
i
o
n
s,
”
EU
RAS
I
P
J
o
u
rn
a
l
o
n
Ad
v
a
n
c
e
s
i
n
S
i
g
n
a
l
Pr
o
c
e
ss
i
n
g
,
v
o
l
.
2
0
1
0
,
n
o
.
1
,
p
.
3
8
1
4
6
5
,
D
e
c
.
2
0
1
0
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
1
0
/
3
8
1
4
6
5
.
[
2
]
A
.
G
h
a
sem
i
a
n
d
E.
S
.
S
o
u
s
a
,
“
S
p
e
c
t
r
u
m
s
e
n
s
i
n
g
i
n
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s
:
r
e
q
u
i
r
e
m
e
n
t
s,
c
h
a
l
l
e
n
g
e
s
a
n
d
d
e
si
g
n
t
r
a
d
e
-
o
f
f
s,”
I
EEE
C
o
m
m
u
n
i
c
a
t
i
o
n
s
M
a
g
a
zi
n
e
,
v
o
l
.
4
6
,
n
o
.
4
,
p
p
.
3
2
–
3
9
,
A
p
r
.
2
0
0
8
,
d
o
i
:
1
0
.
1
1
0
9
/
M
C
O
M
.
2
0
0
8
.
4
4
8
1
3
3
8
.
[
3
]
I
.
F
.
A
k
y
i
l
d
i
z
,
W
.
-
Y
.
L
e
e
,
M
.
C
.
V
u
r
a
n
,
a
n
d
S
.
M
o
h
a
n
t
y
,
“
N
e
X
t
g
e
n
e
r
a
t
i
o
n
/
d
y
n
a
m
i
c
s
p
e
c
t
r
u
m
a
c
c
e
ss/
c
o
g
n
i
t
i
v
e
r
a
d
i
o
w
i
r
e
l
e
ss
n
e
t
w
o
r
k
s:
a
s
u
r
v
e
y
,
”
C
o
m
p
u
t
e
r
N
e
t
w
o
rks
,
v
o
l
.
5
0
,
n
o
.
1
3
,
p
p
.
2
1
2
7
–
2
1
5
9
,
S
e
p
.
2
0
0
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
m
n
e
t
.
2
0
0
6
.
0
5
.
0
0
1
.
[
4
]
M
.
Z.
A
l
o
m
,
T.
K
.
G
o
d
d
e
r
,
a
n
d
M
.
N
.
M
o
r
s
h
e
d
,
“
A
s
u
r
v
e
y
o
f
s
p
e
c
t
r
u
m
se
n
si
n
g
t
e
c
h
n
i
q
u
e
s
i
n
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
,
”
i
n
2
0
1
5
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
A
d
v
a
n
c
e
s
i
n
E
l
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
(
I
C
AEE)
,
I
EEE,
D
e
c
.
2
0
1
5
,
p
p
.
1
6
1
–
1
6
4
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
A
EE.
2
0
1
5
.
7
5
0
6
8
2
1
.
[
5
]
P
.
C
.
S
o
f
o
t
a
si
o
s,
E.
R
e
b
e
i
z
,
L.
Zh
a
n
g
,
T.
A
.
Tsi
f
t
si
s,
D
.
C
a
b
r
i
c
,
a
n
d
S
.
F
r
e
e
a
r
,
“
E
n
e
r
g
y
d
e
t
e
c
t
i
o
n
b
a
se
d
s
p
e
c
t
r
u
m
sen
s
i
n
g
o
v
e
r
κ
−
μ
a
n
d
κ
−
μ
e
x
t
r
e
me
f
a
d
i
n
g
c
h
a
n
n
e
l
s,
”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
Ve
h
i
c
u
l
a
r
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
6
2
,
n
o
.
3
,
p
p
.
1
0
3
1
–
1
0
4
0
,
M
a
r
.
2
0
1
3
,
d
o
i
:
1
0
.
1
1
0
9
/
TV
T
.
2
0
1
2
.
2
2
2
8
6
8
0
.
[
6
]
G
.
V
a
z
q
u
e
z
-
V
i
l
a
r
,
R
.
Lo
p
e
z
-
V
a
l
c
a
r
c
e
,
a
n
d
J.
S
a
l
a
,
“
M
u
l
t
i
a
n
t
e
n
n
a
sp
e
c
t
r
u
m
se
n
s
i
n
g
e
x
p
l
o
i
t
i
n
g
sp
e
c
t
r
a
l
a
p
r
i
o
r
i
i
n
f
o
r
mat
i
o
n
,
”
I
EEE
T
r
a
n
sa
c
t
i
o
n
s
o
n
Wi
r
e
l
e
s
s
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
0
,
n
o
.
1
2
,
p
p
.
4
3
4
5
–
4
3
5
5
,
D
e
c
.
2
0
1
1
,
d
o
i
:
1
0
.
1
1
0
9
/
TW
C
.
2
0
1
1
.
1
0
1
2
1
1
.
1
1
0
6
6
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
E
n
h
a
n
ce
d
s
p
ec
tr
u
m
s
en
s
in
g
in
MIMO
-
OF
DM c
o
g
n
itive
r
a
d
io
n
etw
o
r
ks
…
(
S
r
ika
n
th
a
K
a
n
d
h
g
a
l Mo
c
h
ig
a
r
)
5409
[
7
]
Z.
Y
e
,
G
.
M
e
mi
k
,
a
n
d
J.
G
r
o
ss
p
i
e
t
sc
h
,
“
E
n
e
r
g
y
d
e
t
e
c
t
i
o
n
u
s
i
n
g
e
s
t
i
m
a
t
e
d
n
o
i
se
v
a
r
i
a
n
c
e
f
o
r
sp
e
c
t
r
u
m
se
n
s
i
n
g
i
n
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s,”
i
n
2
0
0
8
I
EEE
Wi
r
e
l
e
ss
C
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d
N
e
t
w
o
r
k
i
n
g
C
o
n
f
e
re
n
c
e
,
I
EEE,
M
a
r
.
2
0
0
8
,
p
p
.
7
1
1
–
716
,
d
o
i
:
1
0
.
1
1
0
9
/
W
C
N
C
.
2
0
0
8
.
1
3
1
.
[
8
]
W.
-
L.
C
h
i
n
,
“
O
n
t
h
e
n
o
i
se
u
n
c
e
r
t
a
i
n
t
y
f
o
r
t
h
e
e
n
e
r
g
y
d
e
t
e
c
t
i
o
n
o
f
O
F
D
M
si
g
n
a
l
s,
”
I
EE
E
T
r
a
n
sa
c
t
i
o
n
s
o
n
Ve
h
i
c
u
l
a
r
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
6
8
,
n
o
.
8
,
p
p
.
7
5
9
3
–
7
6
0
2
,
A
u
g
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
TV
T
.
2
0
1
9
.
2
9
2
0
1
4
2
.
[
9
]
T.
M
.
G
e
t
u
,
W
.
A
j
i
b
,
a
n
d
R
.
La
n
d
r
y
,
“
A
S
i
mp
l
e
F
–
t
e
s
t
b
a
se
d
sp
e
c
t
r
u
m
s
e
n
si
n
g
t
e
c
h
n
i
q
u
e
f
o
r
M
I
M
O
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s
,
”
i
n
2
0
1
8
1
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Wi
r
e
l
e
ss
a
n
d
M
o
b
i
l
e
C
o
m
p
u
t
i
n
g
,
N
e
t
w
o
rk
i
n
g
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
s
(
W
i
Mo
b
)
,
I
EEE,
O
c
t
.
2
0
1
8
,
p
p
.
1
–
8
,
d
o
i
:
1
0
.
1
1
0
9
/
W
i
M
O
B
.
2
0
1
8
.
8
5
8
9
1
2
3
.
[
1
0
]
T.
M
.
G
e
t
u
,
W
.
A
j
i
b
,
R
.
La
n
d
r
y
,
a
n
d
G
.
K
a
d
d
o
u
m
,
“
T
o
w
a
r
d
o
v
e
r
c
o
mi
n
g
a
h
i
d
d
e
n
t
e
r
mi
n
a
l
p
r
o
b
l
e
m
a
r
i
si
n
g
i
n
M
I
M
O
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s:
a
t
e
n
so
r
-
b
a
s
e
d
s
p
e
c
t
r
u
m
se
n
s
i
n
g
a
l
g
o
r
i
t
h
m,”
I
E
EE
T
ra
n
sa
c
t
i
o
n
s
o
n
Ve
h
i
c
u
l
a
r
T
e
c
h
n
o
l
o
g
y
,
v
o
l
.
6
8
,
n
o
.
1
0
,
p
p
.
9
8
3
3
–
9
8
4
7
,
O
c
t
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
0
9
/
TV
T
.
2
0
1
9
.
2
9
3
3
8
5
7
.
[
1
1
]
J.
Z
h
a
n
g
,
L
.
Li
u
,
M
.
Li
u
,
Y
.
Y
i
,
Q
.
Y
a
n
g
,
a
n
d
F
.
G
o
n
g
,
“
M
I
M
O
s
p
e
c
t
r
u
m
se
n
s
i
n
g
f
o
r
c
o
g
n
i
t
i
v
e
r
a
d
i
o
-
b
a
s
e
d
i
n
t
e
r
n
e
t
o
f
t
h
i
n
g
s,
”
I
EEE
I
n
t
e
r
n
e
t
o
f
T
h
i
n
g
s
J
o
u
r
n
a
l
,
v
o
l
.
7
,
n
o
.
9
,
p
p
.
8
8
7
4
–
8
8
8
5
,
S
e
p
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
JI
O
T.
2
0
2
0
.
2
9
9
7
7
0
7
.
[
1
2
]
M
.
S
.
M
i
a
h
,
M
.
S
c
h
u
k
a
t
,
a
n
d
E
.
B
a
r
r
e
t
t
,
“
S
e
n
si
n
g
a
n
d
t
h
r
o
u
g
h
p
u
t
a
n
a
l
y
si
s
o
f
a
M
U
-
M
I
M
O
b
a
s
e
d
c
o
g
n
i
t
i
v
e
r
a
d
i
o
sc
h
e
m
e
f
o
r
t
h
e
I
n
t
e
r
n
e
t
o
f
T
h
i
n
g
s,”
C
o
m
p
u
t
e
r
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
5
4
,
p
p
.
4
4
2
–
4
5
4
,
M
a
r
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
m
c
o
m
.
2
0
2
0
.
0
3
.
0
0
3
.
[
1
3
]
M
.
Ji
n
,
Q
.
G
u
o
,
J.
X
i
,
Y
.
Li
,
a
n
d
Y
.
L
i
,
“
O
n
sp
e
c
t
r
u
m
se
n
si
n
g
o
f
O
F
D
M
s
i
g
n
a
l
s
a
t
l
o
w
S
N
R
:
n
e
w
d
e
t
e
c
t
o
r
s
a
n
d
a
s
y
m
p
t
o
t
i
c
p
e
r
f
o
r
m
a
n
c
e
,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
S
i
g
n
a
l
Pr
o
c
e
ssi
n
g
,
v
o
l
.
6
5
,
n
o
.
1
2
,
p
p
.
3
2
1
8
–
3
2
3
3
,
J
u
n
.
2
0
1
7
,
d
o
i
:
1
0
.
1
1
0
9
/
TSP
.
2
0
1
7
.
2
6
8
8
9
6
7
.
[
1
4
]
G
.
L.
S
t
u
b
e
r
,
J.
R
.
B
a
r
r
y
,
S
.
W
.
M
c
La
u
g
h
l
i
n
,
Y
e
Li
,
M
.
A
.
I
n
g
r
a
m
,
a
n
d
T.
G
.
P
r
a
t
t
,
“
B
r
o
a
d
b
a
n
d
M
I
M
O
-
O
F
D
M
w
i
r
e
l
e
ss
c
o
mm
u
n
i
c
a
t
i
o
n
s
,
”
Pro
c
e
e
d
i
n
g
s
o
f
t
h
e
I
EEE
,
v
o
l
.
9
2
,
n
o
.
2
,
p
p
.
2
7
1
–
2
9
4
,
F
e
b
.
2
0
0
4
,
d
o
i
:
1
0
.
1
1
0
9
/
JP
R
O
C
.
2
0
0
3
.
8
2
1
9
1
2
.
[
1
5
]
H
.
H
a
r
k
a
t
,
P
.
M
o
n
t
e
i
r
o
,
A
.
G
a
me
i
r
o
,
F
.
G
u
i
o
m
a
r
,
a
n
d
H
.
F
.
T
h
a
r
i
q
A
h
m
e
d
,
“
A
S
u
r
v
e
y
o
n
M
I
M
O
-
O
F
D
M
sy
st
e
ms
:
r
e
v
i
e
w
o
f
r
e
c
e
n
t
t
r
e
n
d
s,”
S
i
g
n
a
l
s
,
v
o
l
.
3
,
n
o
.
2
,
p
p
.
3
5
9
–
3
9
5
,
Ju
n
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
s
i
g
n
a
l
s3
0
2
0
0
2
3
.
[
1
6
]
D
.
B
.
R
a
w
a
t
,
“
E
v
a
l
u
a
t
i
n
g
p
e
r
f
o
r
m
a
n
c
e
o
f
c
o
g
n
i
t
i
v
e
r
a
d
i
o
u
sers
i
n
M
I
M
O
-
O
F
D
M
-
b
a
se
d
w
i
r
e
l
e
ss
n
e
t
w
o
r
k
s
,
”
I
E
EE
Wi
rel
e
ss
C
o
m
m
u
n
i
c
a
t
i
o
n
s L
e
t
t
e
rs
,
v
o
l
.
5
,
n
o
.
5
,
p
p
.
4
7
6
–
4
7
9
,
O
c
t
.
2
0
1
6
,
d
o
i
:
1
0
.
1
1
0
9
/
LWC
.
2
0
1
6
.
2
5
8
7
2
6
2
.
[
1
7
]
J.
Lo
r
i
n
c
z
,
I
.
R
a
ml
j
a
k
,
a
n
d
D
.
B
e
g
u
ši
ć
,
“
A
r
e
v
i
e
w
o
f
t
h
e
n
o
i
s
e
u
n
c
e
r
t
a
i
n
t
y
i
m
p
a
c
t
o
n
e
n
e
r
g
y
d
e
t
e
c
t
i
o
n
w
i
t
h
d
i
f
f
e
r
e
n
t
O
F
D
M
sy
st
e
m
d
e
s
i
g
n
s,
”
C
o
m
p
u
t
e
r
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
4
8
,
p
p
.
1
8
5
–
2
0
7
,
D
e
c
.
2
0
1
9
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
mc
o
m
.
2
0
1
9
.
0
9
.
0
1
3
.
[
1
8
]
X
.
F
e
r
n
a
n
d
o
a
n
d
G
.
Lă
z
ă
r
o
i
u
,
“
S
p
e
c
t
r
u
m
se
n
si
n
g
,
c
l
u
st
e
r
i
n
g
a
l
g
o
r
i
t
h
ms,
a
n
d
e
n
e
r
g
y
-
h
a
r
v
e
st
i
n
g
t
e
c
h
n
o
l
o
g
y
f
o
r
c
o
g
n
i
t
i
v
e
-
r
a
d
i
o
-
b
a
s
e
d
I
n
t
e
r
n
e
t
-
of
-
Th
i
n
g
s
n
e
t
w
o
r
k
s,
”
S
e
n
s
o
rs
,
v
o
l
.
2
3
,
n
o
.
1
8
,
p
.
7
7
9
2
,
S
e
p
.
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s2
3
1
8
7
7
9
2
.
[
1
9
]
R
.
A
h
me
d
,
Y
.
C
h
e
n
,
a
n
d
B
.
H
a
ssa
n
,
“
D
e
e
p
l
e
a
r
n
i
n
g
-
d
r
i
v
e
n
o
p
p
o
r
t
u
n
i
st
i
c
sp
e
c
t
r
u
m a
c
c
e
ss
(
O
S
A
)
f
r
a
mew
o
r
k
f
o
r
c
o
g
n
i
t
i
v
e
5
G
a
n
d
b
e
y
o
n
d
5
G
(
B
5
G
)
n
e
t
w
o
r
k
s
,
”
Ad
H
o
c
N
e
t
w
o
rks
,
v
o
l
.
1
2
3
,
p
.
1
0
2
6
3
2
,
D
e
c
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
d
h
o
c
.
2
0
2
1
.
1
0
2
6
3
2
.
[
2
0
]
W
.
W
u
e
t
a
l
.
,
“
J
o
i
n
t
se
n
si
n
g
a
n
d
t
r
a
n
smiss
i
o
n
o
p
t
i
mi
z
a
t
i
o
n
f
o
r
I
R
S
-
a
ssi
s
t
e
d
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s,
”
I
EE
E
T
ra
n
s
a
c
t
i
o
n
s
o
n
Wi
re
l
e
ss
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
2
2
,
n
o
.
9
,
p
p
.
5
9
4
1
–
5
9
5
6
,
S
e
p
.
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
TWC
.
2
0
2
3
.
3
2
3
8
6
8
4
.
[
2
1
]
A
.
N
a
ss
e
r
,
H
.
A
l
H
a
j
H
a
ssa
n
,
J
.
A
b
o
u
C
h
a
a
y
a
,
A
.
M
a
n
s
o
u
r
,
a
n
d
K
.
-
C
.
Y
a
o
,
“
S
p
e
c
t
r
u
m
se
n
si
n
g
f
o
r
c
o
g
n
i
t
i
v
e
r
a
d
i
o
:
r
e
c
e
n
t
a
d
v
a
n
c
e
s a
n
d
f
u
t
u
r
e
c
h
a
l
l
e
n
g
e
,
”
S
e
n
s
o
rs
,
v
o
l
.
2
1
,
n
o
.
7
,
p
.
2
4
0
8
,
M
a
r
.
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
1
0
7
2
4
0
8
.
[
2
2
]
P
.
S
i
v
a
g
u
r
u
n
a
t
h
a
n
,
P
.
R
a
ma
k
r
i
s
h
n
a
n
,
a
n
d
N
.
S
a
t
h
i
sh
k
u
mar,
“
R
e
c
e
n
t
p
a
r
a
d
i
g
ms
f
o
r
e
f
f
i
c
i
e
n
t
s
p
e
c
t
r
u
m
s
e
n
s
i
n
g
i
n
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s:
i
ssu
e
s
a
n
d
c
h
a
l
l
e
n
g
e
s,”
J
o
u
rn
a
l
o
f
P
h
y
s
i
c
s:
C
o
n
f
e
re
n
c
e
S
e
r
i
e
s
,
v
o
l
.
1
7
1
7
,
p
.
0
1
2
0
5
7
,
J
a
n
.
2
0
2
1
,
d
o
i
:
1
0
.
1
0
8
8
/
1
7
4
2
-
6
5
9
6
/
1
7
1
7
/
1
/
0
1
2
0
5
7
.
[
2
3
]
L.
R
o
d
e
s,
A
.
K
a
u
sh
i
k
,
S
.
K
.
S
h
a
r
ma,
S
.
C
h
a
t
z
i
n
o
t
a
s
,
a
n
d
F
.
J
o
n
d
r
a
l
,
“
S
q
u
a
r
e
-
l
a
w
sel
e
c
t
o
r
a
n
d
sq
u
a
r
e
-
l
a
w
c
o
m
b
i
n
e
r
f
o
r
c
o
g
n
i
t
i
v
e
r
a
d
i
o
sy
s
t
e
ms
:
a
n
e
x
p
e
r
i
me
n
t
a
l
st
u
d
y
,
”
i
n
2
0
1
6
I
EEE
8
4
t
h
V
e
h
i
c
u
l
a
r
T
e
c
h
n
o
l
o
g
y
C
o
n
f
e
r
e
n
c
e
(
VTC
-
F
a
l
l
)
,
I
EEE,
S
e
p
.
2
0
1
6
,
p
p
.
1
–
5
,
d
o
i
:
1
0
.
1
1
0
9
/
V
T
C
F
a
l
l
.
2
0
1
6
.
7
8
8
1
2
3
6
.
[
2
4
]
J.
Lo
r
i
n
c
z
,
I
.
R
a
m
l
j
a
k
,
a
n
d
D
.
B
e
g
u
s
i
c
,
“
A
l
g
o
r
i
t
h
m
f
o
r
e
v
a
l
u
a
t
i
n
g
e
n
e
r
g
y
d
e
t
e
c
t
i
o
n
s
p
e
c
t
r
u
m
se
n
si
n
g
p
e
r
f
o
r
m
a
n
c
e
o
f
c
o
g
n
i
t
i
v
e
r
a
d
i
o
M
I
M
O
-
O
F
D
M
s
y
st
e
ms,”
S
e
n
so
rs
,
v
o
l
.
2
1
,
n
o
.
2
0
,
p
.
6
8
8
1
,
O
c
t
.
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
s2
1
2
0
6
8
8
1
.
[
2
5
]
J.
Lo
r
i
n
c
z
,
I
.
R
a
ml
j
a
k
,
a
n
d
D
.
B
e
g
u
š
i
ć
,
“
P
e
r
f
o
r
m
a
n
c
e
a
n
a
l
y
ses
o
f
e
n
e
r
g
y
d
e
t
e
c
t
i
o
n
b
a
se
d
o
n
s
q
u
a
r
e
-
l
a
w
c
o
m
b
i
n
i
n
g
i
n
M
I
M
O
-
O
F
D
M
c
o
g
n
i
t
i
v
e
r
a
d
i
o
n
e
t
w
o
r
k
s,
”
S
e
n
so
rs
,
v
o
l
.
2
1
,
n
o
.
2
2
,
p
.
7
6
7
8
,
N
o
v
.
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
1
2
2
7
6
7
8
.
[
2
6
]
J.
L
o
r
i
n
c
z
,
I
.
R
a
ml
j
a
k
,
a
n
d
D
.
B
e
g
u
ši
ć
,
“
A
n
a
l
y
s
i
s
o
f
t
h
e
i
mp
a
c
t
o
f
d
e
t
e
c
t
i
o
n
t
h
r
e
sh
o
l
d
a
d
j
u
s
t
me
n
t
s
a
n
d
n
o
i
s
e
u
n
c
e
r
t
a
i
n
t
y
o
n
e
n
e
r
g
y
d
e
t
e
c
t
i
o
n
p
e
r
f
o
r
m
a
n
c
e
i
n
M
I
M
O
-
O
F
D
M
c
o
g
n
i
t
i
v
e
r
a
d
i
o
sy
s
t
e
m
s,”
S
e
n
s
o
rs
,
v
o
l
.
2
2
,
n
o
.
2
,
p
.
6
3
1
,
Jan
.
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
s
2
2
0
2
0
6
3
1
.
[
2
7
]
G
.
P
a
n
,
J.
L
i
,
a
n
d
F
.
Li
n
,
“
A
c
o
g
n
i
t
i
v
e
r
a
d
i
o
s
p
e
c
t
r
u
m
se
n
s
i
n
g
m
e
t
h
o
d
f
o
r
a
n
O
F
D
M
si
g
n
a
l
b
a
se
d
o
n
d
e
e
p
l
e
a
r
n
i
n
g
a
n
d
c
y
c
l
e
sp
e
c
t
r
u
m,”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
D
i
g
i
t
a
l
M
u
l
t
i
m
e
d
i
a
Bro
a
d
c
a
st
i
n
g
,
v
o
l
.
2
0
2
0
,
p
p
.
1
–
1
0
,
M
a
r
.
2
0
2
0
,
d
o
i
:
1
0
.
1
1
5
5
/
2
0
2
0
/
5
0
6
9
0
2
1
.
[
2
8
]
M
.
A
l
-
A
m
i
d
i
e
e
t
a
l
.
,
“
R
o
b
u
st
s
p
e
c
t
r
u
m
se
n
si
n
g
d
e
t
e
c
t
o
r
b
a
se
d
o
n
M
I
M
O
c
o
g
n
i
t
i
v
e
r
a
d
i
o
s
w
i
t
h
n
o
n
-
p
e
r
f
e
c
t
c
h
a
n
n
e
l
g
a
i
n
,
”
El
e
c
t
r
o
n
i
c
s
,
v
o
l
.
1
0
,
n
o
.
5
,
p
.
5
2
9
,
F
e
b
.
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s1
0
0
5
0
5
2
9
.
[
2
9
]
A
.
Za
i
mb
a
sh
i
,
“
S
p
e
c
t
r
u
m
se
n
si
n
g
i
n
a
c
a
l
i
b
r
a
t
e
d
m
u
l
t
i
-
a
n
t
e
n
n
a
c
o
g
n
i
t
i
v
e
r
a
d
i
o
:
e
x
a
c
t
LR
T
a
p
p
r
o
a
c
h
e
s,
”
AE
U
-
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
t
r
o
n
i
c
s
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
1
1
3
,
p
.
1
5
2
9
6
8
,
Ja
n
.
2
0
2
0
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
e
u
e
.
2
0
1
9
.
1
5
2
9
6
8
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
S
r
ik
a
n
t
h
a
K
a
n
d
h
g
a
l
M
o
c
h
ig
a
r
is
c
u
rre
n
tl
y
wo
r
k
in
g
a
s
a
ss
ista
n
t
p
r
o
fe
ss
o
r
in
t
h
e
d
e
p
a
rtme
n
t
o
f
e
lec
tro
n
ics
a
n
d
c
o
m
m
u
n
ica
ti
o
n
e
n
g
i
n
e
e
rin
g
,
Ba
ll
a
ri
In
stit
u
te
o
f
Tec
h
n
o
lo
g
y
a
n
d
M
a
n
a
g
e
m
e
n
t
Ba
ll
a
ri,
Ka
rn
a
tak
a
,
In
d
ia.
He
h
a
s
tea
c
h
in
g
e
x
p
e
ri
e
n
c
e
o
f
1
3
y
e
a
rs.
He
h
a
s
p
u
b
li
sh
e
d
3
jo
u
r
n
a
l
a
n
d
2
c
o
n
fe
re
n
c
e
p
a
p
e
rs.
His
a
re
a
o
f
re
se
a
rc
h
is
s
p
e
c
tru
m
se
n
sin
g
i
n
c
o
g
n
i
ti
v
e
ra
d
i
o
n
e
two
r
k
s
.
He
i
s
d
o
in
g
re
se
a
rc
h
in
th
e
De
p
a
r
tme
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
E
n
g
in
e
e
rin
g
,
P
r
o
u
d
h
a
d
e
v
a
ra
y
a
In
stit
u
te
o
f
Tec
h
n
o
l
o
g
y
,
H
o
sa
p
e
te,
re
se
a
rc
h
c
e
n
ter
a
ffil
iate
d
to
Vis
v
e
sv
a
ra
y
a
Tec
h
n
o
l
o
g
ica
l
Un
iv
e
rsity
,
Be
lag
a
v
i,
I
n
d
i
a.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
srik
a
n
th
k
m
2
0
1
9
@g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
4
0
1
-
5
4
1
0
5410
Ro
h
ith
a
Ujjin
i
Ma
t
a
d
is
c
u
rre
n
tl
y
wo
r
k
in
g
a
s
p
ro
fe
ss
o
r
a
n
d
p
rin
c
ip
a
l
in
P
DIT
-
P
ro
u
d
h
a
d
e
v
a
ra
y
a
In
stit
u
te
o
f
Te
c
h
n
o
l
o
g
y
,
Ho
sa
p
e
te
Ka
rn
a
tak
a
,
I
n
d
ia.
He
h
a
s
p
u
b
li
s
h
e
d
2
5
p
a
p
e
rs
in
re
fe
rre
d
i
n
tern
a
ti
o
n
a
l
j
o
u
r
n
a
ls,
1
2
p
a
p
e
rs
in
n
a
ti
o
n
a
l
a
n
d
in
tern
a
ti
o
n
a
l
c
o
n
fe
re
n
c
e
s.
His
a
re
a
o
f
re
s
e
a
rc
h
wa
s
sp
e
c
tru
m
se
n
sin
g
in
c
o
g
n
it
iv
e
ra
d
io
n
e
two
rk
s.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
ro
h
it
h
a
u
jj
i
n
i2
0
1
0
@g
m
a
il
.
c
o
m
.
Pre
m
a
c
h
a
n
d
Do
d
d
a
m
a
g
a
d
i
R
a
m
a
n
a
ik
is
c
u
rre
n
tl
y
wo
r
k
in
g
a
s
p
ro
fe
ss
o
r
in
th
e
De
p
a
rtme
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
E
n
g
i
n
e
e
rin
g
,
Ba
ll
a
ri
I
n
stit
u
te
o
f
Tec
h
n
o
l
o
g
y
a
n
d
M
a
n
a
g
e
m
e
n
t
Ba
ll
a
ri,
Ka
rn
a
tak
a
,
In
d
ia.
He
h
a
s
tea
c
h
in
g
e
x
p
e
rien
c
e
o
f
2
2
y
e
a
rs
a
n
d
i
n
d
u
strial
e
x
p
e
rien
c
e
o
f
2
y
e
a
rs.
He
h
a
s
p
u
b
li
sh
e
d
5
jo
u
rn
a
l
a
n
d
6
c
o
n
fe
re
n
c
e
p
a
p
e
rs.
His
a
re
a
o
f
re
se
a
rc
h
is
i
m
a
g
e
c
o
m
p
re
ss
io
n
wit
h
h
a
r
d
wa
re
re
a
li
z
a
ti
o
n
.
His
a
re
a
s
o
f
in
tere
st
a
re
in
VLS
I,
ima
g
e
p
ro
c
e
ss
in
g
a
n
d
m
icro
e
lec
tro
n
ics
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
p
re
m
c
h
a
n
d
.
d
r5
5
5
@g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.