Articles

Access the latest knowledge in applied science, electrical engineering, computer science and information technology, education, and health.

Filter Icon

Filters article

Years

FAQ Arrow
0
0

Source Title

FAQ Arrow

Authors

FAQ Arrow

28,451 Article Results

Implementation of Algorithm for Vehicle Anti-Collision Alert System in FPGA

10.11591/ijece.v7i2.pp775-783
Aiman Zakwan Jidin , Lim Siau Li , Ahmad Fauzan Kadmin
Vehicle safety has becoming one of the important issues nowadays, due to the fact the number of road accidents, which cause injuries, deaths and also damages, keeps on increasing. One of the main factors which contribute to these accidents are human's lack of awareness and also carelessness. This paper presents the development and implementation of an algorithm to be utilized for vehicle anti-collision alert system, which may be useful to reduce the occurrence of accidents. This algorithm, which is to be deployed with the front sensors of the vehicle, is capable of alerting any occurrence of sudden slowing or static vehicles ahead, by sensing the rate of distance change. Furthermore, it also triggers an alert if the driver is breaching the safe distance from the vehicle ahead. This algorithm has been successfully implemented in Altera DE0 FPGA and its functionality was validated via hardware experimental tests.
Volume: 7
Issue: 2
Page: 775-783
Publish at: 2017-04-01

Hybrid System of Tiered Multivariate Analysis and Artificial Neural Network for Coronary Heart Disease Diagnosis

10.11591/.v7i2.pp1023-1031
Wiharto Wiharto , Hari Kusnanto , Herianto Herianto
Improved system performance diagnosis of coronary heart disease becomes an important topic in research for several decades. One improvement would be done by features selection, so only the attributes that influence is used in the diagnosis system using data mining algorithms. Unfortunately, the most feature selection is done with the assumption has provided all the necessary attributes, regardless of the stage of obtaining the attribute, and cost required. This research proposes a hybrid model system for diagnosis of coronary heart disease. System diagnosis preceded the feature selection process, using tiered multivariate analysis. The analytical method used is logistic regression. The next stage, the classification by using multi-layer perceptron neural network. Based on test results, system performance proposed value for accuracy 86.3%, sensitivity 84.80%, specificity 88.20%, positive prediction value (PPV) 90.03%, negative prediction value (NPV) 81.80%, accuracy 86,30%  and area under the curve (AUC) of 92.1%. The performance of a diagnosis using a combination attributes of risk factors,symptoms and exercise ECG. The conclusion that can be drawn is that the proposed diagnosis system capable of delivering performance in the very good category, with a number of attributes that are not a lot of checks and a relatively low cost.
Volume: 7
Issue: 2
Page: 1023-1031
Publish at: 2017-04-01

5G Coupler Design for Intelligent Transportation System (ITS) Application

10.11591/.v7i2.pp899-904
Dyg Norkhairunnisa Abang Zaidel , Norhudah Seman , Mohd Ridhuan Mohd Sharip , Dyg Azra Awang Mat , Nur Alia Athirah Mohtadzar
Aiming to achieve 3-dB coupling, operating in fifth generation (5G) technologies, this paper introduces a new design of tight coupling coupler that will be operated in 5G technologies. Two stubs and two slots have been implemented into the 3-dB coupler design in order to achieve impedance matching between the ports and to give better coupling performances, respectively. Moreover, a study on the stubs’ and slots’ effects towards the S31 of the 3-dB coupler has also been presented in this paper. The proposed coupler is designed on Rogers RO4003C substrate. The simulation results and the analytical study on the stubs and slots implementation show that both stubs and slots affect the performance of the coupling coefficient.
Volume: 7
Issue: 2
Page: 899-904
Publish at: 2017-04-01

Improved Timing Estimation Using Iterative Normalization Technique for OFDM Systems

10.11591/ijece.v7i2.pp905-911
Suyoto Suyoto , Iskandar Iskandar , Sugihartono Sugihartono , Adit Kurniawan
Conventional timing estimation schemes based on autocorrelation experience performance degradation in the multipath channel environment with high delay spread. To overcome this problem, we proposed an improvement of the timing estimation for the OFDM system based on statistical change of symmetrical correlator. The new method uses iterative normalization technique to the correlator output before the detection based on statistical change of symmetric correlator is applied. Thus, it increases the detection probability and achieves better performance than previously published methods in the multipath environment. Computer simulation shows that our method is very robust in the fading multipath channel
Volume: 7
Issue: 2
Page: 905-911
Publish at: 2017-04-01

DARE Algorithm: A New Security Protocol by Integration of Different Cryptographic Techniques

10.11591/ijece.v7i2.pp1032-1041
John Mark Espalmado , Edwin Arboleda
Exchange of information between computer networks requires a secure communications channel to prevent and monitor unauthorized access, modification and denial of the computer network. To address this growing problem, security experts sought ways to advance the integrity of data transmission. Security Attacks compromises the security and hence hybrid cryptographic algorithms have been proposed to achieve safe service in the proper manner, such as user authentication and data confidentiality. Data security and authenticity are achieved using these algorithms. Moreover, to improve the strength and cover each algorithm’s weaknesses, a new security algorithm can be designed using the combination of different cryptographic techniques. This design uses Digital Signature Algorithm (DSA) for authentic key generation, Data Encryption Standard (DES) for key scheduling, and Advanced Encryption Standard (AES) and Rivest–Schamir–Adleman Algorithm (RSA) in encrypting data. This new security algorithm has been proposed for improved security and integrity by integration of these cryptographic techniques.
Volume: 7
Issue: 2
Page: 1032-1041
Publish at: 2017-04-01

Comparative Analysis of Time and Physical Redundancy Techniques for Fault Detection

10.11591/ijeecs.v6.i1.pp66-71
Namita Arya , Amit Prakash Singh
The integration level in today’s world is continuously increasing in VLSI chips. VLSI circuit verification is a major challenge in these days. Integration capacity of VLSI circuits mimics the testing complexity of circuits. There is a significant chunk of the testing cost with respect to the whole fabrication prices. Hence it is important to cut down the verification cost. Time required during testing is a main factor for the cost of a chip. This time is directly proportional to the number of testing in the circuitry. So the test set should be very small. There is one way to generate a small test set is to compact a large test set parameters. The main drawback of the compaction results on the quality of the original test set. This aspect of compaction has motivated the work present here with some methods of fault detection and avoidance techniques via redundancy logic as Time redundancy and physical redundancy.
Volume: 6
Issue: 1
Page: 66-71
Publish at: 2017-04-01

Energy Performance of LDPC Scheme in Multi-Hop Wireless Sensor Network with Two base Stations Model

10.11591/.v7i2.pp933-941
Younes El Assari , Mounir Arioua , Imad Ez-zazi , Ahmed El Oualkadi
Conservation of the energy is one of the main design issues in wireless sensor networks. The limited battery power of each sensor node is a challenging task in deploying this type of network. The challenge is crucial in reliable wireless network when implementing efficient error correcting scheme with energy consuming routing protocol. In this work, we investigated the energy performance of LDPC code in multi-hop wireless sensor network. We proposed a model of two base stations to prolong the lifetime and build a reliable and energy-efficient network. Through performed MATLAB simulations, we examine the energy effectiveness of multiple base stations model on reliable wireless sensor network performance in different network dimensions.
Volume: 7
Issue: 2
Page: 933-941
Publish at: 2017-04-01

Development of Load Control Algorithm for PV Microgrid

10.11591/.v7i2.pp619-630
Mohamad Haireen Bin Fatheli , Nur Izzati Zolkifri , Chin Kim Gan , Musa Bin Yusup Lada
The variability of solar irradiance which is caused by the weather conditions could result in the mismatch between the solar PV generation and the demand particularly in the microgrid context. This may lead to the detrimental effects of over/under voltage or over/under frequency. In this regard, this paper presents the laboratory set-up of a grid-connected PV inverter operates in islanding condition. To achieve this, a load control algorithm is proposed to provide the autonomous real time demand control that follows the PV generation to maintain generation-demand equilibrium requirement. The laboratory results show that the proposed load control algorithm can successfully address the voltage and the frequency violation in islanding condition, regardless of the variation of irradiance and power generated by the PV sources.
Volume: 7
Issue: 2
Page: 619-630
Publish at: 2017-04-01

A New Compact and Miniaturized GCPW-fed Slotted Rectangular antenna for Wideband UHF FIRD Applications

10.11591/.v7i2.pp767-774
Rachid Dakir , Jamal Zbitou , Ahmed Mouhsen , A. Tribak , M. Latrach , A. M. Sanchez
This paper presents the development of a new miniaturized and compact GCPW-fed slotted rectangular antenna structure reader for wideband UHF RFID applications. The optimized proposed antenna is suitable to operate a large frequency-band range from 0.8GHz to 1.3GHz with a bandwidth of 500MHz with a return loss less than -10dB. The antenna is based on a 1.6mm thickness FR4 epoxy substrate with a reduce dimensions compared to the simple rectangular antenna and size of proposed antenna is 47*40mm2. The new design consists of a compact rectangular patch with symmetric U-shaped slots and I-shaped include a partial ground plan and fed by 50 Grounded coplanar line. The antenna parameters have been investigated and optimized by   using   CST Microwave Studio. To validate the CST Microwave Studio results before the   antenna achievement,   we   have   conducted another study by using ADS. The   final circuit   achieved, measured and validated. Experimental results show that the proposed antenna has good radiation characteristics and operating in UHF-RFID applications.
Volume: 7
Issue: 2
Page: 767-774
Publish at: 2017-04-01

Wide Area Oscillation Damping using Utility-Scale PV Power Plants Capabilities

10.11591/.v7i2.pp681-691
Mehrdad Moradi , Pouria Maghouli
With increasing implementation of Wide Area Measurement Systems (WAMS) in power grids, application of wide area damping controllers (WADCs) to damp power system oscillations is of interest. On the other hand it is well known that rapidly increasing integration of renewable energy sources into the grid can dangerously reduce the inertia of the system and degrade the stability of power systems. This paper aimed to design a novel WADC for a utility-scale PV solar farm to damp out inter area oscillations while the main focus of the work is to eliminate the impact of communication delays of wide-area signals from the WAMS. Moreover the PV farm impact on inter area oscillation mitigation is investigated in various case studies, namely, with WADC on the active power control loop and with WADC on the reactive power control loop. The Quantum Particle Swarm Optimization (QPSO) technique is applied to normalize and optimize the parameters of WADC for inter-area oscillations damping and continuous compensation of time-varying latencies. The proposed method is prosperously applied in a 16-bus six-machine test system and various case studies are conducted to demonstrate the potential of the proposed structure.
Volume: 7
Issue: 2
Page: 681-691
Publish at: 2017-04-01

Synthesis of Germanium Dioxide Microclusters on Silicon Substrate in Non-aqueous Solution by Electrochemical Deposition

10.11591/ijeecs.v6.i1.pp193-199
Mastura Shafinaz Zainal Abidin , Shahjahan Shahjahan , Abdul Manaf Hashim
We report the formation of crystalline germanium dioxide (GeO2) microclusters on n-Si (100) electrodeposited in non-aqueous electrolyte (a mixture of 5 vol.% germanium tetrachloride (GeCl4) and dipropylene glycol (C6H14O3) ) at current density of 20 mA/cm2 for 200 sec. Pt, C and Ge are used as an anode while Si acts as a cathode. Field- emission scanning electron microscopy (FESEM) images show that the deposited GeO2 microclusters are having rounded-mushroom-shaped particles with the smallest size of 660 nm. Energy dispersive x-ray (EDX) spectra reveal that the particles are only composed of Ge and O elements. Raman spectra confirm the formation of crystalline GeO2 with trigonal bonding structures in all samples. The photoluminescence (PL) spectra show two significant emission peaks in visible range at 2.27 eV and 2.96 eV, which seems to be attributed by GeO2 and Si defects. C6H14O3 seems to contribute to the formation of GeO2 due to its hygroscopic nature. Such microcluster structures shall provide some potential applications for electronic and optical devices on Si platform.
Volume: 6
Issue: 1
Page: 193-199
Publish at: 2017-04-01

Layout Effects on High Frequency and Noise Parameters in MOSFETs

10.11591/ijeecs.v6.i1.pp88-96
Asmaa Nur Aqilah Zainal Badri , Norlaili Mohd Noh , Shukri bin Korakkottil Kunhi Mohd , Asrulnizam Abd Manaf , Arjuna Marzuki , Mohd Tafir Mustaffa
This study reviews related studies on the impact of the layout dependent effects on high frequency and RF noise parameter performances, carried out over the past decade. It specifically focuses on the doughnut and multi- finger layouts. The doughnut style involves the polygonal and the 4- sided techniques, while the multi-finger involving the narrow-oxide diffusion (OD) and multi-OD. The polygonal versus 4-sided doughnut, and the narrow-OD with multi-fingers versus multi-OD with multi- fingers are reviewed in this study. The high frequency parameters, which are of concern in this study, are the cut- off frequency (fT) and the maximum frequency (fMAX), whereas the noise parameters involved are noise resistance (RN) and the minimum noise figure (NFmin). In addition, MOSFET parameters, which are affected by the layout style that in turn may contribute to the changes in these high frequency, and noise parameters are also detailed. Such parameters include transconductance (Gm); gate resistance (Rg); effective mobility (μeff); and parasitic capacitances (cgg and cgd). Investigation by others has revealed that the polygonal doughnut may have a larger total area in comparison with the 4- sided doughnut. It is also found by means of this review that the multi-finger layout style with narrow-OD and high number of fingers may have the best performance in fT and fMAX, owing partly to the improvement in Gm, μeff, cgg, cgd and low frequency noise (LFN). A multi-OD with a lower number of fingers may lead to a lower performance in fT due to a lower Gm. Upon comparing the doughnut and the multi-finger layout styles, the doughnuts appeared to perform better than a standard multi-finger layout for fT, fMAX, Gm and μeff but are poorer in terms of LFN. It can then be concluded that the narrow-OD multi-finger may cause the increase of cgg as the transistor becomes narrower, whereas a multi-OD multi-finger may have high Rg and therefore may lead to the increase of fT and fMAX as the transistor becomes narrower. Besides, the doughnut layout style has a higher Gm and fT, leading to larger μeff from the elimination of shallow trench isolation (STI) stress.
Volume: 6
Issue: 1
Page: 88-96
Publish at: 2017-04-01

Modeling and Simulation of VSI Fed Induction Motor Drive in Matlab/Simulink

10.11591/ijece.v7i2.pp584-595
D. Uma , K. Vijayarekha
The theory of reference frames and switching functions are effective in analyzing the performance of the induction motor fed from VSI (Voltage Source Inverter). In this work, mathematical model of Adjustable Speed Drive (ASD) is developed by taking synchronous reference frame equations for induction motor, switching function concept for VSI and non-switching concept for diode bridge rectifier.  The developed model is implemented using MATLAB/Simulink as it is an important tool for the validation of the proposed model. The performance of induction motor is analysed for different frequencies. The developed model is tested for the steady state behavior of machine drive. The proposed mathematical model is validated by the simulation results.
Volume: 7
Issue: 2
Page: 584-595
Publish at: 2017-04-01

Focusing Properties of a Modified Retarding Structure for Linear Electron Accelerators

10.11591/ijece.v7i2.pp741-747
Vladimir Kuz'mich Shilov , Aleksandr Nikolaevich Filatov , Aleksandr Evgen'evich Novozhilov
When using accelerators in industry and medicine, important are the dimensions of the device used, especially the radial ones. In the linear electron accelerators based on a biperiodic retarding structure, which operates in the standing wave mode, there is a possibility to provide focusing of the accelerated particles with the help of high-frequency fields without the use of external focusing elements. In the accelerating cell, due to the presence of the far protruding drift sleeves, the electric field lines become strongly curved, which leads to the appearance in the regions adjacent to these sleeves of a substantial in magnitude radial component of the electric field. The particles entering the accelerating gap experience the action of a force directed toward the axis of the system, and at the exit, of a force directed away from the axis. Under certain conditions, alternation of the focusing and defocusing fields can lead to a general focusing effect. In the paper we study the focusing properties of a modified biperiodic structure with standing wave. The main attention is paid to the possibility of using the focusing properties of the electromagnetic accelerating field for guiding the electron beam through the aperture of the accelerating system, which will lead to a significant reduction in the accelerator sizes. The proposed method can be applied in the calculation and design of linear electron accelerators.
Volume: 7
Issue: 2
Page: 741-747
Publish at: 2017-04-01

Harmonic Suppression of Shunt Hybrid Filter Using LQR-PSO based

10.11591/ijece.v7i2.pp869-876
Nor Shahida Hasan , Norzanah Rosmin , Saifulnizam Abd Khalid , Dygku. Asmanissa Awg. Osman , Baharuddin Ishak , Aede Hatib Mustaamal
In linear quadratic regulator (LQR), two different weighting matrices play an important role in presenting the performance of this controller. Instead of using classic common approach, which is trial and error method, this study proposes a particle swarm optimization (PSO) algorithm to track the best solution of the weighting matrices. The proposed algorithm is tested on shunt hybrid active power filter (APF) to mitigate the harmonic contents in voltage and current signals in a nonlinear load system. The modeling work of this proposed system is simulated using MATLAB/Simulink software. From the simulation, the obtained results proved that using PSO in tuning the LQR controller produce smoother nonlinear voltage and current signals. In fact, the amount of current to be injected into network can be reduced up to 95%. Besides, less time is consumed during searching the optimum weighting matrices using the proposed approach.
Volume: 7
Issue: 2
Page: 869-876
Publish at: 2017-04-01
Show 1466 of 1897

Discover Our Library

Embark on a journey through our expansive collection of articles and let curiosity lead your path to innovation.

Explore Now
Library 3D Ilustration