AI-based federated learning for heart disease prediction: a collaborative and privacy-preserving approach
International Journal of Informatics and Communication Technology
Abstract
People with symptoms like diabetes, high BP, and high cholesterol are at an increased risk for heart disease and stroke as they get older. To mitigate this threat, predictive fashions leveraging machine learning (ML) and artificial intelligence (AI) have emerged as a precious gear; however, heart disease prediction is a complicated task, and diagnosis outcomes are hardly ever accurate. Currently, the existing ML tech says it is necessary to have data in certain centralized locations to detect heart disease, as data can be found centrally and is easily accessible. This review introduces federated learning (FL) to answer data privacy challenges in heart disease prediction. FL, a collaborative technique pioneered by Google, trains algorithms across independent sessions using local datasets. This paper investigates recent ML methods and databases for predicting cardiovascular disease (heart attack). Previous research explores algorithms like region-based convolutional neural network (RCNN), convolutional neural network (CNN), and federated logistic regressions (FLRs) for heart and other disease prediction. FL allows the training of a collaborative model while keeping patient info spread out among various sites, ensuring privacy and security. This paper explores the efficacy of FL, a collaborative technique, in enhancing the accuracy of cardiovascular disease (CVD) prediction models while preserving data privacy across distributed datasets.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.





