I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
15
,
No
.
6
,
Decem
b
er
20
25
,
p
p
.
5
2
5
8
~
5
2
6
5
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
15
i
6
.
pp
5
2
5
8
-
5
2
6
5
5258
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Sy
nerg
etic
sy
nth
e
sis
of a neura
l n
et
wo
rk contro
ller
f
o
r an
a
da
ptive co
ntrol
o
f
a
nonli
nea
r dy
na
mic pla
nt
I
s
a
m
idi
n Si
dd
ik
o
v
1
,
Da
v
ro
n
bek
K
ha
lm
a
t
o
v
2
,
Z
o
k
hid
I
s
k
a
nd
a
ro
v
3
,
Dilno
za
K
hu
s
hn
a
za
ro
v
a
1
1
D
e
p
a
r
t
me
n
t
o
f
I
n
f
o
r
mat
i
o
n
P
r
o
c
e
ssi
n
g
a
n
d
C
o
n
t
r
o
l
S
y
s
t
e
ms
,
F
a
c
u
l
t
y
o
f
E
l
e
c
t
r
o
n
i
c
s
a
n
d
A
u
t
o
m
a
t
i
o
n
E
n
g
i
n
e
e
r
i
n
g
,
Ta
s
h
k
e
n
t
S
t
a
t
e
Te
c
h
n
i
c
a
l
U
n
i
v
e
r
si
t
y
n
a
me
d
a
f
t
e
r
I
sl
a
m K
a
r
i
m
o
v
,
T
a
s
h
k
e
n
t
,
U
z
b
e
k
i
st
a
n
2
D
e
p
a
r
t
me
n
t
o
f
A
u
t
o
m
a
t
i
o
n
a
n
d
C
o
n
t
r
o
l
o
f
T
e
c
h
n
o
l
o
g
i
c
a
l
P
r
o
c
e
ss
e
s
a
n
d
P
r
o
d
u
c
t
i
o
n
,
F
a
c
u
l
t
y
o
f
I
n
d
u
s
t
r
i
a
l
Te
c
h
n
o
l
o
g
y
a
n
d
M
e
c
h
a
n
i
c
s,
Ta
sh
k
e
n
t
I
n
st
i
t
u
t
e
o
f
Te
x
t
i
l
e
a
n
d
L
i
g
h
t
I
n
d
u
st
r
y
,
Ta
s
h
k
e
n
t
,
U
z
b
e
k
i
s
t
a
n
3
D
e
p
a
r
t
me
n
t
o
f
A
u
t
o
m
a
t
i
o
n
o
f
P
r
o
d
u
c
t
i
o
n
P
r
o
c
e
sses
,
F
a
c
u
l
t
y
o
f
E
l
e
c
t
r
o
n
i
c
s
a
n
d
A
u
t
o
ma
t
i
o
n
E
n
g
i
n
e
e
r
i
n
g
,
Ta
s
h
k
e
n
t
S
t
a
t
e
Te
c
h
n
i
c
a
l
U
n
i
v
e
r
si
t
y
n
a
me
d
a
f
t
e
r
I
sl
a
m
K
a
r
i
mo
v
,
Ta
s
h
k
e
n
t
,
U
z
b
e
k
i
s
t
a
n
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
2
4
,
2
0
2
4
R
ev
is
ed
J
u
l 9
,
2
0
2
5
Acc
ep
ted
Sep
1
4
,
2
0
2
5
Th
e
p
a
p
e
r
c
o
n
si
d
e
re
d
issu
e
s
th
e
d
e
v
e
lo
p
m
e
n
t
o
f
a
se
lf
-
o
rg
a
n
izi
n
g
c
o
n
tro
l
ler
(S
C)
b
a
se
d
o
n
a
n
e
u
r
o
-
fu
z
z
y
n
e
two
rk
th
a
t
c
a
n
a
p
p
r
o
x
ima
te
a
n
o
n
li
n
e
a
r
fu
n
c
ti
o
n
wit
h
a
rb
it
ra
ry
a
c
c
u
ra
c
y
.
Th
e
SC
i
n
th
e
f
o
rm
o
f
n
e
u
ro
-
f
u
z
z
y
n
e
two
rk
s,
p
o
ss
e
ss
e
s th
e
n
o
n
li
n
e
a
r
p
ro
p
e
rty
t
h
a
t
a
ll
o
ws
fo
r
a
n
in
c
re
a
se
d
ra
n
g
e
o
f
c
o
n
tr
o
l
o
v
e
r
th
e
p
lan
t,
wh
ich
imp
a
rts
a
d
a
p
ti
v
e
p
r
o
p
e
rti
e
s
to
t
h
e
c
o
n
tro
l
sy
ste
m
s.
To
re
d
u
c
e
t
h
e
d
ime
n
si
o
n
a
li
ty
o
f
t
h
e
p
lan
t,
it
is
p
r
o
p
o
se
d
to
sp
li
t
th
e
m
o
d
e
l
o
f
th
e
sy
ste
m
in
to
su
b
m
o
d
e
ls
with
sm
a
ll
e
r
d
ime
n
sio
n
a
li
t
y
,
d
u
e
to
wh
ich
t
h
e
d
u
ra
ti
o
n
o
f
train
i
n
g
o
f
th
e
n
e
u
ro
-
f
u
z
z
y
n
e
tw
o
rk
is
re
d
u
c
e
d
a
n
d
a
sy
m
p
to
ti
c
sta
b
i
li
ty
is
e
n
su
re
d
a
s
a
wh
o
le.
T
h
e
p
r
o
p
o
se
d
a
p
p
ro
a
c
h
is
a
lso
a
p
p
li
c
a
b
le
t
o
m
u
lt
i
d
ime
n
sio
n
a
l
c
o
n
tro
l
sy
ste
m
s
o
f
th
e
n
o
n
li
n
e
a
r
d
y
n
a
m
ic
p
lan
ts.
Th
e
sim
u
latio
n
re
su
lt
s
sh
o
we
d
th
a
t
th
e
sy
n
t
h
e
siz
e
d
S
C
p
ro
v
id
e
s
g
o
o
d
trac
k
in
g
c
h
a
ra
c
teristics
,
th
e
trac
k
in
g
e
fficie
n
c
y
is
n
o
m
o
re
t
h
a
n
1
0
%
,
wh
ic
h
m
e
e
ts t
h
e
re
q
u
irem
e
n
t
o
f
th
e
c
o
n
t
ro
l
sy
ste
m
.
K
ey
w
o
r
d
s
:
Ad
ap
tatio
n
C
o
n
tr
o
ller
Neu
r
o
-
f
u
zz
y
n
etwo
r
k
No
n
lin
ea
r
ity
Self
-
o
r
g
an
izatio
n
Stab
ilit
y
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Diln
o
za
Kh
u
s
h
n
az
ar
o
v
a
Dep
ar
tm
en
t o
f
I
n
f
o
r
m
atio
n
Pr
o
ce
s
s
in
g
an
d
C
o
n
tr
o
l Sy
s
tem
s
,
Facu
lty
o
f
E
lectr
o
n
ics an
d
Au
to
m
atio
n
E
n
g
in
ee
r
in
g
,
T
ash
k
e
n
t State
T
ec
h
n
ical
Un
iv
er
s
ity
n
am
e
d
af
t
er
I
s
lam
Kar
im
o
v
Un
iv
er
s
ity
s
tr
ee
t 2
,
T
ash
k
en
t,
1
0
0
0
9
5
,
Uzb
e
k
is
tan
E
m
ail:
k
h
u
s
h
n
az
ar
o
v
ad
iln
o
za
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
m
ajo
r
ity
o
f
th
e
ac
tu
al
o
p
er
atin
g
tec
h
n
o
lo
g
ical
p
lan
ts
ar
e
ch
ar
ac
ter
ize
d
b
y
co
m
p
lex
n
o
n
lin
ea
r
d
y
n
am
ic
p
r
o
p
er
ties
an
d
th
e
p
r
esen
ce
o
f
in
ter
f
er
e
n
ce
o
f
a
r
a
n
d
o
m
n
at
u
r
e,
wh
ich
s
ig
n
if
ica
n
tly
co
m
p
licates
th
e
ap
p
licatio
n
o
f
ty
p
ical
lin
ea
r
a
d
ap
tiv
e
co
n
tr
o
l
al
g
o
r
ith
m
s
f
o
r
co
n
tr
o
llin
g
s
im
ilar
p
la
n
ts
[
1
]
,
[
2
]
.
I
n
th
e
p
r
esen
c
e
o
f
an
ac
cu
r
ate
m
ath
em
atica
l m
o
d
el
o
f
th
e
co
n
tr
o
lled
p
lan
t,
m
eth
o
d
s
b
ased
o
n
th
e
ap
p
licatio
n
o
f
th
e
p
r
in
ci
p
les
o
f
ad
ap
tiv
e
co
n
tr
o
l
with
a
r
e
f
er
en
ce
m
o
d
el
h
a
v
e
p
r
o
v
en
th
em
s
elv
es
to
b
e
ef
f
ec
tiv
e
[
3
]
,
[
4
]
.
I
n
class
ical
s
y
s
tem
s
o
f
ad
ap
tiv
e
co
n
tr
o
l
with
a
r
ef
er
en
ce
m
o
d
el,
th
e
d
etailed
m
ath
em
atica
l
m
o
d
el
o
f
th
e
p
lan
t
m
u
s
t
b
e
k
n
o
wn
,
a
n
d
its
s
tr
u
ctu
r
e
a
n
d
p
ar
am
eter
s
o
f
th
e
s
y
s
tem
d
o
n
o
t
ch
an
g
e
in
th
e
p
r
o
ce
s
s
o
f
f
u
n
ctio
n
in
g
[
5
]
,
[
6
]
.
I
n
th
e
ad
ap
tiv
e
s
y
s
tem
s
,
a
co
n
s
tr
u
ctio
n
ap
p
licatio
n
th
e
id
e
n
tific
atio
n
ap
p
r
o
ac
h
[
7
]
,
[
8
]
ar
is
es,
r
elate
d
to
in
cr
ea
s
ed
co
m
p
u
tin
g
co
s
ts
,
s
in
ce
in
th
is
ca
s
e
th
er
e
is
a
n
ec
ess
ity
to
p
r
o
m
p
tly
p
r
o
ce
s
s
a
lar
g
e
am
o
u
n
t
o
f
in
f
o
r
m
atio
n
,
wh
ich
s
ig
n
if
ican
tly
co
m
p
licates
th
e
s
o
lu
tio
n
o
f
th
e
task
.
T
h
e
lin
ea
r
s
elf
-
o
r
g
an
izin
g
co
n
tr
o
ller
(
SC
)
is
wid
ely
u
s
ed
in
in
d
u
s
tr
y
an
d
h
as
p
r
o
v
en
its
elf
well
in
th
e
s
tead
y
-
s
tate
o
p
er
atin
g
m
o
d
e
o
f
th
e
p
lan
t,
th
at
is
,
ar
o
u
n
d
th
e
n
o
m
in
al
m
o
d
e
[
9
]
,
[
1
0
]
.
T
h
e
ap
p
licatio
n
o
f
a
SC
with
a
lin
ea
r
co
n
tr
o
l
law
u
n
d
er
s
u
ch
co
n
d
itio
n
s
b
etter
ad
a
p
ts
to
ch
an
g
es
in
p
ar
am
eter
s
an
d
d
y
n
a
m
ic
p
r
o
p
e
r
ties
o
f
th
e
co
n
tr
o
l
p
lan
t
[
1
1
]
,
[
1
2
]
.
At
th
e
s
am
e
tim
e,
i
n
d
u
s
tr
ial
p
la
n
ts
ar
e
ch
ar
ac
ter
ize
d
b
y
th
e
n
o
n
lin
ea
r
p
r
o
p
e
r
ties
,
s
ev
er
al
ty
p
es
o
f
u
n
ce
r
tain
ties
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
S
yn
erg
etic
s
yn
th
esis
o
f a
n
eu
r
a
l n
etw
o
r
k
co
n
tr
o
ller
fo
r
a
n
a
d
a
p
tive
co
n
tr
o
l o
f
…
(
I
s
a
mid
i
n
S
id
d
ik
o
v
)
5259
an
d
lo
a
d
c
h
an
g
es
[
1
3
]
,
[
1
4
]
,
wh
ich
r
esu
lt
in
d
eter
i
o
r
atio
n
i
n
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
lin
ea
r
SC
an
d
r
eq
u
ir
e
th
e
u
s
e
o
f
th
e
n
o
n
lin
ea
r
law
o
f
th
e
c
o
n
tr
o
l.
T
o
o
v
er
co
m
e
t
h
e
d
if
f
icu
lties
ass
o
ciate
d
with
th
e
p
r
esen
ce
o
f
n
o
n
lin
ea
r
ity
,
it b
ec
o
m
es n
ec
es
s
ar
y
to
u
s
e
n
eu
r
al
n
etwo
r
k
s
to
ap
p
r
o
x
im
ate
th
e
n
o
n
lin
ea
r
f
u
n
ctio
n
s
[
1
5
]
,
[
1
6
]
.
I
t
is
k
n
o
wn
th
at
n
eu
r
al
n
et
wo
r
k
s
h
a
v
e
th
e
p
r
o
p
e
r
ties
o
f
ap
p
r
o
x
im
ati
n
g
an
y
ar
b
itra
r
y
n
o
n
lin
ea
r
f
u
n
ctio
n
,
a
n
d
th
ey
ca
n
b
e
s
u
c
ce
s
s
f
u
lly
ap
p
lied
to
d
ev
elo
p
d
ir
ec
t
ad
ap
tiv
e
co
n
tr
o
l
o
f
th
e
n
o
n
lin
ea
r
s
y
s
tem
s
[
1
7
]
,
[
1
8
]
.
I
n
[
1
9
]
,
an
in
d
ir
ec
t
ad
ap
tiv
e
co
n
tr
o
l
b
ased
o
n
n
eu
r
al
n
etwo
r
k
s
f
o
r
co
n
tr
o
llin
g
d
y
n
am
ic
p
lan
ts
is
p
r
esen
ted
.
I
n
th
e
wo
r
k
[
2
0
]
,
t
h
e
ap
p
licatio
n
o
f
SC
f
o
r
d
ir
ec
t
n
eu
r
al
co
n
tr
o
l f
o
r
a
class
o
f
s
tr
u
ctu
r
ally
u
n
ce
r
tain
n
o
n
lin
ea
r
p
la
n
ts
is
p
r
o
p
o
s
ed
.
I
t
s
h
o
u
ld
b
e
n
o
ted
th
at
in
co
n
v
en
tio
n
al
s
elf
-
s
ettin
g
co
n
tr
o
ller
s
,
it
i
s
n
ec
ess
ar
y
to
r
ec
o
n
f
ig
u
r
e
th
eir
p
ar
am
eter
s
ea
ch
tim
e
th
e
o
p
e
r
atin
g
p
o
in
t
ch
an
g
es,
wh
ich
lead
s
to
lo
w
p
er
f
o
r
m
a
n
ce
in
co
n
tr
o
llin
g
t
h
e
n
o
n
lin
ea
r
p
lan
t
s
[
2
1
]
–
[
2
3
]
.
T
h
e
aim
o
f
th
e
wo
r
k
is
to
d
ev
elo
p
a
m
eth
o
d
f
o
r
s
y
n
t
h
esizin
g
n
o
n
lin
ea
r
d
y
n
am
ic
p
lan
ts
b
a
s
ed
o
n
th
e
h
y
b
r
id
ap
p
licatio
n
o
f
a
n
eu
r
o
-
f
u
zz
y
n
etwo
r
k
with
a
s
y
n
e
r
g
etic
ap
p
r
o
ac
h
,
allo
win
g
o
n
e
to
d
eter
m
in
e
th
e
weig
h
t
co
ef
f
icien
ts
o
f
th
e
n
e
u
r
o
-
f
u
zz
y
n
etwo
r
k
in
r
ea
l
tim
e
an
d
estab
lis
h
lo
ca
l
s
tab
ilit
y
o
f
a
clo
s
ed
-
lo
o
p
s
y
s
tem
.
T
h
e
SC
b
u
ilt
b
a
s
ed
o
n
th
e
n
eu
r
o
-
f
u
zz
y
n
etwo
r
k
ca
n
p
r
o
v
i
d
e
o
p
p
o
r
tu
n
ities
s
elf
-
lear
n
,
r
elate
d
o
n
ce
f
o
r
s
p
ec
if
ic
o
p
er
atin
g
p
o
in
ts
,
an
d
it a
ls
o
allo
ws y
o
u
to
p
r
o
ce
ed
e
q
u
ally
f
r
o
m
o
n
e
lo
ca
l m
o
d
el
t
o
an
o
th
e
r
.
2.
M
E
T
H
O
D
L
et
th
e
d
y
n
a
m
ics o
f
th
e
c
o
n
tr
o
l sy
s
tem
b
e
d
escr
ib
ed
b
y
a
s
y
s
tem
o
f
eq
u
atio
n
s
:
̇
1
=
1
(
1
,
2
)
,
̇
2
=
2
(
1
,
2
,
3
)
,
̇
=
(
1
,
2
,
…
,
,
)
,
=
ℎ
(
)
,
=
(
)
,
wh
er
e
is
th
e
v
ec
to
r
o
f
s
tate
v
ar
iab
les,
is
th
e
s
m
o
o
th
co
n
tin
u
o
u
s
f
u
n
ctio
n
,
is
a
s
ig
n
al
o
f
th
e
co
n
tr
o
l,
is
th
e
v
ec
to
r
o
f
m
ea
s
u
r
e
d
v
ar
iab
les,
ℎ
(
)
is
th
e
d
if
f
er
en
tiab
le
f
u
n
ctio
n
.
T
h
e
p
u
r
p
o
s
e
o
f
th
e
co
n
tr
o
l
is
a
f
u
n
ctio
n
o
f
th
e
m
ac
r
o
v
ar
ia
b
l
e
ψ
(
)
,
wh
ich
r
e
p
r
esen
ts
an
d
d
ete
r
m
in
es
th
e
d
esire
d
d
iv
er
s
ity
i
n
th
e
s
p
ac
e
o
f
th
e
s
y
s
tem
o
u
tp
u
t
co
o
r
d
i
n
ates.
T
h
e
co
n
d
itio
n
f
o
r
ch
o
o
s
in
g
th
e
m
ac
r
o
v
ar
ia
b
le
ψ
(
)
is
to
en
s
u
r
e
th
e
asy
m
p
to
tic
s
tab
ilit
y
o
f
th
e
s
y
s
tem
u
n
d
e
r
s
tu
d
y
.
T
o
s
o
lv
e
th
is
is
s
u
e,
it
is
n
ec
e
s
s
ar
y
to
s
y
n
th
esize
a
law
o
f
co
n
tr
o
l
(
)
th
at
will
b
r
in
g
th
e
s
y
s
tem
tr
ajec
to
r
ies
to
th
e
v
icin
ity
o
f
t
h
e
d
esire
d
v
ar
iety
an
d
s
tab
ilize
it
f
r
o
m
th
at
v
icin
ity
[
2
4
]
.
I
t
s
h
o
u
ld
b
e
n
o
ted
th
at
q
u
alitativ
e
in
f
o
r
m
atio
n
ab
o
u
t
th
e
p
r
o
ce
s
s
is
p
r
esen
ted
in
th
e
f
o
r
m
o
f
a
f
u
n
ctio
n
(
∙
)
,
an
d
t
h
e
s
tate
v
ec
to
r
is
n
o
t
av
ailab
le
f
o
r
m
ea
s
u
r
em
e
n
ts
.
W
e
will
s
elec
t
a
n
o
n
lin
ea
r
law
o
f
co
n
tr
o
l
b
ased
o
n
th
e
m
eth
o
d
o
f
an
aly
tical
d
esig
n
o
f
a
g
g
r
e
g
ated
co
n
tr
o
lle
r
s
(
ADAC),
wh
ich
allo
ws f
o
r
t
h
e
m
in
im
izatio
n
o
f
th
e
o
b
jecti
v
e
f
u
n
ctio
n
:
=
∫
(
2
,
(
)
2
,
…
,
(
)
2
,
1
2
,
…
,
2
)
∞
0
wh
er
e
is
an
o
b
jectiv
e
f
u
n
ctio
n
,
(
∙
)
an
d
p
ar
am
eter
s
o
f
ch
ar
ac
ter
ized
th
e
n
atu
r
e
o
f
t
h
e
s
y
s
tem
an
d
d
eter
m
in
ed
th
e
d
y
n
am
ics
o
f
it
s
m
o
v
em
en
t
b
y
a
m
ac
r
o
v
ar
ia
b
le.
B
ased
o
n
th
e
f
o
r
m
u
latio
n
o
f
th
e
is
s
u
e
an
d
th
e
d
esire
d
ty
p
e
o
f
tr
a
n
s
ien
t
p
r
o
c
ess
,
th
e
ty
p
e
o
f
f
u
n
ctio
n
is
s
elec
ted
.
B
y
d
e
f
in
itio
n
o
f
th
e
A
DAC
m
eth
o
d
,
t
h
e
d
esire
d
m
o
tio
n
o
f
th
e
s
y
s
tem
o
f
th
e
n
th
o
r
d
e
r
ca
n
b
e
p
r
esen
t
ed
as a
ce
r
tain
f
u
n
ctio
n
∑
=
1
+
=
0
.
E
n
s
u
r
in
g
t
h
e
s
tab
ilit
y
o
f
th
e
s
y
s
tem
an
d
g
iv
in
g
its
d
esire
d
n
atu
r
e
is
im
p
lem
en
te
d
b
y
ch
o
o
s
in
g
th
e
co
e
f
f
icien
ts
.
T
o
o
b
tain
an
a
n
aly
tical
v
iew
o
f
th
e
co
n
tr
o
l la
w,
we
d
if
f
er
en
tiate
th
e
f
u
n
ctio
n
al
b
y
tim
e:
̇
=
+
∑
̇
=
+
∑
(
∙
)
=
+
1
(
1
,
2
,
…
,
,
)
=
1
=
1
̈
=
̇
=
̇
+
∑
̇
̇
=
2
2
+
∑
1
=
2
2
+
∑
1
(
∙
)
=
2
2
+
=
1
2
(
1
,
2
,
…
,
)
=
1
=
1
⋯
=
[
−
1
−
1
]
=
+
∑
−
1
−
1
̇
=
=
1
=
+
∑
−
1
(
∙
)
(
1
,
2
,
…
,
)
=
+
=
1
(
1
,
2
,
…
,
,
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
2
5
8
-
5
2
6
5
5260
T
o
o
b
tain
th
e
co
n
tr
o
l
law
in
a
n
aly
tical
f
o
r
m
,
we
ex
p
a
n
d
th
e
d
er
iv
ativ
es
o
f
th
e
f
u
n
ctio
n
.
T
h
e
m
ain
d
is
ad
v
an
tag
e
o
f
th
is
ap
p
r
o
ac
h
to
o
b
tain
in
g
th
e
co
n
tr
o
l
law
is
th
e
p
o
s
s
ib
ilit
y
o
f
m
ea
s
u
r
in
g
th
e
s
y
s
tem
s
tate
v
ec
to
r
,
i.e
.
th
e
s
y
s
tem
m
u
s
t
b
e
f
u
lly
o
b
s
er
v
ab
le.
L
et
u
s
c
o
n
s
id
er
th
e
ca
s
e
wh
en
s
o
m
e
o
f
t
h
e
v
ar
iab
les
ar
e
n
o
t
av
ailab
le
f
o
r
m
ea
s
u
r
em
en
t,
i.e
.
u
n
o
b
s
er
v
a
b
le.
T
o
r
esto
r
e
u
n
m
ea
s
u
r
ed
co
o
r
d
in
ates,
we
u
s
e
th
e
in
v
er
s
e
f
u
n
ctio
n
ℎ
−
1
,
wh
ich
ca
n
b
e
d
eter
m
i
n
ed
b
as
ed
o
n
t
h
e
m
ea
s
u
r
ed
o
u
tp
u
t v
ar
iab
les.
T
o
r
esto
r
e
th
e
u
n
o
b
s
er
v
ed
v
ar
i
ab
les,
we
tak
e
d
er
iv
ativ
es o
f
t
h
e
m
ea
s
u
r
ed
v
ar
iab
les:
+
1
=
−
1
(
1
,
…
,
,
̇
)
,
+
2
=
+
1
−
1
(
1
,
…
,
,
+
1
,
̇
+
1
)
=
+
1
−
1
(
1
,
…
,
,
−
1
(
1
,
…
,
,
̇
)
,
̇
+
1
)
.
(
1
)
L
et’
s
d
if
f
er
en
tiate
th
e
e
x
p
r
ess
io
n
s
+
1
.
W
e
g
et
̇
+
1
=
(
−
1
(
∙
)
)
=
∑
−
1
̇
=
1
+
−
1
̇
̈
=
+
1
(
1
,
…
,
,
̇
,
̈
)
.
T
h
e
r
esu
ltin
g
e
x
p
r
ess
io
n
is
t
h
e
b
asis
f
o
r
c
alcu
latin
g
th
e
co
n
tr
o
l
law
in
an
aly
tical
f
o
r
m
,
i.e
.
th
is
ex
p
r
ess
io
n
allo
ws
u
s
in
g
n
o
t
o
n
ly
th
e
m
ea
s
u
r
ed
v
ar
iab
les
b
u
t
also
th
e
n
u
m
er
ical
v
alu
es
o
f
th
e
d
er
iv
ativ
es
o
f
th
e
co
o
r
d
in
ates (
f
r
o
m
o
f
th
e
v
ar
iab
les).
L
et
th
e
d
y
n
am
ics o
f
s
o
m
e
n
o
n
lin
ea
r
s
y
s
tem
b
e
r
ep
r
esen
ted
in
(
2
)
:
(
+
1
)
=
(
(
)
,
(
)
,
)
,
(2
)
wh
er
e
(
)
is
th
e
v
ec
to
r
o
f
s
y
s
tem
s
tate
v
ar
iab
les,
(
)
is
th
e
v
ec
to
r
o
f
co
n
tr
o
l,
is
s
o
m
e
n
o
n
lin
ea
r
f
u
n
ctio
n
,
is
th
e
n
u
m
b
e
r
o
f
tacts
.
T
o
s
o
lv
e
t
h
e
task
o
f
s
y
n
th
esizin
g
a
s
y
n
er
g
etic
c
o
n
tr
o
ller
,
it
is
in
itially
n
ec
ess
ar
y
to
s
el
ec
t
m
ac
r
o
v
ar
iab
les th
at
ar
e
a
f
u
n
ctio
n
o
f
th
e
s
y
s
tem
’
s
s
tate
v
ar
iab
les:
Ψ
=
Ψ
(
(
)
,
)
.
(
3
)
T
h
e
p
u
r
p
o
s
e
o
f
co
n
tr
o
l
is
to
en
s
u
r
e
asy
m
p
to
tic
s
tab
ilit
y
o
f
th
e
s
y
s
tem
at
Ψ
=
0
.
T
h
e
d
y
n
am
ic
s
o
f
a
m
ac
r
o
v
ar
iab
le
ar
e
ch
ar
ac
ter
ize
d
b
y
t
h
e
s
p
ee
d
a
n
d
tr
ajec
to
r
y
o
f
c
o
n
v
er
g
en
ce
to
a
n
in
v
a
r
ian
t
d
i
v
er
s
e
(
attr
ac
to
r
)
[
2
5
]
.
I
n
th
is
ca
s
e,
is
r
ep
r
esen
ted
as:
[
Ψ
(
+
1
)
−
Ψ
(
)
]
+
Ψ
(
)
=
0
,
(
4
)
h
er
e
is
ch
ar
ac
ter
izes
th
e
r
ate
o
f
co
n
v
er
g
e
n
ce
o
f
a
f
u
n
ctio
n
(
v
ar
iab
le)
.
T
ak
in
g
th
is
in
to
ac
co
u
n
t,
we
r
ew
r
ite
(
4
)
in
t
h
e
f
o
llo
win
g
f
o
r
m
:
(
−
)
⋅
⋅
Ψ
(
+
1
)
+
Ψ
(
)
=
0
.
(
5
)
T
h
e
d
is
cr
ete
f
o
r
m
o
f
wr
itin
g
(
1
)
is
:
{
1
(
+
1
)
=
2
(
)
,
2
(
+
1
)
=
3
(
)
,
⋮
−
1
(
+
1
)
=
(
)
,
(
+
1
)
=
(
(
)
)
+
(
)
+
(
)
,
(
)
=
1
(
)
(
6
)
wh
er
e
(
(
)
)
-
th
e
n
o
n
lin
ea
r
f
u
n
cti
o
n
,
(
)
=
[
1
(
)
,
2
(
)
,
…
,
(
)
]
∈
-
th
e
v
ec
to
r
o
f
m
ea
s
u
r
e
d
v
ar
iab
les
o
f
th
e
s
y
s
tem
’
s
s
tates,
(
)
an
d
(
)
-
in
p
u
t
an
d
o
u
tp
u
t
o
f
th
e
s
y
s
tem
,
a
n
d
(
)
-
ex
te
r
n
al
d
is
tu
r
b
an
ce
.
T
h
e
co
n
tr
o
l e
r
r
o
r
s
ig
n
als ar
e
d
ef
in
ed
as f
o
llo
ws:
1
(
)
=
1
(
)
−
(
)
,
⋮
2
(
)
=
2
(
)
−
(
+
1
)
,
(
)
=
(
)
−
(
+
−
1
)
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
S
yn
erg
etic
s
yn
th
esis
o
f a
n
eu
r
a
l n
etw
o
r
k
co
n
tr
o
ller
fo
r
a
n
a
d
a
p
tive
co
n
tr
o
l o
f
…
(
I
s
a
mid
i
n
S
id
d
ik
o
v
)
5261
wh
er
e
(
)
-
a
r
ef
er
en
ce
tr
ajec
to
r
y
.
L
et’
s
d
ef
in
e
a
m
ac
r
o
v
a
r
iab
le
as f
o
llo
ws f
o
r
m
:
Ψ
(
)
=
1
1
(
)
+
2
(
)
=
∑
1
(
)
+
(
)
−
1
=
1
,
(
7
)
Ψ
(
+
1
)
=
1
1
(
+
1
)
+
2
(
+
1
)
(
8
)
wh
er
e
1
-
th
e
ad
ju
s
tab
le
p
ar
a
m
e
ter
o
f
th
e
c
o
n
tr
o
l
1
(
+
1
)
=
1
(
+
1
)
−
(
+
1
)
(
9
)
2
(
+
1
)
=
2
(
+
1
)
−
(
)
(
1
0
)
Ψ
(
+
1
)
=
1
1
(
+
1
)
−
1
(
+
1
)
+
2
(
+
1
)
−
(
)
(
1
1
)
Ψ
(
+
1
)
=
1
2
(
)
−
1
(
+
1
)
+
(
(
)
)
+
(
)
+
(
)
−
(
)
(
1
2
)
Desig
n
atin
g
=
(
−
)
an
d
и
co
n
s
o
lid
atin
g
(
1
1
)
an
d
(
4
)
we
g
et
[
1
2
(
)
−
1
(
+
1
)
+
(
(
)
)
+
(
)
+
(
)
−
(
)
]
+
Ψ
(
)
=
0
(
1
3
)
I
n
th
is
ca
s
e,
=
(
−
)
.
(
1
4
)
T
h
en
th
e
s
y
n
er
g
etic
co
n
tr
o
l la
w
h
as th
e
f
o
r
m
:
(
)
=
(
(
)
)
−
1
2
(
)
+
1
(
)
+
(
)
−
(
)
−
1
Ψ
(
)
.
(
1
5
)
I
f
th
e
n
o
n
lin
ea
r
f
u
n
ctio
n
(
(
)
)
is
k
n
o
wn
,
t
h
e
law
o
f
s
y
n
er
g
etic
c
o
n
tr
o
l
is
ea
s
ily
o
b
tain
ed
.
W
h
en
th
e
n
o
n
lin
ea
r
f
u
n
ctio
n
(
(
)
)
is
u
n
k
n
o
wn
,
it
is
m
o
r
e
co
n
v
en
ie
n
t
an
d
s
im
p
ler
to
u
s
e
an
ad
ap
tiv
e
s
y
n
er
g
etic
f
u
zz
y
co
n
tr
o
ller
u
s
in
g
a
n
e
u
r
o
-
f
u
zz
y
n
etwo
r
k
.
T
h
e
g
en
er
alize
d
s
tr
u
ctu
r
e,
s
y
n
th
esized
s
y
n
er
g
etic
c
o
n
tr
o
l
s
y
s
tem
with
a
n
eu
r
o
-
f
u
zz
y
co
n
tr
o
ller
,
is
s
h
o
wn
in
Fig
u
r
e
1
.
T
h
e
n
eu
r
o
-
f
u
zz
y
n
etwo
r
k
in
c
lu
d
es
in
d
icatio
n
s
o
f
th
e
o
r
d
er
o
f
o
n
e
-
d
im
en
s
io
n
al
b
asis
f
u
n
ctio
n
s
(
)
,
th
e
n
u
m
b
e
r
o
f
b
asis
f
u
n
ctio
n
s
an
d
th
e
weig
h
ts
o
f
n
eu
r
o
n
s
d
eter
m
in
ed
b
y
th
e
g
r
a
d
ien
t
m
eth
o
d
.
T
h
e
in
p
u
t
o
f
th
is
n
etwo
r
k
r
ec
eiv
es
a
s
eq
u
en
ce
o
f
r
ef
e
r
en
ce
s
ig
n
als
|
(
)
…
(
−
+
1
)
,
(
)
…
(
−
+
1
)
|
.
T
h
e
o
u
tp
u
t
o
f
th
e
n
etwo
r
k
is
a
lin
ea
r
co
m
b
in
atio
n
o
f
th
e
weig
h
ts
an
d
th
e
f
u
zz
i
f
ied
in
p
u
t.
Desig
n
in
g
th
e
n
e
u
r
o
-
f
u
zz
y
n
etwo
r
k
in
v
o
l
v
es c
h
o
o
s
in
g
b
asis
f
u
n
ctio
n
s
,
r
an
g
es
o
f
in
p
u
t a
n
d
o
u
tp
u
t v
ar
iab
les,
an
d
th
e
n
u
m
b
e
r
o
f
n
eu
r
o
n
s
.
T
h
e
n
etwo
r
k
o
u
t
p
u
t
(
)
is
d
eter
m
in
ed
b
y
th
e
ce
n
tr
e
o
f
g
r
av
ity
m
eth
o
d
.
(
)
=
(
)
,
(
1
6
)
wh
er
e
х
(
к
)
r
ep
r
esen
ts
th
e
in
p
u
t v
ec
to
r
;
(
)
=
|
(
)
,
…
,
(
−
+
1
)
,
(
)
,
…
,
(
−
+
1
)
|
,
(
1
7
)
[
1
…
2
…
]
-
th
e
n
e
u
r
al
n
etwo
r
k
weig
h
tin
g
co
ef
f
icien
ts
,
–
is
th
e
n
u
m
b
e
r
o
f
th
e
weig
h
tin
g
c
o
ef
f
icien
ts
.
T
h
e
m
u
ltiv
ar
iate
b
asis
f
u
n
ctio
n
is
a
tr
an
s
f
o
r
m
e
d
in
p
u
t v
ec
to
r
:
(
)
=
∏
=
1
(
(
)
)
,
=
1
,
2
,
…
,
(
1
8
)
wh
er
e
=
+
-
th
e
n
u
m
b
er
o
f
in
p
u
t
p
ar
am
eter
s
o
f
t
h
e
s
tate
v
ec
to
r
(
)
.
T
h
ese
p
r
o
p
e
r
ties
ar
e
als
o
ap
p
licab
le
to
m
u
ltiv
ar
iate
b
asis
f
u
n
ctio
n
s
:
(
)
=
∑
(
)
=
∑
∏
(
(
)
)
.
=
1
=
1
=
1
(
1
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
2
5
8
-
5
2
6
5
5262
T
r
ain
in
g
a
n
eu
r
o
-
f
u
zz
y
n
etwo
r
k
in
v
o
lv
es
d
eter
m
in
i
n
g
th
e
s
ettin
g
p
ar
am
eter
s
o
f
th
e
n
eu
r
al
n
etwo
r
k
weig
h
ts
.
T
h
e
weig
h
t
co
e
f
f
icie
n
ts
o
f
t
h
e
f
u
zz
y
n
etwo
r
k
ar
e
a
d
ju
s
ted
d
u
r
in
g
th
e
t
r
ain
in
g
p
r
o
ce
s
s
u
s
in
g
th
e
b
ac
k
d
is
tr
ib
u
tio
n
m
eth
o
d
:
(
+
1
)
=
(
)
−
=
(
)
−
,
=
1
,
2
,
.
.
.
,
(
2
0
)
=
=
=
(
)
.
(
2
1
)
W
e
w
il
l
d
e
c
o
m
p
o
s
e
n
e
u
r
o
–
f
u
z
z
y
c
o
n
t
r
o
l
l
e
r
s
i
n
t
o
tw
o
p
a
r
t
s
:
s
t
a
ti
c
n
o
n
l
i
n
e
a
r
a
n
d
a
d
a
p
t
i
v
e
l
in
e
a
r
p
a
r
t
s
,
w
h
i
c
h
a
r
e
t
r
a
i
n
e
d
i
n
t
h
e
s
a
m
e
w
a
y
a
s
n
e
u
r
a
l
n
et
w
o
r
k
s
.
T
h
e
n
o
n
l
i
n
e
a
r
p
r
o
p
e
r
t
y
o
f
t
h
e
c
o
n
t
r
o
l
p
l
a
n
t
a
n
d
t
h
e
n
e
u
r
o
,
f
u
z
z
y
c
o
n
t
r
o
l
l
e
r
m
a
k
e
s
i
t
d
if
f
i
c
u
l
t
t
o
e
n
s
u
r
e
g
l
o
b
a
l
s
t
a
b
i
l
i
t
y
o
f
t
h
e
c
l
o
s
e
d
,
l
o
o
p
c
o
n
t
r
o
l
s
y
s
t
e
m
.
T
h
e
d
i
s
a
d
v
a
n
t
a
g
es
o
f
t
h
e
a
n
a
l
y
ti
c
a
l
s
o
l
u
t
i
o
n
i
n
cl
u
d
e
t
h
e
n
e
e
d
f
o
r
a
t
a
s
k
wi
t
h
t
h
e
c
h
a
r
a
ct
e
r
is
t
ic
s
o
f
t
h
e
c
o
n
t
r
o
l
p
l
a
n
t
.
Fig
u
r
e
1
.
Gen
e
r
alize
d
s
tr
u
ctu
r
e
o
f
a
n
e
u
r
o
-
f
u
zz
y
n
etwo
r
k
3.
RE
SU
L
T
S
AND
D
I
SCU
SS
I
O
N
.
T
h
e
d
y
n
am
ics o
f
a
n
o
n
lin
ea
r
s
y
s
tem
is
r
ep
r
esen
ted
as
(
2
2
)
:
{
1
(
+
1
)
=
2
(
)
,
2
(
+
1
)
=
(
(
)
)
(
)
=
1
(
)
+
(
/
)
(
)
+
(
)
,
(
2
2
)
wh
er
e
(
(
)
)
=
−
⌊
1
2
+
2
2
3
(
)
⌋
/
-
th
e
n
o
n
lin
ea
r
f
u
n
cti
o
n
.
(
)
=
(
/
20
)
-
th
e
tr
ajec
to
r
y
o
f
ex
ter
n
al
d
is
tu
r
b
a
n
ce
.
I
n
itial c
o
n
d
itio
n
s
:
(
)
=
{
0
,
≤
500
0
.
1
ℎ
(
0
.
5
)
,
>
500
W
e
s
elec
t
m
em
b
er
s
h
ip
f
u
n
ct
io
n
s
in
th
e
f
o
r
m
(
)
=
(
−
0
.
5
(
+
6
−
2
(
+
1
)
)
2
)
,
=
1
,
…
,
5
f
o
r
s
tates
o
f
th
e
s
y
s
tem
,
=
1
,
2
; step
o
f
th
e
d
is
cr
etiza
tio
n
=
0
.
02
.
L
et
u
s
co
n
d
u
ct
a
s
im
u
latio
n
e
x
p
er
im
en
t,
th
e
r
esu
lts
o
f
wh
ic
h
ar
e
p
r
esen
ted
in
Fig
u
r
e
2.
I
t
is
clea
r
f
r
o
m
th
e
g
r
ap
h
th
at
a
ce
r
tain
law
o
f
s
y
n
er
g
etic
c
o
n
tr
o
l
p
r
o
v
id
es
g
o
o
d
tr
ac
k
in
g
q
u
alities
.
Her
ewith
,
th
e
p
r
o
p
o
s
ed
ad
ap
tiv
e
s
y
n
er
g
etic
co
n
tr
o
ller
(
)
h
as
lim
itatio
n
s
,
s
ee
in
Fig
u
r
e
3
.
C
o
m
p
ar
is
o
n
o
f
th
e
o
b
tain
ed
r
esu
lt
with
th
e
r
esu
lts
o
f
th
e
au
th
o
r
s
[
2
6
]
–
[
2
8
]
s
h
o
ws
th
at
th
e
p
r
o
p
o
s
ed
m
eth
o
d
f
o
r
s
y
n
th
esizin
g
a
n
o
n
lin
ea
r
s
elf
-
o
r
g
an
izin
g
co
n
tr
o
ller
p
r
o
v
id
es b
etter
ef
f
icien
cy
.
T
h
e
lim
itatio
n
o
f
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
i
s
th
e
d
ep
en
d
en
ce
o
f
th
e
q
u
ality
o
f
th
e
n
eu
r
al
n
etw
o
r
k
o
n
th
e
n
u
m
b
er
o
f
tr
ain
i
n
g
s
am
p
les.
I
n
th
e
f
u
tu
r
e,
it
is
n
e
ce
s
s
ar
y
to
co
n
s
id
er
th
e
p
o
s
s
ib
ilit
ies
o
f
u
s
in
g
a
s
t
ate
o
b
s
er
v
er
in
th
e
ca
s
e
wh
en
n
o
t
all
s
tates
o
f
th
e
s
y
s
te
m
ar
e
av
ailab
le
f
o
r
m
ea
s
u
r
em
en
t to
d
ev
elo
p
th
e
c
o
n
tr
o
l sy
s
tem
f
o
r
th
e
n
o
n
lin
ea
r
d
y
n
a
m
ic
p
lan
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
S
yn
erg
etic
s
yn
th
esis
o
f a
n
eu
r
a
l n
etw
o
r
k
co
n
tr
o
ller
fo
r
a
n
a
d
a
p
tive
co
n
tr
o
l o
f
…
(
I
s
a
mid
i
n
S
id
d
ik
o
v
)
5263
Fig
u
r
e
2
.
T
h
e
r
ef
e
r
en
ce
ch
a
r
ac
ter
is
tic
o
f
th
e
tr
an
s
ien
t p
r
o
ce
s
s
Fig
u
r
e
3
.
T
h
e
r
esu
lts
o
f
th
e
tr
a
ck
in
g
4.
CO
NCLU
SI
O
N
T
h
e
p
ap
er
c
o
n
s
id
er
ed
t
h
e
is
s
u
es
o
f
s
tu
d
y
in
g
t
h
e
s
y
n
er
g
et
ic
ad
ap
tiv
e
co
n
tr
o
l
law
f
o
r
a
class
o
f
n
o
n
lin
ea
r
s
y
s
tem
s
with
d
is
cr
ete
tim
e.
T
h
e
s
tab
ilit
y
an
aly
s
is
o
f
th
e
ad
ap
tiv
e
s
y
n
e
r
g
etic
co
n
tr
o
l
s
y
s
tem
is
b
ased
o
n
th
e
ap
p
licatio
n
o
f
L
y
a
p
u
n
o
v
th
eo
r
y
.
T
h
e
s
y
n
th
esi
z
ed
ad
a
p
tiv
e
s
y
n
er
g
etic
s
elf
–
o
r
g
an
i
z
in
g
co
n
tr
o
ller
tak
es
in
to
ac
co
u
n
t
th
e
n
o
n
lin
ea
r
n
atu
r
e
o
f
th
e
p
lan
t
an
d
allo
ws
its
p
ar
am
eter
s
to
ad
ap
t
to
ch
an
g
es
in
th
e
en
v
ir
o
n
m
en
t.
T
h
e
co
n
tr
o
ller
s
y
n
th
esis
is
ca
r
r
ied
o
u
t
b
y
a
h
y
b
r
id
ap
p
licatio
n
o
f
m
eth
o
d
s
o
f
th
e
s
y
n
er
g
etic
co
n
tr
o
l
th
eo
r
y
an
d
f
u
zz
y
s
y
s
tem
s
.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
o
f
th
e
s
y
n
er
g
etic
co
n
tr
o
l
g
u
ar
a
n
tees
th
e
r
eliab
ilit
y
an
d
asy
m
p
t
o
tic
s
tab
ilit
y
o
f
t
h
e
co
n
tr
o
l
s
y
s
tem
an
d
m
ak
es
i
t
p
o
s
s
ib
le
to
u
s
e
th
e
n
o
n
lin
ea
r
co
n
tr
o
l
laws.
T
o
o
v
er
co
m
e
th
e
d
if
f
icu
lties
ass
o
ciate
d
with
th
e
u
n
ce
r
tain
ty
o
f
th
e
s
tate
f
u
n
ctio
n
o
f
p
la
n
s
,
th
e
u
s
e
o
f
th
e
Ma
m
d
an
i
n
eu
r
al
n
etwo
r
k
m
o
d
el
is
p
r
o
p
o
s
ed
.
T
h
e
s
ig
m
o
id
f
u
n
ctio
n
is
u
s
ed
as
a
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
,
wh
ich
is
d
is
tin
g
u
is
h
ed
b
y
its
s
im
p
li
city
o
f
im
p
lem
en
tatio
n
,
with
th
e
p
o
s
s
ib
ilit
y
o
f
d
if
f
er
e
n
tiatin
g
in
p
u
t
v
ar
iab
les.
T
h
e
o
b
tain
e
d
co
n
tr
o
l
law
h
as
an
an
aly
tical
d
e
p
en
d
e
n
ce
,
wh
ich
s
ig
n
if
ican
tly
in
c
r
ea
s
es
th
e
p
o
s
s
ib
ilit
ies
o
f
its
im
p
lem
en
tatio
n
o
n
in
d
u
s
tr
ial
co
n
tr
o
ller
s
.
RE
F
E
R
E
NC
E
S
[
1
]
H
.
Y
e
,
S
.
W
u
,
W
.
Li
u
,
X
.
Y
a
n
g
,
Z.
D
u
,
a
n
d
W
.
X
u
e
,
“
A
d
a
p
t
i
v
e
n
e
u
r
a
l
sy
n
e
r
g
e
t
i
c
h
e
a
d
i
n
g
c
o
n
t
r
o
l
f
o
r
U
S
V
s
w
i
t
h
u
n
k
n
o
w
n
d
y
n
a
mi
c
s
a
n
d
d
i
s
t
u
r
b
a
n
c
e
s,”
O
c
e
a
n
E
n
g
i
n
e
e
r
i
n
g
,
v
o
l
.
3
0
0
,
p
.
1
1
7
4
3
8
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
o
c
e
a
n
e
n
g
.
2
0
2
4
.
1
1
7
4
3
8
.
[
2
]
A.
-
B
.
A
.
A
l
-
H
u
ss
e
i
n
,
F
.
R
.
Ta
h
i
r
,
a
n
d
V
.
-
T
.
P
h
a
m,
“
F
i
x
e
d
-
t
i
m
e
s
y
n
e
r
g
e
t
i
c
c
o
n
t
r
o
l
f
o
r
c
h
a
o
s
su
p
p
r
e
ssi
o
n
i
n
e
n
d
o
c
r
i
n
e
g
l
u
c
o
s
e
–
i
n
s
u
l
i
n
r
e
g
u
l
a
t
o
r
y
s
y
st
e
m,
”
C
o
n
t
r
o
l
E
n
g
i
n
e
e
r
i
n
g
Pra
c
t
i
c
e
,
v
o
l
.
1
0
8
,
p
.
1
0
4
7
2
3
,
2
0
2
1
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
c
o
n
e
n
g
p
r
a
c
.
2
0
2
0
.
1
0
4
7
2
3
.
[
3
]
A
.
S
h
e
k
h
a
r
a
n
d
A
.
S
h
a
r
m
a
,
“
R
e
v
i
e
w
o
f
m
o
d
e
l
r
e
f
e
r
e
n
c
e
a
d
a
p
t
i
v
e
c
o
n
t
r
o
l
,
”
i
n
2
0
1
8
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
r
e
n
c
e
o
n
I
n
f
o
rm
a
t
i
o
n
,
C
o
m
m
u
n
i
c
a
t
i
o
n
,
E
n
g
i
n
e
e
r
i
n
g
a
n
d
T
e
c
h
n
o
l
o
g
y
(
I
C
I
C
ET)
,
2
0
1
8
,
p
p
.
1
–
5
,
d
o
i
:
1
0
.
1
1
0
9
/
I
C
I
C
ET.
2
0
1
8
.
8
5
3
3
7
1
3
.
[
4
]
H
.
G
a
i
,
X
.
L
i
,
F
.
J
i
a
o
,
X
.
C
h
e
n
g
,
X
.
Y
a
n
g
,
a
n
d
G
.
Zh
e
n
g
,
“
A
p
p
l
i
c
a
t
i
o
n
o
f
a
n
e
w
m
o
d
e
l
r
e
f
e
r
e
n
c
e
a
d
a
p
t
i
v
e
c
o
n
t
r
o
l
b
a
se
d
o
n
P
I
D
c
o
n
t
r
o
l
i
n
C
N
C
m
a
c
h
i
n
e
t
o
o
l
s,
”
Ma
c
h
i
n
e
s
,
v
o
l
.
9
,
p
.
2
7
4
,
2
0
2
1
,
d
o
i
:
1
0
.
3
3
9
0
/
m
a
c
h
i
n
e
s
9
1
1
0
2
7
4
.
[
5
]
P
.
S
h
c
h
e
r
b
a
k
,
M
.
K
u
z
n
e
t
s
o
v
a
,
a
n
d
D
.
R
a
z
u
v
a
e
v
,
“
J
u
s
t
i
f
i
c
a
t
i
o
n
o
f
t
h
e
st
r
u
c
t
u
r
e
a
n
d
d
e
t
e
r
m
i
n
a
t
i
o
n
o
f
t
h
e
ma
t
h
e
ma
t
i
c
a
l
mo
d
e
l
p
a
r
a
m
e
t
e
r
s
f
o
r
a
mec
h
a
n
i
c
a
l
s
y
st
e
m
w
i
t
h
t
r
i
b
o
sp
e
c
t
r
a
l
o
p
t
i
mi
z
a
t
i
o
n
,
”
i
n
J
o
u
r
n
a
l
o
f
Ph
y
si
c
s:
C
o
n
f
e
r
e
n
c
e
S
e
ri
e
s
,
2
0
2
1
,
v
o
l
.
2
1
3
1
,
p
.
2
2
0
4
9
,
d
o
i
:
1
0
.
1
0
8
8
/
1
7
4
2
-
6
5
9
6
/
2
1
3
1
/
2
/
0
2
2
0
4
9
.
[
6
]
J.
L
i
a
o
e
t
a
l
.
,
“
I
n
v
e
s
t
i
g
a
t
i
o
n
o
f
t
h
e
e
f
f
e
c
t
o
f
d
i
f
f
e
r
e
n
t
st
r
u
c
t
u
r
e
p
a
r
a
m
e
t
e
r
s
a
n
d
o
p
e
r
a
t
i
n
g
f
a
c
t
o
r
s
o
n
t
h
e
i
n
t
e
g
r
a
t
e
d
e
x
h
a
u
st
a
f
t
e
r
t
r
e
a
t
me
n
t
s
y
st
e
m
f
o
r
d
i
e
se
l
e
n
g
i
n
e
s
a
n
d
p
a
r
a
met
e
r
i
m
p
o
r
t
a
n
c
e
a
n
a
l
y
s
i
s,
”
J
o
u
r
n
a
l
o
f
C
l
e
a
n
e
r
Pr
o
d
u
c
t
i
o
n
,
v
o
l
.
4
4
7
,
p
.
1
4
1
2
5
7
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
j
c
l
e
p
r
o
.
2
0
2
4
.
1
4
1
2
5
7
.
[
7
]
S
.
C
a
sa
o
,
P
.
A
z
a
g
r
a
,
A
.
C
.
M
u
r
i
l
l
o
,
a
n
d
E.
M
o
n
t
i
j
a
n
o
,
“
A
se
l
f
-
a
d
a
p
t
i
v
e
g
a
l
l
e
r
y
c
o
n
st
r
u
c
t
i
o
n
m
e
t
h
o
d
f
o
r
o
p
e
n
-
w
o
r
l
d
p
e
r
s
o
n
r
e
-
i
d
e
n
t
i
f
i
c
a
t
i
o
n
,
”
S
e
n
s
o
rs
,
v
o
l
.
2
3
,
p
.
2
6
6
2
,
2
0
2
3
,
d
o
i
:
1
0
.
3
3
9
0
/
s2
3
0
5
2
6
6
2
.
[
8
]
T.
C
a
r
m
i
c
h
a
e
l
a
n
d
M
.
H
a
d
z
i
k
a
d
i
c
,
“
Th
e
f
u
n
d
a
m
e
n
t
a
l
s
o
f
c
o
mp
l
e
x
a
d
a
p
t
i
v
e
sy
s
t
e
ms
,
”
i
n
C
o
m
p
l
e
x
A
d
a
p
t
i
v
e
S
y
st
e
m
s
,
S
p
r
i
n
g
e
r
,
C
h
a
m,
2
0
1
9
,
p
p
.
1
–
1
6
.
[
9
]
L.
A
.
E
s
t
r
a
d
a
-
J
i
m
e
n
e
z
,
T
.
P
u
l
i
k
o
t
t
i
l
,
S
.
N
i
k
g
h
a
d
a
m
H
o
j
j
a
t
i
,
a
n
d
J.
B
a
r
a
t
a
,
“
S
e
l
f
-
o
r
g
a
n
i
z
a
t
i
o
n
i
n
sm
a
r
t
m
a
n
u
f
a
c
t
u
r
i
n
g
:
B
a
c
k
g
r
o
u
n
d
,
s
y
s
t
e
m
a
t
i
c
r
e
v
i
e
w
,
c
h
a
l
l
e
n
g
e
s
a
n
d
o
u
t
l
o
o
k
,
”
I
E
E
E
A
c
c
e
s
s
,
v
o
l
.
1
1
,
p
p
.
1
0
1
0
7
–
1
0
1
3
6
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
E
S
S
.
2
0
2
3
.
3
2
4
0
4
3
3
.
[
1
0
]
J.
B
o
e
s
,
F
.
M
i
g
e
o
n
,
a
n
d
F
.
G
a
t
t
o
,
“
S
e
l
f
-
o
r
g
a
n
i
z
i
n
g
a
g
e
n
t
s
f
o
r
a
n
a
d
a
p
t
i
v
e
c
o
n
t
r
o
l
o
f
h
e
a
t
e
n
g
i
n
e
s,”
i
n
1
0
t
h
I
n
t
e
rn
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
I
n
f
o
rm
a
t
i
c
s
i
n
C
o
n
t
r
o
l
,
A
u
t
o
m
a
t
i
o
n
a
n
d
R
o
b
o
t
i
c
s (I
C
I
N
C
O
)
,
2
0
1
3
,
p
p
.
2
4
3
–
2
5
0
,
d
o
i
:
1
0
.
5
2
2
0
/
0
0
0
4
4
8
3
3
0
2
4
3
0
2
5
0
.
[
1
1
]
R
.
F
r
a
n
s
e
n
,
M
.
v
a
n
A
d
r
i
c
h
e
m
,
H
.
O
n
v
e
r
w
a
g
t
,
a
n
d
H
.
H
i
l
d
m
a
n
n
,
“
S
e
l
f
-
o
r
g
a
n
i
z
i
n
g
c
o
n
t
r
o
l
f
o
r
u
n
ma
n
n
e
d
g
r
o
u
n
d
v
e
h
i
c
l
e
s,
”
i
n
Au
t
o
n
o
m
o
u
s
S
y
s
t
e
m
s
f
o
r
S
e
c
u
ri
t
y
a
n
d
D
e
f
e
n
c
e
,
2
0
2
4
,
v
o
l
.
1
3
2
0
7
,
p
.
1
3
2
0
7
0
B
,
d
o
i
:
1
0
.
1
1
1
7
/
1
2
.
3
0
3
3
8
9
1
.
[
1
2
]
T.
P
a
j
c
h
r
o
w
s
k
i
,
P
.
S
i
w
e
k
,
a
n
d
A
.
W
ó
j
c
i
k
,
“
A
d
a
p
t
i
v
e
c
o
n
t
r
o
l
l
e
r
d
e
si
g
n
f
o
r
e
l
e
c
t
r
i
c
d
r
i
v
e
w
i
t
h
v
a
r
i
a
b
l
e
p
a
r
a
me
t
e
r
s
b
y
r
e
i
n
f
o
r
c
e
m
e
n
t
l
e
a
r
n
i
n
g
me
t
h
o
d
,
”
B
u
l
l
e
t
i
n
o
f
t
h
e
P
o
l
i
sh
Ac
a
d
e
m
y
o
f
S
c
i
e
n
c
e
s:
T
e
c
h
n
i
c
a
l
S
c
i
e
n
c
e
s
,
v
o
l
.
6
8
,
n
o
.
5
,
2
0
2
0
,
d
o
i
:
1
0
.
2
4
4
2
5
/
b
p
a
s
t
s.
2
0
2
0
.
1
3
4
6
6
7
.
[
1
3
]
G
.
H
o
n
g
a
n
d
D
.
Z
h
o
n
g
mi
n
,
“
D
y
n
a
mi
c
r
e
sp
o
n
se
a
n
a
l
y
si
s o
f
n
o
n
l
i
n
e
a
r
st
r
u
c
t
u
r
e
s
w
i
t
h
h
y
b
r
i
d
u
n
c
e
r
t
a
i
n
t
i
e
s,”
Ap
p
l
i
e
d
Ma
t
h
e
m
a
t
i
c
a
l
Mo
d
e
l
l
i
n
g
,
v
o
l
.
1
1
9
,
p
p
.
1
7
4
–
1
9
5
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
p
m
.
2
0
2
3
.
0
2
.
0
2
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
15
,
No
.
6
,
Decem
b
e
r
20
25
:
5
2
5
8
-
5
2
6
5
5264
[
1
4
]
H
.
D
i
n
g
a
n
d
L
.
Q
.
C
h
e
n
,
“
D
e
s
i
g
n
s
,
a
n
a
l
y
s
i
s,
a
n
d
a
p
p
l
i
c
a
t
i
o
n
s
o
f
n
o
n
l
i
n
e
a
r
e
n
e
r
g
y
s
i
n
k
s,
”
N
o
n
l
i
n
e
a
r
D
y
n
a
m
i
c
s
,
v
o
l
.
1
0
0
,
n
o
.
4
,
p
p
.
3
0
6
1
–
3
1
0
7
,
2
0
2
0
,
d
o
i
:
1
0
.
1
0
0
7
/
s
1
1
0
7
1
-
0
2
0
-
0
5
7
2
4
-
1.
[
1
5
]
L.
S
o
n
g
,
J.
F
a
n
,
D
.
R
.
C
h
e
n
,
a
n
d
o
t
h
e
r
s,
“
C
o
r
r
e
c
t
i
o
n
:
A
p
p
r
o
x
i
m
a
t
i
o
n
o
f
n
o
n
l
i
n
e
a
r
f
u
n
c
t
i
o
n
a
l
s
u
si
n
g
d
e
e
p
R
e
LU
n
e
t
w
o
r
k
s,
”
J
o
u
rn
a
l
o
f
Fo
u
r
i
e
r
An
a
l
y
si
s
a
n
d
A
p
p
l
i
c
a
t
i
o
n
s
,
v
o
l
.
2
9
,
p
.
5
7
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
0
7
/
s0
0
0
4
1
-
023
-
1
0
0
3
8
-
y.
[
1
6
]
J.
B
.
G
o
n
p
e
T
a
f
o
,
L.
N
a
n
a
,
C
.
B
e
r
t
r
a
n
d
Ta
b
i
,
a
n
d
T.
C
.
K
o
f
a
n
é
,
“
N
o
n
l
i
n
e
a
r
d
y
n
a
mi
c
a
l
r
e
g
i
mes
a
n
d
c
o
n
t
r
o
l
o
f
t
u
r
b
u
l
e
n
c
e
t
h
r
o
u
g
h
t
h
e
c
o
m
p
l
e
x
G
i
n
z
b
u
r
g
-
La
n
d
a
u
e
q
u
a
t
i
o
n
,
”
i
n
R
e
se
a
rc
h
A
d
v
a
n
c
e
s i
n
C
h
a
o
s
T
h
e
o
ry
,
I
n
t
e
c
h
O
p
e
n
,
2
0
2
0
.
[
1
7
]
C.
-
T.
C
h
e
n
,
“
A
d
i
r
e
c
t
a
d
a
p
t
i
v
e
c
o
n
t
r
o
l
s
t
r
a
t
e
g
y
f
o
r
n
o
n
l
i
n
e
a
r
p
r
o
c
e
ss
c
o
n
t
r
o
l
u
si
n
g
a
s
h
a
p
e
-
t
u
n
a
b
l
e
n
o
n
l
i
n
e
a
r
c
o
n
t
r
o
l
l
e
r
,
”
C
h
e
m
i
c
a
l
E
n
g
i
n
e
e
r
i
n
g
C
o
m
m
u
n
i
c
a
t
i
o
n
s
,
v
o
l
.
2
0
2
,
2
0
1
4
,
d
o
i
:
1
0
.
1
0
8
0
/
0
0
9
8
6
4
4
5
.
2
0
1
4
.
9
4
7
3
6
7
.
[
1
8
]
A
.
K
h
a
n
a
f
a
r
i
,
A
.
A
l
a
s
t
y
,
M
.
J.
K
e
r
ma
n
i
,
a
n
d
S
.
A
s
g
h
a
r
i
,
“
Ex
p
e
r
i
me
n
t
a
l
s
t
u
d
y
o
f
w
a
t
e
r
m
a
n
a
g
e
me
n
t
o
f
a
t
h
r
e
e
-
c
e
l
l
P
E
M
f
u
e
l
c
e
l
l
st
a
c
k
u
si
n
g
a
d
a
p
t
i
v
e
n
e
u
r
o
-
f
u
z
z
y
a
p
p
r
o
x
i
ma
t
i
o
n
a
n
d
f
u
z
z
y
c
o
n
t
r
o
l
,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
H
y
d
ro
g
e
n
En
e
r
g
y
,
v
o
l
.
5
0
,
p
p
.
9
3
1
–
9
4
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
j
h
y
d
e
n
e
.
2
0
2
3
.
0
9
.
1
9
2
.
[
1
9
]
R
.
V
i
g
n
e
sh
,
B
.
A
s
h
o
k
,
M
.
S
.
K
u
m
a
r
,
D
.
S
z
p
i
c
a
,
A
.
H
a
r
i
k
r
i
sh
n
a
n
,
a
n
d
H
.
Jo
s
h
,
“
A
d
a
p
t
i
v
e
n
e
u
r
o
-
f
u
z
z
y
i
n
f
e
r
e
n
c
e
sy
s
t
e
m
-
b
a
s
e
d
e
n
e
r
g
y
ma
n
a
g
e
me
n
t
c
o
n
t
r
o
l
l
e
r
f
o
r
o
p
t
i
ma
l
b
a
t
t
e
r
y
c
h
a
r
g
e
su
s
t
a
i
n
i
n
g
i
n
b
i
o
f
u
e
l
p
o
w
e
r
e
d
n
o
n
-
p
l
u
g
i
n
h
y
b
r
i
d
e
l
e
c
t
r
i
c
v
e
h
i
c
l
e
,
”
S
u
s
t
a
i
n
a
b
l
e
E
n
e
rg
y
T
e
c
h
n
o
l
o
g
i
e
s
a
n
d
Assessm
e
n
t
s
,
v
o
l
.
5
9
,
p
.
1
0
3
3
7
9
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
set
a
.
2
0
2
3
.
1
0
3
3
7
9
.
[
2
0
]
M
.
B
a
n
i
a
s
a
d
i
N
e
j
a
d
,
S
.
M
.
G
h
a
mar
i
,
a
n
d
H
.
M
o
l
l
a
e
e
,
“
A
d
a
p
t
i
v
e
n
e
u
r
o
-
f
u
z
z
y
i
n
f
e
r
e
n
c
e
sy
s
t
e
ms
c
o
n
t
r
o
l
l
e
r
d
e
s
i
g
n
o
n
B
u
c
k
c
o
n
v
e
r
t
e
r
,
”
T
h
e
J
o
u
r
n
a
l
o
f
E
n
g
i
n
e
e
ri
n
g
,
v
o
l
.
2
0
2
3
,
n
o
.
1
0
,
p
.
e
1
2
3
1
6
,
2
0
2
3
,
d
o
i
:
1
0
.
1
0
4
9
/
t
j
e
2
.
1
2
3
1
6
.
[
2
1
]
I
.
S
i
d
d
i
k
o
v
,
D
.
K
h
a
l
ma
t
o
v
,
D
.
K
h
u
s
h
n
a
z
a
r
o
v
a
,
a
n
d
U
.
K
h
u
j
a
n
a
z
a
r
o
v
,
“
N
e
u
r
a
l
n
e
t
w
o
r
k
c
o
n
t
r
o
l
o
f
a
n
o
n
l
i
n
e
a
r
d
y
n
a
mi
c
p
l
a
n
t
w
i
t
h
a
p
r
e
d
i
c
t
i
v
e
m
o
d
e
l
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
En
g
i
n
e
e
ri
n
g
,
v
o
l
.
1
4
,
n
o
.
5
,
p
p
.
5
1
3
1
–
5
1
3
8
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
4
i
5
.
p
p
5
1
3
1
-
5
1
3
8
.
[
2
2
]
N
.
N
i
M
,
N
.
M
.
A
.
G
h
a
n
i
,
A
.
N
.
K
.
N
a
si
r
,
M
.
A
.
A
h
m
a
d
,
a
n
d
M
.
O
.
To
k
h
i
,
“
N
e
u
r
o
-
m
o
d
e
l
l
i
n
g
a
n
d
f
u
z
z
y
l
o
g
i
c
c
o
n
t
r
o
l
o
f
a
t
w
o
-
w
h
e
e
l
e
d
w
h
e
e
l
c
h
a
i
r
sy
st
e
m,
”
J
o
u
r
n
a
l
o
f
L
o
w
Fr
e
q
u
e
n
c
y
N
o
i
s
e
,
V
i
b
r
a
t
i
o
n
a
n
d
A
c
t
i
v
e
C
o
n
t
ro
l
,
v
o
l
.
4
4
,
n
o
.
1
,
p
p
.
5
8
8
–
6
0
2
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
7
7
/
1
4
6
1
3
4
8
4
2
4
1
2
8
7
6
0
8
.
[
2
3
]
M
.
Z.
T
u
m
a
r
i
,
M
.
A
.
A
h
ma
d
,
M
.
H
.
S
u
i
d
,
M
.
R
.
G
h
a
z
a
l
i
,
a
n
d
M
.
O
.
T
o
k
h
i
,
“
A
n
i
mp
r
o
v
e
d
mar
i
n
e
p
r
e
d
a
t
o
r
s a
l
g
o
r
i
t
h
m
t
u
n
e
d
d
a
t
a
-
d
r
i
v
e
n
m
u
l
t
i
p
l
e
-
n
o
d
e
h
o
r
m
o
n
e
r
e
g
u
l
a
t
i
o
n
n
e
u
r
o
e
n
d
o
c
r
i
n
e
-
P
I
D
c
o
n
t
r
o
l
l
e
r
f
o
r
mu
l
t
i
-
i
n
p
u
t
–
m
u
l
t
i
-
o
u
t
p
u
t
g
a
n
t
r
y
c
r
a
n
e
s
y
st
e
m,”
J
o
u
rn
a
l
o
f
L
o
w
Fr
e
q
u
e
n
c
y
N
o
i
s
e
,
V
i
b
ra
t
i
o
n
a
n
d
Ac
t
i
v
e
C
o
n
t
r
o
l
,
v
o
l
.
4
2
,
n
o
.
4
,
p
p
.
1
6
6
6
–
1
6
9
8
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
7
7
/
1
4
6
1
3
4
8
4
2
3
1
1
8
3
9
3
8
.
[
2
4
]
F
.
P
h
a
m,
P
h
u
-
C
u
o
n
g
,
a
n
d
Y
.
-
L
.
K
u
o
,
“
R
o
b
u
s
t
a
d
a
p
t
i
v
e
f
i
n
i
t
e
-
t
i
m
e
s
y
n
e
r
g
e
t
i
c
t
r
a
c
k
i
n
g
c
o
n
t
r
o
l
o
f
d
e
l
t
a
r
o
b
o
t
b
a
s
e
d
o
n
r
a
d
i
a
l
b
a
s
i
s
f
u
n
c
t
i
o
n
n
e
u
r
a
l
n
e
t
w
o
r
k
s
,
”
Ap
p
l
i
e
d
S
c
i
e
n
c
e
s
,
v
o
l
.
1
2
,
n
o
.
2
1
,
p
.
1
0
8
6
1
,
2
0
2
2
,
d
o
i
:
1
0
.
3
3
9
0
/
a
p
p
1
2
2
1
1
0
8
6
1
.
[
2
5
]
I
.
S
i
d
d
i
k
o
v
,
D
.
K
h
a
l
mat
o
v
,
a
n
d
D
.
K
h
u
s
h
n
a
z
a
r
o
v
a
,
“
S
y
n
t
h
e
s
i
s
o
f
s
y
n
e
r
g
e
t
i
c
l
a
w
s
o
f
c
o
n
t
r
o
l
o
f
n
o
n
l
i
n
e
a
r
d
y
n
a
m
i
c
p
l
a
n
t
s,
”
i
n
E
3
S
We
b
o
f
C
o
n
f
e
r
e
n
c
e
s
,
2
0
2
3
,
v
o
l
.
4
5
2
,
p
.
6
0
2
4
,
d
o
i
:
1
0
.
1
0
5
1
/
e
3
sc
o
n
f
/
2
0
2
3
4
5
2
0
6
0
2
4
.
[
2
6
]
I
.
S
i
d
d
i
k
o
v
,
N
.
M
a
m
a
s
o
d
i
k
o
v
a
,
D
.
K
h
a
l
mat
o
v
,
N
.
K
a
d
i
r
o
v
a
,
O
.
M
i
r
j
a
l
i
l
o
v
,
a
n
d
G
.
P
r
i
m
o
v
a
,
“
D
e
v
e
l
o
p
me
n
t
o
f
n
e
u
r
a
l
n
e
t
w
o
r
k
f
o
r
e
c
a
st
i
n
g
m
o
d
e
l
s
o
f
d
y
n
a
mi
c
o
b
j
e
c
t
s
f
r
o
m
o
b
s
e
r
v
e
d
d
a
t
a
,
”
i
n
MIP:
C
o
m
p
u
t
i
n
g
-
2
0
2
1
.
C
EU
R
Wo
r
k
s
h
o
p
P
r
o
c
e
e
d
i
n
g
s
,
2
0
2
1
,
v
o
l
.
2
8
9
9
,
p
p
.
7
1
–
7
7
.
[
2
7
]
I
.
S
i
d
d
i
k
o
v
,
D
.
K
h
a
l
ma
t
o
v
,
G
.
A
l
i
m
o
v
a
,
U
.
K
h
u
j
a
n
a
z
a
r
o
v
,
S
.
F
e
r
u
z
a
x
o
n
,
a
n
d
M
.
U
s
a
n
o
v
,
“
I
n
v
e
s
t
i
g
a
t
i
o
n
o
f
a
u
t
o
-
o
sc
i
l
a
t
i
o
n
a
l
r
e
g
i
m
e
s
o
f
t
h
e
s
y
s
t
e
m
b
y
d
y
n
a
mi
c
n
o
n
l
i
n
e
a
r
i
t
i
e
s,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
t
r
i
c
a
l
a
n
d
C
o
m
p
u
t
e
r
E
n
g
i
n
e
e
ri
n
g
(
I
J
EC
E)
,
v
o
l
.
1
4
,
n
o
.
1
,
p
.
2
3
0
,
F
e
b
.
2
0
2
4
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
e
c
e
.
v
1
4
i
1
.
p
p
2
3
0
-
2
3
8
.
[
2
8
]
I
.
S
i
d
d
i
k
o
v
,
D
.
K
h
a
l
m
a
t
o
v
,
D
.
K
h
u
s
h
n
a
z
a
r
o
v
a
,
a
n
d
U
.
K
h
u
j
a
n
a
z
a
r
o
v
,
“
N
o
n
l
i
n
e
a
r
sy
s
t
e
ms
c
o
n
t
r
o
l
a
l
g
o
r
i
t
h
m
w
i
t
h
b
a
c
k
st
e
p
p
i
n
g
met
h
o
d
,
”
i
n
E3
S
We
b
o
f
C
o
n
f
e
re
n
c
e
s
,
2
0
2
4
,
v
o
l
.
5
0
8
,
p
.
4
0
0
4
,
d
o
i
:
1
0
.
1
0
5
1
/
e
3
sc
o
n
f
/
2
0
2
4
5
0
8
0
4
0
0
4
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Is
a
m
id
d
in
S
id
d
i
k
o
v
He
re
c
e
iv
e
d
h
is
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
g
in
e
e
rin
g
wit
h
a
d
e
g
re
e
i
n
a
u
to
m
a
ti
o
n
a
n
d
tele
m
e
c
h
a
n
ic
in
1
9
7
6
fro
m
th
e
Tas
h
k
e
n
t
P
o
ly
tec
h
n
ic
I
n
stit
u
te,
Tas
h
k
e
n
t,
Uz
b
e
k
istan
.
I
n
1
9
8
9
h
e
d
e
fe
n
d
e
d
h
is
P
h
.
D.
t
h
e
sis
in
th
e
sp
e
c
ialty
o
f
c
o
n
tr
o
l
i
n
tec
h
n
ica
l
sy
ste
m
s.
In
2
0
1
6
h
e
d
e
f
e
n
d
e
d
h
is
d
o
c
t
o
ra
l
t
h
e
sis
in
th
e
s
p
e
c
ialty
"
I
n
tellec
tu
a
li
z
a
ti
o
n
o
f
c
o
n
tr
o
l
p
r
o
c
e
ss
e
s
fo
r
d
y
n
a
m
ic
p
lan
ts
a
n
d
tec
h
n
o
lo
g
ica
l
p
ro
c
e
ss
e
s."
He
is
c
u
rre
n
tl
y
a
p
ro
fe
ss
o
r
a
t
t
h
e
Tas
h
k
e
n
t
S
tate
Tec
h
n
ica
l
Un
iv
e
rsit
y
n
a
m
e
d
a
fte
r
Isla
m
Ka
rimo
v
.
Un
d
e
r
h
is
lea
d
e
rsh
ip
,
2
0
P
h
Ds
we
re
train
e
d
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
th
e
in
tel
lec
tu
a
li
z
a
ti
o
n
o
f
c
o
n
tro
l
p
ro
c
e
ss
e
s
fo
r
n
o
n
li
n
e
a
r
c
o
n
t
in
u
o
u
s
-
d
isc
re
te
d
y
n
a
m
ic
p
lan
ts,
a
n
d
t
h
e
d
e
v
e
lo
p
e
d
m
e
th
o
d
s,
a
n
d
m
o
d
e
ls
u
se
d
i
n
t
h
e
field
o
f
a
u
to
m
a
ti
o
n
o
f
e
lec
tri
c
p
o
we
r
fa
c
il
it
ies
,
o
il
a
n
d
g
a
s,
c
h
e
m
ica
l
-
tec
h
n
o
lo
g
ica
l
in
d
u
strie
s,
a
n
d
t
h
e
li
g
h
t
i
n
d
u
stry
.
In
a
d
d
it
io
n
,
h
e
is
a
re
v
iew
e
r
o
f
lea
d
in
g
sc
ien
t
ifi
c
jo
u
rn
a
ls
su
c
h
a
s
Ve
stn
ik
TS
TU,
a
n
d
Ch
e
m
ica
l
Tec
h
n
o
lo
g
y
.
C
o
n
t
ro
l
a
n
d
m
a
n
a
g
e
m
e
n
t
,
"
"
Tec
h
n
ica
l
sc
ien
c
e
a
n
d
in
n
o
v
a
ti
o
n
.
"
He
is
th
e
a
u
t
h
o
r
o
r
c
o
-
a
u
th
o
r
o
f
m
o
re
t
h
a
n
1
5
5
re
fe
re
e
d
jo
u
rn
a
ls
a
n
d
c
o
n
fe
r
e
n
c
e
a
rti
c
les
,
7
m
o
n
o
g
ra
p
h
s
a
n
d
4
tex
tb
o
o
k
s,
3
5
sc
ien
ti
fic
a
rti
c
les
in
d
e
x
e
d
i
n
th
e
S
c
o
p
u
s
d
a
tab
a
se
(El
se
v
ier).
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
isa
m
id
d
in
5
4
@
g
m
a
il
.
c
o
m
.
Da
v
r
o
n
b
e
k
K
h
a
lm
a
to
v
1
9
9
7
,
re
c
e
iv
e
d
h
is
d
e
g
re
e
in
sy
ste
m
tec
h
n
ica
l
e
n
g
in
e
e
rin
g
wit
h
a
d
e
g
re
e
i
n
a
u
t
o
m
a
ti
c
c
o
n
tro
l
in
tec
h
n
ica
l
s
y
ste
m
s
in
1
9
9
7
fro
m
t
h
e
Tas
h
k
e
n
t
S
tate
Tec
h
n
ica
l
U
n
iv
e
rsit
y
,
Tas
h
k
e
n
t,
Uz
b
e
k
istan
.
In
2
0
1
0
h
e
d
e
f
e
n
d
e
d
h
is
P
h
.
D.
th
e
sis
i
n
th
e
sp
e
c
ialty
o
f
c
o
n
t
ro
l
in
tec
h
n
ica
l
s
y
ste
m
s.
He
is
c
u
rre
n
tl
y
a
n
a
ss
istan
t
p
ro
fe
ss
o
r
a
t
th
e
Tas
h
k
e
n
t
In
stit
u
te
o
f
Tex
ti
les
a
n
d
Li
g
h
t
In
d
u
stry
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
t
h
e
Th
e
o
re
ti
c
a
l
fo
u
n
d
a
ti
o
n
s,
m
e
th
o
d
s
a
n
d
a
lg
o
r
it
h
m
s
f
o
r
s
y
n
e
rg
e
ti
c
c
o
n
tro
l
o
f
m
e
c
h
a
tro
n
ic
sy
ste
m
s.
I
n
a
d
d
it
i
o
n
,
h
e
is
a
re
v
iew
e
r
o
f
th
e
lea
d
in
g
sc
ien
ti
fic
j
o
u
r
n
a
l
Tex
ti
le
J
o
u
r
n
a
l
o
f
Uz
b
e
k
istan
.
He
is
th
e
a
u
th
o
r
o
r
c
o
-
a
u
th
o
r
o
f
m
o
re
th
a
n
7
0
re
fe
re
e
d
jo
u
r
n
a
ls
a
n
d
c
o
n
fe
re
n
c
e
a
rti
c
les
,
2
m
o
n
o
g
ra
p
h
s
a
n
d
4
tex
t
b
o
o
k
s,
a
n
d
7
sc
ien
ti
f
ic
a
rti
c
les
in
d
e
x
e
d
i
n
t
h
e
S
c
o
p
u
s
d
a
tab
a
se
(El
se
v
ier).
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
h
o
l
d
a
v
2
0
1
5
@g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
S
yn
erg
etic
s
yn
th
esis
o
f a
n
eu
r
a
l n
etw
o
r
k
co
n
tr
o
ller
fo
r
a
n
a
d
a
p
tive
co
n
tr
o
l o
f
…
(
I
s
a
mid
i
n
S
id
d
ik
o
v
)
5265
Zo
k
h
id
Is
k
a
n
d
a
r
o
v
re
c
e
iv
e
d
h
is
b
a
c
h
e
l
o
r’s
d
e
g
re
e
i
n
a
u
t
o
m
a
ti
o
n
a
n
d
c
o
n
tr
o
l
in
2
0
0
2
,
a
n
d
a
m
a
ste
r’s
d
e
g
re
e
in
c
o
n
tr
o
l
in
tec
h
n
ica
l
sy
ste
m
s
in
2
0
0
4
fro
m
t
h
e
Tas
h
k
e
n
t
S
tate
Tec
h
n
ica
l
Un
iv
e
rsit
y
,
Tas
h
k
e
n
t,
Uz
b
e
k
istan
.
I
n
2
0
1
9
h
e
d
e
fe
n
d
e
d
h
is
P
h
.
D.
t
h
e
sis
in
t
h
e
sp
e
c
ialty
o
f
c
o
n
t
ro
l
in
tec
h
n
ica
l
s
y
ste
m
s.
He
is
c
u
rre
n
tl
y
a
n
a
ss
istan
t
p
ro
fe
ss
o
r
a
t
th
e
Tas
h
k
e
n
t
S
tate
Tec
h
n
ica
l
Un
iv
e
rsit
y
n
a
m
e
d
a
fter
Isla
m
Ka
rimo
v
,
Tas
h
k
e
n
t.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
th
e
T
h
e
o
re
ti
c
a
l
fo
u
n
d
a
t
io
n
s,
m
e
th
o
d
s
a
n
d
a
l
g
o
rit
h
m
s
fo
r
sy
n
e
rg
e
ti
c
c
o
n
tro
l
o
f
m
e
c
h
a
tro
n
ic
sy
ste
m
s,
Ro
b
o
to
tec
h
n
i
q
u
e
s.
In
a
d
d
it
io
n
,
h
e
is
t
h
e
a
u
th
o
r
o
r
c
o
-
a
u
th
o
r
o
f
m
o
re
th
a
n
6
0
r
e
fe
re
e
d
jo
u
rn
a
ls
a
n
d
c
o
n
fe
re
n
c
e
a
rti
c
les
,
2
tex
tb
o
o
k
s,
a
n
d
2
sc
ien
ti
fic
a
rti
c
les
in
d
e
x
e
d
in
t
h
e
S
c
o
p
u
s
d
a
tab
a
se
(El
se
v
ier).
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
z
o
h
id
0
0
5
9
@
g
m
a
il
.
c
o
m
.
Diln
o
z
a
K
h
u
shn
a
z
a
r
o
v
a
r
e
c
e
iv
e
d
a
b
a
c
h
e
lo
r’s
d
e
g
re
e
i
n
m
a
th
e
m
a
ti
c
s
a
n
d
in
fo
rm
a
ti
c
s
i
n
Tas
h
k
e
n
t
S
tate
P
e
d
a
g
o
g
ica
l
Un
i
v
e
rsity
n
a
m
e
d
a
f
ter
Niz
a
m
i
in
2
0
0
6
,
a
n
d
a
m
a
ste
r'
s
d
e
g
re
e
in
a
u
to
m
a
ti
o
n
o
f
Tex
ti
le
In
d
u
str
y
P
ro
c
e
ss
in
2
0
1
0
.
Cu
rre
n
tl
y
,
sh
e
is
a
d
o
c
t
o
ra
l
stu
d
e
n
t
a
t
t
h
e
In
fo
rm
a
ti
o
n
P
r
o
c
e
ss
in
g
a
n
d
M
a
n
a
g
e
m
e
n
t
S
y
ste
m
,
F
a
c
u
lt
y
o
f
El
e
c
tro
n
ics
a
n
d
Au
to
m
a
ti
o
n
En
g
i
n
e
e
rin
g
,
Tas
h
k
e
n
t
S
tate
Tec
h
n
ica
l
Un
iv
e
rsity
n
a
m
e
d
a
fter
Isla
m
K
a
rimo
v
.
Th
e
m
a
in
g
o
a
ls
o
f
h
e
r
re
se
a
rc
h
in
tere
sts
in
c
l
u
d
e
th
e
Th
e
o
re
ti
c
a
l
fo
u
n
d
a
ti
o
n
s,
m
e
th
o
d
s
a
n
d
a
lg
o
rit
h
m
s
fo
r
sy
n
e
rg
e
ti
c
c
o
n
t
ro
l
o
f
m
e
c
h
a
tro
n
ic
s
y
ste
m
s.
In
a
d
d
it
i
o
n
,
sh
e
is
th
e
a
u
th
o
r
o
r
c
o
-
a
u
th
o
r
o
f
m
o
re
th
a
n
4
5
re
fe
re
e
d
j
o
u
r
n
a
ls
a
n
d
c
o
n
fe
re
n
c
e
a
rti
c
l
e
s
a
n
d
1
tex
t
b
o
o
k
,
a
n
d
3
sc
ien
ti
fic
a
rti
c
les
in
d
e
x
e
d
i
n
th
e
S
c
o
p
u
s
d
a
tab
a
se
(El
se
v
ier).
S
h
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
k
h
u
s
h
n
a
z
a
ro
v
a
d
il
n
o
z
a
@g
m
a
il
.
c
o
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.