Improving farming by quickly detecting muskmelon plant diseases using advanced ensemble learning and capsule networks

Indonesian Journal of Electrical Engineering and Computer Science

Improving farming by quickly detecting muskmelon plant diseases using advanced ensemble learning and capsule networks

Abstract

In modern agriculture, ensuring plant health is essential for high crop yields and quality. Plant diseases pose risks to economies, communities, and the environment, making early and accurate diagnosis crucial. The internet of things (IoT) has revolutionized farming by enabling real-time crop monitoring and using drones and cameras for early disease detection. This technology helps farmers address challenges with precision and sustainability. This research propose an ensemble learning model incorporating multi-class capsule networks (MCCN) and other pre-trained model with majority voting system is implemented to predict plant diseases and pests early. The research aims to develop a robust MCCN-based ensemble prediction model for timely disease identification. To evaluate the performance of the ensemble model, various key metrics, including accuracy, and loss value, are assessed. Furthermore, a comparative analysis is conducted, benchmarking the MCCN model against other well-known pre-trained models such as residual network-101 (ResNet101), visual geometry group-19 (VGG19), and GoogleNet. This research signifies a substantial stride towards the realization of IoT-driven precision agriculture, where advanced technology and machine learning contribute to the early detection and mitigation of plant diseases, ultimately enhancing crop yield and environmental sustainability.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration