DC bus control strategy and implications for voltage source converter system

International Journal of Power Electronics and Drive Systems

DC bus control strategy and implications for voltage source converter system

Abstract

Significantly, the use of power electronic devices in residential and industrial settings has grown significantly in the last several years. Recent advancements in power semiconductors and microelectronics may be the main reason of their growing use in power systems for filtering, conditioning, and compensating. Additionally, the proliferation of semiconductor switches appropriate for high-power applications, and the enhancement of microelectronics enable mixed signal processing and control mechanisms. Furthermore, the concentration on renewable energy sources within the electric utility industry has emphasized the incorporation of power electronic converters into power systems. The operation and control of the regulated DC-voltage power port are examined in this work, a key part in different applications, such as STATCOM, dual mode HVDC converter systems, and aerodynamic wind energy converters with adaptive-speed optimization, emphasizing its significance in upholding a stable voltage level throughout the DC bus. The research also highlights the importance of power electronic converters within contemporary power systems, emphasizing their crucial role in facilitating effective and reliable power distribution. The obtained simulation results confirmed the efficacy of feed forward compensation in stabilizing the voltage responses of the DC bus.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration