Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,451 Article Results

Investigation on low-performance tuned-regressor of inhibitory concentration targeting the SARS-CoV-2 polyprotein 1ab

10.11591/ijai.v14.i4.pp3003-3013
Daniel Febrian Sengkey , Angelina Stevany Regina Masengi , Alwin Melkie Sambul , Trina Ekawati Tallei , Sherwin Reinaldo Unsratdianto Sompie
Hyperparameter tuning is a key optimization strategy in machine learning (ML), often used with GridSearchCV to find optimal hyperparameter combinations. This study aimed to predict the half-maximal inhibitory concentration (IC50) of small molecules targeting the SARS-CoV-2 replicase polyprotein 1ab (pp1ab) by optimizing three ML algorithms: histogram gradient boosting regressor (HGBR), light gradient boosting regressor (LGBR), and random forest regressor (RFR). Bioactivity data, including duplicates, were processed using three approaches: untreated, aggregation of quantitative bioactivity, and duplicate removal. Molecular features were encoded using twelve types of molecular fingerprints. To optimize the models, hyperparameter tuning with GridSearchCV was applied across a broad parameter space. The results showed that the performance of the models was inconsistent, despite comprehensive hyperparameter tuning. Further analysis showed that the distribution of Murcko fragments was uneven between the training and testing datasets. Key fragments were underrepresented in the testing phase, leading to a mismatch in model predictions. The study demonstrates that hyperparameter tuning alone may not be sufficient to achieve high predictive performance when the distribution of molecular fragments is unbalanced between training and testing datasets. Ensuring fragment diversity across datasets is crucial for improving model reliability in drug discovery applications.
Volume: 14
Issue: 4
Page: 3003-3013
Publish at: 2025-08-01

Insights from the vision-mission statements of Philippine and other ASEAN universities: a K-means clustering analysis

10.11591/ijai.v14.i4.pp3386-3394
Julius Ceazar G. Tolentino , John Paul P. Miranda
This study analyzed the vision and mission statements (VMS) of 117 Philippine state universities and colleges (SUCs) and compared them with 330 other ASEAN universities to identify thematic trends and institutional priorities. Using web scraping and K-means clustering, the study identified thematic clusters in VMS. Thematic trends through word frequency and collocation analyses provided further insights and a comparative analysis examined differences between Philippine SUCs and other ASEAN universities. Philippine SUCs’ vision statements formed three clusters: global competitiveness, premier recognition, and regional leadership in science and technology. Mission statements clustered into: mandated functions, global innovation, and advancement in the sciences. Philippine SUCs emphasized institutional prestige, workforce development, and sustainability while other ASEAN universities focus more on knowledge creation, student empowerment, and internationalization. Philippine SUCs aligned their VMS with national development and global ranking metrics and prioritizes institutional recognition and economic contributions more than the other ASEAN universities. Future studies should expand to more private institutions and international comparisons to assess broader higher education trends.
Volume: 14
Issue: 4
Page: 3386-3394
Publish at: 2025-08-01

Application of self-organizing map for modeling the Aquilaria malaccensis oil using chemical compound

10.11591/ijai.v14.i4.pp2889-2898
Mohammad Arif Fahmi Che Hassan , Zakiah Mohd Yusoff , Nurlaila Ismail , Mohd Nasir Taib
Agarwood oil, known as ‘black gold’ or the ‘wood of God,’ is a globally prized essential oil derived naturally from the Aquilaria tree. Despite its significance, the current non-standardized grading system varies worldwide, relying on subjective assessments. This paper addresses the need for a consistent classification model by presenting an overview of Aquilaria malaccensis oil quality using the self-organizing map (SOM) algorithm. Derived from the Thymelaeaceae family, Aquilaria malaccensis is a primary source of agarwood trees in the Malay Archipelago. Agarwood oil extraction involves traditional methods like solvent extraction and hydro-distillation, yielding a complex mixture of chromone derivatives, oxygenated sesquiterpenes, and sesquiterpene hydrocarbons. This study categorizes agarwood oil into high and low grades based on chemical compounds, utilizing the SOM algorithm with inputs of three specific compounds: β-agarofuran, α-agarofuran, and 10-epi-φ-eudesmol. Findings demonstrate the efficacy of SOM-based quality grading in distinguishing agarwood oil grades, offering a significant contribution to the field. The non-standardized grading system's inefficiency and subjectivity underscore the necessity for a standardized model, making this research crucial for the agarwood industry's advancement.
Volume: 14
Issue: 4
Page: 2889-2898
Publish at: 2025-08-01

Music genre classification using Inception-ResNet architecture

10.11591/ijai.v14.i4.pp3300-3310
Fauzan Valdera , Ajib Setyo Arifin
Music genres help categorize music but lack strict boundaries, emerging from interactions among public, marketing, history, and culture. With Spotify hosting over 80 million tracks, organizing digital music is challenging due to the sheer volume and diversity. Automating music genre classification aids in managing this vast array and attracting customers. Recently, convolutional neural networks (CNNs) have been used for their ability to extract hierarchical features from images, applicable to music through spectrograms. This study introduces the Inception-ResNet architecture for music genre classification, significantly improving performance with 94.10% accuracy, precision of 94.19%, recall of 94.10%, F1-score of 94.08%, and 149,418 parameters on the GTZAN dataset, showcasing its potential in efficiently managing and categorizing large music databases.
Volume: 14
Issue: 4
Page: 3300-3310
Publish at: 2025-08-01

A deep learning-based framework for automatic detection of COVID-19 using chest X-ray and CT-scan images

10.11591/ijai.v14.i4.pp3192-3200
Sivanagireddy Kalli , Bukka Narendra Kumar , Saggurthi Jagadeesh , Kushagari Chandramouli Ravi Kumar
COVID-19 has profoundly impacted global public health, underscoring the need for rapid detection methods. Radiography and radiologic imaging, especially chest X-rays, enable swift diagnosis of infected individuals. This study delves into leveraging machine learning to identify COVID-19 from X-ray images. By gathering a dataset of 9,000 chest X-rays and CT scans from public resources, meticulously vetted by board-licensed radiologists to confirm COVID-19 presence, the research sets a robust foundation. However, further validation is essential expanding datasets to encompass enough COVID-19 cases enhances convolutional neural network (CNN) accuracy. Among various machine learning techniques, deep learning excels in identifying distinct patterns on imaging characteristics discernible in chest radiographs of COVID-19 patients. Yet, extensive validation across diverse datasets and clinical trials is crucial to ensure the robustness and generalizability of these models. The conversation extends into complexities, including ethical considerations around patient privacy and integrating intelligent tech into clinical workflows. Collaborating closely with healthcare professionals ensures this technology complements the established diagnostic approach. Despite the potential to detect COVID-19 using chest X-ray imaging findings, thorough research and validation, alongside ethical deliberations, are vital before implementing it in the healthcare field. The results show that the proposed model achieved classification accuracy and F1 score of 96% and 98%, respectively, for the X-ray images.
Volume: 14
Issue: 4
Page: 3192-3200
Publish at: 2025-08-01

Performance analysis and comparison of machine learning algorithms for predicting heart disease

10.11591/ijai.v14.i4.pp2849-2863
Neha Bhadu , Jaswinder Singh
Heart disease (HD) is a serious medical condition that has an enormous effect on people's quality of life. Early as well as accurate identification is crucial for preventing and treating HD. Traditional methods of diagnosis may not always be reliable. Non-intrusive methods like machine learning (ML) are proficient in distinguishing between patients with HD and those in good health. The prime objective of this study is to find a robust ML technique that can accurately detect the presence of HD. For this purpose, several ML algorithms were chosen based on the relevant literature studied. For this investigation, two different heart datasets the Cleveland and Statlog datasets were downloaded from Kaggle. The analysis was carried out utilizing the Waikato environment for knowledge analysis (WEKA) 3.9.6 software. To assess how well various algorithms predicted HD, the study employed a variety of performance evaluation metrics and error rates. The findings showed that for both the datasets radio frequency is a better option for predicting HD with an accuracy and receiver operating characteristic (ROC) values of 94% and 0.984 for the Cleveland dataset and 90% and 0.975 for the Statlog dataset. This work may aid researchers in creating early HD detection models and assist medical practitioners in identifying HD.
Volume: 14
Issue: 4
Page: 2849-2863
Publish at: 2025-08-01

Transforming images into words: optical character recognition solutions for image text extraction

10.11591/ijai.v14.i4.pp3412-3420
Jyoti Wadmare , Sunita Patil , Dakshita Kolte , Kapil Bhatia , Palak Desai , Ganesh Wadmare
Optical character recognition (OCR) tool is a boon and greatest advancement in today’s emerging technology which has proven its remarkability in recent years by making it easier for humans to convert the textual information in images or physical documents into text data making it useful for analysis, automation processes and improvised productivity for different purposes. This paper presents the designing, development and implementation of a novel OCR tool aiming at text extraction and recognition tasks. The tool incorporates advanced techniques such as computer vision and natural language processing (NLP) which offer powerful performance for various document types. The performance of the tool is subject to metrics like analysis, accuracy, speed, and document format compatibility. The developed OCR tool provides an accuracy of 98.8% upon execution providing a character error rate of 2.4% and word error rate (WER) of 2.8%. OCR tool finds its applications in document digitization, personal identification, archival of valuable documents, processing of invoices, and other documents. OCR tool holds an immense amount of value for researchers, practitioners and many organizations which seek effective techniques for relevant and accurate text extraction and recognition tasks.
Volume: 14
Issue: 4
Page: 3412-3420
Publish at: 2025-08-01

Exploring bibliometric trends in speech emotion recognition (2020-2024)

10.11591/ijai.v14.i4.pp3421-3434
Yesy Diah Rosita , Muhammad Raafi'u Firmansyah , Annisaa Utami
Speech Emotion Recognition (SER) is crucial in various real-world applications, including healthcare, human-computer interaction, and affective computing. By enabling systems to detect and respond to human emotions through vocal cues, SER enhances user experience, supports mental health monitoring, and improves adaptive technologies. This research presents a bibliometric analysis of SER based on 68 articles from 2020 to early 2024. The findings show a significant increase in publications each year, reflecting the growing interest in SER research. The analysis highlights various approaches in preprocessing, data sources, feature extraction, and emotion classification. India and China emerged as the most active contributors, with external funding, particularly from the NSFC, playing a significant role in the advancement of SER research. SVM remains the most widely used classification model, followed by KNN and CNN. However, several critical challenges persist, including inconsistent data quality, cross-linguistic variability, limited emotional diversity in datasets, and the complexity of real-time implementation. These limitations hinder the generalizability and scalability of SER systems in practical environments. Addressing these gaps is essential to enhance SER performance, especially for multimodal and multilingual applications. This study provides a detailed understanding of SER research trends, offering valuable insights for future advances in speech-based emotion recognition.
Volume: 14
Issue: 4
Page: 3421-3434
Publish at: 2025-08-01

Comparative evaluation of left ventricle segmentation using improved pyramid scene parsing network in echocardiography

10.11591/ijai.v14.i4.pp3214-3227
Jin Wang , Sharifah Aliman , Shafaf Ibrahim
Automatic segmentation of the left ventricle is a challenging task due to the presence of artifacts and speckle noise in echocardiography. This paper studies the ability of a fully supervised network based on pyramid scene parsing network (PSPNet) to implement echocardiographic left ventricular segmentation. First, the lightweight MobileNetv2 was selected to replace ResNet to adjust the coding structure of the neural network, reduce the computational complexity, and integrate the pyramid scene analysis module to construct the PSPNet; secondly, introduce dilated convolution and feature fusion to propose an improved PSPNet model, and study the impact of pre-training and transfer learning on model segmentation performance; finally, the public data set challenge on endocardial three-dimensional ultrasound segmentation (CETUS) was used to train and test different backbone and initialized PSPNet models. The results demonstrate that the improved PSPNet model has strong segmentation advantages in terms of accuracy and running speed. Compared with the two classic algorithms VGG and Unet, the dice similarity coefficient (DSC) index is increased by an average of 7.6%, Hausdorff distance (HD) is reduced by 2.9%, and the mean intersection over union (mIoU) is improved by 8.8%. Additionally, the running time is greatly shortened, indicating good clinical application potential.
Volume: 14
Issue: 4
Page: 3214-3227
Publish at: 2025-08-01

Federated deep learning intrusion detection system on software defined-network based internet of things

10.11591/ijai.v14.i4.pp3109-3120
Heba Dhirar , Ali H. Hamad
The internet of things (IoT) and software-defined networks (SDN) play a significant role in enhancing efficiency and productivity. However, they encounter possible risks. Artificial intelligence (AI) has recently been employed in intrusion detection systems (IDSs), serving as an important instrument for improving security. Nevertheless, the necessity to store data on a centralized server poses a potential threat. Federated learning (FL) addresses this problem by training models locally. In this work, a network intrusion detection system (NIDS) is implemented on multi-controller SDN-based IoT networks. The interplanetary file system (IPFS) FL has been employed to share and train deep learning (DL) models. Several clients participated in the training process using custom generated dataset IoT-SDN by training the model locally and sharing the parameters in an encrypted format, improving the overall effectiveness, safety, and security of the network. The model has successfully identified several types of attacks, including distributed denial of service (DDoS), denial of service (DoS), botnet, brute force, exploitation, malware, probe, web-based, spoofing, recon, and achieving an accuracy of 99.89% and a loss of 0.005.
Volume: 14
Issue: 4
Page: 3109-3120
Publish at: 2025-08-01

Optimized pap-smear image enhancement: hybrid Perona-Malik diffusion filter-CLAHE using spider monkey optimization

10.11591/ijai.v14.i4.pp2765-2775
Ach Khozaimi , Isnani Darti , Wuryansari Muharini Kusumawinahyu , Syaiful Anam
Pap-smear image quality is crucial for cervical cancer detection. This study introduces an optimized hybrid approach that combines the Perona-Malik diffusion (PMD) filter with contrast-limited adaptive histogram equalization (CLAHE) to enhance pap-smear image quality. The PMD filter reduces the image noise, whereas CLAHE improves the image contrast. The hybrid method was optimized using spider monkey optimization (SMO PMD-CLAHE). Blind/reference-less image spatial quality evaluator (BRISQUE) and contrast enhancement-based image quality (CEIQ) are the new objective functions for the PMD filter and CLAHE optimization, respectively. The simulations were conducted using the SIPaKMeD dataset. The results indicate that SMO outperforms state-of-the-art methods in optimizing the PMD filter and CLAHE. The proposed method achieved an average effective measure of enhancement (EME) of 5.45, root mean square (RMS) contrast of 60.45, Michelson’s contrast (MC) of 0.995, and entropy of 6.80. This approach offers a new perspective for improving pap-smear image quality.
Volume: 14
Issue: 4
Page: 2765-2775
Publish at: 2025-08-01

Unpacking the drivers of artificial intelligence regulation: driving forces and critical controls in artificial intelligence governance

10.11591/ijai.v14.i4.pp2655-2666
Ibrahim Atoum , Salahiddin Altahat
The burgeoning field of artificial intelligence (AI) necessitates a nuanced approach to governance that integrates technological advancement, ethical considerations, and regulatory oversight. As various AI governance frameworks emerge, a fragmented landscape hinders effective implementation. This article examines the driving forces behind AI regulation and the essential control mechanisms that underpin these frameworks. We analyze market-driven, state-driven, and rights-driven regulatory approaches, focusing on their underlying motivations. Furthermore, critical regulatory controls such as data governance, risk management, and human oversight are highlighted to demonstrate their roles in establishing effective governance structures. Additionally, the importance of international cooperation and stakeholder collaboration in addressing the challenges posed by rapid technological change is emphasized. By providing insights into the strengths, weaknesses, and potential synergies of different governance models, this study contributes to the development of equitable and effective AI regulatory frameworks that encourage innovation while safeguarding societal interests. Ultimately, the findings aim to inform policymakers, industry leaders, and civil society organizations in their efforts to foster a future where AI is utilized responsibly and equitably for the betterment of humanity.
Volume: 14
Issue: 4
Page: 2655-2666
Publish at: 2025-08-01

A novel fuzzy logic based sliding mode control scheme for non-linear systems

10.11591/ijai.v14.i4.pp2676-2688
Abdul Kareem , Varuna Kumara
Sliding mode control (SMC) has been widely used in the control of non-linear systems due to many inherent properties like superposition, multiple isolated equilibrium points, finite escape time, limit cycle, bifurcation. This research proposes super-twisting controller architecture with a varying sliding surface; the sliding surface being adjusted by a simple single input-single output (SISO) fuzzy logic inference system. The proposed super-twisting controller utilizes a varying sliding surface with an online slope update using a SISO fuzzy logic inference system. This rotates sliding surface in the direction of enhancing the dynamic performance of the system without compromising steady state performance and stability. The performance of the proposed controller is compared to that of the basic super-twisting sliding mode (STSM) controller with a fixed sliding surface through simulations for a benchmark non-linear system control system model with parametric uncertainties and disturbances. The simulation results have confirmed that the proposed approach has the improved dynamic performance in terms of faster response than the typical STSM controller with a fixed sliding surface. This improved dynamic performance is achieved without affecting robustness, system stability and level of accuracy in tracking. The proposed control approach is straightforward to implement since the sliding surface slope is regulated by a SISO fuzzy logic inference system. The MATLAB/Simulink is used to display the efficiency of proposed system over conventional system.
Volume: 14
Issue: 4
Page: 2676-2688
Publish at: 2025-08-01

The growth and trends information technology endangered language revitalization research: Insight from a bibliometric study

10.11591/ijece.v15i4.pp3888-3903
Leonardi Paris Hasugian , Syifaul Fuada , Triana Mugia Rahayu , Apridio Edward Katili , Feby Artwodini Muqtadiroh , Nur Aini Rakhmawati
Since United Nations Educational, Scientific and Cultural Organization (UNESCO) declared endangered languages, researchers have revitalized endangered languages in many fields. This study discusses a bibliometric analysis conducted to investigate research on the topic of revitalization of endangered languages in information technology. The study's aim is to assess research topics by identifying authors, institutions, and countries that influence research collaboration. The Scopus dataset (from 2002-2024) was obtained from journal articles (n=62) and conference papers (n=76) and visualized using VOSviewer 1.6.20. The analysis outcomes reveal a fluctuating trend with an increasing pattern. The United States, Canada, and China were identified as the top three countries in terms of publications. Meanwhile, the University of Alberta, Université du Québec à Montréal, University of Auckland, and University of Hawaiʻi at Mānoa are the most prolific institutions on this topic, with two authors from the Université du Québec à Montréal, Sadat and Le, being the most productive. The dominant research is related to computational linguistics. Meanwhile, topics such as phonetic posteriograms, integrated frameworks, and artificial intelligence are some of the potential research areas that can be explored in the future. Its implications for exposing the extent to which the development of endangered language revitalization can be accommodated in the field of information technology.
Volume: 15
Issue: 4
Page: 3888-3903
Publish at: 2025-08-01

Imagery based plant disease detection using conventional neural networks and transfer learning

10.11591/ijai.v14.i4.pp2701-2712
Ali Mhaned , Salma Mouatassim , Mounia El Haji , Jamal Benhra
Ensuring the sustainability of global food production requires efficient plant disease detection, challenge conventional methods struggle to address promptly. This study explores advanced techniques, including convolutional neural networks (CNNs) and transfer learning models (ResNet and VGG), to improve plant disease identification accuracy. Using a plant disease dataset with 65 classes of healthy and diseased leaves, the research evaluates these models' effectiveness in automating disease recognition. Preprocessing techniques, such as size normalization and data augmentation, are employed to enhance model reliability, and the dataset is divided into training, testing, and validation sets. The CNN model achieved accuracies of 95.45 and 94.52% for 128×128 and 256×256 image sizes, respectively. ResNet50 proved the best performer, reaching 98.38 and 98.63% accuracy, while VGG16 achieved 97.99 and 98.34%. These results highlight ResNet50's superior ability to capture intricate features, making it a robust tool for precision agriculture. This research provides practical solutions for early and accurate disease identification, helping to improve crop management and food security.
Volume: 14
Issue: 4
Page: 2701-2712
Publish at: 2025-08-01
Show 59 of 1897

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration