I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
pu
t
er
E
ng
ineering
(
I
J
E
CE
)
Vo
l.
1
6
,
No
.
1
,
Feb
r
u
ar
y
20
2
6
,
p
p
.
149
~
157
I
SS
N:
2088
-
8
7
0
8
,
DOI
: 1
0
.
1
1
5
9
1
/ijece.
v
1
6
i
1
.
pp
1
4
9
-
1
5
7
149
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ij
ec
e.
ia
esco
r
e.
co
m
Applica
tion o
f
t
he
mo
del re
fere
nc
e
a
da
ptive sy
stem
metho
d in
sens
o
rless
contro
l
f
o
r eleva
tor d
riv
e sy
stems us
ing
3
-
Phas
e
perma
nent
ma
g
net
sy
nchro
no
us
m
o
tors
T
ra
n Va
n K
ho
i,
An Th
i
H
o
a
i Th
u A
nh
,
T
ra
n
T
ro
ng
H
ieu
D
e
p
a
r
t
me
n
t
o
f
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
,
U
n
i
v
e
r
s
i
t
y
o
f
Tr
a
n
s
p
o
r
t
a
n
d
C
o
mm
u
n
i
c
a
t
i
o
n
s
,
H
a
n
o
i
,
V
i
e
t
n
a
m
Art
icle
I
nfo
AB
S
T
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
2
,
2
0
2
4
R
ev
is
ed
No
v
4
,
2
0
2
5
Acc
ep
ted
No
v
2
3
,
2
0
2
5
I
m
p
r
o
v
in
g
s
en
s
o
r
less
co
n
tr
o
l
p
er
f
o
r
m
an
ce
in
elev
ato
r
d
r
iv
e
s
y
s
tem
s
u
s
in
g
th
r
ee
-
p
h
ase
p
er
m
an
en
t
m
ag
n
et
s
y
n
ch
r
o
n
o
u
s
m
o
to
r
s
(
PMSM)
h
as
b
ec
o
m
e
in
cr
ea
s
in
g
ly
p
o
p
u
lar
to
r
ed
u
ce
co
s
ts
an
d
en
h
a
n
c
e
s
y
s
tem
s
tab
ilit
y
.
T
h
e
p
r
im
a
r
y
o
p
er
ati
o
n
o
f
th
e
elev
ato
r
in
v
o
l
v
es
m
o
to
r
m
o
d
e
wh
en
th
e
ca
b
in
m
o
v
es
u
p
w
ar
d
an
d
s
h
if
ts
to
g
en
er
ato
r
m
o
d
e
o
r
b
r
ak
in
g
m
o
d
e
u
n
d
er
th
e
i
n
f
lu
en
ce
o
f
g
r
av
ity
wh
e
n
m
o
v
in
g
d
o
wn
war
d
.
T
h
is
p
r
esen
ts
s
ig
n
if
ican
t
ch
allen
g
es
f
o
r
s
en
s
o
r
less
co
n
tr
o
l.
T
o
ad
d
r
ess
th
ese
is
s
u
es,
th
e
m
o
d
el
r
ef
er
e
n
ce
a
d
ap
tiv
e
s
y
s
tem
(
MRAS)
b
as
ed
o
n
th
e
m
ath
e
m
atica
l
d
-
q
ax
is
m
o
d
el
o
f
th
e
PMSM
is
p
r
o
p
o
s
ed
to
esti
m
ate
r
o
to
r
s
p
ee
d
an
d
p
o
s
itio
n
.
C
o
m
b
in
ed
with
f
ield
-
o
r
ien
ted
c
o
n
tr
o
l
(
FOC
)
,
th
is
m
eth
o
d
o
p
tim
izes
p
er
f
o
r
m
a
n
ce
an
d
p
r
ec
is
ely
co
n
tr
o
ls
m
o
to
r
to
r
q
u
e
with
o
u
t
r
eq
u
ir
in
g
p
h
y
s
ical
s
en
s
o
r
s
.
A
d
d
i
t
i
o
n
a
l
l
y
,
a
l
o
w
-
p
as
s
f
il
t
e
r
i
s
e
m
p
l
o
y
e
d
t
o
p
r
o
c
es
s
i
n
p
u
t
s
i
g
n
a
ls
,
s
u
c
h
a
s
v
o
l
t
a
g
e
a
n
d
c
u
r
r
e
n
t
,
t
o
i
m
p
r
o
v
e
e
s
t
i
m
a
t
i
o
n
a
c
c
u
r
a
c
y
a
n
d
o
p
t
i
m
i
z
e
s
p
e
e
d
r
es
p
o
n
s
e
.
Si
m
u
l
a
t
i
o
n
r
es
u
l
ts
f
r
o
m
M
A
T
L
AB
/S
i
m
u
l
i
n
k
d
e
m
o
n
s
t
r
a
t
e
h
i
g
h
l
y
a
c
c
u
r
a
t
e
s
p
e
e
d
r
e
s
p
o
n
s
e
s
,
p
a
r
ti
c
u
l
a
r
l
y
u
n
d
e
r
c
o
n
t
i
n
u
o
u
s
l
o
a
d
v
a
r
i
a
ti
o
n
s
.
K
ey
w
o
r
d
s
:
E
lev
ato
r
d
r
i
v
e
s
y
s
tem
L
o
w
-
p
ass
f
ilter
M
o
d
e
l
r
e
f
e
r
e
n
c
e
a
d
a
p
t
i
v
e
s
y
s
t
em
P
e
r
m
a
n
e
n
t
m
a
g
n
e
t
s
y
n
c
h
r
o
n
o
u
s
m
o
t
o
r
s
Sen
s
o
r
less
co
n
tr
o
l
T
h
is i
s
a
n
o
p
e
n
a
c
c
e
ss
a
rticle
u
n
d
e
r th
e
CC B
Y
-
SA
li
c
e
n
se
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
An
T
h
i H
o
ai
T
h
u
An
h
D
e
p
a
r
t
m
e
n
t
o
f
E
l
ec
t
r
i
c
al
E
n
g
i
n
e
e
r
i
n
g
,
F
a
c
u
lt
y
o
f
E
l
e
c
t
r
ic
a
l
-
E
le
c
t
r
o
n
i
c
E
n
g
i
n
e
e
r
i
n
g
,
U
n
i
v
e
r
s
i
ty
o
f
T
r
a
n
s
p
o
r
t
a
n
d
C
o
m
m
u
n
i
c
a
t
i
o
n
s
N
o.
3
C
au
Giay
,
L
a
n
g
C
o
m
m
u
n
e,
Do
n
g
Da
Dis
tr
ict,
Han
o
i,
Vietn
am
E
m
ail: h
tan
h
.
k
td
@
u
tc.
ed
u
.
v
n
1.
I
NT
RO
D
UCT
I
O
N
Hig
h
-
r
is
e
b
u
ild
in
g
s
,
ce
n
t
r
al
to
u
r
b
a
n
izatio
n
,
d
em
a
n
d
ef
f
icien
t
tr
an
s
p
o
r
tatio
n
lik
e
elev
at
o
r
s
.
E
ar
ly
2
0
th
-
ce
n
t
u
r
y
elev
ato
r
s
u
tili
ze
d
DC
m
o
to
r
s
f
o
r
s
p
ee
d
co
n
tr
o
l
v
ia
v
o
ltag
e
ad
ju
s
tm
en
t,
b
u
t
th
ey
f
ac
ed
is
s
u
es
s
u
ch
as
lar
g
e
s
ize,
f
r
e
q
u
en
t
m
ain
ten
an
ce
,
an
d
lo
w
e
f
f
icien
cy
[
1
]
.
B
y
th
e
m
id
-
2
0
th
ce
n
tu
r
y
,
s
em
ico
n
d
u
ct
o
r
tech
n
o
lo
g
y
h
ad
a
d
v
an
ce
d
,
e
n
ab
lin
g
in
v
er
ter
s
t
o
c
o
n
tr
o
l
s
p
ee
d
an
d
to
r
q
u
e
m
o
r
e
ef
f
ec
tiv
ely
in
i
n
d
u
ctio
n
m
o
to
r
s
.
T
h
is
b
ec
am
e
p
r
ev
al
en
t
d
esp
ite
in
ef
f
icien
cies
u
n
d
er
lig
h
t
o
r
n
o
lo
a
d
an
d
s
lo
w
r
esp
o
n
s
e
d
u
e
to
asy
n
ch
r
o
n
o
u
s
o
p
er
atio
n
[
2
]
.
B
y
th
e
late
2
0
th
an
d
ea
r
ly
2
1
st
ce
n
tu
r
ies,
r
ar
e
-
ea
r
th
m
ag
n
e
ts
(
Nd
FeB
,
Sm
C
o
)
en
ab
led
th
e
d
ev
elo
p
m
en
t
o
f
c
o
m
p
ac
t,
ef
f
icien
t
p
er
m
a
n
en
t
m
ag
n
et
s
y
n
ch
r
o
n
o
u
s
m
o
t
o
r
s
(
PMSMs)
with
h
ig
h
p
er
f
o
r
m
an
ce
,
wh
ich
wer
e
wid
ely
ad
o
p
ted
in
m
o
d
er
n
elev
ato
r
s
[
3
]
,
[
4
]
.
T
o
d
ay
,
h
ig
h
-
r
is
e
elev
ato
r
s
ar
e
r
ap
id
ly
tr
an
s
itio
n
in
g
to
PMSM
[
5
]
.
Ma
ter
ials
an
d
elec
tr
o
n
ic
tech
n
o
lo
g
y
ad
v
a
n
ce
s
,
in
clu
d
i
n
g
c
h
e
ap
er
s
em
ico
n
d
u
cto
r
ch
ip
s
,
d
r
i
v
e
ef
f
o
r
ts
to
o
p
tim
ize
e
n
er
g
y
u
s
e
a
n
d
e
f
f
icien
cy
[
6
]
.
T
r
ad
itio
n
al
elev
a
to
r
s
u
s
e
g
ea
r
b
o
x
es
f
o
r
s
p
ee
d
an
d
to
r
q
u
e
co
n
tr
o
l,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
1
6
,
No
.
1
,
Feb
r
u
ar
y
20
2
6
:
1
4
9
-
157
150
b
u
t
m
o
d
er
n
g
ea
r
less
s
y
s
tem
s
en
h
an
ce
p
er
f
o
r
m
an
ce
an
d
r
e
d
u
ce
co
s
ts
lik
e
f
r
ictio
n
an
d
en
er
g
y
lo
s
s
.
Sp
ee
d
s
en
s
o
r
s
s
u
ch
as
en
co
d
er
s
ar
e
c
o
s
tly
,
m
ain
ten
an
ce
-
i
n
ten
s
iv
e,
an
d
u
n
r
eliab
le
in
h
ar
s
h
en
v
ir
o
n
m
en
ts
,
p
r
o
m
p
tin
g
a
s
h
if
t
to
s
en
s
o
r
less
s
p
ee
d
esti
m
atio
n
(
o
b
s
er
v
er
esti
m
atio
n
)
[
7
]
.
Ob
s
er
v
e
r
s
ar
e
class
if
ied
in
to
two
ty
p
es:
n
o
n
-
f
ee
d
b
ac
k
an
d
f
ee
d
b
ac
k
-
b
ased
[
8
]
–
[
1
1
]
.
No
n
-
f
ee
d
b
ac
k
o
b
s
e
r
v
er
s
p
r
ed
ict
s
tates
u
s
in
g
in
p
u
t
s
ig
n
als
b
u
t
lack
ac
cu
r
ac
y
.
Feed
b
ac
k
o
b
s
er
v
er
s
,
s
u
ch
as
Kalm
an
E
KF,
m
o
d
e
l
r
e
f
e
r
e
n
c
e
a
d
a
p
t
i
v
e
s
y
s
t
e
m
(
MR
AS
)
,
s
lid
in
g
m
o
d
e
o
b
s
er
v
er
(
SMO)
,
an
d
L
u
en
b
e
r
g
er
o
b
s
er
v
e
r
,
ar
e
m
o
r
e
p
r
ec
i
s
e.
Ho
wev
er
,
Kalm
an
E
KF
d
em
an
d
s
h
ig
h
-
c
o
s
t
h
ar
d
war
e,
SMO
ca
u
s
es
ch
atte
r
in
g
at
lo
w
s
p
ee
d
s
,
a
n
d
th
e
L
u
en
b
er
g
er
o
b
s
er
v
er
is
lim
ited
to
lin
ea
r
s
y
s
tem
s
.
MRAS,
with
it
s
s
im
p
licity
,
ad
ap
tab
ilit
y
,
an
d
e
f
f
icien
cy
,
is
p
r
ef
er
r
ed
f
o
r
m
o
d
er
n
s
y
s
tem
s
[
1
2
]
.
Ab
d
eln
ab
y
et
a
l.
[
1
3
]
d
ev
el
o
p
ed
an
d
co
m
p
a
r
ed
th
e
co
m
b
in
a
tio
n
o
f
MRAS
with
Pi
an
d
M
R
AS
with
f
u
zz
y
f
o
r
PMSM
m
o
to
r
s
.
Mish
r
a
et
a
l.
[
1
4
]
d
esig
n
e
d
an
d
d
ev
elo
p
ed
an
MRAS
alg
o
r
ith
m
to
elim
in
ate
th
e
is
s
u
es
ca
u
s
ed
b
y
b
ac
k
-
E
MF.
B
ad
in
i
an
d
Ver
m
a
[
1
5
]
u
s
ed
MRAS
an
d
ca
lcu
lated
it
with
o
u
t
r
ely
in
g
o
n
m
o
t
o
r
p
ar
am
eter
s
,
allo
win
g
o
p
er
atio
n
in
all
f
o
u
r
q
u
a
d
r
an
ts
.
E
s
k
o
la
an
d
T
u
u
s
a
[
1
6
]
b
ased
th
eir
r
e
s
ea
r
ch
o
n
MRAS
to
d
ev
elo
p
a
s
im
p
le
al
g
o
r
ith
m
to
ad
d
r
ess
s
tab
ilit
y
is
s
u
es
in
th
e
ze
r
o
-
s
p
ee
d
r
eg
io
n
.
Nico
l
a
an
d
Nico
la
[
1
7
]
im
p
lem
en
ted
MRAS
o
n
a
d
ig
ital
s
ig
n
al
p
r
o
ce
s
s
o
r
(
DSP)
s
y
s
tem
to
d
em
o
n
s
tr
ate
its
ef
f
ec
tiv
en
ess
.
Qu
o
c
an
d
An
h
[
1
8
]
u
s
e
th
e
er
r
o
r
s
ig
n
al
b
etwe
en
th
e
m
ea
s
u
r
ed
s
tato
r
cu
r
r
en
t
an
d
th
e
m
o
d
el
-
ca
lcu
l
ated
cu
r
r
en
t
as
th
e
r
ef
er
en
ce
–
r
esp
o
n
s
e
q
u
an
tity
i
n
th
e
MRAS;
th
e
f
u
zz
y
co
n
tr
o
ller
ad
j
u
s
ts
th
e
ad
ap
tiv
e
g
a
in
in
r
ea
l
tim
e
t
o
r
ed
u
ce
ch
atter
in
g
an
d
im
p
r
o
v
e
th
e
ac
c
u
r
ac
y
o
f
s
p
ee
d
esti
m
atio
n
.
Z
o
u
et
a
l.
[
1
9
]
p
r
o
p
o
s
e
a
s
en
s
o
r
less
co
n
tr
o
l
s
tr
ateg
y
f
o
r
th
e
PMSM
b
ased
o
n
a
SMO
in
teg
r
ated
with
a
S
u
p
er
-
T
wis
tin
g
Alg
o
r
ith
m
wh
o
s
e
g
ain
is
ad
ap
tiv
e
to
th
e
m
o
t
o
r
s
p
ee
d
(
STASM
O)
to
s
u
p
p
r
ess
th
e
ch
atter
in
g
in
h
er
en
t
to
t
h
e
s
witch
in
g
f
u
n
ctio
n
o
f
a
co
n
v
en
tio
n
al
SMO
wh
ile
m
ain
tain
in
g
th
e
r
o
b
u
s
tn
ess
o
f
s
tate
o
b
s
er
v
ati
o
n
.
Hu
s
s
ain
an
d
B
az
az
[
2
0
]
p
r
o
p
o
s
ed
a
n
eu
r
al
n
etwo
r
k
o
b
s
er
v
e
r
d
esig
n
f
o
r
s
en
s
o
r
less
co
n
tr
o
l
o
f
th
e
in
d
u
ctio
n
m
o
t
o
r
d
r
iv
e.
Ho
wev
er
,
th
e
ex
is
tin
g
s
tu
d
ies
h
av
e
n
o
t
p
r
o
p
o
s
ed
o
r
im
p
lem
en
ted
th
e
d
e
v
elo
p
m
e
n
t
o
f
a
M
R
AS
o
b
s
er
v
er
c
o
m
b
in
e
d
with
a
lo
w
-
p
ass
f
ilter
to
s
tab
ilize
an
d
elim
in
ate
d
is
tu
r
b
an
ce
s
in
th
e
ax
ial
an
d
q
u
ad
r
at
u
r
e
v
o
ltag
es
an
d
c
u
r
r
e
n
ts
f
o
r
g
ea
r
less
elev
ato
r
s
.
T
h
e
s
tu
d
y
f
o
cu
s
es
o
n
a
3
0
-
s
to
r
y
r
esid
en
tial
b
u
ild
in
g
in
t
h
e
Kin
g
C
r
o
wn
I
n
f
i
n
ity
Ur
b
an
Ar
ea
,
Ho
C
h
i
Min
h
C
ity
,
Vietn
am
.
T
h
is
ap
p
r
o
ac
h
en
h
an
ce
s
th
e
s
m
o
o
th
n
ess
o
f
th
e
s
p
ee
d
f
ee
d
b
ac
k
s
ig
n
al,
all
o
win
g
it
to
clo
s
ely
f
o
llo
w
th
e
r
ef
er
en
ce
s
p
ee
d
an
d
th
er
eb
y
im
p
r
o
v
e
th
e
elev
at
o
r
'
s
o
p
er
atio
n
al
ef
f
icien
cy
.
T
h
er
ef
o
r
e
,
th
is
p
ap
er
p
r
o
p
o
s
es
u
s
in
g
a
lo
w
-
p
ass
f
ilt
er
to
clea
n
th
e
v
o
ltag
e
an
d
cu
r
r
en
t
s
ig
n
als
b
e
f
o
r
e
th
ey
en
ter
th
e
o
b
s
er
v
er
.
T
h
is
h
elp
s
im
p
r
o
v
e
th
e
ac
c
u
r
ac
y
o
f
th
e
v
ar
iab
le
esti
m
atio
n
s
an
d
m
ak
es
it
ea
s
ier
f
o
r
th
e
MRAS
o
b
s
er
v
e
r
t
o
ad
j
u
s
t
th
e
Kp
an
d
K
i
p
ar
am
eter
s
.
F
in
ally
,
th
e
v
alid
ity
an
d
co
r
r
e
ctn
ess
o
f
th
e
p
r
o
p
o
s
ed
m
eth
o
d
will
b
e
v
e
r
if
ied
th
r
o
u
g
h
s
im
u
latio
n
s
co
n
d
u
cte
d
in
MA
T
L
AB
/Si
m
u
lin
k
.
2.
M
O
DE
L
I
NG
O
F
T
H
E
SE
N
SO
RL
E
SS
CO
N
T
RO
L
SYS
T
E
M
F
O
R
E
L
E
V
AT
O
RS
T
h
e
f
ir
s
t
s
tep
in
r
esear
ch
is
d
e
v
elo
p
in
g
alg
o
r
it
h
m
s
an
d
s
y
s
tem
m
o
d
els.
Fig
u
r
e
1
s
h
o
ws
th
e
s
tr
u
ctu
r
e
o
f
a
3
-
p
h
ase
PMSM
elev
ato
r
d
r
iv
e
s
y
s
tem
.
W
ith
ω
,
θ
r
ep
r
e
s
en
tin
g
th
e
s
p
ee
d
an
d
an
g
le,
r
esp
ec
tiv
ely
,
u
sa
,
u
sb
,
u
sc
, i
sa
, i
sb
,
an
d
i
sc
r
ep
r
esen
t th
e
v
o
ltag
e
an
d
cu
r
r
en
t in
p
h
ases
a,
b
,
an
d
c.
Per
m
an
en
t
m
a
g
n
et
s
y
n
ch
r
o
n
o
u
s
m
o
to
r
s
(
PMSM)
ar
e
p
r
ef
e
r
r
ed
i
n
elev
ato
r
s
y
s
tem
s
f
o
r
th
eir
h
ig
h
ef
f
icien
cy
a
n
d
s
tab
le
to
r
q
u
e.
PMSM
m
o
d
ellin
g
u
tili
ze
s
th
e
d
-
q
f
r
am
e,
em
p
lo
y
in
g
f
u
n
d
a
m
en
tal
eq
u
ati
o
n
s
f
o
r
cu
r
r
en
t,
f
lu
x
,
a
n
d
to
r
q
u
e
[
2
1
]
.
T
h
e
d
-
q
f
r
am
e
is
ce
n
tr
al
to
th
e
MRAS m
o
d
el.
=
1
−
+
(
1
)
=
1
−
−
−
(
2
)
i
sd
,
i
sq
,
U
sd
,
a
n
d
U
sq
r
e
p
r
e
s
e
n
t
t
h
e
d
-
a
x
i
s
a
n
d
q
-
a
x
i
s
c
u
r
r
e
n
t
s
a
n
d
v
o
l
t
a
g
e
s
,
r
e
s
p
e
c
t
i
v
e
l
y
,
a
n
d
R
s
i
s
t
h
e
s
t
a
t
o
r
r
e
s
i
s
t
a
n
c
e
.
Mo
d
el
r
ef
e
r
en
ce
ad
ap
tiv
e
s
y
s
tem
(
MRAS)
is
a
s
en
s
o
r
less
o
b
s
er
v
er
i
n
PMSM
co
n
t
r
o
l,
wh
ich
esti
m
ates
r
o
to
r
s
p
ee
d
an
d
p
o
s
itio
n
with
o
u
t
th
e
u
s
e
o
f
p
h
y
s
ic
al
s
en
s
o
r
s
.
I
t
co
m
p
ar
es
a
r
ef
er
en
ce
m
o
d
el
with
an
ad
ju
s
tm
en
t
m
o
d
el
f
o
r
o
p
tim
iz
atio
n
[
2
2
]
.
B
ased
o
n
(
1
)
a
n
d
(
2
)
o
f
th
e
PMSM
m
o
to
r
m
o
d
el,
th
e
esti
m
atio
n
m
o
d
el
ca
n
b
e
d
er
i
v
ed
f
r
o
m
th
e
ad
ju
s
tm
en
t m
o
d
el:
̂
=
1
−
̂
+
̂
̂
(
3
)
̂
=
1
−
̂
−
̂
̂
−
̂
(
4
)
W
ith
̂
,
̂
,
̂
r
ep
r
esen
tin
g
th
e
o
b
s
er
v
ed
d
-
ax
is
an
d
q
-
a
x
is
cu
r
r
en
ts
an
d
th
e
o
b
s
er
v
ed
r
o
to
r
s
p
ee
d
,
r
esp
ec
tiv
ely
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f th
e
mo
d
el
r
efe
r
en
ce
a
d
a
p
tive
s
ystem
meth
o
d
in
…
(
Tr
a
n
V
a
n
K
h
o
i
)
151
T
h
e
o
u
tp
u
t c
u
r
r
en
t e
r
r
o
r
is
:
{
=
−
̂
=
−
̂
(
5
)
W
i
t
h
e
d
,
e
q
r
e
p
r
e
s
e
n
t
i
n
g
t
h
e
e
r
r
o
r
s
i
n
t
h
e
d
-
a
x
i
s
a
n
d
q
-
a
x
i
s
c
u
r
r
e
n
t
s
b
e
t
w
e
e
n
t
h
e
a
c
t
u
a
l
a
n
d
t
h
e
o
b
s
e
r
v
e
d
c
u
r
r
e
n
t
s
.
Ad
ap
tiv
e
co
n
tr
o
l (
PI
co
n
tr
o
lle
r
):
̂
=
∫
(
̂
−
̂
−
)
+
(
̂
−
̂
−
)
(
6
)
W
ith
an
d
b
ein
g
th
e
t
u
n
in
g
p
ar
am
eter
s
o
f
th
e
PI
co
n
tr
o
ller
,
aim
in
g
to
m
in
im
is
e
th
e
er
r
o
r
b
etwe
en
th
e
ac
tu
al
an
d
o
b
s
er
v
ed
c
u
r
r
e
n
t.
S
V
M
ω
_
R
e
f
ω
_
h
a
t
θ
_
h
a
t
d
-
q
α
-
β
R
i
I
sq
*
I
sd
*
DC
AC
a
b
c
P
M
S
M
U
a
U
b
U
c
I
a
I
b
I
c
R
i
d
-
q
α
-
β
α
-
β
0
+
-
+
-
+
-
V
dc
R
ω
M
R
A
S
o
b
s
e
r
v
e
r
C
a
b
i
n
i
d
l
e
r
p
u
l
l
e
y
c
o
u
n
t
e
r
w
e
i
g
h
t
e
l
e
v
a
t
o
r
c
a
b
l
e
Fig
u
r
e
1
.
Sy
s
tem
m
o
d
el
s
tr
u
ct
u
r
e
o
f
t
h
e
elev
ato
r
d
r
iv
e
u
s
in
g
PMSM
m
o
to
r
3.
CO
NT
RO
L
D
E
S
I
G
N
T
h
e
f
ield
-
o
r
ie
n
ted
co
n
tr
o
l
(
FOC
)
co
n
tr
o
ller
was
ch
o
s
en
as
th
e
p
r
im
ar
y
co
n
tr
o
l
s
y
s
tem
d
u
e
to
its
ab
ilit
y
to
p
r
ec
is
ely
co
n
tr
o
l sp
ee
d
an
d
to
r
q
u
e
,
with
less
o
u
tp
u
t d
is
to
r
tio
n
an
d
r
ed
u
ce
d
h
a
r
m
o
n
ic
d
is
to
r
tio
n
[
2
3
]
.
Ad
d
itio
n
ally
,
it
p
r
o
v
id
es
in
d
ep
en
d
en
t
c
o
n
tr
o
l
o
f
to
r
q
u
e
a
n
d
s
p
ee
d
,
wh
ich
is
esp
ec
ially
im
p
o
r
tan
t
wh
e
n
ap
p
ly
in
g
s
p
ee
d
esti
m
atio
n
m
e
th
o
d
s
lik
e
MRAS,
as
th
e
esti
m
ated
s
p
ee
d
m
u
s
t
b
e
s
y
n
c
h
r
o
n
ized
an
d
ac
c
u
r
ate
with
th
e
ac
tu
al
s
p
ee
d
.
3
.
1
.
M
RAS
o
bs
er
v
er
des
ig
n
T
h
e
MRAS
o
b
s
er
v
er
esti
m
ate
s
th
e
m
o
to
r
'
s
r
o
to
r
s
p
ee
d
with
o
u
t
n
ee
d
in
g
s
en
s
o
r
s
,
r
ed
u
cin
g
co
s
ts
an
d
in
cr
ea
s
in
g
th
e
s
y
s
tem
's
d
u
r
ab
ilit
y
.
Fro
m
(
1
)
to
(
4
)
,
we
ca
n
r
ep
r
esen
t
th
e
m
o
d
el
as
s
h
o
wn
in
Fig
u
r
e
2
.
T
h
e
in
p
u
t
in
clu
d
es
v
o
ltag
es
u
sa
,
u
sb
,
u
sc
,
an
d
o
u
tp
u
t
m
ea
s
u
r
em
e
n
ts
ar
e
i
sa
,
i
sb
,
i
sc
.
I
n
th
e
a
-
b
-
c
co
o
r
d
in
ate
s
y
s
tem
,
s
in
u
s
o
id
al
cu
r
r
e
n
t
a
n
d
f
lu
x
m
a
k
e
ca
lcu
latio
n
s
c
o
m
p
le
x
.
T
o
s
i
m
p
lify
a
n
d
r
ed
u
ce
th
e
tim
e
-
v
a
r
y
in
g
co
m
p
o
n
e
n
ts
,
th
e
a
-
b
-
c
s
y
s
tem
is
tr
an
s
f
o
r
m
ed
in
to
th
e
d
-
q
s
y
s
tem
u
s
in
g
C
lar
k
e
an
d
Par
k
tr
an
s
f
o
r
m
atio
n
s
b
ef
o
r
e
b
ein
g
in
tr
o
d
u
ce
d
in
to
th
e
MRAS m
o
d
el
[
2
4
]
.
−
Vo
ltag
e
tr
an
s
f
o
r
m
atio
n
f
r
o
m
a
-
b
-
c
s
y
s
tem
to
d
-
q
s
y
s
tem
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
1
6
,
No
.
1
,
Feb
r
u
ar
y
20
2
6
:
1
4
9
-
157
152
{
=
2
3
(
(
)
+
(
−
2
3
)
+
(
+
2
3
)
)
=
2
3
(
(
)
+
(
−
2
3
)
+
(
+
2
3
)
)
(
7
)
−
C
u
r
r
en
t
tr
an
s
f
o
r
m
atio
n
f
r
o
m
a
-
b
-
c
s
y
s
tem
to
d
-
q
s
y
s
tem
:
{
=
2
3
(
(
)
+
(
−
2
3
)
+
(
+
2
3
)
)
=
2
3
(
(
)
+
(
−
2
3
)
+
(
+
2
3
)
)
(
8
)
W
ith
u
a
,
u
b
,
u
c
b
ein
g
th
e
v
o
lta
g
es
in
p
h
ases
a,
b
,
c
,
i
a
,
i
b
,
i
c
b
ein
g
th
e
c
u
r
r
e
n
ts
in
p
h
ases
a
,
b
,
c,
a
n
d
θ
b
ein
g
th
e
r
o
to
r
p
o
s
itio
n
an
g
le.
P
M
S
M
+
-
t
u
n
i
n
g
s
i
m
u
l
a
t
i
o
n
m
o
d
e
l
I
n
p
u
t
o
b
s
e
r
v
e
r
e
s
t
i
m
a
t
e
d
s
t
a
t
e
s
O
u
t
p
u
t
m
e
a
s
u
r
e
m
e
n
t
s
t
a
t
e
o
u
t
p
u
t
o
b
s
e
r
v
a
t
i
o
n
s
t
a
t
e
DC
AC
V
DC
Fig
u
r
e
2
.
Descr
ip
tio
n
o
f
th
e
M
R
AS o
b
s
er
v
er
d
esig
n
s
tr
u
ctu
r
e
Alth
o
u
g
h
with
(
4
)
,
(
5
)
,
an
d
(
6
)
,
we
ca
n
b
u
ild
th
e
MRAS
o
b
s
er
v
er
to
h
an
d
le
lo
ad
d
is
tu
r
b
an
ce
s
an
d
s
o
m
e
s
ig
n
if
ican
t
ty
p
es
o
f
n
o
is
e
af
f
ec
tin
g
th
e
ac
tu
al
v
o
l
tag
e
an
d
c
u
r
r
en
t
u
s
ed
f
o
r
b
u
ild
in
g
th
e
s
p
ee
d
o
b
s
er
v
atio
n
s
y
s
tem
,
we
will
u
s
e
a
lo
w
-
p
ass
f
il
ter
at
th
e
in
p
u
t
o
f
th
e
d
-
q
v
o
ltag
e
an
d
cu
r
r
en
t
b
ef
o
r
e
f
ee
d
in
g
th
em
in
to
th
e
MRAS
o
b
s
er
v
e
r
.
T
h
is
will
h
elp
th
e
s
y
s
tem
c
o
n
tr
o
l
th
e
n
o
is
e
an
d
p
r
ev
e
n
t
i
t
f
r
o
m
af
f
ec
tin
g
th
e
q
u
ality
o
f
t
h
e
o
b
s
er
v
ed
v
a
r
iab
l
es,
s
u
ch
as sp
ee
d
an
d
th
e
r
o
to
r
an
g
le
th
eta
[
2
5
]
.
T
h
e
g
en
e
r
al
eq
u
atio
n
s
f
o
r
b
o
th
v
o
ltag
e
an
d
cu
r
r
en
t in
t
h
e
d
-
q
s
y
s
tem
ar
e:
,
(
)
=
(
1
−
)
⋅
,
(
−
1
)
+
⋅
(
)
,
(
)
=
(
1
−
)
⋅
,
(
−
1
)
+
⋅
(
)
,
(
)
=
(
1
−
)
⋅
,
(
−
1
)
+
⋅
(
)
,
(
)
=
(
1
−
)
⋅
,
(
−
1
)
+
⋅
(
)
(
9
)
W
ith
,
(
)
,
,
(
)
,
,
(
)
,
,
(
)
as
f
ilter
ed
v
alu
es
f
r
o
m
th
e
p
r
ev
i
o
u
s
s
tep
an
d
as
th
e
f
ilter
in
g
co
ef
f
icien
t
(
0
<α
<1
)
,
a
s
m
aller
p
r
o
d
u
ce
s
s
m
o
o
th
er
b
u
t
s
lo
wer
s
ig
n
als,
wh
ile
a
lar
g
er
r
esu
lts
in
f
aster
r
esp
o
n
s
es
b
u
t
less
s
m
o
o
th
s
ig
n
als
,
(
)
,
(
)
,
(
)
,
(
)
ar
e
p
r
e
-
f
ilter
in
p
u
t
v
alu
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f th
e
mo
d
el
r
efe
r
en
ce
a
d
a
p
tive
s
ystem
meth
o
d
in
…
(
Tr
a
n
V
a
n
K
h
o
i
)
153
A
lo
w
-
p
ass
f
ilter
r
em
o
v
es
u
n
wan
ted
co
m
p
o
n
e
n
ts
,
s
u
ch
a
s
elec
tr
o
m
ag
n
etic
in
ter
f
e
r
en
c
e
o
r
h
ig
h
-
f
r
eq
u
e
n
cy
o
s
cillatio
n
s
,
th
er
eb
y
s
m
o
o
th
in
g
a
x
ial
an
d
q
u
ad
r
a
tu
r
e
v
o
ltag
e
s
ig
n
als.
T
h
is
f
ilter
in
g
r
ed
u
ce
s
r
ap
i
d
f
lu
ctu
atio
n
s
,
en
s
u
r
i
n
g
s
ig
n
al
ac
cu
r
ac
y
b
e
f
o
r
e
e
n
ter
in
g
th
e
o
b
s
er
v
er
a
n
d
im
p
r
o
v
i
n
g
s
p
e
ed
esti
m
atio
n
an
d
o
v
er
all
s
y
s
tem
p
er
f
o
r
m
an
ce
.
Fig
u
r
e
3
s
h
o
ws th
e
s
tr
u
ctu
r
e
o
f
th
e
MRAS o
b
s
er
v
er
u
s
in
g
a
lo
w
-
p
ass
f
ilter
.
C
l
a
r
k
e
-
P
a
r
k
t
r
a
n
s
f
o
r
m
a
t
i
o
n
l
o
w
-
p
a
s
s
f
i
l
t
e
r
s
i
m
u
l
a
t
i
o
n
m
o
t
o
r
m
o
d
e
l
PI
PI
+
-
+
-
ω
_
h
a
t
θ
_
ha
t
S
a
t
u
r
a
t
i
o
n
S
a
t
u
r
a
t
i
o
n
U
d
,
f
i
l
t
e
r
e
d
(
k
)
U
q
,
f
i
l
t
e
r
e
d
(
k
)
I
q
,
f
i
l
t
e
r
e
d
(
k
)
I
d
,
f
i
l
t
e
r
e
d
(
k
)
I
q
(
k
)
I
d
(
k
)
U
q
(
k
)
U
d
(
k
)
I
d
_
h
a
t
I
q
_
h
a
t
U
a
U
b
U
c
I
a
I
b
I
c
e
d
e
q
I
n
p
u
t
O
u
t
p
u
t
m
e
a
s
u
r
e
m
e
n
t
s
t
a
t
e
Fig
u
r
e
3
.
T
h
e
s
tr
u
ctu
r
e
o
f
th
e
MRAS o
b
s
er
v
er
u
s
in
g
a
lo
w
-
p
ass
f
ilter
4.
SI
M
UL
A
T
I
O
N
A
ND
RE
SU
L
T
E
VA
L
UA
T
I
O
N
T
o
v
e
r
if
y
th
e
s
y
s
tem
'
s
s
tab
il
ity
wh
en
u
s
in
g
th
e
MRAS
o
b
s
er
v
er
,
s
im
u
latio
n
s
ar
e
co
n
d
u
cted
in
MA
T
L
AB
Simu
lin
k
with
th
e
f
o
llo
win
g
p
ar
a
m
eter
s
in
T
ab
le
1
.
T
h
e
s
im
u
latio
n
s
cr
ip
t is
s
h
o
wn
in
Fig
u
r
e
4
:
Ph
ase
1:
T
h
e
elev
ato
r
is
in
s
ta
n
d
b
y
m
o
d
e
with
its
d
o
o
r
s
o
p
e
n
o
n
f
l
o
o
r
1
.
Fiftee
n
p
eo
p
le
en
ter
,
tak
in
g
1
s
ec
o
n
d
ea
ch
,
f
o
r
a
to
tal
waitin
g
tim
e
o
f
1
7
s
ec
o
n
d
s
.
Ph
ase
2
: T
h
e
elev
ato
r
r
ea
ch
es
its
r
ated
s
p
ee
d
o
f
2
.
5
m
/s
in
2
.
5
s
ec
o
n
d
s
.
Ph
ase
3
: T
h
e
elev
ato
r
m
o
v
es a
t 2
.
5
m
/s
u
n
til f
l
o
o
r
2
9
,
th
e
n
b
eg
in
s
d
ec
eler
atio
n
,
w
h
ich
tak
e
s
3
1
.
6
s
ec
o
n
d
s
.
Ph
ase
4
: T
h
e
elev
ato
r
d
ec
eler
a
tes an
d
s
to
p
s
at
f
lo
o
r
3
0
in
2
.
5
s
ec
o
n
d
s
.
Ph
ase
5
: E
lev
ato
r
d
o
o
r
s
o
p
en
an
d
r
em
ain
o
n
s
tan
d
b
y
f
o
r
1
7
s
ec
o
n
d
s
.
T
o
tal
s
im
u
latio
n
tim
e:
7
1
s
ec
o
n
d
s
.
T
ab
le
1
.
Simu
latio
n
p
ar
a
m
eter
s
Q
u
a
n
t
i
t
y
S
y
mb
o
l
V
a
l
u
e
P
o
w
e
r
R
a
t
e
d
P
max
1
5
K
w
A
C
R
a
t
e
d
V
a
c
2
9
1
V
D
C
R
a
t
e
d
C
u
r
r
e
n
t
R
a
t
e
d
R
e
si
st
a
n
c
e
P
o
l
e
M
o
me
n
t
o
f
i
n
e
r
t
i
a
F
r
i
c
t
i
o
n
c
o
e
f
f
i
c
i
e
n
t
F
l
u
x
l
i
n
k
a
g
e
A
r
mat
u
r
e
i
n
d
u
c
t
a
n
c
e
R
e
f
e
r
e
n
c
e
t
o
r
q
u
e
R
e
f
e
r
e
n
c
e
s
p
e
e
d
V
d
c
I
d
m
Rs
p
J
F
λ
La
T
ω
4
1
1
V
3
7
.
5
A
0
.
1
4
4
Ω
40
0
.
0
0
0
7
5
k
g
·
m²
0
.
0
5
N
·
m·
s
0
.
1
3
3
V
·
s
0
.
0
0
2
0
9
H
1
6
0
N
.
m
8
0
r
p
m
v
(
m
/
s
)
t
(
s
)
2
,
5
0
19
.
5
17
51
.
1
53
.
6
Fig
u
r
e
4
.
E
le
v
ato
r
s
p
ee
d
tr
ajec
to
r
y
g
r
ap
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
1
6
,
No
.
1
,
Feb
r
u
ar
y
20
2
6
:
1
4
9
-
157
154
Fig
u
r
e
5
illu
s
tr
ates
th
e
PMS
M
m
o
to
r
'
s
s
p
ee
d
r
esp
o
n
s
e
wh
en
u
s
in
g
th
e
MRAS
o
b
s
er
v
er
.
T
h
e
f
ig
u
r
e
s
h
o
ws
th
at
th
e
s
p
ee
d
r
esp
o
n
s
e
is
q
u
ite
g
o
o
d
,
with
th
e
f
ee
d
b
ac
k
s
p
ee
d
clo
s
ely
tr
ac
k
i
n
g
t
h
e
r
ef
er
en
ce
s
p
ee
d
.
Ho
wev
er
,
th
er
e
ar
e
s
lig
h
t o
s
cillatio
n
s
d
u
r
in
g
th
e
tr
an
s
itio
n
p
h
ases
,
th
o
u
g
h
th
e
y
ar
e
n
eg
lig
ib
l
e.
T
o
v
er
if
y
th
e
s
y
s
tem
'
s
s
tab
ilit
y
u
n
d
e
r
th
e
in
f
lu
e
n
ce
o
f
n
o
is
e
an
d
ex
ter
n
al
p
ar
am
eter
s
,
w
e
s
u
d
d
en
ly
ch
an
g
e
th
e
l
o
ad
at
tim
e
t
=
3
0
s
.
Fig
u
r
e
6
s
h
o
ws
a
p
o
r
tio
n
o
f
th
e
r
u
n
n
in
g
c
y
cle,
illu
s
tr
atin
g
th
e
s
p
ee
d
r
esp
o
n
s
e
wh
en
th
e
lo
ad
is
ab
r
u
p
tly
ch
a
n
g
ed
.
W
h
en
th
e
lo
ad
is
ch
an
g
ed
,
th
e
s
p
ee
d
ex
h
ib
its
s
o
m
e
o
s
cillatio
n
s
,
b
u
t
th
ey
ar
e
r
elativ
ely
s
m
all.
Ho
wev
er
,
th
e
lev
el
o
f
o
s
cillatio
n
is
s
till
ac
ce
p
tab
le.
Ad
d
itio
n
ally
,
wh
e
n
th
e
lo
ad
ch
an
g
es,
we
s
ee
m
o
r
e
s
ig
n
if
ican
t
o
s
cill
atio
n
s
in
th
e
d
ec
eler
atio
n
r
eg
io
n
to
war
d
s
0
,
b
u
t
th
e
s
p
ee
d
q
u
ick
ly
ad
ju
s
ts
to
th
e
r
ef
er
en
ce
s
p
ee
d
.
T
h
is
d
em
o
n
s
tr
ates th
at,
with
th
e
MRAS o
b
s
er
v
er
,
th
e
s
y
s
tem
ca
n
s
till
m
ain
tain
g
o
o
d
s
tab
ilit
y
ev
en
in
th
e
p
r
esen
ce
o
f
s
u
d
d
e
n
ex
ter
n
al
d
is
tu
r
b
an
ce
s
.
T
h
e
to
r
q
u
e
c
u
r
v
e
is
r
ep
r
esen
ted
in
Fig
u
r
e
7
.
W
h
en
th
e
m
o
t
o
r
o
p
er
ates
at
a
co
n
s
tan
t
s
p
ee
d
r
an
g
i
n
g
f
r
o
m
0
to
8
0
r
p
m
,
an
d
th
e
to
r
q
u
e
is
s
et
to
a
co
n
s
tan
t
v
alu
e
with
a
3
0
-
s
ec
o
n
d
lo
a
d
a
p
p
licatio
n
tim
e,
t
h
e
ac
ce
ler
atio
n
an
d
d
ec
eler
atio
n
p
h
ases
ar
e
e
n
tire
ly
n
o
r
m
al.
Ho
wev
er
,
af
ter
3
0
s
e
co
n
d
s
,
t
h
e
to
r
q
u
e
ten
d
s
to
i
n
c
r
ea
s
e
to
m
ee
t
th
e
in
itial
s
et
to
r
q
u
e.
Ad
d
itio
n
ally
,
with
th
e
c
u
r
r
en
t
wav
ef
o
r
m
s
,
we
n
ee
d
to
im
p
lem
e
n
t
d
ec
o
u
p
led
c
o
n
tr
o
l
o
f
th
e
two
c
u
r
r
en
ts
I
sd
an
d
I
sq
t
o
f
ac
ilit
ate
co
n
tr
o
l.
Ho
wev
er
,
th
is
p
r
o
b
lem
d
o
es n
o
t in
cl
u
d
e
w
ea
k
f
lu
x
co
n
tr
o
l,
m
ea
n
in
g
I
sd
<
0
,
s
o
th
e
id
ea
l c
ase
is
I
sd
=
0
,
as
s
h
o
wn
in
Fig
u
r
e
8
.
B
o
th
cu
r
r
e
n
ts
ex
h
i
b
it
o
s
cillatio
n
s
,
with
I
sq
o
s
cillatin
g
ar
o
u
n
d
a
v
alu
e
o
f
2
0
b
y
a
s
m
all
am
o
u
n
t
an
d
I
sd
o
s
cillatin
g
ar
o
u
n
d
a
v
alu
e
o
f
0
b
y
a
s
m
all
am
o
u
n
t.
T
h
is
b
eh
av
io
r
o
cc
u
r
s
b
ec
au
s
e
th
e
MRAS
o
b
s
er
v
er
u
s
es
a
PI
c
o
n
tr
o
ller
to
t
r
y
t
o
r
ea
ch
th
e
d
esire
d
s
p
ee
d
,
ca
u
s
in
g
s
lig
h
t
o
s
cillatio
n
s
in
t
h
e
f
ee
d
b
ac
k
s
p
ee
d
.
As
a
r
esu
lt,
th
e
r
esp
o
n
s
es
o
f
I
sd
an
d
I
sq
also
ex
p
er
ien
ce
s
lig
h
t
o
s
cillatio
n
s
.
T
h
is
p
h
en
o
m
en
o
n
is
s
tan
d
ar
d
in
th
e
s
y
s
tem
.
Fig
u
r
e
5
.
Sp
ee
d
r
esp
o
n
s
e
Fig
u
r
e
6
.
Sp
ee
d
r
esp
o
n
s
e
wh
en
th
e
lo
ad
is
ch
an
g
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f th
e
mo
d
el
r
efe
r
en
ce
a
d
a
p
tive
s
ystem
meth
o
d
in
…
(
Tr
a
n
V
a
n
K
h
o
i
)
155
Fig
u
r
e
7
.
T
h
e
r
esu
lt o
f
th
e
to
r
q
u
e
cu
r
v
e
is
as f
o
llo
ws
I
sq
I
sd
Fig
u
r
e
8
.
T
h
e
cu
r
r
en
t r
esp
o
n
s
e
o
f
I
sd
an
d
I
sq
5.
CO
NCLU
SI
O
N
I
n
th
is
s
tu
d
y
,
th
e
au
th
o
r
s
in
v
esti
g
ated
a
s
en
s
o
r
les
s
s
p
ee
d
esti
m
atio
n
m
eth
o
d
b
ased
o
n
th
e
MRA
S
m
o
d
el
o
b
s
er
v
e
r
f
o
r
p
er
m
a
n
en
t
m
ag
n
et
s
y
n
ch
r
o
n
o
u
s
m
o
to
r
s
u
s
ed
in
elev
ato
r
s
,
co
m
b
in
ed
w
ith
a
lo
w
-
p
ass
f
ilter
to
im
p
r
o
v
e
t
h
e
p
er
f
o
r
m
a
n
ce
a
n
d
r
esp
o
n
s
es
o
f
elev
at
o
r
s
in
r
esid
en
tial
b
u
ild
in
g
s
.
T
h
e
s
im
u
latio
n
r
esu
lts
s
h
o
w
th
at
th
is
m
eth
o
d
o
p
tim
izes
e
n
er
g
y
ef
f
icie
n
cy
an
d
co
s
t,
en
s
u
r
in
g
to
r
q
u
e
a
n
d
s
y
s
tem
s
ta
b
ilit
y
u
n
d
er
v
ar
io
u
s
o
p
er
atin
g
co
n
d
itio
n
s
.
T
h
is
o
p
en
s
u
p
n
ew
r
esear
ch
d
ir
ec
t
io
n
s
in
th
e
d
esig
n
an
d
o
p
er
atio
n
o
f
elev
ato
r
s
,
co
n
tr
ib
u
tin
g
to
th
e
s
u
s
tain
ab
le
d
ev
elo
p
m
en
t o
f
f
u
tu
r
e
tr
an
s
p
o
r
tatio
n
tech
n
o
lo
g
ies.
F
UNDING
I
NF
O
R
M
A
T
I
O
N
T
h
e
au
th
o
r
s
s
tate
n
o
f
u
n
d
in
g
is
in
v
o
lv
ed
.
AUTHO
R
CO
NT
RI
B
UT
I
O
NS ST
A
T
E
M
E
N
T
T
h
is
jo
u
r
n
al
u
s
es
th
e
C
o
n
tr
ib
u
to
r
R
o
les
T
ax
o
n
o
m
y
(
C
R
ed
iT)
to
r
ec
o
g
n
ize
in
d
iv
id
u
al
au
th
o
r
co
n
tr
ib
u
tio
n
s
,
r
ed
u
ce
au
th
o
r
s
h
ip
d
is
p
u
tes,
an
d
f
ac
ilit
ate
co
llab
o
r
atio
n
.
Na
m
e
o
f
Aut
ho
r
C
M
So
Va
Fo
I
R
D
O
E
Vi
Su
P
Fu
Tran
Va
n
Kh
o
i
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
An
T
h
i H
o
ai
T
h
u
An
h
✓
✓
✓
✓
✓
✓
✓
✓
✓
Tran
Tro
n
g
Hie
u
✓
✓
✓
✓
✓
✓
✓
✓
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
7
0
8
I
n
t J E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
1
6
,
No
.
1
,
Feb
r
u
ar
y
20
2
6
:
1
4
9
-
157
156
C
:
C
o
n
c
e
p
t
u
a
l
i
z
a
t
i
o
n
M
:
M
e
t
h
o
d
o
l
o
g
y
So
:
So
f
t
w
a
r
e
Va
:
Va
l
i
d
a
t
i
o
n
Fo
:
Fo
r
mal
a
n
a
l
y
s
i
s
I
:
I
n
v
e
s
t
i
g
a
t
i
o
n
R
:
R
e
so
u
r
c
e
s
D
:
D
a
t
a
C
u
r
a
t
i
o
n
O
:
W
r
i
t
i
n
g
-
O
r
i
g
i
n
a
l
D
r
a
f
t
E
:
W
r
i
t
i
n
g
-
R
e
v
i
e
w
&
E
d
i
t
i
n
g
Vi
:
Vi
su
a
l
i
z
a
t
i
o
n
Su
:
Su
p
e
r
v
i
s
i
o
n
P
:
P
r
o
j
e
c
t
a
d
mi
n
i
st
r
a
t
i
o
n
Fu
:
Fu
n
d
i
n
g
a
c
q
u
i
si
t
i
o
n
CO
NF
L
I
C
T
O
F
I
N
T
E
R
E
S
T
ST
A
T
E
M
E
NT
T
h
e
au
th
o
r
s
s
tate
n
o
co
n
f
lict o
f
in
ter
est.
DATA AV
AI
L
AB
I
L
I
T
Y
T
h
e
d
ata
s
u
p
p
o
r
tin
g
th
e
f
in
d
in
g
s
o
f
th
is
s
tu
d
y
ar
e
o
p
e
n
ly
av
a
ilab
le
in
I
J
E
C
E
.
RE
F
E
R
E
NC
E
S
[
1
]
H
.
B
a
k
h
t
i
a
r
z
a
d
e
h
,
A
.
P
o
l
a
t
,
a
n
d
L.
T.
Er
g
e
n
e
,
“
D
e
s
i
g
n
a
n
d
a
n
a
l
y
si
s
o
f
a
p
e
r
ma
n
e
n
t
m
a
g
n
e
t
s
y
n
c
h
r
o
n
o
u
s
m
o
t
o
r
f
o
r
e
l
e
v
a
t
o
r
a
p
p
l
i
c
a
t
i
o
n
s,
”
i
n
Pr
o
c
e
e
d
i
n
g
s
-
2
0
1
7
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
O
p
t
i
m
i
z
a
t
i
o
n
o
f
El
e
c
t
r
i
c
a
l
a
n
d
El
e
c
t
ro
n
i
c
Eq
u
i
p
m
e
n
t
,
O
PTI
M
2
0
1
7
a
n
d
2
0
1
7
I
n
t
l
Ae
g
e
a
n
C
o
n
f
e
r
e
n
c
e
o
n
E
l
e
c
t
r
i
c
a
l
M
a
c
h
i
n
e
s
a
n
d
P
o
w
e
r
El
e
c
t
r
o
n
i
c
s
,
AC
EM
P
2
0
1
7
,
2
0
1
7
,
p
p
.
2
9
3
–
2
9
8
,
d
o
i
:
1
0
.
1
1
0
9
/
O
P
TI
M
.
2
0
1
7
.
7
9
7
4
9
8
6
.
[
2
]
S
.
R
a
n
g
a
r
a
j
a
n
a
n
d
V
.
A
g
a
r
w
a
l
,
“
L
o
a
d
s
e
n
s
o
r
l
e
ss
n
o
v
e
l
c
o
n
t
r
o
l
sc
h
e
m
e
f
o
r
mi
n
i
mi
z
i
n
g
t
h
e
s
t
a
r
t
i
n
g
j
e
r
k
a
n
d
e
n
e
r
g
y
o
f
t
h
e
P
M
S
M
d
r
i
v
e
n
g
e
a
r
l
e
ss
e
l
e
v
a
t
o
r
s
w
i
t
h
v
a
r
y
i
n
g
s
t
i
c
t
i
o
n
a
n
d
r
o
t
o
r
f
l
u
x
l
i
n
k
a
g
e
,
”
i
n
2
0
1
9
I
E
EE
T
r
a
n
sp
o
r
t
a
t
i
o
n
E
l
e
c
t
r
i
f
i
c
a
t
i
o
n
C
o
n
f
e
r
e
n
c
e
,
I
T
EC
-
I
n
d
i
a
2
0
1
9
,
2
0
1
9
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
I
TEC
-
I
n
d
i
a
4
8
4
5
7
.
2
0
1
9
.
I
TEC
I
n
d
i
a
2
0
1
9
-
2
2
5
.
[
3
]
M
.
A
b
d
e
l
r
a
h
e
m,
R
.
K
e
n
n
e
l
,
C
.
H
a
c
k
l
,
M
.
D
a
l
,
a
n
d
J.
R
o
d
r
i
g
u
e
z
,
“
Ef
f
i
c
i
e
n
t
f
i
n
i
t
e
-
p
o
si
t
i
o
n
-
s
e
t
M
R
A
S
o
b
ser
v
e
r
f
o
r
e
n
c
o
d
e
r
-
l
e
ss
c
o
n
t
r
o
l
o
f
D
F
I
G
s,”
i
n
Pr
o
c
e
e
d
i
n
g
s
-
PREC
ED
E
2
0
1
9
:
2
0
1
9
I
EE
E
I
n
t
e
rn
a
t
i
o
n
a
l
S
y
m
p
o
s
i
u
m
o
n
Pr
e
d
i
c
t
i
v
e
C
o
n
t
ro
l
o
f
El
e
c
t
ri
c
a
l
D
ri
v
e
s
a
n
d
P
o
w
e
r E
l
e
c
t
r
o
n
i
c
s
,
2
0
1
9
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
P
R
EC
ED
E.
2
0
1
9
.
8
7
5
3
2
6
5
.
[
4
]
O
.
C
.
K
i
v
a
n
c
a
n
d
S
.
B
.
O
z
t
u
r
k
,
“
S
e
n
so
r
l
e
s
s
P
M
S
M
d
r
i
v
e
b
a
s
e
d
o
n
s
t
a
t
o
r
f
e
e
d
f
o
r
w
a
r
d
v
o
l
t
a
g
e
e
st
i
ma
t
i
o
n
i
m
p
r
o
v
e
d
w
i
t
h
M
R
A
S
mu
l
t
i
p
a
r
a
me
t
e
r
e
s
t
i
m
a
t
i
o
n
,
”
I
EEE
/
AS
M
E
T
ra
n
s
a
c
t
i
o
n
s
o
n
M
e
c
h
a
t
r
o
n
i
c
s
,
v
o
l
.
2
3
,
n
o
.
3
,
p
p
.
1
3
2
6
–
1
3
3
7
,
2
0
1
8
,
d
o
i
:
1
0
.
1
1
0
9
/
T
M
E
C
H
.
2
0
1
8
.
2
8
1
7
2
4
6
.
[
5
]
M
.
C
h
e
n
g
,
S
.
W
a
n
g
,
a
n
d
W
.
W
a
n
g
,
“
M
R
A
S
p
o
si
t
i
o
n
s
e
n
s
o
r
l
e
ss
c
o
n
t
r
o
l
o
f
l
i
n
e
a
r
f
l
u
x
-
sw
i
t
c
h
i
n
g
p
e
r
m
a
n
e
n
t
mag
n
e
t
m
o
t
o
r
f
o
r
f
o
u
r
-
q
u
a
d
r
a
n
t
o
p
e
r
a
t
i
o
n
,
”
J
o
u
r
n
a
l
o
f
El
e
c
t
r
i
c
a
l
En
g
i
n
e
e
r
i
n
g
(
C
h
i
n
a
)
,
v
o
l
.
1
6
,
n
o
.
4
,
p
p
.
2
5
–
3
2
,
2
0
2
1
,
d
o
i
:
1
0
.
1
1
9
8
5
/
2
0
2
1
.
0
4
.
0
0
4
.
[
6
]
M
.
Es
k
o
l
a
a
n
d
H
.
T
u
u
sa,
“
S
e
n
s
o
r
l
e
ss
c
o
n
t
r
o
l
o
f
a
p
e
r
m
a
n
e
n
t
ma
g
n
e
t
s
y
n
c
h
r
o
n
o
u
s
m
o
t
o
r
-
a
p
p
l
i
c
a
t
i
o
n
t
o
a
h
o
i
s
t
d
r
i
v
e
,
”
i
n
P
ES
C
Re
c
o
rd
-
I
EE
E
A
n
n
u
a
l
P
o
w
e
r E
l
e
c
t
r
o
n
i
c
s
S
p
e
c
i
a
l
i
s
t
s
C
o
n
f
e
re
n
c
e
,
2
0
0
2
,
v
o
l
.
2
,
p
p
.
9
6
7
–
9
7
2
,
d
o
i
:
1
0
.
1
1
0
9
/
p
s
e
c
.
2
0
0
2
.
1
0
2
2
5
8
0
.
[
7
]
A
.
G
a
n
a
p
a
t
h
y
R
a
m a
n
d
K
.
R
.
S
a
n
t
h
a
,
“
R
e
v
i
e
w
o
f
sl
i
d
i
n
g
m
o
d
e
o
b
s
e
r
v
e
r
s fo
r
sen
s
o
r
l
e
ss c
o
n
t
r
o
l
o
f
p
e
r
ma
n
e
n
t
ma
g
n
e
t
sy
n
c
h
r
o
n
o
u
s
mo
t
o
r
d
r
i
v
e
s,
”
I
n
t
e
rn
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
P
o
w
e
r
El
e
c
t
r
o
n
i
c
s
a
n
d
D
r
i
v
e
S
y
st
e
m
s
,
v
o
l
.
9
,
n
o
.
1
,
p
p
.
4
6
–
5
4
,
2
0
1
8
,
d
o
i
:
1
0
.
1
1
5
9
1
/
i
j
p
e
d
s
.
v
9
.
i
1
.
p
p
4
6
-
5
4
.
[
8
]
P
.
T
o
me
i
a
n
d
C
.
M
.
V
e
r
r
e
l
l
i
,
“
O
b
ser
v
e
r
-
b
a
se
d
sp
e
e
d
t
r
a
c
k
i
n
g
c
o
n
t
r
o
l
f
o
r
sen
s
o
r
l
e
ss
p
e
r
m
a
n
e
n
t
ma
g
n
e
t
s
y
n
c
h
r
o
n
o
u
s
mo
t
o
r
s
w
i
t
h
u
n
k
n
o
w
n
l
o
a
d
t
o
r
q
u
e
,
”
I
EEE
T
r
a
n
s
a
c
t
i
o
n
s
o
n
Au
t
o
m
a
t
i
c
C
o
n
t
r
o
l
,
v
o
l
.
5
6
,
n
o
.
6
,
p
p
.
1
4
8
4
–
1
4
8
8
,
2
0
1
1
,
d
o
i
:
1
0
.
1
1
0
9
/
TA
C
.
2
0
1
1
.
2
1
2
1
3
3
0
.
[
9
]
J.
Y
a
n
g
,
S
.
L
i
,
J
.
S
u
,
a
n
d
X
.
Y
u
,
“
C
o
n
t
i
n
u
o
u
s
n
o
n
si
n
g
u
l
a
r
t
e
r
m
i
n
a
l
sl
i
d
i
n
g
m
o
d
e
c
o
n
t
r
o
l
f
o
r
sy
s
t
e
ms
w
i
t
h
m
i
sma
t
c
h
e
d
d
i
s
t
u
r
b
a
n
c
e
s,”
A
u
t
o
m
a
t
i
c
a
,
v
o
l
.
4
9
,
n
o
.
7
,
p
p
.
2
2
8
7
–
2
2
9
1
,
2
0
1
3
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
a
u
t
o
m
a
t
i
c
a
.
2
0
1
3
.
0
3
.
0
2
6
.
[
1
0
]
M
.
C
i
r
r
i
n
c
i
o
n
e
a
n
d
M
.
P
u
c
c
i
,
“
A
n
M
R
A
S
-
b
a
se
d
s
e
n
s
o
r
l
e
ss
h
i
g
h
-
p
e
r
f
o
r
man
c
e
i
n
d
u
c
t
i
o
n
mo
t
o
r
d
r
i
v
e
w
i
t
h
a
p
r
e
d
i
c
t
i
v
e
a
d
a
p
t
i
v
e
mo
d
e
l
,
”
I
E
EE
T
r
a
n
sa
c
t
i
o
n
s
o
n
I
n
d
u
st
ri
a
l
E
l
e
c
t
r
o
n
i
c
s
,
v
o
l
.
5
2
,
n
o
.
2
,
p
p
.
5
3
2
–
5
5
1
,
2
0
0
5
,
d
o
i
:
1
0
.
1
1
0
9
/
TI
E.
2
0
0
5
.
8
4
4
2
4
7
.
[
1
1
]
D
.
Li
a
n
g
,
J.
Li
,
R
.
Q
u
,
a
n
d
W
.
K
o
n
g
,
“
A
d
a
p
t
i
v
e
s
e
c
o
n
d
-
o
r
d
e
r
s
l
i
d
i
n
g
-
m
o
d
e
o
b
ser
v
e
r
f
o
r
P
M
S
M
se
n
so
r
l
e
ss
c
o
n
t
r
o
l
c
o
n
s
i
d
e
r
i
n
g
V
S
I
N
o
n
l
i
n
e
a
r
i
t
y
,
”
I
EEE
T
ra
n
s
a
c
t
i
o
n
s
o
n
Po
w
e
r
El
e
c
t
ro
n
i
c
s
,
v
o
l
.
3
3
,
n
o
.
1
0
,
p
p
.
8
9
9
4
–
9
0
0
4
,
2
0
1
8
,
d
o
i
:
1
0
.
1
1
0
9
/
TPE
L.
2
0
1
7
.
2
7
8
3
9
2
0
.
[
1
2
]
J.
C
.
Li
,
M
.
X
i
n
,
Z.
N
.
F
a
n
,
a
n
d
R
.
L
i
u
,
“
D
e
si
g
n
a
n
d
e
x
p
e
r
i
m
e
n
t
a
l
e
v
a
l
u
a
t
i
o
n
o
f
a
1
2
k
w
l
a
r
g
e
s
y
n
c
h
r
o
n
o
u
s
r
e
l
u
c
t
a
n
c
e
m
o
t
o
r
a
n
d
c
o
n
t
r
o
l
sy
s
t
e
m
f
o
r
e
l
e
v
a
t
o
r
t
r
a
c
t
i
o
n
,
”
I
EEE
A
c
c
e
ss
,
v
o
l
.
8
,
p
p
.
3
4
2
5
6
–
3
4
2
6
4
,
2
0
2
0
,
d
o
i
:
1
0
.
1
1
0
9
/
A
C
C
ESS
.
2
0
2
0
.
2
9
7
4
4
1
4
.
[
1
3
]
G
.
F
.
A
b
d
e
l
n
a
b
y
,
T.
A
.
D
a
k
r
o
r
y
,
S
.
H
.
A
r
a
f
a
,
a
n
d
S
.
G
.
R
a
md
a
n
,
“
S
e
n
so
r
l
e
ss
f
i
e
l
d
o
r
i
e
n
t
e
d
c
o
n
t
r
o
l
o
f
p
e
r
man
e
n
t
m
a
g
n
e
t
sy
n
c
h
r
o
n
o
u
s m
o
t
o
r
,
”
v
o
l
.
5
,
n
o
.
1
,
p
p
.
1
7
2
–
1
7
8
,
2
0
1
5
.
[
1
4
]
A
.
M
i
sh
r
a
,
V
.
M
a
h
a
j
a
n
,
P
.
A
g
a
r
w
a
l
,
a
n
d
S
.
P
.
S
r
i
v
a
s
t
a
v
a
,
“
M
R
A
S
b
a
s
e
d
e
st
i
mat
i
o
n
o
f
s
p
e
e
d
i
n
se
n
s
o
r
l
e
ss
P
M
S
M
d
r
i
v
e
,
”
2
0
1
2
I
EEE
5
t
h
P
o
w
e
r I
n
d
i
a
C
o
n
f
e
re
n
c
e
,
PI
C
O
N
F
2
0
1
2
.
p
p
.
1
–
5
,
2
0
1
2
,
d
o
i
:
1
0
.
1
1
0
9
/
P
o
w
e
r
I
.
2
0
1
2
.
6
4
7
9
4
9
2
.
[
1
5
]
S
.
S
.
B
a
d
i
n
i
a
n
d
V
.
V
e
r
m
a
,
“
A
n
o
v
e
l
M
R
A
S
b
a
se
d
s
p
e
e
d
se
n
s
o
r
l
e
ss
v
e
c
t
o
r
c
o
n
t
r
o
l
l
e
d
P
M
S
M
d
r
i
v
e
,
”
i
n
2
0
1
9
5
4
t
h
I
n
t
e
r
n
a
t
i
o
n
a
l
U
n
i
v
e
rsi
t
i
e
s P
o
w
e
r
En
g
i
n
e
e
ri
n
g
C
o
n
f
e
re
n
c
e
,
U
PE
C
2
0
1
9
-
Pro
c
e
e
d
i
n
g
s
,
2
0
1
9
,
p
p
.
1
–
6
,
d
o
i
:
1
0
.
1
1
0
9
/
U
P
EC
.
2
0
1
9
.
8
8
9
3
6
0
7
.
[
1
6
]
M
.
Esk
o
l
a
a
n
d
H
.
T
u
u
sa
,
“
C
o
mp
a
r
i
s
o
n
o
f
M
R
A
S
a
n
d
n
o
v
e
l
si
m
p
l
e
m
e
t
h
o
d
f
o
r
p
o
si
t
i
o
n
e
s
t
i
mat
i
o
n
i
n
P
M
S
M
d
r
i
v
e
s,
”
i
n
PE
S
C
Re
c
o
rd
-
I
EE
E
A
n
n
u
a
l
P
o
w
e
r E
l
e
c
t
r
o
n
i
c
s
S
p
e
c
i
a
l
i
s
t
s
C
o
n
f
e
re
n
c
e
,
2
0
0
3
,
v
o
l
.
2
,
p
p
.
5
5
0
–
5
5
5
,
d
o
i
:
1
0
.
1
1
0
9
/
p
e
sc
.
2
0
0
3
.
1
2
1
8
1
1
5
.
[
1
7
]
M
.
N
i
c
o
l
a
a
n
d
C
.
I
.
N
i
c
o
l
a
,
“
S
e
n
so
r
l
e
ss
p
r
e
d
i
c
t
i
v
e
c
o
n
t
r
o
l
f
o
r
P
M
S
M
u
si
n
g
M
R
A
S
o
b
ser
v
e
r
,
”
i
n
2
0
1
9
I
n
t
e
r
n
a
t
i
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
El
e
c
t
ro
m
e
c
h
a
n
i
c
a
l
a
n
d
E
n
e
r
g
y
S
y
s
t
e
m
s,
S
I
EL
ME
N
2
0
1
9
-
Pr
o
c
e
e
d
i
n
g
s
,
2
0
1
9
,
p
p
.
1
–
7
,
d
o
i
:
1
0
.
1
1
0
9
/
S
I
ELM
E
N
.
2
0
1
9
.
8
9
0
5
8
1
5
.
[
1
8
]
P
.
Q
.
K
h
a
n
h
a
n
d
H
.
P
.
H
.
A
n
h
,
“
N
o
v
e
l
s
e
n
s
o
r
l
e
ss
P
M
S
M
s
p
e
e
d
c
o
n
t
r
o
l
u
s
i
n
g
a
d
v
a
n
c
e
d
f
u
z
z
y
M
R
A
S
a
l
g
o
r
i
t
h
m,”
A
ra
b
i
a
n
J
o
u
rn
a
l
f
o
r
S
c
i
e
n
c
e
a
n
d
En
g
i
n
e
e
r
i
n
g
,
v
o
l
.
4
7
,
n
o
.
1
1
,
p
p
.
1
4
5
3
1
–
1
4
5
4
2
,
2
0
2
2
,
d
o
i
:
1
0
.
1
0
0
7
/
s1
3
3
6
9
-
0
2
2
-
0
6
8
3
4
-
1.
[
1
9
]
X
.
Z
o
u
,
H
.
D
i
n
g
,
a
n
d
J.
L
i
,
“
S
e
n
so
r
l
e
ss
c
o
n
t
r
o
l
st
r
a
t
e
g
y
o
f
p
e
r
ma
n
e
n
t
mag
n
e
t
s
y
n
c
h
r
o
n
o
u
s
mo
t
o
r
b
a
se
d
o
n
a
d
a
p
t
i
v
e
su
p
e
r
-
t
w
i
st
i
n
g
a
l
g
o
r
i
t
h
m
sl
i
d
i
n
g
mo
d
e
o
b
s
e
r
v
e
r
,
”
J
o
u
rn
a
l
o
f
C
o
n
t
ro
l
,
Au
t
o
m
a
t
i
o
n
a
n
d
El
e
c
t
r
i
c
a
l
S
y
st
e
m
s
,
v
o
l
.
3
5
,
n
o
.
1
,
p
p
.
1
6
3
–
1
7
9
,
2
0
2
4
,
d
o
i
:
1
0
.
1
0
0
7
/
s4
0
3
1
3
-
0
2
3
-
0
1
0
5
4
-
w.
[
2
0
]
S
.
H
u
ssa
i
n
a
n
d
M
.
A
.
B
a
z
a
z
,
“
N
e
u
r
a
l
n
e
t
w
o
r
k
o
b
serv
e
r
d
e
si
g
n
f
o
r
s
e
n
s
o
r
l
e
ss
c
o
n
t
r
o
l
o
f
i
n
d
u
c
t
i
o
n
m
o
t
o
r
d
r
i
v
e
,
”
I
FA
C
-
Pa
p
e
rsO
n
L
i
n
e
,
v
o
l
.
4
9
,
n
o
.
1
,
p
p
.
1
0
6
–
1
1
1
,
2
0
1
6
,
d
o
i
:
1
0
.
1
0
1
6
/
j
.
i
f
a
c
o
l
.
2
0
1
6
.
0
3
.
0
3
7
.
[
2
1
]
H
.
M
.
K
o
j
a
b
a
d
i
a
n
d
M
.
G
h
r
i
b
i
,
“
M
R
A
S
-
b
a
se
d
a
d
a
p
t
i
v
e
sp
e
e
d
e
st
i
ma
t
o
r
i
n
P
M
S
M
d
r
i
v
e
s
,
”
i
n
I
n
t
e
r
n
a
t
i
o
n
a
l
Wo
r
k
sh
o
p
o
n
Ad
v
a
n
c
e
d
M
o
t
i
o
n
C
o
n
t
ro
l
,
AM
C
,
2
0
0
6
,
v
o
l
.
2
0
0
6
,
p
p
.
5
6
9
–
5
7
2
,
d
o
i
:
1
0
.
1
1
0
9
/
A
M
C
.
2
0
0
6
.
1
6
3
1
7
2
2
.
[
2
2
]
Y
.
S
.
K
i
m,
S
.
K
.
K
i
m,
a
n
d
Y
.
A
.
K
w
o
n
,
“
M
R
A
S
b
a
se
d
s
e
n
s
o
r
l
e
ss
c
o
n
t
r
o
l
o
f
p
e
r
m
a
n
e
n
t
m
a
g
n
e
t
s
y
n
c
h
r
o
n
o
u
s
mo
t
o
r
,
”
i
n
S
I
C
E
2
0
0
3
A
n
n
u
a
l
C
o
n
f
e
re
n
c
e
,
2
0
0
3
,
p
p
.
1
6
3
2
–
1
6
3
7
,
d
o
i
:
1
0
.
1
1
4
9
9
/
s
i
c
e
p
.
2
0
0
3
.
0
_
7
7
_
2
.
[
2
3
]
R
.
S
h
r
i
w
a
s
t
a
v
a
e
t
a
l
.
,
“
P
e
r
f
o
r
ma
n
c
e
a
n
a
l
y
s
i
s o
f
F
O
C
sp
a
c
e
v
e
c
t
o
r
m
o
d
u
l
a
t
i
o
n
D
C
M
LI
d
r
i
v
e
n
P
M
S
M
d
r
i
v
e
,
”
Bu
l
l
e
t
i
n
o
f
El
e
c
t
ri
c
a
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8
7
0
8
A
p
p
lica
tio
n
o
f th
e
mo
d
el
r
efe
r
en
ce
a
d
a
p
tive
s
ystem
meth
o
d
in
…
(
Tr
a
n
V
a
n
K
h
o
i
)
157
En
g
i
n
e
e
ri
n
g
a
n
d
I
n
f
o
rm
a
t
i
c
s
,
v
o
l
.
1
2
,
n
o
.
5
,
p
p
.
2
6
8
2
–
2
6
9
2
,
2
0
2
3
,
d
o
i
:
1
0
.
1
1
5
9
1
/
e
e
i
.
v
1
2
i
5
.
4
5
5
4
.
[
2
4
]
S
.
C
h
a
t
t
o
p
a
d
h
y
a
y
,
M
.
M
i
t
r
a
,
a
n
d
S
.
S
e
n
g
u
p
t
a
,
“
C
l
a
r
k
e
a
n
d
P
a
r
k
t
r
a
n
sf
o
r
m,
”
i
n
P
o
w
e
r
S
y
st
e
m
s
,
v
o
l
.
6
2
,
2
0
1
1
,
p
p
.
8
9
–
9
6
.
[
2
5
]
J.
X
u
,
P
.
Ji
a
,
R
.
Zh
a
n
g
,
a
n
d
M
.
Zh
a
n
g
,
“
A
c
t
i
v
e
d
a
mp
i
n
g
f
o
r
LC
-
f
i
l
t
e
r
e
d
P
M
S
M
b
a
se
d
o
n
l
o
w
-
p
a
ss
f
i
l
t
e
r
c
a
p
a
c
i
t
o
r
c
u
r
r
e
n
t
f
e
e
d
b
a
c
k
a
n
d
e
x
t
e
n
d
e
d
st
a
t
e
o
b
ser
v
e
r
,
”
I
E
EE
T
ra
n
s
a
c
t
i
o
n
s
o
n
T
r
a
n
sp
o
rt
a
t
i
o
n
E
l
e
c
t
r
i
f
i
c
a
t
i
o
n
,
v
o
l
.
1
0
,
n
o
.
2
,
p
p
.
3
2
9
2
–
3
3
0
4
,
2
0
2
4
,
d
o
i
:
1
0
.
1
1
0
9
/
TTE
.
2
0
2
3
.
3
2
9
4
0
1
0
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
Tr
a
n
Va
n
K
h
o
i
re
c
e
iv
e
d
B.
S
.
a
n
d
M
.
S
.
d
e
g
re
e
in
e
lec
tri
c
a
l
e
n
g
i
n
e
e
rin
g
a
n
d
a
u
to
m
a
ti
o
n
fro
m
t
h
e
Un
iv
e
rsit
y
o
f
Tran
sp
o
rt
a
n
d
Co
m
m
u
n
ica
ti
o
n
s,
Ha
n
o
i
,
Vie
tn
a
m
in
2
0
0
4
a
n
d
2
0
0
9
,
re
sp
e
c
ti
v
e
ly
,
a
n
d
re
c
e
iv
e
d
P
h
.
D.
d
e
g
re
e
fro
m
Be
ij
in
g
Ji
a
o
to
n
g
Un
i
v
e
rsity
,
Be
ij
in
g
,
Ch
in
a
i
n
2
0
1
9
.
He
is
c
u
rre
n
tl
y
a
lec
tu
re
r
o
f
El
e
c
tri
c
a
l
a
n
d
E
lec
tro
n
ic
F
a
c
u
lt
y
in
U
n
iv
e
rsit
y
o
f
Tran
sp
o
rt
a
n
d
C
o
m
m
u
n
ica
ti
o
n
s
(UTC).
His
re
se
a
rc
h
i
n
tere
sts
a
re
o
p
t
ima
l
tec
h
n
i
q
u
e
s
a
n
d
e
n
e
rg
y
m
a
n
a
g
e
m
e
n
t
stra
teg
ies
.
H
e
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
tv
k
h
o
i.
k
t
d
@u
tc.ed
u
.
v
n
.
An
Th
i
H
o
a
i
Th
u
A
n
h
re
c
e
iv
e
d
h
e
r
En
g
i
n
e
e
r
(1
9
9
7
),
a
n
d
M
S
c
(2
0
0
2
)
d
e
g
re
e
s
in
in
d
u
strial
a
u
t
o
m
a
ti
o
n
e
n
g
in
e
e
rin
g
fro
m
Ha
n
o
i
Un
iv
e
rsit
y
o
f
S
c
i
e
n
c
e
a
n
d
Tec
h
n
o
l
o
g
y
;
a
n
d
c
o
m
p
lete
d
P
h
D
d
e
g
re
e
in
2
0
2
0
fr
o
m
th
e
U
n
iv
e
rsit
y
o
f
Tran
s
p
o
rt
a
n
d
C
o
m
m
u
n
ica
ti
o
n
s
(UTC).
No
w,
sh
e
is
a
lec
tu
re
r
a
t
th
e
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic
E
n
g
i
n
e
e
rin
g
a
t
t
h
e
U
n
iv
e
rsit
y
o
f
Tran
sp
o
rt
a
n
d
C
o
m
m
u
n
ica
ti
o
n
s
(UTC).
He
r
in
tere
sts
in
c
lu
d
e
p
o
we
r
e
lec
tro
n
ic
c
o
n
v
e
rters
,
e
lec
tri
c
m
o
to
r
d
ri
v
e
s,
a
n
d
e
n
e
rg
y
-
sa
v
in
g
so
l
u
ti
o
n
s
fo
r
i
n
d
u
stry
a
n
d
tra
n
sp
o
r
tatio
n
.
S
h
e
c
a
n
b
e
c
o
n
tac
ted
b
y
e
m
a
il
:
h
tan
h
.
k
t
d
@u
t
c
.
e
d
u
.
v
n
.
Tr
a
n
Tr
o
n
g
H
ieu
is
a
f
o
u
rt
h
-
y
e
a
r
stu
d
e
n
t
m
a
jo
r
in
g
i
n
e
lec
tri
c
a
l
e
n
g
i
n
e
e
rin
g
a
t
th
e
Un
i
v
e
rsity
o
f
Tran
s
p
o
rt
a
n
d
C
o
m
m
u
n
ica
ti
o
n
s
(UTC),
Vie
t
n
a
m
.
His
c
u
rre
n
t
in
tere
sts
in
c
lu
d
e
p
o
we
r
e
lec
tro
n
ics
a
n
d
e
l
e
c
tri
c
d
riv
e
c
o
n
tro
l
,
w
h
ich
a
re
a
p
p
li
e
d
i
n
th
e
tran
sp
o
rtatio
n
a
n
d
i
n
d
u
stry
.
He
c
a
n
b
e
c
o
n
tac
ted
a
t
e
m
a
il
:
Hie
u
2
0
1
5
0
3
7
6
1
@lm
s.u
tc.ed
u
.
v
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.