An enhanced improved adaptive backstepping–second-order sliding mode hybrid control strategy for high-performance electric vehicle drives

International Journal of Electrical and Computer Engineering

An enhanced improved adaptive backstepping–second-order sliding mode hybrid control strategy for high-performance electric vehicle drives

Abstract

This paper proposes an enhanced hybrid speed control strategy, termed improved adaptive backstepping–second-order sliding mode (IABSSOSM), for six-phase induction motor (SPIM) drives in electric vehicle (EV) propulsion systems. The proposed method combines the systematic design framework of Backstepping in the outer speed and flux loops with a second-order sliding mode controller in the inner current loop. An innovation of the approach is the integration of a variable-gain super-twisting algorithm (VGSTA), which dynamically adjusts the control effort based on disturbance levels, thereby minimizing chattering and enhancing robustness against system uncertainties. To further improve disturbance rejection, a predictive torque estimator is incorporated using a forward Euler discretization, enabling accurate torque prediction and proactive compensation. This hybrid structure significantly improves convergence speed, enhances reference speed tracking accuracy, and ensures fast and precise torque response, and its strong resilience to external load disturbances, system parameter variations enable stable and reliable operation under challenging conditions. The effectiveness of the proposed approach is validated through comprehensive simulations using the MATLAB/Simulink.

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration