Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,188 Article Results

Voltage Compensation In Wind Power System Using STATCOM Controlled By Soft Computing Techniques

10.11591/ijece.v7i2.pp667-680
Bineeta Mukhopadhyay , Rajib Kumar Mandal , Girish Kumar Choudhary
When severe voltage sags occur in weak power systems associated with grid-connected wind farms employing doubly fed induction generators, voltage instability occurs which may lead to forced disconnection of wind turbine. Shunt flexible AC transmission system devices like static synchronous compensator (STATCOM) may be harnessed to provide voltage support by dynamic injection of reactive power. In this work, the STATCOM provided voltage compensation at the point of common coupling in five test cases, namely, simultaneous occurrence of step change (drop) in wind speed and dip in grid voltage, single line to ground, line to line, double line to ground faults and sudden increment in load by more than a thousand times. Three techniques were employed to control the STATCOM, namely, fuzzy logic, particle swarm optimization and a combination of both. A performance comparison was made among the three soft computing techniques used to control the STATCOM on the basis of the amount of voltage compensation offered at the point of common coupling. The simulations were done with the help of SimPowerSystems available with MATLAB / SIMULINK and the results validated that the STATCOM controlled by all the three techniques offered voltage compensation in all the cases considered.
Volume: 7
Issue: 2
Page: 667-680
Publish at: 2017-04-01

Parametric Comparison of K-means and Adaptive K-means Clustering Performance on Different Images

10.11591/ijece.v7i2.pp810-817
Madhusmita Sahu , K. Parvathi , M. Vamsi Krishna
Image segmentation takes a major role to analyzing the area of interest in image processing. Many researchers have used different types of techniques to analyzing the image. One of the widely used techniques is K-means clustering. In this paper we use two algorithms K-means and the advance of K-means is called as adaptive K-means clustering. Both the algorithms are using in different types of image and got a successful result. By comparing the Time period, PSNR and RMSE value from the result of both algorithms we prove that the Adaptive K-means clustering algorithm gives a best result as compard to K-means clustering in image segmentation.    
Volume: 7
Issue: 2
Page: 810-817
Publish at: 2017-04-01

Detection of Rogue Access Point in WLAN using Hopfield Neural Network

10.11591/ijece.v7i2.pp1060-1070
Menal Dahiya , Sumeet Gill
The serious issue in the field of wireless communication is the security and how an organization implements the steps against security breach. The major attack on any organization is Man in the Middle attack which is difficult to manage. This attack leads to number of unauthorized access points, called rogue access points which are not detected easily. In this paper, we proposed a Hopfield Neural Network approach for an automatic detection of these rogue access points in wireless networking. Here, we store the passwords of the authentic devices in the weight matrix format and match the patterns at the time of login. Simulation experiment shows that this method is more secure than the traditional one in WLAN.
Volume: 7
Issue: 2
Page: 1060-1070
Publish at: 2017-04-01

Optimizing Tri-Core Permanent-Magnet-Linear-Generator Direct-Drive Wave-Energy-Conversion System Design for Sea Wave Characteristics in South Coast Yogyakarta

10.11591/ijece.v7i2.pp610-618
Fransisco Danang Wijaya , Sarjiya Sarjiya , Muhammad Rifa'i Putra Sugita
According to statistical data, the south coast Yogyakarta has significant ocean wave height which can be used to generate electricity by using wave-energy-converter system. One of the simplest way to convert wave energy to electricity is using direct-drive wave-energy-conversion (WEC) system with permanent-magnet-linear-generator (PMLG). This method is simple because it doesn’t need to convert linear motion to rotational motion. However, PMLG has large electric power losses, has great weight in both of the stator and rotor, and expensive to make. In this paper, a tri-core PMLG was designed. The electric power losses in the winding, translator weight, and manufacturing cost were ideally minimized using multiobjective optimization combined with simulated annealing (SA) algorithm. Then, the design was verified using finite element analysis. The optimized design of this PMLG was simulated using sinusoidal ocean waves which usually occur in the south coast of Yogyakarta to analyze the performance of this linear generator. Simulation result has been shown that this generator can generate 911 watt peak output power at the rated condition and at the optimum load with 81.14% efficiency. This confirms that the optimized design of PMLG is suitable for direct-drive WEC with low power losses and manufacturing cost.
Volume: 7
Issue: 2
Page: 610-618
Publish at: 2017-04-01

A New Instrumentation Amplifier Architecture Based on Differential Difference Amplifier for Biological Signal Processing

10.11591/ijece.v7i2.pp759-766
Zainul Abidin , Koichi Tanno , Shota Mago , Hiroki Tamura
In this paper, a new Instrumentation Amplifier (IA) architecture for biological signal pro-cessing is proposed. First stage of the proposed IA architecture consists of fully balance differential difference amplifier and three resistors. Its second stage was designed by using differential difference amplifier and two resistors. The second stage has smaller number of resistors than that of conventional one. The IA architectures are simulated and compared by using 1P 2M 0:6-m CMOS process. From HSPICE simulation result, lower common-mode voltage can be achieved by the proposed IA architecture. Average common-mode gain (Ac) of the proposed IA architecture is 31:26 dB lower than that of conventional one under 3% resistor mismatches condition. Therefore, the Ac of the proposed IA architecture is more insensitive to resistor mismatches and suitable for biological signal processing.
Volume: 7
Issue: 2
Page: 759-766
Publish at: 2017-04-01

Measuring Cardiorespiratory Information in Sitting Position using Multiple Piezoelectric Sensors

10.11591/ijeecs.v6.i1.pp132-138
Tomohiko Igasaki , Makiko Kobayashi , Makiko Kobayashi
We have been studying equipment to easily acquire cardiorespiratory information at home using piezoelectric sensors arranged on the seat surface of a chair. In our previous study, we suggested that the cardiac and respiratory components could be extracted by executing template matching using a two-dimensional cross-correlation function for the signals that were obtained from the piezoelectric sensors. However, there was a difficulty with the signal extraction, depending on the seating position. Therefore, in this study, we examined the measurement of the heartbeat and breathing interval using independent component analysis and multiple piezoelectric sensors. Moreover, the heartbeat and breathing intervals that were obtained from the extracted cardiorespiratory components using our developed automatic decision method were compared with those obtained from electrocardiogram and pneumogram. As a result, it was found that we could achieve better error rates (0.93±0.44% and 5.23±3.04% for the heartbeat and respiratory intervals, respectively) than in our previous study.
Volume: 6
Issue: 1
Page: 132-138
Publish at: 2017-04-01

Size Reduction and Gain Enhancement of a Microstrip Antenna using Partially Defected Ground Structure and Circular/Cross Slots

10.11591/ijece.v7i2.pp894-898
Nada N. Tawfeeq
Microwave engineers have been known to designedly created defects in the shape of carved out patterns on the ground plane of microstrip circuits and transmission lines for a long time, although their implementations to the antennas are comparatively new. The term Defected Ground Structure (DGS), precisely means a single or finite number of defects. At the beginning, DGS was employed underneath printed feed lines to suppress higher harmonics. Then DGS was directly integrated with antennas to improve the radiation characteristics, gain and to suppress mutual coupling between adjacent elements. Since then, the DGS techniques have been explored extensively and have led to many possible applications in the communication industry. The objective of this paper is to design and investigate microstrip patch antenna that operates at 2.4 GHz for Wireless Local Area Network WLAN IEEE 802.11b/g/n, ,Zigbee, Wireless HART, Bluetooth and several proprietary technologies that operate in the 2.4 GHz band. The design of the proposed antenna involves using partially Defected Ground Structure and circular/cross slots and compare it to the traditional microstrip patch antenna.  The results show improvement in both the gain of 3.45 dB and the S11 response of -22.3 dB along with reduction in the overall dimensions of the antenna. As a conclusion, the performance of the antenna has been improved through the incorporation with the DGS and slots structures regarding the S11 response and the gain. The proposed antenna become more compact. Finally, the radiation pattern of proposed antenna has remained directional in spite of adding slots on the ground plane.
Volume: 7
Issue: 2
Page: 894-898
Publish at: 2017-04-01

Design of Pervasive Discovery, Service and Control for Smart Home Appliances: An Integration of Raspberry Pi, UPnP Protocols and Xbee

10.11591/ijece.v7i2.pp1012-1022
Sabriansyah Rizqika Akbar , Maystya Tri Handono , Achmad Basuki
Pervasive technology is an important feature in smart home appliances control. With pervasive technology, the user is able to discover and control every device and each service without initialization configuration and setup. Since single-board computer often used in smart home appliances, combining pervasive technology and microcomputer/single-board computer will be important to be applied and make a possibility to create a smart home system based on the requirement of it users that will be beneficial for the smart home users and the developers. This paper proposed a design of pervasive discovery, service, and control system for smart home appliances by integrating Raspberry Pi, UPnP protocols, and Xbee that able to control an RGB LED services such as switching, dimming, change color and read a temperature sensor as an example in smart home appliances. This paper enriched the raspberry Pi GPIO function to be able to control via TCP/IP network with UPnP protocol and receive information from a temperature sensor node via Xbee communication. Service control time is measured with UPnP round trip time by subtracting HTTP response arrival with HTTP request time. GPIO processing time measured at the application level by counting a timer that starts before GPIO process and ended after GPIO successfully executed.
Volume: 7
Issue: 2
Page: 1012-1022
Publish at: 2017-04-01

The Development of an Application Conceived for the Design, Feasibility Study and Data Analysis of Photovoltaic Pumping Systems

10.11591/ijece.v7i2.pp713-719
B. Boukhris , M. Mediouni , L. Elmahni
Because of the rise in diesel and butane prices widely used for pumping, added to their negative impact on both Morocco's environment and trade balance, the use of renewable energies should sound obvious, practical and cost effective. This study offers the transformation of a traditional butane pumping system (BPS) and diesel pumping system (DPS), located on a farm nearby the city of Agadir, into an optimized solar pumping system (SPS). The suggested method is based on a techno-economic study according to the “Business-As-usual” scenario. As a first step, we have dimensioned our pumping system and chosen the elements that constitute it. As a second step, we carried out an economic analysis, based on the calculation of all costs, which makes it possible to ensure the viability of the components of our SPS over its life cycle and brought it to a discounted value. The processing of the different data is made possible thanks to the computer application “PVDesign” which we have developed. This application has allowed us to carry out a comparative study of several techniques of pumping systems. The result of the study is that the SPS beats the other systems at various levels, namely economic, environmental and technical.
Volume: 7
Issue: 2
Page: 713-719
Publish at: 2017-04-01

Fuzzy Recursive Least-Squares Approach in Speech System Identification: A Transformed Domain LPC Model

10.11591/ijece.v7i2.pp842-849
Kah Wai Cheah , Noor Atinah Ahmad
In speech system identification, linear predictive coding (LPC) model is often employed due to its simple yet powerful representation of speech production model. However, the accuracy of LPC model often depends on the number and quality of past speech samples that are fed into the model; and it becomes a problem when past speech samples are not widely available or corrupted by noise. In this paper, fuzzy system is integrated into the LPC model using the recursive least-squares approach, where the fuzzy parameters are used to characterize the given speech samples. This transformed domain LPC model is called the FRLS-LPC model, in which its performance depends on the fuzzy rules and membership functions defined by the user. Based on the simulations, the FRLS-LPC model with this special property is shown to outperform the LPC model. Under the condition of limited past speech samples, simulation result shows that the synthetic speech produced by the FRLS-LPC model is better than those produced by the LPC model in terms of prediction error. Furthermore with corrupted past speech samples, the FRLS-LPC model is able to provide better reconstructed speech while the LPC model is failed to do so.
Volume: 7
Issue: 2
Page: 842-849
Publish at: 2017-04-01

An Approach for Big Data to Evolve the Auspicious Information from Cross-Domains

10.11591/ijece.v7i2.pp967-974
Preeti Arora , Deepali Virmani , P.S. Kulkarni
Sentiment analysis is the pre-eminent technology to extract the relevant information from the data domain. In this paper cross domain sentimental classification approach Cross_BOMEST is proposed. Proposed approach will extract †ve words using existing BOMEST technique, with the help of Ms Word Introp, Cross_BOMEST determines †ve words and replaces all its synonyms to escalate the polarity and blends two different domains and detects all the self-sufficient words. Proposed Algorithm is executed on Amazon datasets where two different domains are trained to analyze sentiments of the reviews of the other remaining domain. Proposed approach contributes propitious results in the cross domain analysis and accuracy of 92 % is obtained. Precision and Recall of BOMEST is improved by 16% and 7% respectively by the Cross_BOMEST.
Volume: 7
Issue: 2
Page: 967-974
Publish at: 2017-04-01

Maximum Power Point Tracking using Particle Swarm Optimization Algorithm for Hybrid Wind-Tidal Harvesting System on the South Coast of Java

10.11591/ijece.v7i2.pp659-666
Fransisco Danang Wijaya , Kukuh Daud Pribadi , Sarjiya Sarjiya
This paper proposes a hybrid wind-tidal harvesting system (HWTHS). To extract maximum power from the wind and tidal, HWTHS implements particle swarm optimization (PSO) algorithm in maximum power point tracking (MPPT) method. The proposed HWTHS had been tested on the range of possible input appropriate to the characteristics of the southern coast of Java. The presented result shows that by using PSO-based MPPT algorithm, maximum power point can be achieved. Thus the efficiency of HWTHS is 92 %, 94 % in wind section and 91 % in tidal section. By using PSO-based MPPT, HWTHS can respond well to changes in wind and tidal speed, whether it's a change from low speed to a higher speed or change from high speed to lower speed wherein time to reach new steady state is ± 0.1 s. At varied wind and tidal speed, PSO algorithm can maintain Cp of the system in the range of 0.47 - 0.48 so that power can be extracted to the maximum.
Volume: 7
Issue: 2
Page: 659-666
Publish at: 2017-04-01

Hungarian-Puzzled Text with Dynamic Quadratic Embedding Steganography

10.11591/ijece.v7i2.pp799-809
Ebrahim Alrashed , Suood Suood Alroomi
Least-Significant-Bit (LSB) is one of the popular and frequently used steganography techniques to hide a secret message in a digital medium. Its popularity is due to its simplicity in implementation and ease of use. However, such simplicity comes with vulnerabilities. An embedded secret message using the traditional LSB insertion is easily decodable when the stego image is suspected to be hiding a secret message.  In this paper, we propose a novel secure and high quality LSB embedding technique. The security of the embedded payload is employed through introducing a novel quadratic embedding sequence. The embedding technique is also text dependent and has non-bounded inputs, making the possibilities of decoding infinite. Due to the exponential growth of and quadratic embedding, a novel cyclic technique is also introduced for the sequence that goes beyond the limits of the cover medium. The proposed method also aims to reduce the noise arising from embedding the secret message by reducing bits changed. This is done by partitioning the cover medium and the secret message into N partitions and artificially creating an assignment problem based on bit change criteria. The assignment problem will be solved using the Hungarian algorithm that will puzzle the secret message partition for an overall least bit change.
Volume: 7
Issue: 2
Page: 799-809
Publish at: 2017-04-01

A Tunable Ferrofluid-based Polydimethylsiloxane (PDMS) Microchannel Inductor for Ultra High Frequency Applications

10.11591/ijece.v7i2.pp926-932
Ahmad Hafiz Mohamad Razy , Mohd Tafir Mustaffa , Asrulnizam Abd Manaf , Norlaili Mohd Noh
In this work, a tunable ferrofluid-based polydimethylsiloxane (PDMS) microchannel inductor with high quality factor and high tuning range is proposed. For this project, PDMS is used to create a microchannel with a width and height of 0.53 mm and 0.2 mm respectively. The microchannel is then used to cover the whole design of a solenoid inductor. A solenoid inductor is designed using wire bonding technique where lines of copper and bond wires are used to form a solenoid winding on top of silicon substrate. A light hydrocarbon based ferrofluid EMG 901 660 mT with high permeability of 5.4 is used. The ferrofluid-based liquid is injected into the channel to enhance the performance of a quality factor. A 3D full-wave electromagnetic fields tool, ANSYS HFSS is used in this work to simulate the solenoid inductor. The results obtained in this work gives a quality factor of more than 10 at a frequency range of 300 MHz to 3.3 GHz (Ultra High Frequency range). The highest quality factor is 37 which occurs at a frequency of 1.5 GHz, provides a high tuning range of 112%.
Volume: 7
Issue: 2
Page: 926-932
Publish at: 2017-04-01

Implementation of PWM Control of DC Split Converter Fed Switched Reluctance Motor Drive

10.11591/ijece.v7i2.pp604-609
P. Srinivas
The phase winding of Switched Reluctance Motor is excited during the positive increasing region of the phase inductance to get the motoring action. This is performed through a converter. This paper presents the speed control of DC Split converter fed 4 phase 8/6 Switched Reluctance Motor drive using PWM controller. The speed of the motor is controlled by varying the duty ratio of the PWM controller.  Simulation results are verified with hardware implementation of the controller. The Hall sensors provided in the motor provide signals corresponding to the position of the rotor. The pulses to the IGBT switches are generated by TMS320F2407A DSP controller. The waveforms of the PWM signals and Hall sensor signals are captured by means of Digital Storage Oscilloscope. Motor phase currents, phase voltages and associated numerical values are captured and analyzed by Power Analyzer. Steady state analysis of the drive has been carried out. 
Volume: 7
Issue: 2
Page: 604-609
Publish at: 2017-04-01
Show 1450 of 1880

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration