Tomographic image reconstruction enhancement through median filtering and K-means clustering
International Journal of Electrical and Computer Engineering

Abstract
Ultrasound tomography is a powerful and widely utilized imaging technique in the field of medical diagnostics. Its non-invasive nature and high sensitivity in detecting small objects make it an invaluable tool for healthcare professionals. However, a significant challenge associated with ultrasound tomography is that the reconstructed images often contain noise. This noise can severely compromise the accuracy and interpretability of the diagnostic information derived from these images. In this paper, we propose and rigorously evaluate the application of a median filter to address and mitigate noise artifacts in the reconstructed images obtained through the distorted born iterative method (DBIM). The primary aim is to enhance the quality of these images and thereby improve diagnostic reliability. The effectiveness of our proposed noise reduction approach is quantitatively assessed using the normalized error evaluation metric, which provides a precise measure of improvement in image quality. Furthermore, to enhance the interpretability and utility of the reconstructed images, we incorporate a basic machine learning technique known as K-means clustering. This method is employed to automatically segment the reconstructed images into distinct regions that represent objects, background, and noise. Hence, it facilitates a clearer delineation of different components within the images. Our results demonstrate that K-means clustering, when applied to images processed with the proposed median filter method, effectively delineates these regions with a significant reduction of noise. This combination not only enhances image clarity but also ensures that critical diagnostic details are preserved and more easily interpreted by medical professionals. The substantial reduction in noise achieved through our approach underscores its potential for improving the accuracy and reliability of ultrasound tomography in medical diagnostics.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.
