Contract-based federated learning framework for intrusion detection system in internet of things networks

International Journal of Artificial Intelligence

Contract-based federated learning framework for intrusion detection system in internet of things networks

Abstract

A plethora of national vital infrastructures connected to internet of things (IoT) networks may trigger serious data security vulnerabilities. To address the issue, intrusion detection systems (IDS) were investigated where the behavior and traffic of IoT networks are monitored to determine whether malicious attacks or not occur through centralized learning on a cloud. Nonetheless, such a method requires IoT devices to transmit their local network traffic data to the cloud, thereby leading to data breaches. This paper proposes a federated learning (FL)-based IDS on IoT networks aiming at improving the intrusion detection accuracy without privacy leakage from the IoT devices. Specifically, an IoT service provider can first motivate IoT devices to participate in the FL process via a contract-based incentive mechanism according to their local data. Then, the FL process is executed to predict IoT network traffic types without sending IoT devices’ local data to the cloud. Here, each IoT device performs the learning process locally and only sends the trained model to the cloud for the model update. The proposed FL-based system achieves a higher utility (up to 44%) than that of a non-contract-based incentive mechanism and a higher prediction accuracy (up to 3%) than that of the local learning method using a real-world IoT network traffic dataset.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration