I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
wer
E
lect
ro
nics
a
nd
Driv
e
S
y
s
t
em
(
I
J
P
E
DS)
Vo
l.
16
,
No
.
4
,
Dec
em
b
er
20
25
,
p
p
.
2
4
6
4
~
2
4
7
5
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/ijp
ed
s
.
v
16
.
i
4
.
p
p
2
4
6
4
-
2
4
7
5
2464
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
p
e
d
s
.
ia
esco
r
e.
co
m
Perf
o
rma
nce
a
na
ly
sis
of a ca
sca
ded dua
l f
ull
bridges
5
,
7
,
a
nd 9
lev
els inv
erte
r
:
e
x
perimental
va
lida
tion
Na
bil
Sa
ida
ni,
Ra
chid
E
l Ba
cht
iri,
Abdela
ziz
F
ri
,
K
a
rim
a
E
l H
a
mm
o
um
i
R
EEPE
R
G
r
o
u
p
,
I
n
n
o
v
a
t
i
v
e
T
e
c
h
n
o
l
o
g
y
a
n
d
C
o
m
p
u
t
i
n
g
L
a
b
o
r
a
t
o
r
y
,
H
i
g
h
e
r
S
c
h
o
o
l
o
f
T
e
c
h
n
o
l
o
g
y
,
S
i
d
i
M
o
h
a
m
me
d
B
e
n
A
b
d
e
l
l
a
h
U
n
i
v
e
r
si
t
y
(
U
S
M
B
A
)
,
F
e
z
,
M
o
r
o
c
c
o
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
1
4
,
2
0
2
5
R
ev
is
ed
J
u
l 3
1
,
2
0
2
5
Acc
ep
ted
Sep
2
,
2
0
2
5
Ca
sc
a
d
e
d
fu
ll
-
b
rid
g
e
i
n
v
e
rter
i
s
a
su
i
tab
le
t
o
p
o
l
o
g
y
f
o
r
g
ri
d
-
c
o
n
n
e
c
ted
a
p
p
li
c
a
ti
o
n
s
d
u
e
to
it
s
a
b
il
it
y
t
o
g
e
n
e
ra
te
a
n
o
u
tp
u
t
v
o
l
tag
e
wa
v
e
fo
rm
th
a
t
c
lo
se
ly
re
se
m
b
les
a
sin
e
wa
v
e
,
r
e
su
lt
in
g
in
lo
we
r
t
o
tal
h
a
rm
o
n
ic
d
isto
rti
o
n
(THD)
fa
c
to
rs.
Th
is
a
rti
c
le
p
ro
p
o
se
s
th
e
u
se
o
f
t
h
e
se
lec
ti
v
e
h
a
rm
o
n
ic
e
li
m
in
a
ti
o
n
(S
HE)
tec
h
n
iq
u
e
to
p
ro
d
u
c
e
a
5
-
lev
e
l
v
o
lt
a
g
e
u
si
n
g
a
sy
m
m
e
tri
c
a
l
in
v
e
rter
a
n
d
7
a
n
d
9
-
lev
e
l
v
o
lt
a
g
e
u
si
n
g
a
n
a
sy
m
m
e
tri
c
a
l
in
v
e
rter
c
o
m
p
o
se
d
o
f
o
n
ly
two
fu
ll
b
ri
d
g
e
s
lo
a
d
e
d
b
y
a
n
RL
c
ircu
it
o
f
5
1
.
4
Ω
a
n
d
2
0
0
m
H.
Th
e
st
u
d
y
p
rim
a
ril
y
fo
c
u
se
s
o
n
a
n
a
ly
s
i
n
g
th
e
imp
a
c
t
o
f
th
e
n
u
m
b
e
r
o
f
le
v
e
ls
o
n
th
e
p
o
we
r
q
u
a
li
ty
o
f
t
h
e
in
v
e
rter.
Th
i
s
in
c
lu
d
e
s
in
v
e
stig
a
t
in
g
t
h
e
e
ffe
c
ts
o
f
th
e
fu
n
d
a
m
e
n
tal
m
a
g
n
it
u
d
e
o
n
th
e
p
r
o
d
u
c
e
d
p
o
we
r,
a
s
we
ll
a
s
m
e
a
su
rin
g
l
o
ss
e
s
in
th
e
in
v
e
rter,
p
o
we
r
fa
c
to
r,
T
HD
fa
c
to
r,
a
n
d
f
u
n
d
a
m
e
n
tal
m
a
g
n
it
u
d
e
f
o
r
e
a
c
h
lev
e
l
c
o
n
fig
u
ra
ti
o
n
.
Th
e
stu
d
y
d
e
m
o
n
stra
tes
t
h
a
t
a
sy
m
m
e
tri
c
a
l
M
LIs
l
o
we
r
THD
(1
0
.
9
%
v
s.
1
6
.
7
%
)
a
n
d
i
n
c
re
a
sin
g
v
o
lt
a
g
e
le
v
e
ls
e
n
h
a
n
c
e
wa
v
e
fo
rm
q
u
a
li
t
y
b
u
t
sli
g
h
tl
y
re
d
u
c
e
th
e
fu
n
d
a
m
e
n
tal
v
o
lt
a
g
e
m
a
g
n
i
tu
d
e
,
i
m
p
a
c
ti
n
g
AC
p
o
we
r
o
u
t
p
u
t
.
Th
e
s
imu
latio
n
a
n
a
ly
sis
h
a
s
b
e
e
n
c
o
n
d
u
c
ted
u
si
n
g
th
e
P
S
IM
e
n
v
i
ro
n
m
e
n
t,
a
n
d
t
h
e
re
su
lt
s
h
a
v
e
b
e
e
n
v
a
li
d
a
ted
th
r
o
u
g
h
e
x
p
e
rime
n
tal
m
e
a
su
re
m
e
n
ts.
K
ey
w
o
r
d
s
:
Gr
id
co
n
n
ec
te
d
Mu
ltil
ev
el
in
v
er
ter
Ph
o
to
v
o
ltaic
Selectiv
e
h
ar
m
o
n
ic
elim
in
atio
n
T
o
tal
h
ar
m
o
n
ic
d
is
to
r
tio
n
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Nab
il
Said
an
i
R
E
E
PER Gr
o
u
p
,
I
n
n
o
v
ativ
e
T
ec
h
n
o
lo
g
y
an
d
C
o
m
p
u
tin
g
L
a
b
o
r
ato
r
y
,
Hig
h
e
r
Sch
o
o
l
o
f
T
e
ch
n
o
lo
g
y
Sid
i M
o
h
am
m
ed
B
en
Ab
d
ellah
Un
iv
er
s
ity
(
USMBA)
Fez
3
0
0
0
0
,
Mo
r
o
cc
o
E
m
ail:
n
ab
il.said
an
i@
u
s
m
b
a.
ac
.
m
a
1.
I
NT
RO
D
UCT
I
O
N
Mu
ltil
ev
el
in
v
er
ter
s
(
ML
I
s
)
ar
e
ad
v
an
ce
d
DC
-
to
-
AC
co
n
v
er
ter
s
th
at
g
en
e
r
ate
o
u
tp
u
t
v
o
ltag
e
wav
ef
o
r
m
s
with
m
u
ltip
le
d
is
cr
ete
lev
els,
s
ig
n
if
ica
n
tly
r
e
d
u
cin
g
h
ar
m
o
n
ic
d
is
to
r
tio
n
an
d
en
h
an
cin
g
p
o
wer
q
u
ality
[
1
]
-
[
5
]
.
On
e
o
f
th
e
m
o
s
t
p
r
o
m
is
in
g
ar
c
h
itectu
r
es
is
b
ased
o
n
ca
s
ca
d
ed
f
u
ll
-
b
r
id
g
e
m
o
d
u
les,
wh
ich
o
f
f
er
s
ca
lab
ilit
y
an
d
m
o
d
u
lar
ity
,
en
ab
lin
g
h
ig
h
-
v
o
ltag
e,
h
i
g
h
-
p
o
wer
a
p
p
licatio
n
s
with
im
p
r
o
v
e
d
e
f
f
icien
c
y
an
d
lo
wer
T
HD
[
6
]
-
[
9
]
.
R
ec
en
t
r
esear
ch
h
as
e
x
ten
s
iv
ely
ex
p
lo
r
ed
v
ar
io
u
s
ML
I
to
p
o
lo
g
ie
s
,
co
n
tr
o
l
s
tr
ateg
ies,
an
d
o
p
tim
izatio
n
tech
n
iq
u
es,
h
ig
h
lig
h
tin
g
th
eir
tech
n
ical
ad
v
an
ta
g
es
an
d
p
o
ten
tial
f
o
r
d
iv
er
s
e
in
d
u
s
tr
ial
ap
p
licatio
n
s
[
1
0
]
-
[
1
2
]
.
ML
I
s
ar
e
g
en
er
ally
class
if
ied
in
to
two
ca
teg
o
r
ies:
s
y
m
m
etr
ical
an
d
asy
m
m
etr
ical.
I
n
a
s
y
m
m
etr
ical
ML
I
,
ea
ch
ca
s
ca
d
e
d
f
u
ll
-
b
r
id
g
e
is
s
u
p
p
lied
b
y
an
id
en
tical
D
C
v
o
ltag
e
s
o
u
r
ce
,
en
s
u
r
in
g
u
n
i
f
o
r
m
v
o
ltag
e
s
tep
s
an
d
a
s
tr
aig
h
tf
o
r
war
d
d
esig
n
[
1
3
]
,
[
1
4
]
.
H
o
wev
er
,
th
is
u
n
if
o
r
m
ity
m
ay
lim
it
th
e
ac
h
iev
a
b
le
n
u
m
b
er
o
f
v
o
ltag
e
lev
els
an
d
f
lex
ib
ilit
y
in
d
esig
n
.
I
n
c
o
n
tr
ast,
asy
m
m
etr
ical
ML
I
s
u
tili
ze
d
if
f
e
r
en
t
DC
v
o
l
tag
e
lev
els
f
o
r
ea
c
h
f
u
ll
-
b
r
id
g
e
m
o
d
u
le,
wh
ich
all
o
ws
f
o
r
th
e
g
en
er
ati
o
n
o
f
a
d
d
itio
n
al
v
o
ltag
e
s
tep
s
an
d
ca
n
f
u
r
th
er
im
p
r
o
v
e
t
h
e
q
u
ality
o
f
th
e
o
u
tp
u
t
wav
e
f
o
r
m
[
1
5
]
,
[
1
6
]
.
T
h
is
ap
p
r
o
ac
h
,
wh
ile
o
f
f
er
in
g
e
n
h
an
ce
d
r
eso
l
u
tio
n
an
d
p
o
ten
tially
lo
wer
T
HD,
in
tr
o
d
u
ce
s
ad
d
itio
n
al
co
m
p
lex
ity
in
ter
m
s
o
f
DC
s
o
u
r
ce
m
an
a
g
em
en
t a
n
d
co
n
tr
o
l [
1
7
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
P
erfo
r
ma
n
ce
a
n
a
lysi
s
o
f a
ca
s
ca
d
ed
d
u
a
l fu
ll b
r
id
g
es 5
,
7
,
a
n
d
9
leve
ls
in
ve
r
ter
:
…
(
N
a
b
il S
a
id
a
n
i
)
2465
T
h
e
co
n
tr
o
l
o
f
a
m
u
ltil
ev
el
in
v
er
ter
ca
n
b
e
ac
h
ie
v
ed
th
r
o
u
g
h
v
ar
io
u
s
tech
n
iq
u
es,
o
n
e
o
f
wh
ich
is
th
e
s
elec
tiv
e
h
ar
m
o
n
ic
elim
in
atio
n
(
SHE)
m
et
h
o
d
[
1
8
]
-
[
2
0
]
.
T
h
e
SHE
tech
n
iq
u
e
e
n
ab
les
th
e
elim
in
atio
n
o
f
lo
wer
-
o
r
d
e
r
h
ar
m
o
n
ics
th
at
h
av
e
s
ig
n
if
ican
t
am
p
litu
d
es
[
2
1
]
-
[
2
3
]
.
I
ts
p
r
in
cip
le
is
b
ased
o
n
u
s
in
g
"
n
"
s
witch
in
g
an
g
les
to
co
n
tr
o
l
th
e
am
p
litu
d
e
o
f
th
e
f
u
n
d
am
e
n
tal
co
m
p
o
n
e
n
t
an
d
ca
n
ce
l
o
u
t
"n
-
1
"
h
ar
m
o
n
ics
[
2
4
]
,
[
2
5
]
.
I
n
o
u
r
s
tu
d
y
,
we
wi
ll
tak
e
ad
v
an
tag
e
o
f
th
ese
"
n
"
s
witch
in
g
an
g
les
to
elim
in
ate
as
m
an
y
h
ar
m
o
n
ics
as
p
o
s
s
ib
le
an
d
in
v
esti
g
ate
h
o
w
th
is
in
f
lu
en
ce
s
th
e
f
u
n
d
a
m
en
tal
co
m
p
o
n
en
t
an
d
th
e
o
v
er
all
p
o
wer
q
u
ality
d
eliv
er
ed
b
y
th
e
in
v
er
ter
[
2
6
]
.
T
h
e
m
ain
co
n
tr
ib
u
tio
n
o
f
th
is
wo
r
k
is
th
e
p
r
ac
tical
v
alid
atio
n
an
d
p
er
f
o
r
m
a
n
ce
an
aly
s
is
o
f
b
o
th
s
y
m
m
etr
ical
an
d
asy
m
m
etr
ical
ML
I
s
.
W
e
co
n
d
u
ct
a
d
etailed
co
m
p
ar
ativ
e
s
tu
d
y
b
y
ev
alu
atin
g
k
e
y
p
er
f
o
r
m
an
ce
m
etr
ics
—
in
clu
d
i
n
g
to
tal
h
ar
m
o
n
ic
d
is
to
r
tio
n
(
T
HD)
,
s
witch
in
g
an
d
co
n
d
u
ct
io
n
lo
s
s
es,
an
d
th
e
r
elatio
n
s
h
ip
b
etwe
en
AC
p
o
w
er
,
th
e
f
u
n
d
am
en
tal
v
o
ltag
e
m
ag
n
itu
d
e,
a
n
d
p
o
we
r
f
ac
to
r
,
ac
r
o
s
s
co
n
f
ig
u
r
atio
n
s
with
5
,
7
,
an
d
9
v
o
ltag
e
lev
els.
B
y
co
m
b
in
in
g
s
im
u
latio
n
an
d
ex
p
er
im
e
n
tal
r
esu
lts
,
o
u
r
s
tu
d
y
b
r
id
g
es
th
e
g
ap
b
etwe
en
th
eo
r
etica
l
r
esear
ch
a
n
d
p
r
ac
tical
im
p
lem
e
n
tatio
n
,
p
r
o
v
id
in
g
v
alu
a
b
le
in
s
ig
h
ts
in
to
th
e
tr
ad
e
-
o
f
f
s
an
d
b
en
ef
its
o
f
ea
ch
ML
I
co
n
f
ig
u
r
atio
n
f
o
r
r
ea
l
-
wo
r
ld
ap
p
licatio
n
s
.
2.
DE
S
I
G
N
AND
D
E
SCR
I
P
T
I
O
N
T
h
is
s
tu
d
y
f
o
cu
s
es
o
n
a
m
u
ltil
ev
el
in
v
er
te
r
th
at
co
n
s
is
ts
o
f
two
f
u
ll
-
b
r
id
g
e
m
o
d
u
les
(
FB
1
an
d
FB
2
)
co
n
n
ec
ted
in
s
er
ies,
as
s
h
o
wn
in
Fig
u
r
e
1
.
E
ac
h
f
u
ll
b
r
i
d
g
e
i
s
p
o
wer
ed
b
y
its
o
wn
DC
v
o
lt
ag
e
s
o
u
r
ce
,
lab
elled
E
1
an
d
E
2
.
I
n
th
is
s
ec
tio
n
,
w
e
ex
p
lain
h
o
w
we
d
eter
m
in
e
th
e
DC
v
o
ltag
e
v
al
u
es
f
o
r
ea
ch
f
u
ll
b
r
i
d
g
e,
an
d
o
u
tlin
e
th
e
p
r
o
ce
s
s
f
o
r
f
in
d
in
g
th
e
s
witch
in
g
a
n
g
les
u
s
in
g
th
e
SHE
tech
n
i
q
u
e
to
g
en
er
at
e
f
iv
e
-
,
s
ev
en
-
,
a
n
d
n
in
e
-
lev
el
v
o
ltag
e
wav
ef
o
r
m
s
.
Fig
u
r
e
1
.
B
lo
ck
d
iag
r
am
o
f
th
e
m
u
ltil
ev
el
in
v
er
ter
:
(
a)
c
asca
d
ed
f
u
ll
b
r
id
g
es
an
d
(
b
)
c
ir
cu
it
d
iag
r
am
o
f
th
e
f
u
ll
b
r
id
g
e
2
.
1
.
Det
er
m
ina
t
io
n o
f
t
he
D
C
s
o
urce
v
a
lue o
f
ea
ch
co
nfi
g
ura
t
io
n
a.
Desig
n
co
n
s
tr
ain
ts
-
Step
v
o
ltag
e:
I
d
e
n
tical
v
o
ltag
e
s
tep
s
b
etwe
en
co
n
s
ec
u
tiv
e
lev
els to
en
s
u
r
e
h
ar
m
o
n
ic
r
e
d
u
cti
o
n
.
-
Ma
x
im
u
m
o
u
tp
u
t
v
o
ltag
e:
Fix
ed
at
E
max
=3
1
.
1
V,
s
ca
led
d
o
w
n
b
y
a
f
ac
to
r
o
f
1
0
f
r
o
m
th
e
n
o
m
in
al
g
r
id
p
ea
k
v
o
ltag
e
(
3
1
1
V
f
o
r
a
2
2
0
V
RMS
s
y
s
tem
)
.
Fo
r
ea
ch
ca
s
e,
we
u
s
e
a
p
ai
r
o
f
eq
u
atio
n
s
d
e
r
iv
ed
f
r
o
m
t
h
e
le
v
el
ex
p
r
ess
io
n
s
.
b.
Sy
m
m
etr
ical
c
o
n
f
i
g
u
r
atio
n
(
5
-
le
v
el)
:
Fo
r
t
h
e
s
y
m
m
etr
ical
ca
s
e
(
E
1
=E
2
=
E
)
,
th
e
o
u
tp
u
t
v
o
ltag
e
le
v
els
ar
e
−2
E
,
−E
,
0
,
E
,
2
E
as sh
o
w
n
in
Fig
u
r
e
2
.
T
h
e
DC
s
o
u
r
ce
v
o
ltag
es a
r
e
d
er
i
v
ed
u
s
in
g
(
1
)
.
{
1
+
2
=
=
31
.
1
1
=
2
=
15
.
55
⟹
1
=
2
=
15
,
55
(
1
)
c.
Asy
m
m
etr
ical
c
o
n
f
ig
u
r
atio
n
(
7
-
l
ev
el)
:
Fo
r
s
ev
e
n
-
lev
el,
an
a
s
y
m
m
etr
ical
co
n
f
ig
u
r
atio
n
(
E
2
>E
1
)
g
en
er
ates
ad
d
itio
n
al
v
o
ltag
e
lev
els:
−
E
1
−E
2
,
−E
2
,
−E
1
,
0
,
E
1
,
E
2
,
E
1
+
E
2
(
Fig
u
r
e
3
)
.
T
h
e
DC
s
o
u
r
ce
s
ar
e
d
eter
m
in
ed
b
y
s
o
lv
in
g
(
2
)
.
{
1
+
2
=
E
=
31
.
1
1
=
E
3
=
10
.
3
⟹
{
1
=
10
.
3
2
=
20
.
7
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
4
,
Dec
em
b
er
20
25
:
2464
-
2
4
7
5
2466
d.
Asy
m
m
etr
ical
c
o
n
f
ig
u
r
atio
n
(
9
-
L
ev
el)
:
T
o
ac
h
iev
e
n
in
e
l
ev
els
as
s
h
o
wn
in
Fig
u
r
e
4
(
−E
1
−E
2
,
−E
2
,
E
1
−E
2
,
−E
1
,
0
,
E
1
,
E
2
−E
1
,
E
2
,
E
1
+E
2
)
.
T
h
e
DC
s
o
u
r
ce
s
ar
e
ca
lcu
lated
u
s
in
g
(
3
)
.
{
1
+
2
=
=
31
.
1
2
−
1
=
2
=
15
.
5
⟹
{
1
=
7
.
7
2
=
23
.
3
(
3
)
Fig
u
r
e
2
.
Fiv
e
-
le
v
el
o
u
tp
u
t
v
o
ltag
e
wav
ef
o
r
m
Fig
u
r
e
3
.
Sev
e
n
-
lev
el
o
u
tp
u
t
v
o
ltag
e
wav
ef
o
r
m
Fig
u
r
e
4
.
Sev
e
n
-
lev
el
o
u
tp
u
t
v
o
ltag
e
wav
ef
o
r
m
2
.
2
.
Det
er
m
ina
t
io
n o
f
t
he
s
wit
ching
a
ng
les
T
h
e
s
elec
tiv
e
h
ar
m
o
n
ic
elim
i
n
atio
n
tech
n
i
q
u
e
in
v
o
lv
es
d
ec
o
m
p
o
s
in
g
t
h
e
o
u
tp
u
t
v
o
ltag
e
wav
ef
o
r
m
in
to
a
Fo
u
r
ier
s
er
ies
an
d
d
ete
r
m
in
in
g
t
h
e
ap
p
r
o
p
r
iate
s
witch
in
g
a
n
g
les
to
elim
in
ate
s
p
ec
i
f
ic
h
ar
m
o
n
ics.
T
h
e
tech
n
iq
u
e
b
ec
o
m
es
m
o
r
e
ef
f
ec
tiv
e
as
th
e
n
u
m
b
er
o
f
s
witch
in
g
an
g
les
in
cr
ea
s
es,
en
a
b
lin
g
t
h
e
elim
in
atio
n
o
f
a
g
r
ea
ter
n
u
m
b
er
o
f
h
ar
m
o
n
ics
.
T
h
e
f
o
u
r
ier
s
er
ies
d
ec
o
m
p
o
s
it
io
n
(
FS
D)
o
f
th
e
i
n
v
er
ter
’
s
o
u
tp
u
t
v
o
ltag
e
ca
n
b
e
d
er
iv
ed
b
y
f
o
llo
win
g
t
h
e
s
tep
s
b
elo
w.
First,
we
c
o
n
s
id
er
th
at
th
e
o
u
tp
u
t
v
o
ltag
e
wav
ef
o
r
m
o
f
th
e
in
v
er
ter
is
co
m
p
o
s
ed
o
f
a
s
u
m
o
f
d
is
tin
ct
r
ec
tan
g
u
lar
p
u
ls
es,
as illu
s
tr
at
ed
in
Fig
u
r
e
5
.
Fig
u
r
e
5
.
Ou
t
p
u
t v
o
ltag
e
ex
p
r
ess
ed
as a
s
u
m
o
f
p
ar
tial w
av
e
f
o
r
m
s
Vi
F
r
o
m
t
h
i
s
o
b
s
e
r
v
a
t
i
o
n
,
t
h
e
o
u
t
p
u
t
v
o
l
t
a
g
e
(
4
)
c
a
n
b
e
e
x
p
r
e
s
s
e
d
a
s
t
h
e
s
u
m
o
f
e
l
e
m
e
n
t
a
r
y
v
o
l
t
a
g
e
i
:
=
1
+
2
+
⋯
+
(
4
)
E
ac
h
co
m
p
o
n
en
t
co
r
r
esp
o
n
d
s
to
a
v
o
ltag
e
s
eg
m
en
t
(
Fig
u
r
e
6
)
d
ef
in
ed
b
y
a
s
p
ec
if
ic
s
wit
ch
in
g
an
g
le
,
an
d
ea
ch
o
f
th
em
h
as
o
d
d
s
y
m
m
etr
y
.
T
h
er
ef
o
r
e,
th
ei
r
Fo
u
r
ier
S
er
ies
d
ec
o
m
p
o
s
itio
n
(
5
)
co
n
ta
in
s
o
n
ly
s
in
e
ter
m
s
an
d
ca
n
b
e
wr
itten
as
(
5
)
:
(
)
=
∑
.
(
0
)
+
∞
=
1
(
5
)
wh
er
e
ar
e
th
e
Fo
u
r
ier
c
o
ef
f
ici
en
ts
f
o
r
th
e
-
th
s
eg
m
en
t a
n
d
a
r
e
g
iv
en
b
y
(
6
)
.
=
4
2
∫
.
(
0
)
.
−
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
P
erfo
r
ma
n
ce
a
n
a
lysi
s
o
f a
ca
s
ca
d
ed
d
u
a
l fu
ll b
r
id
g
es 5
,
7
,
a
n
d
9
leve
ls
in
ve
r
ter
:
…
(
N
a
b
il S
a
id
a
n
i
)
2467
T
h
e
(
7
)
r
ep
r
esen
ts
th
e
s
o
lu
tio
n
o
f
(
6
)
.
=
2
(
(
)
−
(
(
−
)
)
)
(
7
)
T
h
is
m
ea
n
s
th
e
to
tal
o
u
tp
u
t v
o
ltag
e
(
)
b
ec
o
m
es
(
8
)
.
(
)
=
∑
=
1
=
∑
(
∑
.
(
0
)
+
∞
=
1
)
=
1
(
8
)
W
e
ca
n
r
ea
r
r
an
g
e
(
8
)
to
(
9
)
.
(
)
=
∑
(
∑
=
1
)
(
0
)
+
∞
=
1
(
9
)
T
h
u
s
,
th
e
-
th
h
ar
m
o
n
ic
c
o
m
p
o
n
en
t o
f
th
e
o
u
tp
u
t
v
o
lta
g
e
is
g
iv
en
b
y
(
1
0
)
an
d
(
1
1
)
.
(
)
=
(
∑
=
1
)
(
0
)
(
1
0
)
(
)
=
2
.
(
∑
(
(
)
−
(
(
−
)
)
)
=
1
)
(
0
)
(
1
1
)
T
h
e
am
p
litu
d
e
o
f
th
e
n
th
h
a
r
m
o
n
ic
,
n
o
ted
B
n
,
is
(
1
2
)
.
=
(
∑
=
1
)
=
2
.
(
∑
(
(
)
−
(
(
−
)
)
)
=
1
)
(
1
2
)
Fig
u
r
e
6
.
I
ll
u
s
tr
atio
n
o
f
t
h
e
p
a
r
tial w
av
ef
o
r
m
Vi
T
o
elim
in
ate
a
s
p
ec
if
ic
h
a
r
m
o
n
ic
,
it
is
s
u
f
f
icien
t
to
s
et
=
0
.
Fin
ally
,
th
e
s
y
s
tem
o
f
eq
u
atio
n
s
u
s
ed
in
th
e
SHE
tech
n
i
q
u
e
is
s
o
lv
ed
u
s
in
g
MA
T
L
AB
’
s
f
s
o
lv
e
f
u
n
ctio
n
.
T
h
e
in
itial
g
u
ess
v
ec
to
r
f
o
r
f
s
o
lv
e
is
co
m
p
u
ted
b
ased
o
n
(
1
3
)
.
0
=
2
.
(
−
1
2
)
ℎ
=
1
,
2
…
ℎ
ℎ
(
1
3
)
a.
Sy
m
m
etr
ical
ML
I
f
iv
e
lev
els:
I
n
th
e
f
iv
e
-
le
v
el
wav
e
f
o
r
m
s
h
o
wn
in
F
ig
u
r
e
2
,
we
h
av
e
t
wo
s
witch
in
g
an
g
les (
1
4
)
,
wh
ich
m
ea
n
s
two
h
ar
m
o
n
ics to
elim
in
ate
n
=3
a
n
d
n
=5
(
3
rd
an
d
5
th
h
a
r
m
o
n
ic)
.
{
∑
(
3
)
−
(
3
(
−
)
)
2
=
1
=
0
∑
(
5
)
−
(
5
(
−
)
)
2
=
1
=
0
⟹
{
1
=
12
.
00°
2
=
48
.
00°
(
1
4
)
b.
Asy
m
m
etr
ical
ML
I
s
ev
en
lev
els:
T
h
e
o
u
tp
u
t
v
o
ltag
e
o
f
th
e
s
ev
en
-
lev
el
wav
ef
o
r
m
s
h
o
wn
in
F
ig
u
r
e
3
p
o
s
s
ess
ed
th
r
ee
s
witch
in
g
a
n
g
les
(
1
5
)
,
wh
ic
h
m
a
k
e
it
p
o
s
s
ib
le
to
elim
in
ate
th
r
ee
h
ar
m
o
n
ics
n
=3
,
n
=5
,
an
d
n
=7
.
{
∑
c
os
(
3
)
−
c
os
(
3
(
−
)
)
3
=
1
=
0
∑
c
os
(
5
)
−
c
os
(
5
(
−
)
)
3
=
1
=
0
∑
c
os
(
7
)
−
c
os
(
7
(
−
)
)
3
=
1
=
0
⟹
{
1
=
11
.
67°
2
=
26
.
93°
3
=
56
.
05°
(
15
)
c.
A
s
y
m
m
e
t
r
ic
a
l
M
L
I
n
i
n
e
l
e
v
e
ls
:
T
h
e
n
u
m
b
e
r
o
f
s
w
i
t
c
h
i
n
g
a
n
g
l
e
s
i
n
t
h
e
n
i
n
e
-
l
e
v
e
l
w
a
v
e
f
o
r
m
i
n
F
i
g
u
r
e
4
i
s
f
o
u
r
,
a
s
i
n
d
i
ca
t
e
d
b
y
(
1
6
)
,
w
h
i
ch
a
l
l
o
w
s
t
o
e
l
i
m
i
n
a
t
i
o
n
o
f
f
o
u
r
h
a
r
m
o
n
i
c
s
,
n
=
3
,
n
=
5
,
n
=
7
,
a
n
d
n
=
9.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
4
,
Dec
em
b
er
20
25
:
2464
-
2
4
7
5
2468
{
∑
c
os
(
3
)
−
c
os
(
3
(
−
)
)
4
=
1
=
0
∑
c
os
(
5
)
−
c
os
(
5
(
−
)
)
4
=
1
=
0
∑
c
os
(
7
)
−
c
os
(
7
(
−
)
)
4
=
1
=
0
∑
c
os
(
9
)
−
c
os
(
9
(
−
)
)
4
=
1
=
0
⟹
{
1
=
0
.
85°
2
=
24
.
85°
3
=
35
.
14°
4
=
60
.
85°
(
16)
3.
SI
M
UL
A
T
I
O
N
T
h
e
PS
I
M
s
i
m
u
lat
io
n
w
as
c
o
n
d
u
cte
d
u
s
i
n
g
t
h
e
s
c
h
e
m
a
tic
d
ia
g
r
a
m
p
r
ese
n
t
ed
i
n
F
ig
u
r
e
7
.
F
ig
u
r
e
7
d
e
p
i
cts
t
h
e
c
o
n
f
i
g
u
r
a
ti
o
n
o
f
t
h
e
ML
I
,
w
h
i
c
h
c
o
n
s
is
ts
o
f
tw
o
f
u
ll
b
r
i
d
g
es
c
o
n
n
ec
t
e
d
in
s
er
ies
,
wi
th
f
o
u
r
s
wi
tc
h
es
ea
c
h
.
T
h
e
o
u
t
p
u
t
v
o
l
ta
g
e
is
t
h
e
s
u
m
o
f
th
e
f
u
l
l
b
r
i
d
g
e
o
u
t
p
u
ts
,
a
n
d
t
h
e
n
u
m
b
e
r
o
f
l
e
v
els
ca
n
b
e
v
a
r
i
ed
f
r
o
m
5
to
9
ac
co
r
d
i
n
g
t
o
t
h
e
s
wit
c
h
es
c
o
n
t
r
o
l
an
d
t
h
e
DC
in
p
u
t
v
al
u
e
,
a
s
e
x
p
lai
n
ed
e
ar
lie
r
i
n
th
is
ar
t
icl
e.
Fig
u
r
e
7
.
Sch
em
atic
d
iag
r
am
of
th
e
PS
I
M
en
v
ir
o
n
m
e
n
t
T
h
e
in
v
er
ter
is
co
n
n
ec
ted
to
a
n
R
L
cir
cu
it (
R
=
5
1
.
4
Ω
an
d
L
=
200
m
H)
t
h
at
ac
ts
as a
lo
w
-
p
ass
f
ilter
to
r
em
o
v
e
h
ig
h
-
f
r
eq
u
en
cy
co
m
p
o
n
e
n
ts
f
r
o
m
th
e
in
v
er
ter
'
s
o
u
tp
u
t
v
o
ltag
e.
I
n
o
r
d
er
to
m
ea
s
u
r
e
th
e
p
o
we
r
ab
s
o
r
b
ed
b
y
ea
c
h
f
u
ll
b
r
id
g
e
in
th
e
in
v
er
ter
,
it
is
n
ec
ess
ar
y
to
m
ea
s
u
r
e
th
e
i
n
p
u
t
c
u
r
r
e
n
t
an
d
v
o
ltag
e.
B
y
m
u
ltip
ly
in
g
th
ese
in
s
tan
tan
e
o
u
s
v
alu
es,
th
e
in
s
tan
tan
eo
u
s
p
o
wer
ca
n
b
e
o
b
tain
e
d
.
T
h
is
p
r
o
d
u
ct
is
th
en
f
ilter
e
d
u
s
in
g
a
l
o
w
-
p
ass
f
ilter
to
o
b
t
ain
th
e
a
v
er
ag
e
v
alu
e,
wh
ich
r
ep
r
esen
ts
th
e
r
ea
l
p
o
wer
co
n
s
u
m
ed
b
y
t
h
e
f
u
ll
b
r
id
g
e.
T
h
e
s
am
e
p
r
o
ce
d
u
r
e
is
ap
p
lied
to
m
ea
s
u
r
e
th
e
p
o
wer
co
n
s
u
m
ed
b
y
th
e
l
o
ad
.
B
y
p
er
f
o
r
m
in
g
th
ese
m
ea
s
u
r
e
m
en
ts
,
it
b
ec
o
m
es
p
o
s
s
ib
le
to
d
eter
m
in
e
th
e
lo
s
s
es
in
th
e
in
v
er
ter
.
T
h
is
is
ac
h
iev
ed
b
y
s
u
b
tr
ac
tin
g
t
h
e
p
o
wer
at
th
e
i
n
p
u
t o
f
th
e
i
n
v
er
ter
,
wh
ich
is
th
e
s
u
m
o
f
th
e
p
o
wer
at
th
e
in
p
u
t
o
f
ea
ch
f
u
ll
b
r
id
g
e
,
f
r
o
m
th
e
p
o
wer
at
th
e
o
u
tp
u
t
o
f
th
e
in
v
er
ter
,
wh
ich
r
ep
r
esen
ts
th
e
p
o
w
er
ab
s
o
r
b
ed
b
y
th
e
lo
ad
.
T
h
is
s
u
b
tr
ac
tio
n
allo
ws f
o
r
th
e
ca
lcu
latio
n
o
f
t
h
e
lo
s
s
es in
cu
r
r
e
d
with
in
th
e
in
v
er
ter
s
y
s
tem
.
T
ab
le
1
s
h
o
ws
th
e
o
u
t
p
u
t v
o
lt
ag
e,
s
p
ec
tr
u
m
a
n
aly
s
is
o
f
th
e
o
u
tp
u
t
v
o
ltag
e
,
an
d
t
h
e
cu
r
r
en
t
wav
ef
o
r
m
o
f
ea
ch
ca
s
e.
T
h
e
s
p
ec
tr
u
m
an
aly
s
is
o
f
th
e
o
u
tp
u
t
v
o
lt
ag
e
co
n
f
ir
m
s
th
e
ef
f
ec
tiv
e
n
e
s
s
o
f
th
e
Selectiv
e
Har
m
o
n
ic
E
lim
in
atio
n
(
SHE)
tech
n
iq
u
e
in
elim
in
atin
g
s
p
e
cif
ic
h
ar
m
o
n
ics.
As
th
e
n
u
m
b
er
o
f
lev
els
in
th
e
in
v
er
ter
in
cr
ea
s
es,
m
o
r
e
h
ar
m
o
n
ics ca
n
b
e
e
f
f
ec
tiv
ely
elim
in
ated
.
T1
T4
T2
T3
E1
T5
T8
T6
T7
E2
L
o
a
d
I1
I2
V1
V2
V
ac
I
ac
I
ac
V
ac
I1
V1
I2
V2
Pac
P1
P2
P2
P1
Pac
Loss
DC
P
o
w
e
r
o
f
F
B
1
DC
P
o
w
e
r
o
f
F
B
2
L
o
s
s
e
s
in
t
h
e
in
v
e
r
t
e
r
A
C
P
o
w
e
r
o
f
t
h
e
M
L
I
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
P
erfo
r
ma
n
ce
a
n
a
lysi
s
o
f a
ca
s
ca
d
ed
d
u
a
l fu
ll b
r
id
g
es 5
,
7
,
a
n
d
9
leve
ls
in
ve
r
ter
:
…
(
N
a
b
il S
a
id
a
n
i
)
2469
T
ab
le
1
.
Simu
latio
n
wav
e
f
o
r
m
s
an
d
s
p
ec
tr
u
m
a
n
aly
s
is
o
f
th
e
in
v
er
ter
o
u
tp
u
t
v
o
ltag
e
an
d
cu
r
r
en
t
wer
e
p
er
f
o
r
m
ed
o
n
th
e
PS
I
M
en
v
ir
o
n
m
en
t
Le
v
e
l
W
a
v
e
f
o
r
m
e
V
o
l
t
a
g
e
s
p
e
c
t
r
u
m
C
u
r
r
e
n
t
s
p
e
c
t
r
u
m
5L
7L
9L
4.
E
XP
E
R
I
M
E
N
T
A
L
VAL
I
D
AT
I
O
N
T
o
p
r
ac
tically
v
alid
ate
th
e
s
im
u
latio
n
r
esu
lts
p
r
esen
ted
in
th
e
p
r
e
v
io
u
s
s
ec
tio
n
,
a
test
b
en
ch
s
etu
p
(
Fig
u
r
e
8
)
was
u
s
ed
.
T
h
is
ex
p
er
im
en
tal
s
etu
p
co
n
s
is
ts
p
r
im
ar
ily
o
f
m
ea
s
u
r
em
e
n
t
in
s
tr
u
m
en
ts
—
in
clu
d
in
g
a
v
o
ltm
eter
,
a
m
m
eter
,
an
d
p
o
wer
q
u
ality
an
aly
s
er
—
as
we
ll
as
th
e
in
v
er
ter
with
its
d
r
iv
er
s
an
d
is
o
latio
n
in
ter
f
ac
e
f
ee
d
in
g
an
R
L
lo
a
d
.
Fig
u
r
e
8
.
E
x
p
er
im
e
n
tal
b
en
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
4
,
Dec
em
b
er
20
25
:
2464
-
2
4
7
5
2470
T
o
co
m
p
ar
e
th
e
in
v
er
ter
’
s
p
er
f
o
r
m
an
ce
b
etwe
en
s
im
u
latio
n
an
d
e
x
p
er
im
en
tal
test
in
g
,
a
n
d
d
u
e
to
th
e
lim
ited
p
r
ec
is
io
n
o
f
th
e
p
o
we
r
q
u
ality
an
al
y
ze
r
,
it
was
n
ec
e
s
s
ar
y
to
ca
lcu
late
th
e
p
o
wer
o
n
b
o
th
s
id
es
o
f
t
h
e
in
v
er
ter
u
s
in
g
th
e
m
ea
s
u
r
e
d
p
ar
am
eter
s
an
d
th
en
d
ed
u
ce
th
e
p
o
wer
lo
s
s
es.
Ad
d
itio
n
ally
,
th
e
ap
p
ar
en
t
p
o
wer
was
ca
lcu
lated
to
en
ab
le
co
m
p
ar
is
o
n
b
etwe
en
th
e
p
o
wer
f
a
cto
r
an
d
th
e
c
o
s
in
e
o
f
th
e
p
h
a
s
e
an
g
le
o
f
th
e
lo
ad
(
co
s
φ)
,
wh
ich
p
r
o
v
id
es in
s
ig
h
t in
to
th
e
im
p
ac
t
o
f
h
a
r
m
o
n
ic
d
is
to
r
tio
n
.
Fig
u
r
e
9
p
r
esen
ts
a
s
im
p
lifie
d
s
ch
em
atic
d
iag
r
am
o
f
th
e
test
b
en
ch
to
aid
u
n
d
er
s
tan
d
i
n
g
.
T
h
e
s
y
s
tem
co
n
s
is
ts
o
f
s
ev
er
al
k
ey
co
m
p
o
n
en
ts
(
F
ig
u
r
e
s
8
an
d
9
)
:
-
C
o
m
m
an
d
cir
cu
it:
An
A
r
d
u
i
n
o
UNO
g
en
er
ates
co
m
m
an
d
s
ig
n
als
th
at
co
n
tr
o
l
th
e
o
p
er
atio
n
o
f
th
e
in
v
er
ter
.
-
Op
to
co
u
p
ler
:
I
t
s
er
v
es
as
a
m
ea
n
s
to
s
ep
ar
ate
th
e
co
m
m
a
n
d
cir
cu
it
f
r
o
m
th
e
p
o
wer
cir
c
u
it.
I
t
en
s
u
r
es
elec
tr
ical
is
o
latio
n
an
d
p
r
o
tectio
n
b
etwe
en
th
e
two
cir
cu
its
.
-
Dr
iv
er
s
:
T
h
ese
co
m
p
o
n
en
ts
ar
e
r
esp
o
n
s
ib
le
f
o
r
ap
p
ly
in
g
th
e
r
eq
u
ir
e
d
v
o
ltag
e
b
etwe
en
t
h
e
g
ate
an
d
th
e
s
o
u
r
ce
o
f
t
h
e
tr
an
s
is
to
r
s
in
th
e
in
v
er
ter
.
-
Fu
ll
b
r
id
g
es:
T
h
ese
b
r
id
g
e
cir
cu
its
g
en
er
ate
th
e
c
o
r
r
esp
o
n
d
i
n
g
v
o
ltag
e
o
u
tp
u
t
b
ased
o
n
th
e
co
m
m
a
n
d
s
r
ec
eiv
ed
f
r
o
m
th
e
c
o
m
m
a
n
d
ci
r
cu
it.
T
h
ey
co
n
v
er
t th
e
DC
in
p
u
t in
to
th
e
d
esire
d
AC
o
u
tp
u
t
v
o
ltag
e
Fig
u
r
e
9
.
Sch
em
atic
b
lo
ck
o
f
e
x
p
er
im
en
tal
s
etu
p
T
h
e
ex
p
er
im
e
n
tal
v
alid
atio
n
in
v
o
lv
ed
m
ea
s
u
r
in
g
v
ar
io
u
s
p
ar
am
eter
s
to
co
m
p
ar
e
th
e
s
im
u
latio
n
r
esu
lts
with
p
r
ac
tical
r
esu
lts
.
T
h
e
f
o
llo
win
g
m
ea
s
u
r
em
e
n
ts
wer
e
tak
en
:
-
Av
er
ag
e
v
o
ltag
e
(
E
1
,
E
2
)
an
d
cu
r
r
en
t (
I
DC1
, I
DC2
)
at
th
e
i
n
p
u
t
o
f
ea
ch
f
u
ll b
r
i
d
g
e.
-
I
RMS
th
e
cu
r
r
e
n
t RMS v
alu
e
m
ea
s
u
r
ed
at
th
e
lo
a
d
(
R
L
cir
cu
it
)
.
-
V
RMS
v
o
ltag
e
R
MS
v
alu
e
,
as
well
as
v
o
ltag
e
T
o
tal
Har
m
o
n
ic
Dis
to
r
tio
n
(
T
HD)
an
d
c
u
r
r
en
t
T
HD,
m
ea
s
u
r
ed
at
th
e
o
u
tp
u
t
o
f
th
e
i
n
v
er
ter
u
s
in
g
a
p
o
wer
q
u
ality
an
aly
ze
r
.
I
n
ad
d
itio
n
to
th
ese
m
ea
s
u
r
e
m
en
ts
,
o
th
er
p
a
r
am
eter
s
wer
e
ca
lcu
lated
u
s
in
g
th
e
f
o
llo
win
g
f
o
r
m
u
las:
-
DC
p
o
wer
at
th
e
in
p
u
t
o
f
th
e
in
v
er
ter
is
ca
lcu
lated
in
(
1
7
)
.
=
1
.
1
+
2
.
2
(
17)
-
AC
p
o
wer
at
th
e
o
u
tp
u
t o
f
th
e
in
v
er
ter
is
d
eter
m
in
e
d
b
y
u
s
in
g
(
1
8
)
.
=
.
2
(
1
8
)
-
L
o
s
s
es in
th
e
in
v
er
ter
ar
e
d
ed
u
ce
d
b
y
t
h
e
s
u
b
tr
ac
tio
n
o
f
(
1
7
)
an
d
(
1
8
)
as in
d
icate
d
in
(
1
9
)
.
=
−
(
1
9
)
B
y
m
ea
s
u
r
in
g
an
d
ca
lcu
latin
g
th
ese
p
ar
am
eter
s
,
a
co
m
p
r
eh
e
n
s
iv
e
u
n
d
e
r
s
tan
d
in
g
o
f
th
e
in
v
er
ter
'
s
p
er
f
o
r
m
an
ce
an
d
ef
f
icie
n
cy
ca
n
b
e
o
b
tain
e
d
,
allo
win
g
f
o
r
a
co
m
p
ar
is
o
n
b
etwe
en
s
im
u
latio
n
an
d
p
r
ac
tical
r
esu
lts
.
T
ab
le
2
p
r
o
v
id
es
a
s
p
ec
tr
u
m
an
aly
s
is
an
d
wav
e
f
o
r
m
r
ep
r
esen
tatio
n
f
o
r
b
o
th
cu
r
r
e
n
t
an
d
v
o
ltag
e
a
t
th
e
o
u
tp
u
t
o
f
t
h
e
in
v
er
ter
,
c
o
r
r
esp
o
n
d
in
g
to
d
if
f
er
en
t n
u
m
b
er
s
o
f
lev
els.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
P
erfo
r
ma
n
ce
a
n
a
lysi
s
o
f a
ca
s
ca
d
ed
d
u
a
l fu
ll b
r
id
g
es 5
,
7
,
a
n
d
9
leve
ls
in
ve
r
ter
:
…
(
N
a
b
il S
a
id
a
n
i
)
2471
T
ab
le
2
.
Pra
ctica
l w
av
ef
o
r
m
s
an
d
s
p
ec
tr
u
m
an
aly
s
is
u
s
in
g
p
o
wer
q
u
ality
a
n
aly
s
er
C
.
A
8
3
3
1
Le
v
e
l
W
a
v
e
f
o
r
m
V
o
l
t
a
g
e
s
p
e
c
t
r
u
m
C
u
r
r
e
n
t
sp
e
c
t
r
u
m
5L
7L
9L
5.
RE
SU
L
T
S
Simu
latio
n
an
d
p
r
ac
tical
r
esu
lts
ar
e
p
r
esen
ted
i
n
T
ab
le
3.
B
ased
o
n
th
e
a
n
aly
s
is
o
f
T
ab
le
3
,
it
is
ev
id
en
t
th
at
th
e
d
if
f
er
en
ce
b
etwe
en
th
e
r
esu
lts
o
b
tain
ed
at
7
an
d
9
le
v
els
is
r
elativ
ely
s
m
all
co
m
p
ar
ed
t
o
th
e
d
if
f
er
en
ce
s
o
b
s
er
v
ed
b
etwe
en
5
an
d
7
lev
els
o
r
5
a
n
d
9
lev
els.
T
h
is
f
in
d
in
g
r
ein
f
o
r
ce
s
th
e
f
ac
t
th
at
th
e
elim
in
atio
n
o
f
lo
w
-
o
r
d
er
h
a
r
m
o
n
ics
s
ig
n
if
ican
tly
im
p
r
o
v
e
s
th
e
p
er
f
o
r
m
an
ce
o
f
th
e
in
v
er
ter
.
T
h
e
p
r
esen
ce
o
f
lo
w
-
o
r
d
er
h
ar
m
o
n
ics,
wh
i
ch
ten
d
to
h
av
e
s
ig
n
if
ica
n
t
m
ag
n
itu
d
es,
ca
n
ad
v
er
s
ely
i
m
p
ac
t
th
e
q
u
ality
o
f
th
e
in
v
er
ter
.
T
ab
le
3
.
Simu
latio
n
a
n
d
p
r
ac
tical
r
esu
lts
M
e
a
su
r
e
d
a
n
d
c
a
l
c
u
l
a
t
e
d
p
a
r
a
me
t
e
r
s
S
i
mu
l
a
t
i
o
n
P
r
a
c
t
i
c
a
l
S
y
m
5
L
A
sy
.
7
L
A
sy
.
9
L
S
y
m
5
L
A
sy
.
7
L
A
sy
.
9
L
R
M
S
V
o
l
t
a
g
e
(
V
)
2
2
.
7
3
0
2
2
.
1
8
0
2
1
.
9
9
0
2
2
.
9
0
0
2
2
.
3
0
0
2
2
.
1
0
0
C
u
r
r
e
n
t
(
A
)
0
.
2
7
6
0
.
2
7
2
0
.
2
7
0
0
.
2
7
9
0
.
2
7
3
0
.
2
7
1
S
p
e
c
t
r
u
m
a
n
a
l
y
si
s
V
F
u
n
d
a
m
e
n
t
a
l
R
M
S
v
a
l
u
e
(
V
)
2
2
.
3
7
3
2
2
.
0
7
6
2
1
.
8
9
9
2
2
.
6
0
0
2
2
.
2
0
0
2
2
.
0
0
0
TH
D
%
1
7
.
9
4
0
1
2
.
8
6
0
1
1
.
9
3
0
1
6
.
7
0
0
1
1
.
8
0
0
1
0
.
9
0
0
I
F
u
n
d
a
m
e
n
t
a
l
R
M
S
v
a
l
u
e
(
A
)
0
.
2
7
6
0
.
2
7
2
0
.
2
6
9
0
.
2
7
0
0
.
2
7
0
0
.
2
6
0
TH
D
%
2
.
1
3
0
1
.
2
1
0
1
.
0
7
0
2
.
7
0
0
1
.
8
0
0
1
.
6
0
0
P
o
w
e
r
a
n
a
l
y
si
s
P
DC
(W)
4
.
2
0
5
4
.
0
6
6
4
.
0
0
3
4
.
2
4
7
4
.
0
7
3
4
.
0
1
0
P
AC
(W)
3
.
9
4
4
3
.
8
1
0
3
.
7
5
4
4
.
0
0
1
3
.
8
3
1
3
.
7
7
5
A
p
p
a
r
e
n
t
p
o
w
e
r
(
V
A
)
6
.
2
7
3
6
.
0
3
3
5
.
9
3
7
6
.
3
8
9
6
.
0
8
8
5
.
9
8
9
P
o
w
e
r
f
a
c
t
o
r
0
.
6
2
9
0
.
6
3
2
0
.
6
3
2
0
.
6
2
6
0
.
6
2
9
0
.
6
3
0
Lo
sse
s (W
)
0
.
2
6
1
0
.
2
5
6
0
.
2
4
9
0
.
2
4
6
0
.
2
4
2
0
.
2
3
5
Ef
f
i
c
i
e
n
c
y
(
%)
9
3
.
7
9
3
9
3
.
7
0
4
9
3
.
7
8
0
9
4
.
2
0
8
9
4
.
0
6
0
9
4
.
1
3
4
T
h
e
in
ter
p
r
etatio
n
o
f
Fig
u
r
e
1
0
s
h
o
ws
a
clea
r
co
r
r
elatio
n
b
et
wee
n
th
e
n
u
m
b
e
r
o
f
lev
els
an
d
th
e
T
HD
f
ac
to
r
.
As
th
e
n
u
m
b
e
r
o
f
lev
el
s
in
cr
ea
s
es,
th
er
e
is
a
s
ig
n
if
ican
t
r
ed
u
ctio
n
i
n
th
e
T
HD
f
ac
to
r
.
T
h
is
o
b
s
er
v
atio
n
is
p
ar
ticu
lar
ly
e
v
id
en
t
in
th
e
t
r
an
s
itio
n
f
r
o
m
5
lev
els
t
o
7
le
v
els,
wh
er
e
t
h
er
e
is
a
s
u
b
s
tan
t
ial
d
ec
r
ea
s
e
in
th
e
T
HD
f
ac
to
r
.
T
h
is
r
ein
f
o
r
ce
s
th
e
n
o
tio
n
t
h
at
in
cr
ea
s
in
g
th
e
n
u
m
b
er
o
f
lev
els
in
th
e
in
v
er
ter
lead
s
to
a
m
o
r
e
s
in
u
s
o
id
al
o
u
tp
u
t w
av
ef
o
r
m
with
r
ed
u
ce
d
h
ar
m
o
n
ic
co
n
ten
t,
r
esu
ltin
g
in
a
lo
wer
T
HD
f
ac
to
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
6
9
4
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
,
Vo
l.
16
,
No
.
4
,
Dec
em
b
er
20
25
:
2464
-
2
4
7
5
2472
B
y
an
aly
s
in
g
Fig
u
r
e
1
1
,
it
is
e
v
id
en
t
th
at
as
th
e
n
u
m
b
er
o
f
l
ev
els
in
cr
ea
s
es
in
th
e
in
v
er
ter
,
th
e
R
MS
v
alu
e
o
f
th
e
o
u
tp
u
t v
o
ltag
e
a
n
d
its
f
u
n
d
am
en
tal
co
m
p
o
n
en
t
p
r
o
g
r
ess
iv
ely
co
n
v
er
g
e
an
d
b
e
co
m
e
clo
s
er
to
ea
ch
o
th
er
.
T
h
e
an
aly
s
is
o
f
Fig
u
r
e
1
2
s
h
o
ws
th
at
th
e
5
-
lev
el
v
o
ltag
e
co
n
f
i
g
u
r
atio
n
allo
ws
f
o
r
a
h
ig
h
er
p
o
wer
tr
an
s
f
er
co
m
p
a
r
ed
to
th
e
7
-
lev
el
an
d
9
-
lev
el
c
o
n
f
ig
u
r
atio
n
s
.
T
h
is
o
b
s
er
v
atio
n
ca
n
b
e
attr
i
b
u
ted
to
Fig
u
r
e
1
3
,
wh
ich
d
em
o
n
s
tr
ates
th
at
an
in
cr
ea
s
e
in
th
e
R
MS
v
alu
e
o
f
th
e
f
u
n
d
am
en
tal
co
m
p
o
n
e
n
t
co
r
r
esp
o
n
d
s
to
an
in
cr
ea
s
e
in
AC
p
o
wer
.
I
t
is
ev
id
en
t
in
F
ig
u
r
e
14
th
at
t
h
e
r
ed
u
ctio
n
in
lo
s
s
es
f
r
o
m
5
lev
els
to
7
lev
els
i
s
s
m
aller
co
m
p
ar
ed
to
th
e
r
ed
u
ctio
n
in
lo
s
s
es
f
r
o
m
7
lev
els
to
9
lev
els.
At
th
e
AC
s
id
e,
as
th
e
n
u
m
b
er
o
f
le
v
els
in
th
e
in
v
er
ter
in
cr
ea
s
es,
th
e
ap
p
ar
en
t
p
o
wer
d
ec
r
ea
s
es
(
Fig
u
r
e
1
5
)
.
T
h
is
is
p
r
im
ar
ily
d
u
e
to
t
h
e
h
ar
m
o
n
ic
s
elim
in
ated
u
s
in
g
th
e
SHE
tech
n
iq
u
e,
wh
ich
r
ed
u
ce
s
th
e
d
is
to
r
tio
n
p
o
we
r
,
lea
d
in
g
to
an
im
p
r
o
v
em
en
t
in
th
e
p
o
wer
f
ac
to
r
.
Fro
m
T
ab
le
3
,
it
ca
n
b
e
o
b
s
er
v
ed
th
at
th
e
p
o
we
r
f
ac
to
r
ap
p
r
o
ac
h
e
s
th
e
v
alu
e
o
f
c
o
s
(
φ)
=0
.
6
3
3
,
wh
er
e
φ
r
e
p
r
esen
ts
th
e
an
g
le
o
f
th
e
lo
a
d
d
ef
i
n
ed
a
s
=
a
r
c
ta
n
(
2
.
.
.
)
.
Fig
u
r
e
10
.
V
ar
iatio
n
o
f
t
o
tal
h
ar
m
o
n
ic
d
is
to
r
tio
n
o
f
in
v
er
ter
o
u
tp
u
t
v
o
ltag
e
with
n
u
m
b
er
o
f
lev
els
Fig
u
r
e
11
.
C
o
m
p
ar
is
o
n
o
f
s
im
u
lated
an
d
p
r
ac
tical
R
MS
v
alu
es o
f
th
e
o
u
tp
u
t v
o
ltag
e
a
n
d
its
f
u
n
d
a
m
en
tal
Fig
u
r
e
12
.
E
v
o
lu
ti
o
n
o
f
th
e
p
o
wer
at
th
e
AC
s
id
e
as
a
f
u
n
ctio
n
o
f
t
h
e
n
u
m
b
er
o
f
le
v
els
Fig
u
r
e
13
.
E
v
o
lu
ti
o
n
o
f
th
e
p
o
wer
at
th
e
AC
s
id
e
as a
f
u
n
ctio
n
o
f
th
e
f
u
n
d
am
en
tal
R
MS
v
alu
e
Fig
u
r
e
14
.
E
v
o
lu
ti
o
n
o
f
th
e
lo
s
s
es in
th
e
in
v
er
ter
with
th
e
n
u
m
b
er
o
f
lev
els
Fig
u
r
e
15
.
E
v
o
lu
ti
o
n
o
f
th
e
ap
p
ar
en
t p
o
wer
at
th
e
AC
s
id
e
as a
f
u
n
ctio
n
o
f
th
e
n
u
m
b
er
o
f
lev
els
10
12
14
16
18
20
4
6
8
10
V_
T
H
D
Num
ber
o
f
lev
els
Si
m
u
lati
o
n
Pra
ctica
l
5L
7L
9L
2
1
.
8
22
2
2
.
2
2
2
.
4
2
2
.
6
2
2
.
8
23
10
12
14
16
18
20
RM
S
v
a
lue
V_
T
H
D
S
im_
F
u
n
d
_
RM
S
S
im_
V
_
RM
S
P
ra
c
t_
F
u
n
d
_
RM
S
P
ra
c
t_
V_
RM
S
3
.
7
3
.
8
3
.
9
4
4
.
1
4
6
8
10
AC
P
o
w
er
Num
ber
o
f
lev
els
S
imu
la
t
io
n
P
ra
c
ti
c
a
l
5L
7L
9L
5L
7L
9L
3
.
7
3
.8
3
.
9
4
4
.
1
2
1
.
8
22
2
2
.
2
2
2
.
4
2
2
.
6
2
2
.
8
A
C
po
w
er
F
un
da
m
ent
a
l
RM
S
Si
m
u
la
ti
o
n
Pra
ctica
l
0
.
2
3
2
0
.
2
3
7
0
.
2
4
2
0
.
2
4
7
0
.
2
5
2
0
.
2
5
7
0
.
2
6
2
4
5
6
7
8
9
10
L
o
s
s
es
Num
ber
o
f
lev
els
S
imu
la
t
io
n
P
a
c
ti
c
a
l
5
.
8
0
0
6
.
0
0
0
6
.
2
0
0
6
.
4
0
0
6
.
6
0
0
4
6
8
10
Appa
re
nt
po
w
er
Num
ber
o
f
lev
els
S
imu
la
t
io
n
P
ra
c
ti
c
a
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J Po
w
E
lec
&
Dr
i Sy
s
t
I
SS
N:
2088
-
8
6
9
4
P
erfo
r
ma
n
ce
a
n
a
lysi
s
o
f a
ca
s
ca
d
ed
d
u
a
l fu
ll b
r
id
g
es 5
,
7
,
a
n
d
9
leve
ls
in
ve
r
ter
:
…
(
N
a
b
il S
a
id
a
n
i
)
2473
Gen
er
ally
,
th
e
p
r
ac
tical
r
esu
lts
v
alid
ate
th
e
s
im
u
latio
n
r
es
u
lts
.
I
t
is
ev
id
en
t
th
at
all
th
e
p
r
ac
tical
cu
r
v
es
clo
s
ely
alig
n
with
th
ei
r
co
r
r
esp
o
n
d
in
g
s
im
u
latio
n
cu
r
v
es
an
d
ex
h
ib
it
s
im
ilar
tr
en
d
s
.
Ho
wev
er
,
s
lig
h
t
d
if
f
er
en
ce
s
b
etwe
en
t
h
e
two
ca
n
b
e
attr
ib
u
te
d
to
f
ac
to
r
s
s
u
ch
as
te
m
p
er
atu
r
e
ef
f
ec
ts
,
t
h
e
ac
cu
r
ac
y
o
f
th
e
s
im
u
latio
n
m
o
d
el
in
r
ep
r
esen
ti
n
g
th
e
p
h
y
s
ical
s
y
s
tem
,
an
d
m
ea
s
u
r
em
en
t e
r
r
o
r
s
.
6.
CO
NCLU
SI
O
N
I
n
c
o
n
cl
u
s
i
o
n
,
t
h
e
u
s
e
o
f
M
L
I
s
h
as
g
ai
n
ed
s
i
g
n
if
ica
n
t
p
o
p
u
l
ar
i
ty
i
n
t
h
e
f
ie
ld
o
f
p
o
w
er
el
ec
tr
o
n
ics
d
u
e
to
t
h
ei
r
a
b
ili
ty
t
o
im
p
r
o
v
e
th
e
q
u
ali
ty
o
f
t
h
e
o
u
tp
u
t
v
o
lta
g
e.
Asy
m
m
et
r
ic
al
ML
I
s
,
i
n
p
ar
tic
u
la
r
,
o
f
f
er
a
h
i
g
h
e
r
n
u
m
b
e
r
o
f
l
ev
els
c
o
m
p
ar
e
d
to
s
y
m
m
et
r
i
ca
l
ML
I
s
,
r
es
u
lt
in
g
i
n
m
o
r
e
s
i
n
u
s
o
id
al
v
o
lta
g
e
w
a
v
e
f
o
r
m
s
wit
h
a
l
o
w
n
u
m
b
e
r
o
f
s
wi
tc
h
es
.
T
h
r
o
u
g
h
s
im
u
la
ti
o
n
s
c
o
n
d
u
c
te
d
u
s
i
n
g
t
h
e
P
SI
M
s
o
f
t
wa
r
e
a
n
d
e
x
p
e
r
i
m
e
n
ta
l
v
al
id
ati
o
n
,
it
was
d
e
m
o
n
s
t
r
a
te
d
t
h
a
t
i
n
c
r
e
as
in
g
t
h
e
n
u
m
b
er
o
f
l
ev
els
i
n
t
h
e
ML
I
an
d
i
m
p
le
m
e
n
t
in
g
th
e
SHE
t
ec
h
n
i
q
u
e
c
an
ef
f
e
cti
v
e
ly
r
e
d
u
c
e
t
h
e
T
HD
f
a
cto
r
an
d
l
o
s
s
es
i
n
t
h
e
i
n
v
e
r
t
er
.
T
h
is
le
a
d
s
t
o
im
p
r
o
v
em
e
n
ts
i
n
t
h
e
p
o
we
r
f
a
ct
o
r
an
d
o
v
er
all
e
f
f
ic
ie
n
c
y
o
f
t
h
e
i
n
v
e
r
te
r
s
y
s
te
m
.
F
u
r
th
er
m
o
r
e,
i
t
w
as
o
b
s
e
r
v
e
d
th
at
as
t
h
e
n
u
m
b
er
o
f
l
e
v
els
i
n
t
h
e
ML
I
i
n
c
r
ea
s
es
,
t
h
e
m
a
g
n
i
tu
d
e
o
f
t
h
e
f
u
n
d
a
m
e
n
t
al
c
o
m
p
o
n
e
n
t
o
f
th
e
o
u
t
p
u
t
v
o
l
ta
g
e
d
ec
r
e
ase
s
.
T
h
is
i
m
p
li
es
t
h
at
th
e
c
o
n
t
r
i
b
u
ti
o
n
o
f
t
h
e
f
u
n
d
a
m
en
t
al
c
o
m
p
o
n
e
n
t
t
o
r
e
al
p
o
w
er
p
r
o
d
u
c
ti
o
n
d
im
i
n
is
h
es
as
m
o
r
e
le
v
els
a
r
e
a
d
d
e
d
.
L
o
o
k
i
n
g
ah
ea
d
,
I
a
m
ea
g
e
r
t
o
e
x
p
l
o
r
e
th
e
a
p
p
lic
ati
o
n
o
f
t
h
e
asy
m
m
et
r
i
ca
l
c
o
n
f
i
g
u
r
a
ti
o
n
f
o
r
i
n
je
cti
n
g
p
o
w
er
f
r
o
m
p
h
o
t
o
v
o
lt
aic
(
PV
)
p
an
el
s
.
T
h
is
a
p
p
r
o
a
ch
c
o
u
l
d
e
n
h
a
n
ce
e
f
f
i
cie
n
c
y
a
n
d
in
te
g
r
at
io
n
o
f
r
en
ew
ab
le
en
er
g
y
s
o
u
r
ce
s
i
n
t
o
t
h
e
s
y
s
t
em
.
F
u
t
u
r
e
w
o
r
k
wil
l
f
o
c
u
s
o
n
o
p
ti
m
i
zi
n
g
t
h
is
s
et
u
p
f
o
r
r
ea
l
-
wo
r
l
d
PV
p
o
we
r
d
eli
v
er
y
.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
Au
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Nab
il
Said
an
i
✓
✓
✓
✓
✓
✓
✓
✓
R
ac
h
id
E
l Bach
tiri
✓
✓
✓
✓
✓
✓
✓
Ab
d
elaz
iz
F
ri
✓
✓
✓
✓
✓
✓
Kar
im
a
E
l H
am
m
o
u
m
i
✓
✓
✓
✓
✓
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
Au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
t
er
est.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
au
th
o
r
s
co
n
f
ir
m
th
at
th
e
d
ata
s
u
p
p
o
r
tin
g
th
e
f
in
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
av
ailab
le
with
in
th
e
ar
ticle.
RE
F
E
R
E
NC
E
S
[
1
]
C
.
B
u
c
c
e
l
l
a
,
C
.
C
e
c
a
t
i
,
M
.
G
.
C
i
m
o
r
o
n
i
,
a
n
d
K
.
R
a
z
i
,
“
A
n
a
l
y
t
i
c
a
l
me
t
h
o
d
f
o
r
p
a
t
t
e
r
n
g
e
n
e
r
a
t
i
o
n
i
n
f
i
v
e
-
l
e
v
e
l
c
a
sca
d
e
d
H
-
b
r
i
d
g
e
i
n
v
e
r
t
e
r
u
si
n
g
sel
e
c
t
i
v
e
h
a
r
m
o
n
i
c
e
l
i
mi
n
a
t
i
o
n
,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
I
n
d
u
s
t
ri
a
l
El
e
c
t
ro
n
i
c
s
,
v
o
l
.
6
1
,
n
o
.
1
1
,
p
p
.
5
8
1
1
–
5
8
1
9
,
2
0
1
4
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
E.
2
0
1
4
.
2
3
0
8
1
6
3
.
[
2
]
R
.
A
.
R
a
n
a
,
S
.
A
.
P
a
t
e
l
,
A
.
M
u
t
h
u
s
a
m
y
,
C
.
w
o
o
L
e
e
,
a
n
d
H
.
-
J.
K
i
m,
“
R
e
v
i
e
w
o
f
m
u
l
t
i
l
e
v
e
l
v
o
l
t
a
g
e
s
o
u
r
c
e
i
n
v
e
r
t
e
r
t
o
p
o
l
o
g
i
e
s
a
n
d
a
n
a
l
y
si
s
o
f
h
a
r
m
o
n
i
c
s
d
i
s
t
o
r
t
i
o
n
s
i
n
FC
-
M
LI
,
”
E
l
e
c
t
r
o
n
i
c
s
,
v
o
l
.
8
,
n
o
.
1
1
,
p
.
1
3
2
9
,
N
o
v
.
2
0
1
9
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s
8
1
1
1
3
2
9
.
[
3
]
Y
.
B
a
b
k
r
a
n
i
,
A
.
N
a
d
d
a
m
i
,
a
n
d
M
.
H
i
l
a
l
,
“
A
smar
t
c
a
s
c
a
d
e
d
H
-
b
r
i
d
g
e
m
u
l
t
i
l
e
v
e
l
i
n
v
e
r
t
e
r
w
i
t
h
a
n
o
p
t
i
mi
z
e
d
mo
d
u
l
a
t
i
o
n
t
e
c
h
n
i
q
u
e
s
i
n
c
r
e
a
s
i
n
g
t
h
e
q
u
a
l
i
t
y
a
n
d
r
e
d
u
c
i
n
g
h
a
r
mo
n
i
c
s
,
”
I
n
t
e
r
n
a
t
i
o
n
a
l
J
o
u
r
n
a
l
o
f
Po
w
e
r
El
e
c
t
ro
n
i
c
s
a
n
d
D
r
i
v
e
S
y
s
t
e
m
s
(
I
J
PED
S
)
,
v
o
l
.
1
0
,
n
o
.
4
,
p
.
1
8
5
2
,
D
e
c
.
2
0
1
9
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s.
v
1
0
.
i
4
.
p
p
1
8
5
2
-
1
8
6
2
.
[
4
]
O
.
A
l
a
v
i
,
A
.
H
.
V
i
k
i
,
a
n
d
S
.
S
h
a
m
l
o
u
,
“
A
c
o
m
p
a
r
a
t
i
v
e
r
e
l
i
a
b
i
l
i
t
y
st
u
d
y
o
f
t
h
r
e
e
f
u
n
d
a
m
e
n
t
a
l
m
u
l
t
i
l
e
v
e
l
i
n
v
e
r
t
e
r
s
u
si
n
g
t
w
o
d
i
f
f
e
r
e
n
t
a
p
p
r
o
a
c
h
e
s,
”
E
l
e
c
t
r
o
n
i
c
s
,
v
o
l
.
5
,
n
o
.
2
,
2
0
1
6
,
d
o
i
:
1
0
.
3
3
9
0
/
e
l
e
c
t
r
o
n
i
c
s
5
0
2
0
0
1
8
.
[
5
]
S
.
D
e
,
D
.
B
a
n
e
r
j
e
e
,
K
.
S
i
v
a
K
u
m
a
r
,
K
.
G
o
p
a
k
u
mar,
R
.
R
a
m
c
h
a
n
d
,
a
n
d
C
.
P
a
t
e
l
,
“
M
u
l
t
i
l
e
v
e
l
i
n
v
e
r
t
e
r
s
f
o
r
l
o
w
-
p
o
w
e
r
a
p
p
l
i
c
a
t
i
o
n
,
”
I
ET Po
w
e
r
El
e
c
t
ro
n
i
c
s
,
v
o
l
.
4
,
n
o
.
4
,
p
p
.
3
8
4
–
3
9
2
,
2
0
1
1
,
d
o
i
:
1
0
.
1
0
4
9
/
i
e
t
-
p
e
l
.
2
0
1
0
.
0
0
2
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.