Evaluating search key distribution impact on searching performance in large data streams

International Journal of Artificial Intelligence

Evaluating search key distribution impact on searching performance in large data streams

Abstract

The distribution pattern of search keys is assessed in this study by contrasting four methods of index searching on large-scale JSON files with data streams. The Adelson-Velskii and Landis (AVL) tree, binary search tree (BST), linear search (LS), and binary search (BS) are among the search strategies. We look at the normal distribution, left-skewed distribution, and right-skewed distribution of search-key distributions. According to the results, LS performs the slowest, averaging 653.166 milliseconds, whereas AVL tree performs better than the others in dense index, with an average search time of 0.005 milliseconds. With 0.011 milliseconds per keyword for sparse index, BS outperforms LS, which averages 1007.848 milliseconds. For dense indexing, an AVL tree works best; for sparse indexing, BS is recommended.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration