Autonomous mobile robot implementation for final assembly material delivery system
International Journal of Electrical and Computer Engineering
Abstract
This study presents the development and implementation of an autonomous mobile robot (AMR) system for material delivery in a final assembly environment. The AMR replaces conventional transport methods by autonomously moving trolleys between the warehouse, production stations, and recycling areas, thereby reducing human intervention in repetitive logistics tasks. The proposed system integrates a laser-SLAM navigation approach, customized trolley design, RoboShop programming, and robot dispatch system coordination, enabling real-time route planning, obstacle detection, and material scheduling. Experimental validation demonstrated high accuracy in path following, with root mean square error values ranging between 0.001 to 0.020 meters. The AMR achieved an average travel distance of 118.81 meters and a cycle time of 566.90 seconds across three final assembly stations. The overall efficiency reached 57%, primarily due to reduced idle time and optimized material replenishment. These results confirm the feasibility of AMR deployment as a scalable and flexible intralogistics solution, supporting the transition toward Industry 4.0 smart manufacturing systems.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.





