Comparative reliability and performance analysis of PV inverters with bifacial and monofacial panels
International Journal of Power Electronics and Drive Systems

Abstract
In the realm of solar energy systems, the reliability and performance of photovoltaic (PV) inverters play a critical role in ensuring efficient energy conversion and long-term operation. This study delves into a comprehensive reliability-oriented performance assessment of PV inverters, with a particular focus on the comparative analysis between bifacial and monofacial panels. Reliability evaluation is carried out by considering a yearly mission profile with a one-minute sample at Hyderabad, India. A test case of a 3-kW PV system for grid-connected applications is considered. By integrating reliability metrics with performance indicators, we aim to provide a holistic evaluation of PV inverters operating under varying conditions inherent to both panel types. The research methodology involves detailed simulations and field data analysis to capture the nuances of inverter performance influenced by the unique characteristics of bifacial panels, such as their ability to capture light from both sides, compared to the traditional monofacial panels. In this paper, performance parameters such as junction temperature, MCS, and B10 lifetime (system level (SL) and component level (CL)) are evaluated. Key findings highlight the impact of these differences on inverter reliability. The Bi-PV panel exhibits a decreasing trend. In India, CL reliability (B10) is decreased from 34 years to 1.5 years, and SL reliability (B10) is decreased from 24 years to 1 year. In comparison with monofacial panels, the thermal stress on the PV inverter due to the bifacial panel is increased, and reliability is decreased.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.
