Enhancing artificial neural network performance for energy efficiency in laboratories through principal component analysis
International Journal of Advances in Applied Sciences

Abstract
This study investigates energy efficiency challenges during laboratory activities. Inefficient energy use in the practicum phase remains a critical issue, prompting the exploration of innovative forecasting models. This research employs artificial neural network (ANN) models integrated with principal component analysis (PCA) to predict energy consumption and optimize usage. The findings reveal that PCA components, including eigenvalues, eigenvectors, and matrix covariance values, significantly influence the ANN model's performance in forecasting energy production. The ANN training achieved a high correlation coefficient (R=1) with a mean squared error (MSE) of 0.045931 after 200,000 epochs, demonstrating the model's robustness. While testing results showed a moderate correlation (R=0.46169), the models demonstrated potential for refinement and scalability. This integration of ANN and PCA models provides a reliable framework for accurately forecasting energy usage, offering an effective strategy to enhance energy efficiency in laboratory settings. By optimizing energy consumption, this approach has the potential to reduce operational costs and environmental impact. The strong performance metrics highlight the practical utility of these models in educational contexts, contributing to sustainable energy management and better resource allocation. Furthermore, the reduction in energy-related environmental impacts underscores the broader applicability of these models for fostering sustainable development in similar contexts.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.
