Brain tumor classification for optimizing performance using hybrid RNN classifier

Indonesian Journal of Electrical Engineering and Computer Science

Brain tumor classification for optimizing performance using hybrid RNN classifier

Abstract

Tumor is the uncontrolled growth of cancer cells in any part of the human body. Brain tumoris the leading cause of cancer deaths worldwide among adults and childrens. Early detection of brain cancers is essential. To prevent more issues, early defect detection is essential. Healthcare physicians may discover and categorize brain tumors with the use of computational intelligence-focused tools. An essential task for diagnosing tumors and choosing the right type of therapy is classifying brain tumors. Brain tumor identification and segmentation using magnetic resonance imaging (MRI) scans is now recognized as one of the most significant and difficult research areas in the world of medical image processing. The field of medical imaging has gained greatly from the use of artificial intelligence (AI) in the form of machine learning (ML) and deep learning (DL). DL has shown significant presentation, especially in the areas of brain tumor classification and segmentation. In this work, brain tumor classification for optimizing performance using hybrid recurrent neural network (RNN) classifier is presented. Different types of brain tumors are classified using a mix of RNN and inception residual neural network (ResNet). This strategy will produce improved F1-score, precision, accuracy, and recall scores.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration