Fuzzy Clustering Image Segmentation Based on Particle Swarm Optimization

Telecommunication Computing Electronics and Control

Fuzzy Clustering Image Segmentation Based on Particle Swarm Optimization

Abstract

Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the particle swarm optimization (PSO) with the characteristics of global optimization and rapid convergence and fuzzy clustering (FC) algorithm with fuzzy clustering effects starting from the perspective of particle swarm and fuzzy membership restrictions and gets a PSO-FC image segmentation algorithm so as to effectively avoid being trapped into the local optimum and improve the stability and reliability of clustering algorithm. The experimental results show that this new PSO-FC algorithm has excellent image segmentation effects.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration