Deep-fuzzy personalisation framework for robot-assisted learning for children with autism

Indonesian Journal of Electrical Engineering and Computer Science

Deep-fuzzy personalisation framework for robot-assisted learning for children with autism

Abstract

Research exploring the efficacy of robots in autism therapy has predominantly relied on the Wizard-of-Oz method, where robots execute predetermined behaviours. However, this approach is constrained by its heavy reliance on human intervention. To address this limitation, we introduce a novel deep-fuzzy personalization framework for social robots to enhance adaptability in interactions with autistic children. This framework incorporates a deep learning model called singleshot emotion detector (SED) with a mean average precision of 93% and a fuzzy-based engagement prediction engine, utilizing factors such as scores, IQ levels, and task complexity to estimate the engagement of autistic children during robot interactions. Implemented on the humanoid robot RoCA, our study assesses the impact of this personalization approach on learning outcomes in interactions with Ghanaian autistic children. Statistical analysis, specifically Mann Whitney tests (U=3.0, P=0.012), demonstrates the significant improvement in learning gains associated with RoCA's adoption of the deep fuzzy approach.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration