Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

27,860 Article Results

Unit commitment problem solved with adaptive particle swarm optimization

10.11591/ijict.v14i3.pp783-790
Ramesh Babu Muthu , Venkatesh Kumar Chandrasekaran , Bharathraj Munusamy , Dashagireevan Sankaranarayanan
This article presents an innovative approach that solves the problem of generation scheduling by supplying all possible operating states for generating units for the given time schedule over the day. The scheduling variables are set up to code the load demand as an integer each day. The proposed adaptive particle swarm optimization (APSO) technique is used to solve the generation scheduling issue by a method of optimization considering production as well as transitory costs. The system and generator constraints are considered when solving the problem, which includes minimum and maximum uptime and downtime as well as the amount of energy produced by each producing unit (like capacity reserves). This paper describes the suggested algorithm that can be applied for unit commitment problems with wind and heat units. Test systems with 26 and 10 units are used to validate the suggested algorithm.
Volume: 14
Issue: 3
Page: 783-790
Publish at: 2025-12-01

Empowering low-resource languages: a machine learning approach to Tamil sentiment classification

10.11591/ijict.v14i3.pp941-949
Saleem Raja Abdul Samad , Pradeepa Ganesan , Justin Rajasekaran , Madhubala Radhakrishnan , Peerbasha Shebbeer Basha , Varalakshmi Kuppusamy
Sentiment analysis is essential for deciphering public opinion, guiding decisions, and refining marketing strategies. It plays a crucial role in monitoring public sentiment, fostering customer engagement, and enhancing relationships with businesses' target audiences by analyzing emotional tones and attitudes in vast textual data. Sentiment analysis is extremely limited, particularly for languages like Tamil, due to limited application in diverse linguistic contexts with fewer resources. Given its global impact and linguistic diversity, addressing this gap is crucial for a more nuanced understanding of sentiments in India. In the context of Tamil, the need for sentiment analysis models is particularly crucial due to its status as one of the classical languages spoken by millions. The cultural, social, and historical nuances embedded in Tamil language usage require tailored sentiment analysis approaches that can capture the subtleties of sentiment expression. This paper introduces a novel method that assesses the performance of various text embedding methods in conjunction with a range of machine learning (ML) algorithms to enhance sentiment classification for Tamil text, with a specific focus on lyrics. Experiments notably emphasize FastText word embedding as the most effective method, showcasing superior results with a remarkable 78% accuracy when coupled with the support vector classification (SVC) model.
Volume: 14
Issue: 3
Page: 941-949
Publish at: 2025-12-01

Leveraging IoT with LoRa and AI for predictive healthcare analytics

10.11591/ijict.v14i3.pp1156-1162
Pillalamarri Lavanya , Selvakumar Venkatachalam , Immareddy Venkata Subba Reddy
Progress in mobile technology, the internet, cloud computing, digital platforms, and social media has substantially facilitated interpersonal connections following the COVID-19 pandemic. As individuals increasingly prioritise health, there is an escalating desire for novel methods to assess health and well-being. This study presents an internet of things (IoT)-based system for remote monitoring utilizing a long range (LoRa), a low-cost and LoRa wireless network for the early identification of health issues in home healthcare environments. The project has three primary components: transmitter, receiver, and alarm systems. The transmission segment captures data via sensors and transmits it to the reception segment, which then uploads it to the cloud. Additionally, machine learning (ML) methods, including convolutional neural networks (CNN), artificial neural networks (ANN), Naïve Bayes (NB), and long short-term memory (LSTM), were utilized on the acquired data to forecast heart rate, blood oxygen levels, body temperature patterns. The forecasting models are trained and evaluated using data from various health parameters from five diverse persons to ascertain the architecture that exhibits optimal performance in modeling and predicting dynamics of different medical parameters. The models' accuracy was assessed using mean absolute error (MAE) and root mean square error (RMSE) measures. Although the models performed similarly, the ANN model outperformed them in all conditions.
Volume: 14
Issue: 3
Page: 1156-1162
Publish at: 2025-12-01

Quantifying the severity of cyber attack patterns using complex networks

10.11591/ijict.v14i3.pp1179-1188
Ahmed Salih Hasan , Yasir F. Mohammed , Basim Mahmood
This work quantifies the severity and likelihood of cyberattacks using complex network modelling. A dataset from common attack pattern enumerations and classifications (CAPEC) is collected and formalized as nodes and edges aiming at creating a network model. In this model, each attack pattern is represented as a node, and an edge is created between two nodes when there is a relation between them. The dataset includes 559 attack patterns and 1921 relations among them. Network metrics are used to perform the analysis on the network level and node level. Moreover, a rank of the CAPECs based on a complex network perspective is generated. This rank is compared with the CAPEC ranking system and deeply discussed based on cybersecurity perspective. The findings show interesting facts about the likelihood and severity of attacks. It is found that the network perspective should be given attention by the CAPEC ranking system. Finally, the results of this work can be of high interest to security architects.
Volume: 14
Issue: 3
Page: 1179-1188
Publish at: 2025-12-01

Chatbot for virtual medical assistance

10.11591/ijict.v14i3.pp914-922
Aravalli Sainath Chaithanya , Sampangi Lahari Vishista , Adepu MadhuSri
A healthy population is vital for societal prosperity and happiness. Amidst busy lifestyles and the challenges posed by the COVID-19 pandemic, individuals often neglect their health needs. To address this, we introduce a novel approach utilizing a chatbot for virtual medical assistance. Tailored for individuals confined indoors or hesitant to visit hospitals for minor ailments, our chatbot offers personalized medical support by diagnosing ailments based on user-reported symptoms and engaging in interactive conversations. Leveraging a robust dataset containing 132 symptoms, 41 diseases, and corresponding medications, our chatbot employs a systematic approach for symptom refinement, enhancing diagnostic precision. Upon identifying a disease, the chatbot promptly suggests basic medications tailored to the specific ailment. Furthermore, our system integrates user demographics to evaluate medication history and current state, allowing for personalized medication recommendations based on individual needs. Through extensive testing and validation, we demonstrate the effectiveness of our chatbot in accurately predicting ailments and providing timely treatment advice. Our study introduces a novel paradigm for medicine recommendation and disease prediction, with the potential to enhance healthcare accessibility and effectiveness.
Volume: 14
Issue: 3
Page: 914-922
Publish at: 2025-12-01

Shellcode classification analysis with binary classification-based machine learning

10.11591/ijict.v14i3.pp923-932
Jaka Naufal Semendawai , Deris Stiawan , Iwan Pahendra Anto Saputra , Mohamed Shenify , Rahmat Budiarto
The internet enables people to connect through their devices. While it offers numerous benefits, it also has adverse effects. A prime example is malware, which can damage or even destroy a device or harm its users, highlighting the importance of cyber security. Various methods can be employed to prevent or detect malware, including machine learning techniques. The experiments are based on training and testing data from the UNSW_NB15 dataset. K-nearest neighbor (KNN), decision tree, and Naïve Bayes classifiers determine whether a record in the test data represents a Shellcode attack or a non-Shellcode attack. The KNN, decision tree, and Naïve Bayes classifiers reached accuracy rates of 96.26%, 97.19%, and 57.57%, respectively. This study's findings aim to offer valuable insights into the application of machine learning to detect or classify malware and other forms of cyberattacks.
Volume: 14
Issue: 3
Page: 923-932
Publish at: 2025-12-01

Indonesian automated short-answer grading using transformers-based semantic similarity

10.11591/ijict.v14i3.pp1034-1043
Samuel Situmeang , Sarah Rosdiana Tambunan , Lidia Ginting , Wahyu Krisdangolyanti Simamora , Winda Sari ButarButar
Automatic short answer grading (ASAG) systems offer a promising solution for improving the efficiency of reading literacy assessments. While promising, current Indonesian artificial intelligence (AI) grading systems still have room for improvement, especially when dealing with different domains. This study explores the effectiveness of large language models, specifically bidirectional encoder representations from transformers (BERT) variants, in conjunction with traditional hand-engineered features, to improve ASAG accuracy. We conducted experiments using various BERT models, hand-engineered features, text pre-processing techniques, and dimensionality reduction. Our findings show that BERT models consistently outperform traditional methods like term frequency-inverse document frequency (TF-IDF). IndoBERTLite-Base-P2 achieved the highest quadratic weighted kappa (QWK) score among the BERT variants. Integrating handengineered features with BERT resulted in a substantial enhancement of the QWK score. Utilizing comprehensive text pre-processing is a critical factor in achieving optimal performance. In addition, dimensionality reduction should be carefully used because it potentially removes semantic information.
Volume: 14
Issue: 3
Page: 1034-1043
Publish at: 2025-12-01

Revolutionizing human activity recognition with prophet algorithm and deep learning

10.11591/ijict.v14i3.pp1108-1118
Jaykumar S. Dhage , Avinash K. Gulve
Various industries, such as healthcare and surveillance, depend heavily on the ability to recognize human activity. The “human activity recognition (HAR) using smartphones data set” can be found in the UCI online repository and includes accelerometer and gyroscope readings recorded during a variety of human activities. The accelerometer and gyroscope signals are also subjected to a band-pass filter to eliminate unwanted frequencies and background noise. This method effectively decreases the dimensionality of the feature space while improving the model's accuracy and efficiency. “Convolutional neural networks (CNNs)” and “long shortterm memory (LSTM)” networks are combined to create pyramidal dilated convolutional memory network (PDCMN), which is the final proposal. Results from experiments demonstrate the effectiveness and reliability of the suggested method, demonstrating its potential for precise and effective HAR in actuality schemes.
Volume: 14
Issue: 3
Page: 1108-1118
Publish at: 2025-12-01

Soil moisture prototype soil moisture sensor YL-69 for Gaharu (Aquilaria malaccensis) tree planting media

10.11591/ijict.v14i3.pp1163-1171
Rikie Kartadie , Muhammad Agung Nugroho , Adiyuda Prayitna , Adi Kusjani , Ardeana Galih Mardika
Soil moisture, defined as the amount of water present in the spaces between soil particles, plays a critical role in plant growth. Excessive soil moisture can lead to issues such as root rot, deviating from the ideal conditions required for root absorption. To address this, we developed a prototype tool using the YL-69 soil moisture sensor to monitor and control the soil moisture levels in Agarwood/Gaharu tree planting media. The prototype was designed to activate a water pump when soil moisture exceeded 80%, ensuring optimal humidity for plant growth. Once the moisture level dropped below 80%, the pump was deactivated to prevent overwatering. The YL-69 sensor demonstrated an accuracy of 88.76% under controlled conditions. This study highlights the potential of using low-cost sensors for automated soil moisture management in small-scale Gaharu cultivation.
Volume: 14
Issue: 3
Page: 1163-1171
Publish at: 2025-12-01

Modeling chemical kinetics of geopolymers using physics informed neural network

10.11591/ijict.v14i3.pp822-829
Blesso Abraham , Thirumalaivasal Devanathan Sudhakar
Using a physics informed neural network for the analysis of geopolymers as an alternate material for cement can be a viable approach, as neural networks are capable of modeling complex, nonlinear relationships in data, which can be beneficial for representing the dynamics of chemical properties. If you have a substantial amount of theoretical data, a neural network can learn patterns and relationships in the data, even when the underlying system dynamics are not well-defined or are difficult to model analytically. A welltrained neural network can generalize from the training data to make predictions for unseen scenarios, which can be useful for real-time analysis of the material.
Volume: 14
Issue: 3
Page: 822-829
Publish at: 2025-12-01

Comparative analysis of u-net architectures and variants for hand gesture segmentation in parkinson’s patients

10.11591/ijict.v14i3.pp972-982
Avadhoot Ramgonda Telepatil , Jayashree Sathyanarayana Vaddin
U-Net is a well-known method for image segmentation, and has proven effective for a variety of segmentation challenges. A deep learning architecture for segmenting hand gestures in parkinson’s disease is explored in this paper. We prepared and compared four custom models: a simple U-Net, a three-layer U-Net, an auto encoder-decoder architecture, and a U-Net with dense skip pathways, using a custom dataset of 1,000 hand gesture images and their corresponding masks. Our primary goal was to achieve accurate segmentation of parkinsonian hand gestures, which is crucial for automated diagnosis and monitoring in healthcare. Using metrics including accuracy, precision, recall, intersection over union (IoU), and dice score, we demonstrated that our architectures were effective in delineating hand gestures under different conditions. We also compared the performance of our custom models against pretrained deep learning architectures such as ResNet and VGGNet. Our findings indicate that the custom models effectively address the segmentation task, showcasing promising potential for practical applications in medical diagnostics and healthcare. This work highlights the versatility of our architectures in tackling the unique segmentation challenges associated with parkinson’s disease research and clinical practice.
Volume: 14
Issue: 3
Page: 972-982
Publish at: 2025-12-01

Electric load forecasting using ARIMA model for time series data

10.11591/ijict.v14i3.pp830-836
Balasubramanian Belshanth , Haran Prasad , Thirumalaivasal Devanathan Sudhakar
Any country's economic progress is heavily reliant on its power infrastructure, network, and availability, as energy has become an essential component of daily living in today's globe. Electricity's distinctive quality is that it cannot be stored in huge quantities, which explains why global demand for home and commercial electricity has grown at an astonishing rate. On the other hand, electricity costs have varied in recent years, and there is insufficient electricity output to meet global and local demand. The solution is a series of case studies designed to forecast future residential and commercial electricity demand so that power producers, transformers, distributors, and suppliers may efficiently plan and encourage energy savings for consumers. However, load prognosticasting has been one of the most difficult issues confronting the energy business since the inception of electricity. This study covers a new one–dimensional approach algorithm that is essential for the creation of a short–term load prognosticasting module for distribution system design and operation. It has numerous operations, including energy purchase, generation, and infrastructure construction. We have numerous time series forecasting methods of which autoregressive integrated moving average (ARIMA) outperforms the others. The auto–regressive integrated moving average model, or ARIMA, outperforms all other techniques for load forecasting.
Volume: 14
Issue: 3
Page: 830-836
Publish at: 2025-12-01

The bootstrap procedure for selecting the number of principal components in PCA

10.11591/ijict.v14i3.pp1136-1145
Borislava Toleva
The initial step in determining the number of principal components for both classification and regression involves evaluating how much each component contributes to the total variance in the data. Based on this analysis, a subset of components that explains the highest percentage of variance is typically selected. However, multiple valid combinations may exist, and the final choice is often made manually by the researcher. This study introduces a novel yet straightforward algorithm for the automatic selection of the number of principal components. By integrating ANOVA and bootstrapping with principal component analysis (PCA), the proposed method enables automatic component selection in classification tasks. The algorithm is evaluated using three publicly available datasets and applied with both decision tree and support vector machine (SVM) classifiers. Results indicate that this automated procedure not only eliminates researcher bias in selecting components but also improves classification accuracy. Unlike traditional methods, it selects a single optimal combination of principal components without manual intervention, offering a new and efficient approach to PCAbased model development.
Volume: 14
Issue: 3
Page: 1136-1145
Publish at: 2025-12-01

An artificial intelligent system for cotton leaf disease detection

10.11591/ijict.v14i3.pp950-959
Priyanka Nilesh Jadhav , Pragati Prashant Patil , Nitesh Sureja , Nandini Chaudhari , Heli Sureja
This study aims to develop a deep learning-based system for the detection and classification of diseases in cotton leaves, with the goal of aiding in early diagnosis and disease management, thereby enhancing agricultural productivity in India. The study utilizes a dataset of cotton leaf images, classified into four categories: Fusarium wilt, Curl virus, Bacterial blight, and Healthy leaves. The dataset is used to train and evaluate various CNN models such as basic CNN, VGG19, Xception, InceptionV3, and ResNet50. These models were evaluated on their accuracy in identifying the presence of diseases and classifying cotton leaf images into the respective categories. The models were trained using standard deep learning frameworks and optimized for high performance. The results indicated that ResNet50 achieved the highest accuracy of 100%, followed by InceptionV3 with 98.75%, and VGG19 and Xception both with 97.50%. The basic CNN model showed an accuracy of 96.25%. These models demonstrated strong potential for accurate multi-class classification of cotton leaf diseases. This study emphasizes the potential of deep learning in agricultural diagnostics. Future research can focus on improving model robustness, incorporating larger datasets, and deploying the system for real-time field use to assist farmers in disease management and improving cotton production.
Volume: 14
Issue: 3
Page: 950-959
Publish at: 2025-12-01

Scaling of Facebook architecture and technology stack with heavy workload: past, present and future

10.11591/ijict.v14i3.pp772-782
Tole Sutikno , Laksana Talenta Ahmad
Leading social media Facebook has improved its architecture to meet user needs. Facebook has improved its systems to handle millions of users with heavy workloads and large datasets using innovative architectural solutions and adaptive strategies. The study examines Facebook’s architectural and technological advances in heavy workload and big data. To understand how Facebook scaled with a growing user base and data volume, history and system architecture will be examined. It will also examine how cloud storage and high-performance computing optimize resource utilization and maintain performance during peak user activity. Facebook is managing big data and heavy workloads with new technologies like the hybrid communication model that uses PULL and PUSH strategies for real-time messaging. Facebook switched from HBase to MyRocks for message storage to improve performance as data grew. Architectural scaling and technology stack research must prioritize data storage innovations and optimized communication protocols to handle heavy workloads and big data. The messenger Sync protocol reduces network congestion and improves synchronous communication, reducing resource consumption and maintaining performance under high load. High-performance computing (HPC) and cloud storage should be studied together to support complex compute workflows. This convergence may improve large-scale application infrastructures and encourage interdisciplinary collaboration for scalable and resilient systems.
Volume: 14
Issue: 3
Page: 772-782
Publish at: 2025-12-01
Show 1 of 1858

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration