Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,451 Article Results

Transforming images into words: optical character recognition solutions for image text extraction

10.11591/ijai.v14.i4.pp3412-3420
Jyoti Wadmare , Sunita Patil , Dakshita Kolte , Kapil Bhatia , Palak Desai , Ganesh Wadmare
Optical character recognition (OCR) tool is a boon and greatest advancement in today’s emerging technology which has proven its remarkability in recent years by making it easier for humans to convert the textual information in images or physical documents into text data making it useful for analysis, automation processes and improvised productivity for different purposes. This paper presents the designing, development and implementation of a novel OCR tool aiming at text extraction and recognition tasks. The tool incorporates advanced techniques such as computer vision and natural language processing (NLP) which offer powerful performance for various document types. The performance of the tool is subject to metrics like analysis, accuracy, speed, and document format compatibility. The developed OCR tool provides an accuracy of 98.8% upon execution providing a character error rate of 2.4% and word error rate (WER) of 2.8%. OCR tool finds its applications in document digitization, personal identification, archival of valuable documents, processing of invoices, and other documents. OCR tool holds an immense amount of value for researchers, practitioners and many organizations which seek effective techniques for relevant and accurate text extraction and recognition tasks.
Volume: 14
Issue: 4
Page: 3412-3420
Publish at: 2025-08-01

Unpacking the drivers of artificial intelligence regulation: driving forces and critical controls in artificial intelligence governance

10.11591/ijai.v14.i4.pp2655-2666
Ibrahim Atoum , Salahiddin Altahat
The burgeoning field of artificial intelligence (AI) necessitates a nuanced approach to governance that integrates technological advancement, ethical considerations, and regulatory oversight. As various AI governance frameworks emerge, a fragmented landscape hinders effective implementation. This article examines the driving forces behind AI regulation and the essential control mechanisms that underpin these frameworks. We analyze market-driven, state-driven, and rights-driven regulatory approaches, focusing on their underlying motivations. Furthermore, critical regulatory controls such as data governance, risk management, and human oversight are highlighted to demonstrate their roles in establishing effective governance structures. Additionally, the importance of international cooperation and stakeholder collaboration in addressing the challenges posed by rapid technological change is emphasized. By providing insights into the strengths, weaknesses, and potential synergies of different governance models, this study contributes to the development of equitable and effective AI regulatory frameworks that encourage innovation while safeguarding societal interests. Ultimately, the findings aim to inform policymakers, industry leaders, and civil society organizations in their efforts to foster a future where AI is utilized responsibly and equitably for the betterment of humanity.
Volume: 14
Issue: 4
Page: 2655-2666
Publish at: 2025-08-01

Revolutionizing autism diagnosis using hybrid model for autism spectrum disorder phenotyping

10.11591/ijece.v15i4.pp3904-3912
Vijayalaxmi N. Rathod , Rayangouda H. Goudar
The growing prevalence of autism spectrum disorder (ASD) necessitates efficient data-driven screening solutions to complement traditional diagnostic methods, which often suffer from subjectivity and limited scalability. This study introduces a hybrid ensemble model combining logistic regression (LR) and naive Bayes (NB) for ASD classification across four age groups (toddlers, children, adolescents, and adults) using behavioral screening datasets. By integrating statistical learning and probabilistic inference, the proposed model effectively captured behavioral markers, ensuring a higher classification accuracy and improved generalization. The experimental evaluation demonstrated its superior performance, achieving 94.24% accuracy and 99.40% area under the receiver operating characteristic curve (AUROC), surpassing those of individual classifiers and existing approaches. This artificial intelligence (AI)-driven framework offers a scalable, cost-effective, and accessible solution for both clinical and telemedicine-based ASD screening, facilitating early intervention and risk assessment. This study underscores the transformative potential of AI in neurodevelopmental diagnostics, paving the way for more efficient and widely deployable autistic screening technologies.
Volume: 15
Issue: 4
Page: 3904-3912
Publish at: 2025-08-01

Optimizing convolutional neural network hyperparameters to enhance liver segmentation accuracy in medical imaging

10.11591/ijece.v15i4.pp3876-3887
Iwan Purnama , Agus Perdana Windarto , Solikhun Solikhun
Liver segmentation in medical imaging is a crucial step in various clinical applications, such as disease diagnosis, surgical planning, and evaluation of response to therapy, which require a high degree of precision for accurate results. This research focuses on increasing the accuracy of liver segmentation by optimizing hyperparameters in the convolutional neural network (CNN) model using the developed ResNet architecture. The uniqueness of this research lies in the application of hyperparameter optimization methods such as random search and Bayesian optimization, which allow broader and more efficient exploration than conventional approaches. The results show that the DeepLabV3Plus model (the proposed model) significantly outperforms the standard ResNet in the image segmentation task. DeepLabV3Plus shows excellent performance with an MIoU score of 0.965, a PA Score of 0.929, and a meager loss value of 0.011. These results show that DeepLabV3Plus is able to recognize and predict segmentation areas very accurately and consistently and minimize prediction errors effectively. In conclusion, the results of this study show a significant improvement in segmentation accuracy, with the optimized model providing better performance in the evaluation.
Volume: 15
Issue: 4
Page: 3876-3887
Publish at: 2025-08-01

Non-small cell lung cancer active compounds discovery holding on protein expression using machine learning models

10.11591/ijai.v14.i4.pp2815-2825
Hamza Hanafi , M’hamed Aït Kbir , Badr Dine Rossi Hassani
Computational methods have transformed the field of drug discovery, which significantly helped in the development of new treatments. Nowadays, researchers are exploring a wide ranger of opportunities to identify new compounds using machine learning. We conducted a comparative study between multiple models capable of predicting compounds to target non-small cell lung cancer, we focused on integrating protein expressions to identify potential compounds that exhibit a high efficacy in targeting lung cancer cells. A dataset was constructed based on the trials available in the ChEMBL database. Then, molecular descriptors were calculated to extract structure-activity relationships from the selected compounds and feed into several machine learning models to learn from. We compared the performance of various algorithms. The multilayer perceptron model exhibited the highest F1 score, achieving an outstanding value of 0,861. Moreover, we present a list of 10 drugs predicted as active in lung cancer, all of which are supported by relevant scientific evidence in the medical literature. Our study showcases the potential of combining protein expression analysis and machine learning techniques to identify novel drugs. Our analytical approach contributes to the drug discovery pipeline, and opens new opportunities to explore and identify new targeted therapies.
Volume: 14
Issue: 4
Page: 2815-2825
Publish at: 2025-08-01

The growth and trends information technology endangered language revitalization research: Insight from a bibliometric study

10.11591/ijece.v15i4.pp3888-3903
Leonardi Paris Hasugian , Syifaul Fuada , Triana Mugia Rahayu , Apridio Edward Katili , Feby Artwodini Muqtadiroh , Nur Aini Rakhmawati
Since United Nations Educational, Scientific and Cultural Organization (UNESCO) declared endangered languages, researchers have revitalized endangered languages in many fields. This study discusses a bibliometric analysis conducted to investigate research on the topic of revitalization of endangered languages in information technology. The study's aim is to assess research topics by identifying authors, institutions, and countries that influence research collaboration. The Scopus dataset (from 2002-2024) was obtained from journal articles (n=62) and conference papers (n=76) and visualized using VOSviewer 1.6.20. The analysis outcomes reveal a fluctuating trend with an increasing pattern. The United States, Canada, and China were identified as the top three countries in terms of publications. Meanwhile, the University of Alberta, Université du Québec à Montréal, University of Auckland, and University of Hawaiʻi at Mānoa are the most prolific institutions on this topic, with two authors from the Université du Québec à Montréal, Sadat and Le, being the most productive. The dominant research is related to computational linguistics. Meanwhile, topics such as phonetic posteriograms, integrated frameworks, and artificial intelligence are some of the potential research areas that can be explored in the future. Its implications for exposing the extent to which the development of endangered language revitalization can be accommodated in the field of information technology.
Volume: 15
Issue: 4
Page: 3888-3903
Publish at: 2025-08-01

Development and evaluation of a smart home energy management system using internet of things and real-time monitoring

10.11591/ijece.v15i4.pp3977-3985
Mohamed Imran Mohamed Ariff , Nur Anim Abdul Halim , Mohammad Nasir Abdullah , Samsiah Ahmad , Masurah Mohamad , Anis Zafirah Azmi
This project presents the design and implementation of a smart home energy management system using internet of things (IoT) technology to optimize household energy consumption. The system integrates various sensors, including passive infrared (PIR), light dependent resistor (LDR), and DHT11, to collect real-time environmental data, which is processed by a NodeMCU microcontroller. The microcontroller controls home appliances using relays, while the Blynk mobile app and Streamlit web platform provide users with remote monitoring and control capabilities. Despite successfully optimizing energy usage, the system faces limitations such as high sensor sensitivity and potential hazards during high-load power demonstrations. To address these issues, future work proposes integrating additional sensors for improved accuracy and incorporating renewable energy sources for increased sustainability. This project aims to enhance energy efficiency, provide users with greater control over their energy consumption, and contribute to smart home automation by utilizing real-time data, IoT integration, and user-friendly interfaces.
Volume: 15
Issue: 4
Page: 3977-3985
Publish at: 2025-08-01

Blockchain as a digital governance tool: A systematic review

10.11591/ijece.v15i4.pp3986-3995
Cesar Patricio-Peralta , Jimmy Ramirez Villacorta , Milton Amache Sánchez , Jacker Paredes Meneses , Jesús Zamora Mondragon , Luis Segura Terrones , Paul Torres Santos , César Veliz Manrique , Walter Patricio Peralta
This systematic review explores the implementation of blockchain technology as a digital governance tool, focusing specifically on the Peruvian context. In the digital transformation era, blockchain has established itself as an innovative solution to manage and authenticate information. This research focuses on optimizing administrative and governmental processes in Peru, a country where document verification is crucial in legal, financial, educational, and medical procedures. The methodology used follows the problem/population, intervention, comparison, outcome, context (PICOC) model. 56 high-impact articles were selected in Scopus, prioritizing those in the areas of engineering, computer science, and business, and published between 2022 and 2025. The objective was to define the scope and structure of the research questions. These questions address the implementation of blockchain and its applications in digital governance to ensure security and reliability in administrative procedures. Through a comprehensive literature review, we seek to provide a comprehensive view of how blockchain could transform the interaction between citizens and the Peruvian government by automating document verification. In addition, successful cases from other countries and similar sectors will be analyzed, evaluating their feasibility and applicability in the Peruvian context. This approach will allow us to identify both the potential benefits and the challenges and implications associated with the integration of blockchain into government processes in Perú.
Volume: 15
Issue: 4
Page: 3986-3995
Publish at: 2025-08-01

Navigating cyber investigations: strategies and tools for forensic data acquisition

10.11591/ijece.v15i4.pp4022-4030
Srinivas Kanakala , Vempaty Prashanthi , K. V. Sharada
The rapid proliferation of cybercrimes has underscored the critical importance of robust data acquisition methodologies in the field of digital forensics. This research publication explores various aspects of forensic data acquisition, focusing on techniques, tools, and best practices employed by forensic investigators to collect and preserve digital evidence effectively. Beginning with an overview of the escalating cyber threat landscape and the consequential need for forensic investigations, the publication delves into the fundamental concepts of data acquisition, emphasizing the significance of ensuring data integrity and admissibility in legal proceedings. It examines the process of acquiring both volatile and non-volatile data from diverse sources, including hard drives, RAM, and other digital storage media. Furthermore, evaluates a range of forensic imaging and validation methods, encompassing tools such as Belkasoft live RAM capturer, AccessData FTK Imager, and ProDiscover, alongside validation techniques using PowerShell utility and commercial forensic software. Through comprehensive analysis and discussion, this study serves as a valuable resource for forensic practitioners, researchers, and legal professionals seeking to enhance their understanding of forensic data acquisition methodologies in the ever-evolving landscape of cybercrime investigation.
Volume: 15
Issue: 4
Page: 4022-4030
Publish at: 2025-08-01

Integrating time-frequency features with deep learning for lung sound classification

10.11591/ijece.v15i4.pp3737-3747
Su Yuan Chang , Marni Azira Markom , Zhi Sheng Choong , Arni Munira Markom , Latifah Munirah Kamaruddin , Erdy Sulino Mohd Muslim Tan
Deep learning has transformed medical diagnostics, especially in analyzing lung sounds to assess respiratory conditions. Traditional methods like CT scans and X-rays are impractical in resource-limited settings due to radiation exposure and time consumption, while conventional stethoscopes often lead to misdiagnosis due to subjective interpretation and environmental noise. This study evaluates deep learning models for lung sound classification using the International Conference on Biomedical Health Informatics 2017 dataset, comprising 920 annotated samples from 126 subjects. Pre-processing includes down sampling, segmentation, normalization, and audio clipping, with feature extraction techniques like spectrogram and Mel-frequency cepstral coefficients (MFCC). The adopted automatic lung sound diagnosis network (ASLD-Net) model with triple feature input (time domain, spectrogram, and MFCC) achieved the highest accuracy at 97.25%, followed by the dual feature model (spectrogram and MFCC) at 95.65%. Single-input models with spectrogram and MFCC performed well, while the time domain input alone had the lowest accuracy.
Volume: 15
Issue: 4
Page: 3737-3747
Publish at: 2025-08-01

A deep learning-based framework for automatic detection of COVID-19 using chest X-ray and CT-scan images

10.11591/ijai.v14.i4.pp3192-3200
Sivanagireddy Kalli , Bukka Narendra Kumar , Saggurthi Jagadeesh , Kushagari Chandramouli Ravi Kumar
COVID-19 has profoundly impacted global public health, underscoring the need for rapid detection methods. Radiography and radiologic imaging, especially chest X-rays, enable swift diagnosis of infected individuals. This study delves into leveraging machine learning to identify COVID-19 from X-ray images. By gathering a dataset of 9,000 chest X-rays and CT scans from public resources, meticulously vetted by board-licensed radiologists to confirm COVID-19 presence, the research sets a robust foundation. However, further validation is essential expanding datasets to encompass enough COVID-19 cases enhances convolutional neural network (CNN) accuracy. Among various machine learning techniques, deep learning excels in identifying distinct patterns on imaging characteristics discernible in chest radiographs of COVID-19 patients. Yet, extensive validation across diverse datasets and clinical trials is crucial to ensure the robustness and generalizability of these models. The conversation extends into complexities, including ethical considerations around patient privacy and integrating intelligent tech into clinical workflows. Collaborating closely with healthcare professionals ensures this technology complements the established diagnostic approach. Despite the potential to detect COVID-19 using chest X-ray imaging findings, thorough research and validation, alongside ethical deliberations, are vital before implementing it in the healthcare field. The results show that the proposed model achieved classification accuracy and F1 score of 96% and 98%, respectively, for the X-ray images.
Volume: 14
Issue: 4
Page: 3192-3200
Publish at: 2025-08-01

Deep transfer learning for classification of ECG signals and lip images in multimodal biometric authentication systems

10.11591/ijai.v14.i4.pp3160-3171
Latha Krishnamoorthy , Ammasandra Sadashivaiah Raju
Authentication plays an essential role in diverse kinds of application that requires security. Several authentication methods have been developed, but biometric authentication has gained huge attention from the research community and industries due to its reliability and robustness. This study investigates multimodal authentication techniques utilizing electrocardiogram (ECG) signals and face lip images. Leveraging transfer learning from pre-trained ResNet and VGG16 models, ECG signals and photos of the lip area of the face are used to extract characteristics. Subsequently, a convolutional neural network (CNN) classifier is employed for classification based on the extracted features. The dataset used in this study comprises ECG signals and face lip images, representing distinct biometric modalities. Through the integration of transfer learning and CNN classification, improving the reliability and precision of multimodal authentication systems is the primary objective of the study. Verification results show that the suggested method is successful in producing trustworthy authentication using multimodal biometric traits. The experimental analysis shows that the proposed deep transfer learning-based model has reported the average accuracy, F1-score, precision, and recall as 0.962, 0.970, 0.965, and 0.966, respectively.
Volume: 14
Issue: 4
Page: 3160-3171
Publish at: 2025-08-01

Evaluation of the dynamic performance and practical limitations of a two-wheeled self-balancing robot

10.11591/ijece.v15i4.pp3613-3620
Rupasinghe Arachchige Don Dhanushka Dharmasiri , Malagalage Kithsiri Jayananda
Two-wheeled self-balancing robots (TWSBR) are statically unstable. However, using closed-loop controllers can stabilize. In this work, the proportional-integral-derivative (PID) controller was designed to maintain the TWSBR stability by adding two zeros and a pole at the origin to the loop gain and by determining the parameter K via root-locus analysis. Then using the K value Kp, Ki, and Kd parameters were calculated. By applying an impulse response to the system, it was found that the system is able to reach a dynamic balance in less than 1.2 seconds with minimum steady-state error. The dynamic performance and limitations of the developed system were investigated. The highest disturbance angle that can be applied to the system while keeping the motor input voltage below 12 V, in order to create counterbalancing torque and achieve dynamic balance, is determined to be θ = 0.0524 rad. Additionally, it was found that the TWSBR system managed to retain stability in a significantly large range of sudden payload changes with the same PID controller.
Volume: 15
Issue: 4
Page: 3613-3620
Publish at: 2025-08-01

Deep feature representation for automated plant species classification from leaf images

10.11591/ijece.v15i4.pp3759-3768
Nikhil Inamdar , Manjunath Managuli , Uttam Patil
Automated plant species classification using leaf images holds immense potential for advancing agricultural research, biodiversity conservation, and ecological monitoring. This study introduces a novel approach leveraging deep feature representation to achieve accurate and efficient classification based on leaf morphology. Convolutional neural networks (CNNs), including VGG16, ResNet50, DenseNet1, Inception, and Xception, are employed to extract high-level features from leaf images, capturing intricate patterns essential for species differentiation. To manage the extensive feature set extracted by these models, optimization techniques such as principal component analysis (PCA), variance thresholding, and recursive feature elimination (RFE) are applied. These methods streamline the feature set, making the classification process more efficient. The optimized features are then trained using classifiers like support vector machine (SVM), k-nearest neighbors (K-NN), decision trees (DT), and naive Bayes (NB), achieving average accuracies of 98.6%, 96.6%, 99.6%, and 99.7%, respectively, across various cross-validation methods. Experimental results on benchmark datasets demonstrate the effectiveness of this approach, achieving state-of-the-art performance in plant species classification. This work underscores the potential of deep feature representation in automated plant species classification, offering valuable insights for applications in agriculture, ecology, and environmental science.
Volume: 15
Issue: 4
Page: 3759-3768
Publish at: 2025-08-01

Exploring the recurrent and sequential security patch data using deep learning approaches

10.11591/ijece.v15i4.pp4160-4171
Falah Muhammad Alam , Devi Fitrianah
The ever-changing nature of vulnerabilities and the intricacy of temporal connections make the classification of security patch data, both sequential and recurrent, a formidable challenge in cybersecurity. The goal of this research is to improve the efficacy and precision of security patch management by optimizing deep learning models to deal with these issues. In order to assess their performance on the PatchDB dataset, four models were used: recurrent neural networks (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM). Metrics like F1-score, area under the receiver operating characteristic curve (AUC-ROC), recall, accuracy, and precision were used to evaluate performance. When it came to processing sequential data, the GRU model was the most efficient, with the best accuracy (77.39%), recall (65.63%), and AUC-ROC score (0.8127). With a 75.17% accuracy rate and an AUC-ROC score of 0.7752, the RNN model successfully reduced false negatives. With AUC-ROC scores of 0.7792 and 0.8055, respectively, LSTM and Bi-LSTM had better specificity but more false negatives. To improve cybersecurity operations, decrease mitigation time, and automate the classification of security updates, this study presents a methodology. To improve the models' practicality, future efforts will center on increasing datasets and testing them in real-world settings.
Volume: 15
Issue: 4
Page: 4160-4171
Publish at: 2025-08-01
Show 56 of 1897

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration