Enhanced speed regulation using separate P and I gain controllers in a fuzzy-PI framework
International Journal of Power Electronics and Drive Systems
Abstract
This paper explores an enhanced method for regulating the speed of brushless DC (BLDC) motors using field-oriented control. Conventionally, a proportional-integral (PI) controller is employed to adjust output speed and current FOC method. While the PI controller is effective in many scenarios, it exhibits limitations including poor performance when the speed reference changes rapidly. To address these limitations, a fuzzy-PI control scheme is proposed in this study with the aim of improving the speed control performance of BLDC motors, especially under rapidly changing speed reference. The proposed two separate fuzzy logic controllers adaptively adjust the proportional and integral gains so that it combines the robustness of fuzzy logic with the steady-state error of PI control. Simulation and experimental results demonstrate that the fuzzy-PI control significantly outperforms the conventional PI controller in terms of BLDC stability, response time, and accuracy. The proposed approach ensures more reliable and efficient speed regulation for BLDC motors, making it a reliable solution for applications where speed reference fluctuate frequently.
Discover Our Library
Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.





