Adaptive control techniques for improving anti-lock braking system performance in diverse friction scenarios

International Journal of Electrical and Computer Engineering

Adaptive control techniques for improving anti-lock braking system performance in diverse friction scenarios

Abstract

Anti-lock braking systems (ABS) enhance vehicle safety by preventing wheel lock-up, but their effectiveness depends on tire-road friction. Traditional braking systems struggle to maintain effective performance due to the risk of wheel lock-up on varying road surfaces, affecting vehicle stability and control. This study presents a novel method to improve ABS efficiency across varying friction conditions. The proposed approach employs a feedback control mechanism to dynamically adjust the braking force of each wheel based on the prevailing friction coefficient. Specifically, we incorporate a P-controller in the input signal and two additional P-controllers as output and input parameters for friction. By manipulating the proportional control values, key parameters such as wheel speed, stopping distance, and slip rate can be effectively managed. Notably, our investigation reveals intriguing interactions between the proportional controls, highlighting the complexity of ABS optimization. The method was evaluated through simulations across various friction conditions, comparing it to conventional ABS in terms of brake performance, stability, and stopping distances. The results indicate that the proposed method significantly enhances ABS performance across varying friction coefficients; however, additional research is warranted to address stopping distance and time issues, particularly in snowy and icy conditions.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration