Variable frequency drive based on full-bridge class D for single-phase induction motor

International Journal of Power Electronics and Drive Systems

Variable frequency drive based on full-bridge class D for single-phase induction motor

Abstract

The issue with induction motors lies in speed regulation, which can be addressed by adjusting the motor voltage; however, this affects torque. In contrast, a variable frequency drive (VFD) changes the motor frequency while maintaining a constant voltage. A VFD controller with constant sinusoidal voltage and adjustable frequency can be implemented using an Arduino and a class D full-bridge MOSFET amplifier inverter. This paper discusses the electronic speed control (ESC) of induction motors using VFD regulation, demonstrating how changes in frequency affect motor speed. The system involves an induction motor controlled by a VFD comprising three main components: an AC-to-DC converter, a class-D full-bridge MOSFET inverter, and a variable-frequency sinusoidal signal source. VFDs operate with constant voltage and variable frequency. This method includes the design and testing of VFD hardware and software. The VFD components include: a class-D full-bridge switching inverter, a sinusoidal signal frequency generator (30–70 Hz), an Arduino with custom software, an SMPS power supply, and a step-up transformer. The results indicate that the class-D full-bridge inverter can effectively regulate motor speed through VFD control. The motor speed is almost directly proportional to the frequency: at 30 Hz, the speed is 860 RPM; at 50 Hz, 1472 RPM; and at 70 Hz, 2035 RPM.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration